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Abstract

We present a new multimodal dataset called
Visual Recipe Flow, which enables us to learn
each cooking action result in a recipe text. The
dataset consists of object state changes and the
workflow of the recipe text. The state change is
represented as an image pair, while the work-
flow is represented as a recipe flow graph (r-
FG). The image pairs are grounded in the r-FG,
which provides the cross-modal relation. With
our dataset, one can try a range of applications,
from multimodal commonsense reasoning and
procedural text generation.

1 Introduction

Our aim is to track how foods are processed and
changed toward the final food product by each
cooking action given a recipe text. This requires
some knowledge of the actions: what foods and
actions are involved and how the action changes
them. Skilled chefs can easily imagine these action
effects while understanding the required foods. We
are interested in building an autonomous agent en-
dowed with this ability, as illustrated in Figure 1.
This example involves two cooking actions, and
the agent imagines the second action result: the
shredded cabbage in the bowl. This also implicates
the food requirement: the shredded cabbage pro-
duced by the previous action. The prediction for
the required foods and action results is indeed a nat-
ural ability for humans when they cook something.
Thus, this is also crucial for intelligent autonomous
agents to understand recipe texts.

Previous work on this line of research pro-
vided visual annotation for each cooking instruc-
tion (Nishimura et al., 2020; Pan et al., 2020).
Nishimura et al. (2020) attached an image with
bounding boxes of objects to each instruction,
while Pan et al. (2020) split an instruction into
sentences and attached frames to each sentence.
However, their annotations are often insufficient to
predict the action result for each object. A typical

Figure 1: Our goal is to build an agent that tracks object
state changes and predicts what observations can be
obtained by cooking actions.

case is an instruction in a sentence that directs mul-
tiple actions. For example, the instruction of “slice
the tomato and put it into the bowl” produces two
action results: the sliced tomato and that put in the
bowl. Therefore, an instruction-wise visual anno-
tation is insufficient for our task, and action-wise
visual annotation is required. Preparing a more
dense visual annotation is one straightforward way
to handle this case.

Toward the realization of an agent that predicts
the result of each action, we introduce a new mul-
timodal dataset called Visual Recipe Flow (VRF).
The dataset consists of object1 state changes caused
by every action and the workflow of the text. The
change is given as an image pair, while the work-
flow is given in the format of recipe flow graph
(r-FG) (Mori et al., 2014). Each image pair is
grounded in the r-FG, which gives the cross-modal
relation. Figure 2 shows an example of our dataset.

We focus on recipe text involving various cook-
ing actions, foods, and state changes, which is
one of the representatives of procedural texts. Un-

1In our work, object refers to food or tool.
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Figure 2: Example of our dataset. A pair of images in the visual observation corresponds to the states of object
before and after a cooking action. They are grounded in the action in the instruction list. The black solid arrows
denote recipe flows, which describe the relationships between expressions (e.g., cooking actions, foods, and tools).

derstanding these texts by tracking object state
changes is one of the recent trends (Dalvi et al.,
2018; Bosselut et al., 2018; Tandon et al., 2020;
Nishimura et al., 2021; Papadopoulos et al., 2022).
Our work also contributes to this line of research.
Since images directly express object appearances
in the real world (Isola et al., 2015; Zhang et al.,
2021), our dataset would provide rich informa-
tion for the changes. The sequential nature of
our dataset can also be used to test the reading
comprehension ability of large-scale language mod-
els (Srivastava et al., 2022). Furthermore, since our
dataset has arbitrary interleaved visual and textual
annotations, it is also possible to evaluate the few-
shot capability of vision-language models on such
data (Alayrac et al., 2022).

2 The VRF dataset

The Visual Recipe Flow (VRF) dataset is a new
multimodal dataset. It provides visual annotations
for objects in a recipe text before and after a cook-
ing action. We identify expressions including the
action in the text by using recipe named entities (r-
NEs) (Mori et al., 2014), which can be extended to
other procedural tasks. Based on the r-NEs, it also
provides a representation of the recipe workflow
as a recipe flow graph (r-FG) (Mori et al., 2014).
In this section, we first explain the overview of the
r-FG and then introduce our visual annotation.

2.1 Recipe flow graph (r-FG)
The r-FG represents the cooking workflow of a
recipe text. It consists of a set of recipe flows. The
recipe flow is expressed as a directed edge that
takes two r-NEs as the starting and ending vertices.
It also has a label that describes the relationship
between them. It connects one cooking action with
the next and expresses its dependencies. For ex-

ample, in Figure 2, the first action is connected
with the second one, which means that the sec-
ond action requires the products of the first action:
shredded cabbage and carrot. This helps us to iden-
tify what foods are required for the actions. The
annotation has the flows from the ingredient lists to
track foods from raw ingredients (Nishimura et al.,
2021), which allows us to convert the r-FG into
cooking programs (Papadopoulos et al., 2022).

2.2 Visual annotation
Our visual annotation is given as an extension of
the r-FG. Each annotation consists of a pair of im-
ages which represent object state change by the
action. Each image pair is linked with the action
in the r-FG. In some cases, a single action can re-
quire multiple objects and change their states. Our
annotation provides an image pair to all of these
state changes. In Figure 2, for example, the first
action is linked with two image pairs because it
induces the state changes of two objects: cabbage
and carrot. This dense annotation would help de-
velop autonomous cooking agents because these
images provide visual clues for each action.

3 Annotation standards

In this section, we describe our annotation stan-
dards. The annotation consists of three steps in or-
der: (i) r-NE annotation, (ii) r-FG annotation, and
(iii) image annotation. Each recipe has an ingre-
dient list, an instruction list, and a cooking video.
Figure 3 shows an example of the annotations.

r-NE annotation. First, we annotated words in
the ingredient and instruction lists with r-NE tags2.

2We segmented sentences into words beforehand by using
a Japanese tokenizer, KyTea (Neubig et al., 2011), because
words in a Japanese sentence are not typically separated by
whitespace.
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Figure 3: Example of annotation process for a single
instruction. The instruction is sequentially annotated
with r-NE tags, recipe flows, and images.

i

We used the eight types of r-NE tags, following
Mori et al. (2014). See Appendix A for details.

r-FG annotation. Second, we annotated the r-
NEs in the first step with the r-FG. We used the 13
types of r-FG labels, following Maeta et al. (2015).
See Appendix A for details.

Image annotation. Third, we annotated object
states with images, sampled at 3 frames per second
from the videos. Each object required for any cook-
ing action is annotated as a pair of frames of states
before and after the action. When there are mul-
tiple suitable frames, we prioritize the one based
on the visual clarity of the object. In some cases,
objects are always heavily covered by human hands
or abbreviated from the video. We treat them as
missing data.

4 Annotation results

This section first describes our annotation process
and the statistics for the annotation results. It then
investigates the dataset quality and finally assesses
our dataset by conducting experiments.

4.1 Annotation process

We started by collecting recipes and cooking videos
since the existing r-FG datasets (Mori et al., 2014;
Yamakata et al., 2020) are not necessarily associ-
ated with the videos. We collected 200 recipes in
Japanese and videos from the Kurashiru website3.
In the video, each cooking process is recorded in
detail by a fixed camera. Thus, we can annotate
the object states with a fixed viewpoint. Consid-
ering the future cooking agent developments, we
focused on salad recipes, in which the procedures
are simple but still contain 89 unique expressions
for cooking action and 275 unique ingredients.

We asked one Japanese annotator, familiar with
the r-NE and r-FG, to annotate the recipes. How-
ever, filling spreadsheets manually (Mori et al.,
2014) is heavy, and it also might cause unexpected
annotation errors. Therefore, we developed a web
interface to help the annotation. The interface sup-
ports all three annotation steps. With this interface,
the annotator can annotate recipes with r-NE tags,
r-FG labels, and images by simple mouse opera-
tions. An illustration of the interface is provided in
Appendix B. The whole annotation took 120 hours.

In the annotation collection process, we created
annotation guidelines to check annotation errors
and reproduce high-quality annotations by another
annotator. Starting with a draft, we iteratively re-
vised the guidelines when the first 10, 20, and 50
recipe annotations were finished. In the verifica-
tion process, we shared the guidelines and three
annotation examples with the second annotator.

4.2 Statistics

The recipes contained 1, 701 ingredients, 1, 077 in-
structions, and 33, 400 words in total. The average
number of ingredients and instructions per recipe
was 8.51 and 5.31, respectively. The r-NE annota-
tion resulted in 11, 686 r-NEs, while the r-FG anno-
tation resulted in 11, 291 recipe flows. We provide
the detailed statistics for them in Appendix A.

Table 1 shows the statistics for the image anno-
tation results. We annotated 3, 705 objects in the
r-FGs with images. Among them, 2, 551 had both
pre-action and post-action images, 485 had only
a post-action image, 72 had only a pre-action im-
age, and 597 had no image. In total, 5, 659 images
(3, 824 unique images) were used.

3https://www.kurashiru.com, accessed on
2021/12/14.

https://www.kurashiru.com
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Annotated image
# objectsPre-action

state
Post-action

state
597

✓ 72
✓ 485

✓ ✓ 2,551
Total 3,705

Table 1: Statistics for the image annotation results. Ob-
jects have image annotation of a pre-action or post-
action state if it is checked.

Annotation Precision Recall F-measure
r-NE 97.93 98.88 98.40
r-FG 86.18 86.04 86.11
Image 75.13 70.60 72.80

Table 2: Inter-annotator agreements of the annotations.

4.3 Dataset quality

To investigate the correctness and consistency of
the annotation results, we asked another annotator
to re-annotate 10 recipes, which were randomly
sampled from the collected recipes and contained
623 named entity tags, 616 recipe flows, and 199
visual state changes. We then measured the inter-
annotator agreements in precision, recall, and F-
measure. The agreements were calculated between
the two sets of annotations by taking the first one
as the ground truth.

Table 2 lists the results. The F-measure for the
r-NE was 98.40, which was almost perfect agree-
ment. The F-measure for the r-FG was 86.11,
which was also quite high considering that all the
r-NEs were presented as candidate vertices. The
F-measure for the images was 72.80, which was
smaller than the former steps. However, this was
still high, considering that annotation differences
in the former steps affected this step.

4.4 Experiments

We conducted multimodal information retrieval ex-
periments to assess our dataset. The experiments
aimed to find a correct post-action image from a
set of candidate images by using the cooking ac-
tion verb and pre-action image information. We
used a joint embedding model (Miech et al., 2019)
and briefly explain the calculation here4. We calcu-
lated a vector for an estimated post-action object

4See details in Appendix C

Used input
R@5 (↑) MedR (↓)Action

verb
Pre-action

image
2.37 149.00

✓ 21.24 26.70
✓ 33.77 12.60

✓ ✓ 37.01 10.40

Table 3: R@5 and MedR for the models with different
inputs. The model uses action verb or pre-action image
if it is checked. The first line denotes random search.

state from the action verb and pre-action image
information. This vector is mapped into a shared
embedding space. On the other hand, the candi-
date post-action images are mapped into vectors
and mapped them into the embedding space. We
searched for the correct post-action image from the
estimated post-action state based on their similari-
ties in the embedding space.

Our model was trained with different input con-
figurations. We used the Recall@5 (R@5) and the
median rank (MedR) as evaluation metrics. Ta-
ble 3 shows the results. The second and third lines’
scores show that the image provides more informa-
tion than the text. The fourth line’s scores imply
that the textual and visual modalities provide differ-
ent information, and using them together is more
effective. These results demonstrate that the visual
modality provides critical information for finding
post-action images. These also indicate the useful-
ness of our annotation.

5 Application

5.1 Multimodal commonsense reasoning

Multimodal commonsense reasoning in recipe text
is one of the recent trends (Yagcioglu et al., 2018;
Alikhani et al., 2019). With our dataset, one can
try reasoning about the food state changes from
a raw ingredient to the final dish with the visual
modality (Bosselut et al., 2018; Nishimura et al.,
2021). One can also use our dataset for analyzing
the cooking action effects throughout a recipe.

5.2 Procedural text generation

Generating procedural text from vision is an im-
portant task (Ushiku et al., 2017; Nishimura et al.,
2019). To correctly reproduce procedures, the gen-
erated instructions should be consistent. The r-FG
has the potential to make them more consistent as
it represents the flow of the instructions. Since our
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recipes are associated with cooking videos, one can
use our dataset for that purpose.

6 Conclusion

We have presented a new multimodal dataset called
Visual Recipe Flow. The dataset provides dense vi-
sual annotations for object states before and after a
cooking action. The annotations allows us to learn
each cooking action result. Experimental results
demonstrated the effectiveness of our annotations
for a multimodal information retrieval task. With
our dataset, one can also try various applications,
including multimodal commonsense reasoning and
procedural text generation.
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Tag Meaning # tags
F Food 5,098
T Tool 758
D Duration 129
Q Quantity 1,778

Ac
Action by chef

(cooking action)
2,532

Af Action by food 353
Sf State of food 971
St State of tool 67
Total — 11,686

Table 4: r-NE tags and the number of annotated tags of
each type.

Label Meaning # labels
Agent Action agent 330
Targ Action target 2,961
Dest Action destination 1,025
T-comp Tool complement 157
F-comp Food complement 20
F-eq Food equality 2,397
F-part-of Food part-of 330
F-set Food set 987
T-eq Tool equality 4
T-part-of Tool part-of 0
A-eq Action equality 1
V-tm Head of clause for timing 112
other-mod Other relationships 2,967

Total — 11,291

Table 5: r-FG labels and the number of annotated labels
of each type.

A Detailed statistics for the textual
annotation

This section provides the detailed statistics for the
annotated r-NE tags and r-FG labels.

A.1 r-NE tags

Table 4 shows the statistics for the annotated r-NE
tags with the explanation of each tag. Among the
tags, Ac, F, and T are specially important in our
work. Ac denotes human cooking action, which is
distinguished from action by food (Af). For exam-
ple, in the instruction of “leave the salad to cool,”
“leave” is tagged with Ac, while “cool” is tagged
with Af. F denotes foods including raw ingredients,
intermediate products after cooking action, and the
final dish. T denotes tools used for cooking. In our
work, objects refer to the foods or tools. Our image
annotation targeted the states of these objects.
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A.2 r-FG labels
Table 5 shows the statistics for the annotated r-FG
labels with the explanation of each tag. The cook-
ing action (Ac) requires the objects (F or T). Targ
describes this relationship taking the action and
object as the starting and ending vertices, respec-
tively. During the image annotation, we identified
the required objects by using the flows labeled with
Targ.

B Web interface

Our developed web interface is illustrated in Fig-
ure 4. In the first step (r-NE annotation), the an-
notator can annotate words in the ingredient and
instruction lists with an r-NE tag by clicking the
words and tag. In the second step (r-FG annotation),
the annotator can annotate the r-NEs with a recipe
flow by clicking starting and ending vertices and
a label for them. In the final step (image annota-
tion), the annotator can annotate the pre-action and
post-action object states with images by clicking a
frame and the button for the state. All objects for
annotation are automatically prepared by tracing
the recipe flows.

C A joint embedding model

In this section, we provide the detailed calculation
of our model and experimental settings.

C.1 Model description
We first calculate a vector for an estimated post-
action object state baesd on an action verb a, an ob-
ject information o, and a pre-action image ipre. The
object is obtained by tracing a recipe flow labeled
with Targ. a and o are converted to dt-dimensional
vectors ha and ho, respectively, by first embed-
ding words into dv-dimensional representations via
a lookup table and then encoding them into dt-
dimensional vectors by using a bidirectional LSTM
(BiLSTM) (Graves and Schmidhuber, 2005). For
ipre, we extract its feature hprei ∈ Rdi by using a
pre-trained convolutional neural network (CNN)
and transform it into ĥprei ∈ Rdt as follows:

ĥprei = W T
1 hprei + bT1 , (1)

where W T
1 ∈ Rdt×di and bT1 ∈ Rdt are learnable

parameters. Given these fixed-size vectors, we then
compute the vector for the estimated post-action
object state ĥo as:

ĥo = W T
3 (ReLU(W T

2 [ha;ho;h
pre
i ] + bT2 )) + bT3 ,

(2)

where ; denotes concatenation, and W T
2 ∈

R3dt×3dt , W T
3 ∈ Rdt×3dt , bT2 ∈ R3dt , and bT3 ∈

Rdt are learnable parameters. ĥo is then mapped to
the joint embedding space as:

ht = (W T
4 ĥo + bT4 ) ◦

σ(W T
5 (W T

4 ĥo + bT4 ) + bT5 ), (3)

h̃t =
ht

||ht||2
, (4)

where W T
4 ∈ Rde×dt , W T

5 ∈ Rde×de , bT4 , b
T
5 ∈

Rde are learnable parameters.
The post-action image ipost is fed to the pre-

trained CNN to extract its feature hposti ∈ Rdi .
Based on this feature, we compute ĥi as:

ĥi = W I
2 (ReLU(W I

1 h
post
i + bI1)) + bI2, (5)

where W I
1 ,W

I
2 ∈ Rdi×di , and bI1, b

I
2 ∈ Rdi

are learnable parameters. Following Miech et al.
(2018), the feature vector ĥi is then mapped to the
joint embedding space as follows:

hv = (W I
3 ĥi + bI3) ◦

σ(W I
4 (W

I
3 ĥi + bI3) + bI4), (6)

h̃v =
hv

||hv||2
, (7)

where σ is the sigmoid function, ◦ denotes the
element-wise multiplication, W I

3 ∈ Rde×di , W I
4 ∈

Rde×de , and bI3, b
I
4 ∈ Rde are learnable parameters.

Loss function. After mapping the inputs to the
joint embedding space, we calculate the distance
between these vectors as:

D(h̃t, h̃v) = ||h̃t − h̃v||2. (8)

Given n examples of
((h̃t,1,h̃v,1), · · · , (h̃t,n, h̃v,n)), we minimize
the following triplet loss (Balntas et al., 2016):

L =
n∑

i=1

{max(Di,i −Di,j + δ, 0)

+max(Di,i −Dk,i + δ, 0)}, (9)

where Di,j = D(h̃t,i, h̃v,j), and δ denotes a mar-
gin. In Equation (9), Di,i is the distance for a pos-
itive pair, and Di,j and Dk,i are the distances for
pairs with negative text and image feature vectors,
respectively. For negative sampling, we simply
sample negative examples from a mini-batch.
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Figure 4: Our web annotation interface. The annotator can complete annotations only by mouse operations. The
web page is written in Japanese.

C.2 Settings

Model parameters. We used a 1-
layer 256-dimensional BiLSTM to en-
code words. We set the dimensions as
(dv, dt, di, de) = (496, 512, 2048, 128). We
used ResNet-152 (He et al., 2016), which was pre-
trained on ImageNet (Russakovsky et al., 2015), to
extract a feature vector of 2048 dimensions from
an image.

Optimization. We used AdamW (Loshchilov
and Hutter, 2019) with an initial learning rate of
1.0× 10−5 to tune the parameters. During training,
we froze only the parameters of the CNN. Each
model was trained for 350 epochs, and we created
a mini-batch with 4 recipes at each step. We set
δ in Equation (9) to 0.1. We evaluated the model
performance through 10-fold cross-validation by
splitting the dataset into 90% for training and 10%

for testing.
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