
Proceedings of the 29th International Conference on Computational Linguistics, pages 3120–3126
October 12–17, 2022.

3120

LayerConnect: Hypernetwork-Assisted Inter-Layer Connector to Enhance
Parameter Efficiency

Haoxiang Shi1∗†, Rongsheng Zhang2*, Jiaan Wang3†, Cen Wang4

Yinhe Zheng5 and Tetsuya Sakai1

1 Waseda University, Tokyo, Japan 2 Fuxi AI Lab, NetEase Inc., Hangzhou, China
3 Soochow University, Suzhou, China 4 KDDI Research Inc., Japan 5 Lingxin AI, China

hollis.shi@toki.waseda.jp, tetsuya@waseda.jp, zhangrongsheng@corp.netease.com

jawang1@stu.suda.edu.cn, ce-wang@kddi-research.jp, zhengyinhe1@163.com

Abstract

Pre-trained Language Models (PLMs) are the
cornerstone of the modern Natural Language
Processing (NLP). However, as PLMs become
heavier, fine tuning all their parameters loses
their efficiency. In this paper, we propose Lay-
erConnect (hypernetwork-assisted inter-layer
connectors) to enhance inference efficiency.
Specifically, a light-weight connector with a
linear structure is inserted between two Trans-
former layers, and the parameters inside each
connector are tuned by a hypernetwork com-
prising an interpolator and a down-sampler. We
conduct extensive experiments on the widely
used GLUE benchmark. The experimental
results verify the inference efficiency of our
model. Compared to Adapter, with our struc-
ture, parameters are reduced to approximately
11.75% for base PLMs and 8.82% for large
PLMs, while the performance degradation is
kept to less than 5% (2.07 points on average).

1 Introduction

The emergence of pre-trained language models
(PLMs) has brought Natural Language Process-
ing (NLP) to a new era (Qiu et al., 2020). Fine
tuning all PLMs parameters has become the most
common strategy to apply them to downstream
tasks (Zheng et al., 2021a; Lai et al., 2021; Wang
et al., 2021, 2022; Chen et al., 2022; He et al., 2022;
Zheng et al., 2020; Wang et al., 2020; Zheng et al.,
2021b,c; Zhang et al., 2020; Zhou et al., 2021).
However, in this manner, one should store a full
copy of a PLM for each downstream task because
all its parameters are updated during the fine-tuning
stage. Thus, this strategy challenges the usage of
the PLMs on edge devices (e.g., mobile phone and
embedded systems) that have limited storage space.
Under this background, parameter efficiency has
gradually attracted attention from both the research

∗These two authors contributed equally.
† This work is mainly done when SHI and WANG were

interning at NetEase Inc..

community and industries (Houlsby et al., 2019;
Li and Liang, 2021; Zaken et al., 2021; Liu et al.,
2021; Ding et al., 2022; Zhang et al., 2021). The
core concept of parameter efficiency is to reduce
the trainable parameters of PLMs. Consequently,
when deploying a PLM, only the different trained
parameters from multiple tasks must be stored, to-
gether with one copy of the shared frozen parame-
ters.

Currently, there are three main types of param-
eter efficiency methods: (1) Specification-based
methods train only a small part of the parameters in
the original PLM, while the others are frozen. For
example, Bitfit (Zaken et al., 2021) only updates
the parameters of the bias and task-specific layers
in PLMs. (2) Prompt-based methods prepend addi-
tional context (i.e., prompts) to the original input,
and change only the prompt parameters during fine
tuning. In this manner, P-tuning (Liu et al., 2021)
adopts an extra network to functionalize the op-
timization of the continuous prompt embedding.
Then, Prefix-tuning (Li and Liang, 2021) is pro-
posed to use trainable prefixes to accomplish a
parameter-efficiency task. (3) The Adapter-based
methods inject small-scale neural modules to PLMs
and update only these modules during fine tuning.
Adapter (Houlsby et al., 2019) simply injects two
linearly trainable projectors (i.e., Adapter layers)
into each transformer layer of PLMs. Karimi Ma-
habadi et al. (2021) further make the weights of
Adapter layers conditioned on hypernetworks (Ha
et al., 2016) facilitating parameter sharing across
multiple tasks. Later, Hu et al. (2021) propose Low-
Rank Adaptation (LoRA), a layer-parallel structure
which contains less parameters than Adapter.

In view of hypernetwork (Ha et al., 2016) which
generates weights for another network, although its
superiority has been proved in multi-task parameter
efficiency (Karimi Mahabadi et al., 2021), the sin-
gle linear projector used in their hypernetwork con-
tinues to have under-explored abilities (e.g., avoid-

3121

ing local optima and performance compensation
when linear structure size is reduced). Furthermore,
the PLM used in Karimi Mahabadi et al. (2021)
is T5 (Raffel et al., 2020), a pre-trained encoder-
decoder model. Therefore, the effectiveness of the
hypernetwork remains unknown in encoder-only
PLMs (e.g., BERT and RoBERTa). To this end, we
propose LayerConnect, a hypernetwork-assisted
inter-layer connector. Specifically, in the proposed
architecture, we first insert a connector between
every adjacent transformer layer in a PLM. Only
the parameters of the inserted connector are up-
dated during the fine-tuning stage. Then, to share
parameters across multiple tasks and avoid local
convergence, the weights of the connector are con-
ditioned on a well-designed hypernetwork that is
equipped with an interpolator and a down-sampler.
The proposed hypernetwork reduces the required
parameters in the connectors and ensures sufficient
optimization space. We conduct extensive experi-
ments on the GLUE benchmark (Wang et al., 2018).
The experimental results show that compared with
Adapter, our LayerConnect requires only 11.75%
of its parameters, while keeping the performance
degradation to less than 5%.

2 Method

We propose hypernetwork-assisted inter-layer con-
nectors (i.e., LayerConnect), as shown in Figure 1,
the Transformer encoder (Vaswani et al., 2017) is
used as the backbone of our LayerConnect and a
connector is inserted between Transformer layers,
named inter-layer connector. Specifically, the con-
nectors linearly transform the hidden states of each
Transformer layer:

C l(Xl) = Xl ·Al +Bl (1)

where X l ∈ Rn×d is the hidden state of the l-th
Transformer layer (l ∈ {1, 2, · · · , L}), n and d
are the input size and the hidden size of Trans-
former, respectively. Further, Al ∈ Rn×n and
Bl ∈ Rn×d are the trainable parameters where
each row in Al or Bl is a repetition of a vector
al or bl with length n. In the entire model, the
only tunable parameters are A = [a1; a2; · · · ; aL]
and B = [b1; b2; · · · ; bL]. Compared with pre-
vious intra-layer Adapters (Houlsby et al., 2019;
Karimi Mahabadi et al., 2021), our inter-layer con-
nector contains fewer trainable parameters due to
(1) the number of inserted layers in our model is L
while the counterpart of others is 2L; and (2) the

Transformer Layer n

Connector

Down-
sampler

+

Tr
an

sf
or

m
er

 S
tru

ct
ur

e

… … … …

inputs

outputs

Transformer Layer 2

Transformer Layer 1

Connector

+

Connector

+

…

…

updated
!,#

$!(&!)
(" ,)"…

H
ypernetw

ork

Interpolator
$#(&#)

$$(&$)

!, #

(#,)#
($,)$

(" ,)"
…
(#,)#
($,)$up

da
te
d

Figure 1: LayerConnect architecture.

parameters count in our connector is n+d, which is
less than 2d · dm(1 ≤ dm < d) existing Adapters.

To prevent the model from converging to the lo-
cal optima due to the small number of parameters,
the weights of A and B are conditioned on a hyper-
network. Unlike the approach of Karimi Mahabadi
et al. (2021), whose hypernetwork is a single linear
projector, we design a new hypernetwork equipped
with an interpolator and a down-sampler. In detail,
we first utilize a learned task embedding et ∈ RL×d

for each task, and then, use an interpolator to raise
dimensionality, followed by a ReLU non-linearity:

ein = ReLU(Winet) (2)

where Win ∈ RmL×L is the set of trainable param-
eters of the interpolator and m is a hyper parameter.
In this manner, sufficient interpolator parameters
are provided to optimize the connectors. Subse-
quently, a down-sampler is used to project Xin

back to the original dimensionality. Finally, the
weights of A and B are generated from the down-
sampled vector:

eds = Wdsein (3)

(A⊤,B⊤) = Xds(W
A,WB) (4)

where Wds ∈ RL×mL, WA ∈ Rd×n and WB ∈
Rd×d are trainable parameters.

We specify the parameters of hypernetwork for
different tasks during fine tuning. After that, the
hypernetwork is discarded when deploying models,
indicating that the parameters of the hypernetwork
do not influence storage space during reasoning.

3122

Method Para. Size SST-2 QNLI M.-MM QQP RTE STS-B CoLA MRPC
Acc. Acc. Acc. Acc. F1 Acc. PCC SCC Acc. Acc. F1

Vanilla Fine-Tuning 108.31M 91.46 91.00 83.91 91.08 87.93 69.67 89.73 89.35 60.74 86.17 90.12
ADA1 27.66K 90.60 88.14 78.77 85.54 80.51 63.82 86.99 86.97 51.12 77.79 85.22
ADA8-random 13.06K 90.51 86.34 72.54 82.71 77.90 58.48 83.63 83.25 34.36 72.07 82.67
ADA8 156.76K 91.48 90.84 81.46 88.11 83.98 69.82 88.08 88.08 57.12 84.46 88.94
ADA8-hyper 156.76K 91.40 90.87 81.96 88.58 84.71 70.51 88.07 88.07 56.01 85.29 89.42
Bitfit 102.91K 90.78 87.70 78.15 85.50 80.90 67.22 87.22 87.22 47.92 78.14 85.67
LayerCon. (our) 18.43K 92.45 88.58 78.96 85.73 81.16 68.73 87.46 87.63 53.86 86.17 90.11
LayerCon. (w/o B) 9.21K 90.52 87.13 75.62 84.71 79.79 64.98 85.86 85.74 49.72 80.94 87.18
LayerCon. (w/o A) 9.21K 89.48 85.25 75.63 82.49 77.97 57.40 70.10 81.25 42.98 69.61 81.66
LayerCon. (w/o A&B) 18.43K 89.79 84.79 82.55 83.06 78.43 58.19 84.63 84.63 40.94 74.21 83.11

Table 1: Experimental results on the GLUE benchmark, based on BERT-base. M.-MM = MNLI-MM. Para. Size:
additional parameters for PLM inference in a single task. The bold denotes the best results.

Method Para. Size SST-2 QNLI M.-MM QQP RTE STS-B CoLA MRPC
Acc. Acc. Acc. Acc. F1 Acc. PCC SCC Acc. Acc. F1

Vanilla Fine-Tuning 125.31M 94.65 93.11 87.16 91.49 88.70 77.36 90.00 89.79 59.66 88.57 91.75
ADA1 27.66K 92.09 88.19 82.48 85.74 80.95 58.34 81.93 81.99 37.82 77.09 81.92
ADA8-random 13.06K 90.51 80.97 75.46 82.69 77.82 58.53 87.38 87.26 30.09 68.38 81.22
ADA8 156.76K 93.85 90.90 86.63 88.29 84.56 70.18 90.63 90.31 58.92 87.60 91.08
ADA8-hyper 156.76K 94.50 91.77 85.13 87.30 83.23 70.21 88.86 89.22 61.14 84.74 88.66
Bitfit 103.68K 90.60 88.49 75.79 85.23 81.08 67.22 84.56 84.41 54.17 80.88 86.15
LayerCon. (our) 18.43K 93.58 89.51 83.57 87.04 82.98 66.13 86.74 86.85 55.17 79.88 85.67
LayerCon. (w/o B) 9.21K 91.28 87.59 80.66 85.34 81.03 59.01 83.08 83.45 41.86 75.29 83.66
LayerCon. (w/o A) 9.21K 92.66 84.57 71.52 83.55 79.46 60.72 78.09 78.38 43.27 70.10 81.68
LayerCon. (w/o A&B) 18.43K 91.50 86.73 72.76 85.90 81.91 63.29 84.66 83.55 46.56 73.70 82.21

Table 2: Experimental results on GLUE benchmark, based on RoBERTa-base.

Therefore, we only need to restore the connector
parameters, i.e., A and B, for each task.

3 Experiment

3.1 Setup

The PLMs used in our experiments are BERT and
RoBERTa models implemented by the Transform-
ers library (Wolf et al., 2020). More details are
given in Appendix A.

3.2 Dataset and Metric

Following previous work (Houlsby et al., 2019;
Karimi Mahabadi et al., 2021), we evaluate model
performance on the GLUE benchmark (Wang et al.,
2018). Note that some test sets in GLUE are not
publicly available, thus, the corresponding valida-
tion sets are used as alternatives. The main metric is
accuracy (Acc.). For the QQP and MRPC, we use
the F1-measure; for the STS-B, we use the Spear-
man and Pearson correlation coefficients (SCC and
PCC).

3.3 Baselines

We compared our model with the following meth-
ods. (1) Vanilla Fine-Tuning: Fine-tuning all pa-
rameters in PLMs; (2) Adapter (Houlsby et al.,
2019) under different settings: specifically, we ad-
just the middle size of its bottleneck structure to 1

and 8, which we denoted as ADA1 and ADA8, re-
spectively; (3) ADA-random: We randomly add an
Adapter layer1 to the PLM as a baseline. (4) ADA8

-hyper: We equip the original Adapter of size 8 with
our hypernetwork. (5) Bitfit (Zaken et al., 2021).

Moreover, we also modify our LayerConnect
(LayerCon.) into the following three variations: (1)
LayerCon. (w/o B) uses only the hypernetwork to
generate the weights of A; (2) LayerCon. (w/o A)
uses only the hypernetwork to generate the weights
of B; (3) LayerCon. (w/o A&B) removes the hy-
pernetwork and randomly initializes the weights of
A and B.

3.4 Results

We first analyze the effectiveness of LayerConnect
and hypernetwork through the experimental results
of the base model (Table 1 and Table 2).
Effectiveness of LayerConnect. Our LayerCon-
nect outperforms Bitfit in most of the benchmark
datasets. For the Adapter baselines, a larger
Adapter achieves the higher performance (ADA1

vs. ADA8). As a strong baseline, Adapter even
outperforms the vanilla fine-tuning in some bench-
mark datasets. However, when the Adapter is
equipped with parameters similar to those of Layer-
Connect, its performance declined (ADA8-random

1We choose to add only one Adapter layer since the train-
able parameters in this strategy are most close to our model.

3123

Method Para. Size SST-2 QNLI M.-MM QQP RTE STS-B CoLA MRPC
Acc. Acc. Acc. Acc. F1 Acc. PCC SCC Acc. Acc. F1

Vanilla Fine-Tuning 333.58M 93.12 92.36 86.55 91.44 88.43 75.45 90.08 90.17 65.12 87.74 91.28
ADA1 76.82K 92.09 91.62 83.30 87.37 83.04 68.23 89.63 89.53 58.81 71.08 81.73
ADA8-random 36.88K 91.97 83.56 77.52 85.25 80.83 64.34 84.58 85.13 57.54 78.43 85.53
ADA8 417.98K 92.93 92.11 86.60 89.17 86.30 72.99 90.19 90.06 61.07 86.12 90.18
ADA8-hyper 417.98K 92.84 92.12 85.90 89.72 86.28 75.71 90.03 89.51 62.70 87.84 91.35
Bitfit 272.38K 92.20 90.03 85.90 87.15 83.63 70.03 89.90 89.65 57.79 79.75 90.21
LayerCon. (our) 36.88K 92.59 91.10 83.36 85.72 84.43 72.42 90.08 87.63 60.90 87.50 91.24
LayerCon. (w/o B) 18.43K 92.09 89.71 81.11 85.03 80.76 68.95 88.12 88.87 57.02 80.15 86.61
LayerCon. (w/o A) 18.43K 91.86 89.99 80.67 84.70 80.24 67.15 88.50 88.25 58.58 82.35 82.04
LayerCon. (w/o A&B) 18.43K 91.97 89.86 81.77 84.56 80.05 59.21 87.45 87.42 55.63 76.47 84.81

Table 3: Experimental results on GLUE benchmark, based on BERT-Large.

Method Para. Size SST-2 QNLI M.-MM QQP RTE STS-B CoLA MRPC
Acc. Acc. Acc. Acc. F1 Acc. PCC SCC Acc. Acc. F1

Vanilla Fine-Tuning 356.51M 96.61 94.94 89.98 91.92 89.45 85.12 92.28 92.09 65.08 88.48 91.75
ADA1 76.82K 95.07 91.96 88.17 86.61 82.51 71.12 90.63 90.54 55.59 86.27 90.48
ADA8-random 36.88K 95.18 75.97 84.94 84.67 80.43 73.29 88.48 88.53 52.06 83.33 88.51
ADA8 417.98K 95.94 94.56 89.66 89.25 85.97 72.74 92.01 91.08 62.75 89.07 92.17
ADA8-hyper 417.98K 96.58 94.73 90.03 89.34 86.03 73.19 90.05 89.88 59.06 89.46 92.31
Bitfit 273.41K 95.37 93.04 88.46 87.49 83.79 72.22 91.05 90.91 59.70 86.64 90.21
LayerCon (our) 36.88K 95.41 93.67 88.60 88.04 83.00 76.92 91.50 91.46 63.61 87.00 90.21
LayerCon. (w/o B) 18.43K 93.23 90.85 86.44 86.24 82.32 73.29 86.34 86.32 54.23 70.83 81.89
LayerCon. (w/o A) 18.43K 93.35 92.29 86.90 85.77 85.99 70.76 86.55 86.57 53.95 82.50 83.86
LayerCon. (w/o A&B) 36.88K 94.61 92.36 87.28 86.24 81.92 68.23 82.91 83.56 56.53 77.45 85.40

Table 4: Experimental results on GLUE benchmark, based on RoBERTa-Large.

Para. Size CoLA(Acc.) MNLI-MM(Acc.)
2m. 55.17 83.57
4m. 55.47 84.01
10m. 55.48 84.22

Table 5: The effect of the size of hypernetwork under
the RoBERTa-base model.

vs. ADA8) and is worse than ours on most datasets.
Moreover, the trainable inserted parameters in our
model are only 11.75% of that in ADA8. The Layer-
Connect performance is competitive with the best
Adapter, with an average performance deterioration
of 1.42% (1.0 points) and 3.96% (3.3 points) for
BERT-base and RoBERTa-base, respectively.
Effectiveness of the Hypernetwork. We also
demonstrate that the hypernetwork is necessary
for the connectors. We compare the results of our
model with or without hypernetwork (LayerCon.
vs. LayerCon. (w/o A&B)). The former outper-
forms the latter except for MNLI-MM. We analyze
this because the hypernetwork provides sufficient
parameters during the fine-tuning stage to tune the
connectors effectively. We also remove the A and
B in our hypernetwork, respectively, to further re-
duce the parameters. However, the performances
are all worse than that of the original hypernetwork
(LayerCon. vs. LayerCon. (w/o B) and LayerCon.
(w/o A)), demonstrating the rationality of our hy-
pernetwork. Moreover, we attempt to equip the
best Adapter with our hypernetwork, the results are
only slightly changed compared with the original

LayerConnect
Bitfit
Adapter 8
Adapter 16
Adapter 32

Pa
ra

m
et

er
 S

iz
e

106

107

108

109

The Number of Tasks
10 100 1000

Figure 2: Parameter size as the number of tasks grows.

Adapter (ADA8 vs. ADA8-hyper). We conclude that
our hypernetwork is more effective on fewer param-
eters’ inserted layers since its provided parameters
are more valuable to them.

We additionally test our model and baselines
based on BERT-large and RoBERTa-large models.
The corresponding results are shown in Table 3 and
Table 4, respectively. The average performance de-
terioration is 2.12% (1.74 points) and 0.79% (0.85
points) for BERT-large and RoBERTa-large, respec-
tively; both are lower than that of the base models.
The trainable inserted parameters in LayerConnect
are only 8.82% of that in ADA8.

4 Discussion

As presented in Table 5, we adjust the middle value
of the hypernetwork shape in our method to 4 and

3124

10, respectively. A larger size resulted in a slight
performance improvement. This result suggests
that the hypernetwork size has a positive effect in
our LayerConnect.

We compare the parameter size in the deploy-
ment for model inference as the number of tasks
grows, as shown in Figure 2. In model inference,
considering the scalability, for the Bitfit, one may at
least store multiple copies of the bias (i.e., 1,324K).
However, the structure and the bias locations are
also necessary. The parameter sizes of the Adapter
and the Adapter with the hypernetwork are the
same (i.e., the size of the bottleneck structure). In
contrast, our connectors require an extremely small
parameter size. That is to say, one can easily de-
ploy several tens of the tasks, and the total size of
the parameters just arrives at the same level as that
of a single task when using the others.

5 Conclusion

To enhance the parameter efficiency in the fine-
tuning stage of PLMs, we propose the ultra-light
connectors to be embedded into the Transformer
layers. Furthermore, to keep the performance of
such a small structure, we use the hypernetwork
to assist the tuning of the parameters within the
connectors. We compare our method with main-
stream methods (Adapter and Bitfit). Experimental
results show that our method outperforms Bitfit in
most cases. Compared with ADA8 (with best per-
formance in most cases), our method reduces the
trainable parameters to 11.75% for base models
and 8.82% for large models, while keeping the per-
formance degradation to less than 5% (2.07 points
on average). By analyzing the results, we verify
that reducing the number of parameters on the basis
of Adapter will seriously reduce the performance,
and the introduction of hypernetwork promises an
effective way to compensate for performance. This
reveals a new direction of the study on model ef-
ficiency. Additionally, LayerConnect shows scal-
ability, especially for the memory-sensitive and
storage-sensitive edge devices e.g., smartphones,
embedded devices, micro containers, and IoT/IoH
devices.

References
Weijie Chen, Yongzhu Chang, Rongsheng Zhang, Ji-

ashu Pu, Guandan Chen, Le Zhang, Yadong Xi, Yi-
jiang Chen, and Chang Su. 2022. Probing simile
knowledge from pre-trained language models. In

Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5875–5887, Dublin, Ireland. As-
sociation for Computational Linguistics.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen,
Chi-Min Chan, Weize Chen, et al. 2022. Delta tuning:
A comprehensive study of parameter efficient meth-
ods for pre-trained language models. arXiv preprint
arXiv:2203.06904.

David Ha, Andrew Dai, and Quoc V Le. 2016. Hyper-
networks. arXiv preprint arXiv:1609.09106.

Wanwei He, Yinpei Dai, Yinhe Zheng, Yuchuan Wu,
Zheng Cao, Dermot Liu, Peng Jiang, Min Yang, Fei
Huang, Luo Si, et al. 2022. Galaxy: A generative
pre-trained model for task-oriented dialog with semi-
supervised learning and explicit policy injection. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 10749–10757.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790–2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa
Dehghani, and James Henderson. 2021. Parameter-
efficient multi-task fine-tuning for transformers via
shared hypernetworks. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 565–576, Online. Association
for Computational Linguistics.

Siyu Lai, Hui Huang, Dong Jing, Yufeng Chen, Jinan
Xu, and Jian Liu. 2021. Saliency-based multi-view
mixed language training for zero-shot cross-lingual
classification. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages
599–610, Punta Cana, Dominican Republic. Associa-
tion for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. GPT
understands, too. CoRR, abs/2103.10385.

https://doi.org/10.18653/v1/2022.acl-long.404
https://doi.org/10.18653/v1/2022.acl-long.404
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://doi.org/10.18653/v1/2021.acl-long.47
https://aclanthology.org/2021.findings-emnlp.55
https://aclanthology.org/2021.findings-emnlp.55
https://aclanthology.org/2021.findings-emnlp.55
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385

3125

Xipeng Qiu, Tianxiang Sun, Yige Xu, Yunfan Shao,
Ning Dai, and Xuanjing Huang. 2020. Pre-trained
models for natural language processing: A survey.
Science China Technological Sciences, 63(10):1872–
1897.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. ArXiv, abs/1910.10683.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Jiaan Wang, Zhixu Li, Qiang Yang, Jianfeng Qu, Zhi-
gang Chen, Qingsheng Liu, and Guoping Hu. 2021.
Sportssum2.0: Generating high-quality sports news
from live text commentary. In Proceedings of the
30th ACM International Conference on Information
& Knowledge Management, page 3463–3467, New
York, NY, USA. Association for Computing Machin-
ery.

Jiaan Wang, Zhixu Li, Tingyi Zhang, Duo Zheng, Jian-
feng Qu, An Liu, Lei Zhao, and Zhigang Chen. 2022.
Knowledge enhanced sports game summarization. In
Proceedings of the Fifteenth ACM International Con-
ference on Web Search and Data Mining, WSDM ’22,
page 1045–1053, New York, NY, USA. Association
for Computing Machinery.

Yida Wang, Pei Ke, Yinhe Zheng, Kaili Huang, Yong
Jiang, Xiaoyan Zhu, and Minlie Huang. 2020. A
large-scale chinese short-text conversation dataset. In
CCF International Conference on Natural Language
Processing and Chinese Computing, pages 91–103.
Springer.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient

fine-tuning for transformer-based masked language-
models. CoRR, abs/2106.10199.

Rongsheng Zhang, Yinhe Zheng, Xiaoxi Mao, and Min-
lie Huang. 2021. Unsupervised domain adaptation
with adapter. arXiv preprint arXiv:2111.00667.

Rongsheng Zhang, Yinhe Zheng, Jianzhi Shao, Xiaoxi
Mao, Yadong Xi, and Minlie Huang. 2020. Dialogue
distillation: Open-domain dialogue augmentation us-
ing unpaired data. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3449–3460.

Duo Zheng, Zipeng Xu, Fandong Meng, Xiaojie Wang,
Jiaan Wang, and Jie Zhou. 2021a. Enhancing visual
dialog questioner with entity-based strategy learning
and augmented guesser. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2021,
pages 1839–1851, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Yinhe Zheng, Guanyi Chen, Xin Liu, and Ke Lin. 2021b.
Mmchat: Multi-modal chat dataset on social media.
arXiv preprint arXiv:2108.07154.

Yinhe Zheng, Zikai Chen, Rongsheng Zhang, Shilei
Huang, Xiaoxi Mao, and Minlie Huang. 2021c. Styl-
ized dialogue response generation using stylized un-
paired texts. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pages 14558–
14567.

Yinhe Zheng, Rongsheng Zhang, Minlie Huang, and
Xiaoxi Mao. 2020. A pre-training based personalized
dialogue generation model with persona-sparse data.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 9693–9700.

Hao Zhou, Pei Ke, Zheng Zhang, Yuxian Gu, Yinhe
Zheng, Chujie Zheng, Yida Wang, Chen Henry
Wu, Hao Sun, Xiaocong Yang, et al. 2021. Eva:
An open-domain chinese dialogue system with
large-scale generative pre-training. arXiv preprint
arXiv:2108.01547.

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.1145/3459637.3482188
https://doi.org/10.1145/3459637.3482188
https://doi.org/10.1145/3488560.3498405
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
http://arxiv.org/abs/2106.10199
https://aclanthology.org/2021.findings-emnlp.158
https://aclanthology.org/2021.findings-emnlp.158
https://aclanthology.org/2021.findings-emnlp.158

3126

A Setup and Evaluation Metric

A.1 Setup
Connectors: The LayerConn.(ours), Layer-
Conn.(w/o B) and LayerConn.(w/o A) are shown
as Equation 5 to Equation 7, respectively:

C l(Xl) = Xl ·Al +Bl (5)

C l(Xl) = Xl ·Al (6)

C l(Xl) = Bl (7)

where X l ∈ Rn×d, Al ∈ Rn×n and Bl ∈ Rn×d,
l ∈ {1, 2, · · · , L}) is the layer ID. For both Bert-
base and RoBERTa-base model, L = 12; for both
Bert-large and RoBERTa-large model, L = 24.
Each row in Al or Bl is a repetition of a vector al or
bl with length n. The only tunable parameters are
A = [a1; a2; · · · ; aL] and B = [b1; b2; · · · ; bL].
n and d are the input size (max. length) and the
hidden size of Transformer, respectively. For both
Bert-base and RoBERTa-base model, n is 128, and
d is 768; for both Bert-large and RoBERTa-large
model, n is 128, and d is 1024.

Hypernetwork: Aa interpolator can be ex-
pressed as:

ein = ReLU(Winet) (8)

and a down-sampler can be expressed as:

eds = Wdsein (9)

where Win ∈ RmL×L, and Wds ∈ RL×mL, they
are the trainable parameters of the interpolator and
the down-sampler, respectively. m is a hyper pa-
rameter. In the experiment, the minimum m = 2.

PLMs: The learning rates are 2 × 10−5 and
5× 10−6 for BERT (base and large) and RoBERTa
(base and large), respectively. We select AdamW
as the optimizer. We choose random seeds for each
model and report the average results of five runs.

A.2 Evaluation Metric
The metrics vary across different tasks, expect for
the commonly used accuracy and F1 Score. We
briefly introduce other metrics as follows:

Pearson Correlation Coefficient. The Pearson
Correlation Coefficient is used to calculate the sim-
ilarity of sentence pair from Sx and Sy, as shown
in Equation 10:

ρSx,Sy =
E[(Sx − µSx)(Sy − µSy)]

σSxσSy

(10)

where µ and σ are the mean and standard deviation
for Sx and Sy, respectively.

Spearman Correlation Coefficient. The Spear-
man Correlation Coefficient is another way to cal-
culate the similarity of sentence pair from Sx and
Sy. Its format is the same with Pearson one. How-
ever, the samples are transformed into the level
variable, and the calculation is simplified as shown
in Equation 11:

ρ =
6
∑n

i=1(S
(i)
x − S

(i)
y)2

N(N2 − 1)
(11)

where S
(i)
x and S

(i)
y are sentence sample from Sx

and Sy, and N is the total number of the samples.
Matthews Correlation Coefficient (MCC).

The performance of CoLA is evaluated by MCC,
as shown in Equation 12:

MCC =
TP · TN − FP · FN√

Q

Q = (TP + FP) · (TP + FN)·
(TN + FP) · (TN + FN)

(12)

where TP is true positive, TN is true negative,
FP is false positive, and FN is false negative.

A.3 Performance Degradation
The performance degradation is calculated by Equa-
tion 13:

Degradation =
BaselineScore−OurScore

BaselineScore
(13)

Negative degradation means an improvement.

