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Abstract

The task of completing knowledge triplets has
broad downstream applications. Both struc-
tural and semantic information plays an im-
portant role in knowledge graph completion.
Unlike previous approaches that rely on either
the structures or semantics of the knowledge
graphs, we propose to jointly embed the se-
mantics in the natural language description of
the knowledge triplets with their structure in-
formation. Our method embeds knowledge
graphs for the completion task via fine-tuning
pre-trained language models with respect to a
probabilistic structured loss, where the forward
pass of the language models captures seman-
tics and the loss reconstructs structures. Our
extensive experiments on a variety of knowl-
edge graph benchmarks have demonstrated the
state-of-the-art performance of our method. We
also show that our method can significantly
improve the performance in a low-resource
regime, thanks to the better use of seman-
tics. The code and datasets are available at
https://github.com/pkusjh/LASS.

1 Introduction

Knowledge graphs (KG), such as Wikidata and
Freebase (Bollacker et al., 2008), consist of factual
triplets. KGs have been useful resources for both
humans and machines. A triplet in the form of
(head entity, relation, tail entity), where the relation
involves both head and tail entities, has been used
in a great variety of applications, such as question
answering (Guu et al.; Hao et al., 2017) and web
search (Xiong et al., 2017). Incompleteness has
been a longstanding issue in KGs (Carlson et al.,
2010), impeding their wider adoption in real-world
applications.

KG completion aims to predict a missing entity
or relation of a factual triplet. Structural patterns in
the existing triplets are useful to predict the missing
elements (Bordes et al., 2013; Sun et al., 2019). For
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example, a composition pattern can be learned to
predict the relation grandmother_Of based on two
consecutive mother_Of relations. Besides the struc-
ture information, semantic relatedness between en-
tities and relations is also critical to infer entities
or relations with similar meanings (An et al., 2018;
Yao et al., 2019; Wang et al., 2021). For example,
if a relationship CEO_Of holds between two enti-
ties, the relation employee_Of also holds. There
are two kinds of KG completion approaches that
fall into different learning paradigms. First, the
structure-based approaches treat entities and rela-
tions as nodes and edges, and use graph embedding
methods to learn their representations. Second, the
semantic-based approaches encode the text descrip-
tion of entities and relations via language models.
While both structures and semantics are vital to KG
completion, it is non-trivial for existing methods to
process both structural and semantic information.

In this paper, we propose LASS, a joint language
semantic and structure embedding for knowledge
graph completion, which incorporates both seman-
tics and structures in a KG triplet. LASS embeds a
triplet into a vector space by fine-tuning pre-trained
language models (LM) with respect to a structured
loss. LASS involves both semantic embedding
and structure embedding. The semantic embedding
captures the semantics of the triplet, which corre-
sponds to the forward pass of a pre-trained LM
over the natural language description of the triplet.
The structure embedding aims to reconstruct the
structures in the semantic embedding, which cor-
responds to optimizing a probabilistic structured
loss via the backpropagation of the LM. Intuitively,
the structured loss treats the relationship between
two entities as a translation between embeddings
of the entities. LASS outperforms the existing ap-
proaches on a collection of KG completion bench-
marks. We further evaluate LASS in low-resource
settings and find that it is more data-efficient than
other methods. The reason is that our method ex-

https://github.com/pkusjh/LASS
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Figure 1: Overview of LASS. LASS maps a knowledge triplet (Head Entity, Relation, Tail Entity), in short (h, r, t), to the
corresponding embedding vectors, h, r, t ∈ Rk. LASS embeds KGs for KG completion via fine-tuning pre-trained language
models (LM) w.r.t. a probabilistic structured loss, where the forward pass of the LMs captures semantics and the loss reconstructs
structures. In particular, LASS consists of semantic embedding and structure embedding. The semantic embedding (leftmost
arrow) is generated by a forward pass of the LMs followed by a pooling layer over the natural language description of a triplet.
[B] (the beginning token) and [S] (the separator token) are special tokens of LMs attached to the description. For example,
the textual description of head entity is (xh

1 , · · · , xh
nh

). h is calculated as the mean pooling of the corresponding LM outputs
(oh

1 , · · · ,oh
nh

). r and t are calculated similarly. The structure embedding (rightmost arrow) reconstructs KG structures in the
semantic embeddings via optimizing a structured loss on top of the LMs through backpropagation. The structured loss is based
on a score function f(∥h+ r− t∥22), which regards the relationship between two entities corresponds to a translation between
the embeddings of the entities. The goal is to minimize the loss function so that h+ r ≈ t when (h, r, t) holds.

ploits both semantics and structures in the training
data.

The contributions are the following:

• We design a natural language embedding ap-
proach, LASS, that integrates both structural
and semantic information of KGs, for KG
completion. We train LASS by fine-tuning
pre-trained LMs w.r.t. a structured loss, where
the forward pass of the LMs captures seman-
tics and the loss reconstructs structures. The
method consists of both the KG module and
the LM module, which sheds light on the con-
nections between the KGs and deep language
representation, and advances the research at
the intersection of the two areas.

• We evaluate LASS on two KG completion
tasks, link prediction and triplet classifica-
tion, and obtain state-of-the-art performance.
The results suggest that capturing both seman-
tics and structures is critical to understand
the KGs. The findings are beneficial to many
downstream knowledge-driven applications.

• We show that we can significantly improve the
performance in the low-resource settings over
existing approaches, thanks to the improved
transfer of knowledge about semantics.

2 LASS

We introduce LASS to embed both semantics and
structures of knowledge graphs (KG) with natural
language. As shown in Figure 1, LASS incorpo-
rates two embeddings: semantic embedding and
structure embedding. The semantic embedding cap-
tures the semantics in the natural language descrip-
tion of the KG triplets. The structure embedding
further reconstructs the structure information of the
KGs from the semantic embedding. LASS embeds
KG in a vector space by fine-tuning a pre-trained
language model (LM) w.r.t. a structured loss, where
the forward pass performs semantic embedding and
the optimization of structured loss conducts struc-
ture embedding.

2.1 Semantic Embedding

A KG of triplets is denoted as G. Each triplet of G
is in the form of (h, r, t), where h,t ∈ E and r ∈ R.
E is the set of entities, and R is the set of relations.
The semantic similarities between the head entity
h, relation r, and tail entity t are crucial to complete
a factual triplet. For example, given h = “Bob Dy-
lan” and r = “was born in”, the task is to predict a
missing t, where the candidates are “Duluth” and
“Apple”. The semantic similarity between “Bob Dy-
lan” and “Duluth”, as well as the similarity between
“was born in” and “Duluth” should be larger than
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their similarities with “Apple” as “Duluth” is the
ground-truth answer. Pre-trained LMs capture the
rich semantics in natural language via pre-training
on large-scale textual corpora. This inspires us to
use the semantics stored in the parameters of LMs
to encode the semantics of triplets.

Formally, for a triplet (h, r, t), both entities (h
and t) and relation (r) are represented by their corre-
sponding natural language descriptions. The head
entity h is represented as a sequence of tokens,
T h = (xh1 , · · · , xhnh

), describing the entity. Sim-
ilarly, T t = (xt1, · · · , xtnt

) represents the tail en-
tity t. T r = (xr1, · · · , xrnr

) denotes the relation r.
We generate the semantic embedding via the for-
ward pass of the LMs as shown in Figure 1. The
knowledge graph completion tasks require explicit
modeling of dependency of the head, relation and
tail. For example, both the connections between
head and tail, and relation and tail contribute to
the prediction of the tail in the link prediction task.
Therefore, we use the concatenation of T h, T r, and
T t as the input sequence to the LMs, and use the
mean pooling over the output representation of ev-
ery token in T h, T r, and T t from the forward pass
of LMs as h, r, t ∈ Rk, where k is the dimension
of the embedding vectors.

More specifically, we construct the input se-
quence in the following format: [B] T h [S] T r

[S] T t [S], where [B] is a special symbol added
in front of every input sequence, and [S] is a spe-
cial separator token. The special tokens are dif-
ferent for various LMs. For example, [B] and
[S] are implemented as [CLS] and [SEP] for
BERT (Devlin et al., 2019) respectively. The input
sequence is then converted to the corresponding
input embeddings of the LMs. For example, the
input embeddings of BERT are the sum of the to-
ken embeddings, the segment embeddings, and the
position embeddings. The input embeddings are
fed into the LM. We add a mean pooling layer on
top of the output layer of the LM and perform mean
pooling over the output representation of every to-
ken in T h, i.e., (oh1 , · · · ,ohnh

), resulting in h as
illustrated in Figure 1. We obtain r and t in the
same way. The dimension k equals to the hidden
size of the LM.

2.2 Structure Embedding

Structural information of KGs has been success-
fully used in the KG completion. Traditional ap-
proaches regard the relationship between two en-

tities corresponds to a translation between the em-
beddings of the entities. This is different from
the above semantic embedding and the forward
pass cannot capture the structure information. We
propose to incorporate the structure embedding by
fine-tuning the pre-trained LM with a structure loss.

The goal is to reconstruct structure information
in the semantic embedding. The updated embed-
dings of h, r, and t are still denoted as h, r, and
t, which incorporate structure information of KGs
while preserve semantic information. We recon-
struct structure information in the semantic embed-
dings via optimizing a probabilistic structured loss,
in which the score function of a triplet (h, r, t) is
defined by Eq. 1:

f(h, r, t) = b− 1

2
∥h+ r− t∥22 (1)

If (h, r, t) holds, we have h + r ≈ t. We also
use f(∥h + r − t∥22) to denote this in Figure 1
for simplicity. The score function is motivated by
TransE (Bordes et al., 2013).

We define the following probabilistic model
based on the score function (1):

Pr(h|r, t) = exp(f(h, r, t))∑
h̃∈E exp(f(h̃, r, t))

(2)

Here h̃ is the corrupted head sampled from the en-
tity set E. Pr(r|h, t) and Pr(t|h, r) have a similar
form except that the summation in the denominator
is over corrupted relations and tails, respectively.

The probabilistic structured loss is defined in
Eq. 3. The goal is to minimize the negative log
likelihood over the KG:

L = −
∑

(h,r,t)∈G

( log Pr(h|r, t) + log Pr(r|h, t)

+ log Pr(t|h, r))
(3)

Optimization Computing the probability in Eq. 2
is computationally inefficient since it requires a
forward pass of all possible triplets (h̃, r, t) to
compute the denominator. We use negative sam-
pling (Mikolov et al., 2013) to make training more
efficient. Instead of minimizing − log Pr(h|r, t) as
in Eq. 3, we optimize the loss as is described in
Eq. 4 for modeling h.

Lh = − log Pr(1|h, r, t)

−
nns∑
i

Eh̃i∼E\{h} log Pr(0|h̃i, r, t)
(4)
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where Pr(1|h, r, t) = σ(f(h, r, t)).
The loss for modeling r and t is similarly defined.

Here, hyperparameter nns is the number of negative
samples. Each negatively sampled head h̃i is drawn
uniformly without replacement from the entity set
E\{h}. A sample is not treated as a negative sam-
ple if it is already a positive example. We have the
final structured loss L =

∑
(h,r,t)∈G(Lh +Lr +Lt)

by adopting the similar negative sampling proce-
dures for relations and tail entities.

The training of LASS is unified as fine-tuning an
LM with respect to a structured loss. The semantic
embedding is obtained by the forward pass of the
LM. The structure embedding is conducted by opti-
mizing the structured loss through backpropagation
of the LM.

3 Experiments

3.1 Experimental Setup
Datasets We test the performance of our method
on five KG benchmarks built with three KGs: Free-
base (Bollacker et al., 2008), WordNet (Miller,
1994) and UMLS (Dettmers et al., 2018). Free-
base is a large-scale KG containing general knowl-
edge facts. We employ two subsets from Freebase,
namely FB15K-237 (Toutanova and Chen, 2015),
and FB13 (Socher et al., 2013). WordNet provides
semantic knowledge of words. We use two subsets
from WordNet, namely WN18RR (Dettmers et al.,
2018), and WN11 (Socher et al., 2013). UMLS is a
medical semantic network containing semantic en-
tities and relations. The statistics are summarized
in Table 1. We also provide a detailed description
of the datasets in Appendix A.1.

Dataset # Entity # Relation # Train # Dev # Test
FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
UMLS 135 46 5,216 652 661
FB13 75,043 13 316,232 5,908 23,733
WN11 38,696 11 112,581 2,609 10,544

Table 1: Statistics of knowledge graphs.

Implementation Details We use two families of
LMs with LASS. First, we adopt both BERTBASE

and BERTLARGE from (Devlin et al., 2019)
with LASS, namely LASS-BERTBASE and LASS-
BERTLARGE. Second, RoBERTa family (Liu et al.,
2019) is used, namely LASS-RoBERTaBASE and
LASS-RoBERTaLARGE.

We train LASS with AdamW (Loshchilov and
Hutter, 2019) on each KG dataset via fine-tuning

the corresponding LMs. The training hyperparam-
eters are set as follows. For LASS-BERTBASE

and LASS-RoBERTaBASE, the batch size is set
to 128, the learning rate is set to 3e-5 with lin-
ear warm-up and 0.01 weight decay. We set the
batch size to 64 for LASS-BERTLARGE and LASS-
RoBERTaLARGE. The number of training epochs
is set to 5. The margin b in Eq. 1 is empirically
set to 7. We sample 5 negative entities or relations
resulting in 15 negative triplets for each positive
triplet for the negative sampling.

We represent entities and relations as their names
or descriptions (Yao et al., 2019). For FB15k-237,
we used entity descriptions from (Xie et al., 2016).
For FB13, we use entity descriptions in Wikipedia.
For WN18RR, we use definitions of synsets as en-
tity descriptions. For WN11 and UMLS, the entity
names are used as the entity descriptions. The re-
lation descriptions are based on the relation names
across all the datasets. The input sequence is con-
structed based on Sec. 2.1. For LASS-BERTBASE

and LASS-BERTLARGE, we use a character-level
BPE vocabulary. [B] is replaced with [CLS],
and [S] is replaced with [SEP]. For LASS-
RoBERTaBASE and LASS-RoBERTaLARGE, we
use a byte-level BPE vocabulary, and [B] and
[S] are replaced with BOS and EOS respectively.
We implement LASS using the Transformers pack-
age (Wolf et al., 2020).

Comparison Methods We compare our method
to state-of-the-art methods, including (i) shallow
structure embedding: TransE (Bordes et al., 2013),
TransH (Wang et al., 2014b), TransR (Lin et al.,
2015), TransD (Ji et al., 2015), TransG (Xiao et al.,
2016), TranSparse (Ji et al., 2016), DistMult (Yang
et al., 2015), DistMult-HRS (Zhang et al., 2018),
ConvE (Dettmers et al., 2018), ConvKB (Nguyen
et al., 2018), ComplEx (Trouillon et al., 2016),
RotatE (Sun et al., 2019), REFE (Chami et al.,
2020), HAKE (Zhang et al., 2019a), and ComplEx-
DURA (Zhang et al., 2020); (ii) deep structure
embedding: NTN (Socher et al., 2013), DO-
LORES (Wang et al., 2018), KBGAT (Nathani
et al., 2019), GAATs (Wang et al., 2020), NeP-
TuNe (Sonkar et al., 2021), and ComplEx-N3-
RP (Chen et al., 2021); (iii) language semantic
embedding: TEKE (Wang and Li, 2016), KG-
BERT (Yao et al., 2019), and stAR (Wang et al.,
2021). We present a detailed technical description
of the above methods in Appendix A.2.
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Method WN11 FB13 Avg
NTN (Socher et al., 2013) 86.2 90.0 88.1
TransE (Bordes et al., 2013) 75.9 81.5 78.7
TransH (Wang et al., 2014b) 78.8 83.3 81.1
TransR (Lin et al., 2015) 85.9 82.5 84.2
TransD (Ji et al., 2015) 86.4 89.1 87.8
TEKE (Wang and Li, 2016) 86.1 84.2 85.2
TransG (Xiao et al., 2016) 87.4 87.3 87.4
TranSparse-S (Ji et al., 2016) 86.4 88.2 87.3
DistMult (Yang et al., 2015) 87.1 86.2 86.7
DistMult-HRS (Zhang et al., 2018) 88.9 89.0 89.0
AATE (An et al., 2018) 88.0 87.2 87.6
ConvKB (Nguyen et al., 2018) 87.6 88.8 88.2
DOLORES (Wang et al., 2018) 87.5 89.3 88.4
KG-BERT (Yao et al., 2019) 93.5 90.4 91.9
LASS-BERTBASE (ours) 93.3 91.2 92.3
LASS-BERTLARGE (ours) 94.5 91.8 93.2
LASS-RoBERTaBASE (ours) 92.3 91.1 91.7
LASS-RoBERTaLARGE (ours) 93.8 91.6 92.7

Table 2: Triplet classification accuracy on WN11 and FB13.

3.2 Triplet Classification

The task of triplet classification judges whether a
given triplet (h, r, t) is correct or not. The task
is a binary classification task. We use WN11 and
FB13 for the task, since only the test sets of the
two datasets contain both positive and negative
triplets among all the datasets. For the task, we
use the score function as defined in Eq. 1 , and
set a score threshold. For a triplet, if the score
is above the threshold, the triplet is classified as
positive, otherwise negative. We set the threshold
empirically based on the accuracy on the validation
set. As shown in Table 2, we conclude with the
following findings.

Head Relation Tail Label

ron ziegler gender male ✓

john fortescue profession writer ✓

george j adams cause of death typhoid fever ✓

fleiss joseph institution columbia university ✓

edmund husserl nationality austria ✓

aleksandr bakulev gender female ✗

emile littre profession physicist ✗

joseph smith jr cause of death emphysema ✗

frank g slaughter institution university of toronto ✗

julius klinger nationality romania ✗

Table 3: Samples of LASS’s correct predictions on FB13,
where KG-BERT (Yao et al., 2019) outputs wrong predictions.
Label ✓ means a gold positive triplet. ✗ indicates a gold
negative triplet.

We find that our methods consistently produce
state-of-the-art results on triplet classification tasks.
This indicates that our score function has captured
semantics and structures that are crucial for the
triplet classification. We also notice that LASS-
BERT generates slightly better results compared
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Figure 2: Triplet classification accuracy in a low-resource
regime: training with different proportions of the correspond-
ing training datasets on WN11 and FB13.

to LASS-RoBERTa. This is due to RoBERTa re-
moving the NSP objective, however the objective
naturally fits in the triplet classification task. LASS-
RoBERTa still generates reasonable results. The
reason is that the masked LM objective captures the
necessary semantics needed for the triplet classifi-
cation, and LASS is able to preserve the important
semantic information.

In Table 3, we also show some cases where
LASS-BERTBASE makes correct predictions while
KG-BERT produces incorrect ones on FB13. Com-
pared to KG-BERT, we find that LASS is more
capable in relations that require comprehensive
structure information, such as “institution”.

3.3 Low-Resource Settings

We additionally test the accuracy of triplet classi-
fication in a low-data regime, in particular, when
using 5%, 10%, 15%, 20%, and 30% of the train-
ing data on WN11 and FB13. The results are
shown in Figure 2. LASS-BERTLARGE consis-
tently outperforms the state-of-the-art KG-BERT.
This indicates that LASS is more data-efficient, as
it leverages both semantics and structures in the
training data. We also find that LASS is able to
produce competitive results with less training data
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Method FB15k-237 WN18RR UMLS
Hits@10 MR Hits@10 MR Hits@10 MR

TransE (Bordes et al., 2013) 0.465 357 0.501 3384 0.989 1.84
DistMult (Yang et al., 2015) 0.419 254 0.49 5110 0.846 5.52
ComplEx (Trouillon et al., 2016) 0.428 339 0.51 5261 0.967 2.59
ConvE (Dettmers et al., 2018) 0.501 244 0.52 4187 0.990 1.51
RotatE (Sun et al., 2019) 0.533 177 0.571 3340 - -
HAKE (Zhang et al., 2019a) 0.542 - 0.582 - - -
KBGAT (Nathani et al., 2019) 0.626 210 0.581 1940 - -
KG-BERT (Yao et al., 2019) 0.420 153 0.524 97 0.990 1.47
REFE (Chami et al., 2020) 0.541 - 0.561 - - -
GAATs (Wang et al., 2020) 0.650 187 0.604 1270 - -
ComplEx-DURA (Zhang et al., 2020) 0.560 - 0.571 - - -
StAR (Wang et al., 2021) 0.562 117 0.732 46 0.991 1.49
NePTuNe (Sonkar et al., 2021) 0.547 - 0.557 - - -
ComplEx-N3-RP (Chen et al., 2021) 0.568 - 0.580 - 0.998 -
LASS-BERTBASE (ours) 0.479 131 0.725 55 0.991 1.39
LASS-BERTLARGE (ours) 0.527 120 0.769 41 0.990 1.58
LASS-RoBERTaBASE (ours) 0.500 116 0.737 53 0.994 1.41
LASS-RoBERTaLARGE (ours) 0.533 108 0.786 35 0.989 1.56

Table 4: Link prediction results on FB15k-237, WN18RR and UMLS.

compared to existing methods even with full train-
ing data. LASS-BERTLARGE with 5% training
data of WN11 outperforms most of the existing
methods using full training data. When using 10%
training data of FB13, LASS-BERTLARGE is able
to perform comparably with KG-BERT with full
training data, and outperforms the remaining meth-
ods. This is because LASS transfers the knowledge
about semantics better to the tasks compared to ex-
isting approaches without fully leveraging the KG
semantics. The results suggest that LASS is effec-
tive in low-resource scenarios.

3.4 Link Prediction

Link prediction aims to predict a missing entity
given a relation and the other entity, which is evalu-
ated as a ranking problem. We perform link predic-
tion on FB15k-237, WN18RR and UMLS datasets.
For each correct triplet (h, r, t), either h or t is
corrupted by replacing it with every other entity in
the entity set E. These triplets are ranked based on
scores produced by Eq. 1 of LASS. The evaluation
is under the filtered setting (Bordes et al., 2013),
i.e., removing all the triplets that appear either in
the train, dev, or test set. Two common metrics,
Mean Rank (MR) and Hits@10 (the proportion of
correct entities ranked in the top 10) are used to
evaluate the results. A lower MR is better while
a higher Hits@10 is better. From the results in
Table 4, we summarize key observations as below.

We find all our methods significantly outperform

the compared methods in MR, and reach compet-
itive or better Hits@10. LASS-RoBERTaLARGE

performs the best on WN18RR, which outperforms
the best compared method StAR by 11 units in
MR and 5.4% in Hits@10. It also delivers the
best MR on FB15k-237. On UMLS, the existing
state-of-the-art performance sets a high standard.
However, LASS-BERTBASE still outperforms oth-
ers by at least 0.08 unit in MR. The reasons for
the improvements are mainly two-fold. (i) LASS
is able to capture the structural patterns in the ex-
isting triplets to predict the missing ones via the
structured loss. Compared to KG-BERT, LASS
is able to use the neighboring entities in the KGs
for the prediction. (ii) LASS is able to maintain
the semantics of the KGs through semantic embed-
ding to avoid unreasonable triplets with high ranks.
For example, if CEO_Of holds between two enti-
ties, the employee_Of also holds, but birth_Place
does not hold. This is the main reason that LASS
outperforms all structure embedding based meth-
ods by a large margin especially in MR. For in-
stance, LASS significantly outperforms TransE,
which shares the similar structured loss with LASS.
Compare to the improvements made on FB15k-237,
LASS-RoBERTaLARGE has significantly improved
the state-of-the-art results on WN18RR. The main
reason leading to such significant improvements is
that the pre-trained LMs provide more semantics
in the semantic embedding for WordNet as those
LMs are trained on textual corpora to capture rela-
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tionships between words. While WordNet provides
the relationships between words, FB15k-237 con-
tains real-world entities and relations, which are
less captured by the LMs.

We also notice that LASS only produces mod-
erate Hits@10 on FB15k-237. The main reason is
that FB15k-237 presents more complex relations
between entities compared to other link predic-
tion datasets shown in Table 1. Therefore, a more
complex structured loss is expected for LASS to
gain further improvements. We leave it as one of
the future explorations. Besides, on FB15k-237
and WN18RR, LASS-BERTLARGE outperforms
LASS-BERTBASE, and LASS-RoBERTaLARGE

also outperforms LASS-RoBERTaBASE. This con-
firms the recent findings (Petroni et al., 2019) that
larger LMs store more semantic knowledge in the
parameters. We expect further improvements when
larger LMs are used with LASS. On UMLS, we
observe slightly different trends. This is mainly
because UMLS is a relatively small dataset, thus
large models can suffer from overfitting. Overall,
RoBERTa improves the BERT pre-training pro-
cedure from several perspectives. The improved
pre-training procedure enables RoBERTa to gener-
ate better performance in many downstream tasks.
This suggests that an improved pre-training proce-
dure can enrich the semantics learned in the corre-
sponding LMs.

Both link prediction and triplet classification are
core KG completion tasks. The results show that
the proposed LASS generalizes well in KG comple-
tion tasks. Different from KG-BERT that designs
different models for the tasks, our method does
not introduce task-specific parameters or losses for
different tasks.

3.5 Case Study

We show uncurated examples to illustrate why
LASS can yield the above results, especially how
the parameters of the LMs capture the semantics
and structures. As attention layers are basic build-
ing blocks of the LMs, we focus on visualizing the
attention weights with different input sequences.

We use BertViz (Vig, 2019) to illustrate the at-
tention weights of the LMs. Given an example of
a positive triplet, h = “symbololatry, the worship
of symbols”, r = “hypernym”, and t = “venera-
tion, religious zeal”, Figure 3a shows the attention
weights of the last layer of LASS-BERTBASE on
WN11. We find that semantically related tokens

(a) Semantics. (b) Structures.

Figure 3: Illustration of attention weights of the last layer of
LASS-BERTBASE.

attend to each other with relatively high scores. For
example, “religious” attends intensively to “wor-
ship” and “veneration”. As in multi-head self at-
tention (Vaswani et al., 2017), different attention
heads in different colors attend to different aspects
of the input, the heads are then concatenated to
compute the final attention weights. The darker the
color, the larger the attention score. This demon-
strates that the semantic embedding of LASS is
effective in capturing the semantics in the natural
language description of the triplets.

We show another positive example with h =
“successfulness, the condition of prospering”, r =
“hypernym”, and t = “luckiness, an auspicious state
resulting from favorable outcomes”. Figure 3b il-
lustrates the attention weights of the last layer of
LASS-BERTBASE on WN11. We observe that to-
kens are highly attended to each other with similar
structure roles in the triplet, even though they share
fewer semantic similarities. For instance, the at-
tention score between “hypernym” and “condition”
is large. There is also a large attention score be-
tween “hypernym” and “state”. This is because
both “condition” and “state” capture the critical
structure information of the triplet. The results
indicate that the structure embedding of LASS is
able to reconstruct the structure information in the
semantic embeddings.

3.6 Error Analysis
To better understand the limitations of LASS, we
perform a detailed analysis of the errors. We use
triplet classification as an example. We investigate
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the errors made by LASS-BERTBASE on WN11
and summarize the errors based on the relations
in Table 5. We find most errors are caused by
relations that are hard to be distinguished from
each other due to their semantic similarities. For
example, “domain topic” and “domain region” are
such relations with an unclear semantic boundary.

Relation Percentage (%)
domain topic 19.8

domain region 10.8
member meronym 9.1

has instance 8.4
has part 8.1

similar to 7.1
part of 6.3

synset domain topic 5.5
type of 4.6

member holonym 3.9
subordinate instance of 3.2

Table 5: Analysis of most common errors of LASS-
BERTBASE categorized by relations on WN11.

4 Discussion

Structure Losses There are several directions to
further improve LASS. LASS uses the probabilis-
tic structured loss based on the score function of
TransE, which learns a single representation for
every entity and relation in the same embedding
space. However, different relationships expect dif-
ferent entity embeddings. We propose to enable an
entity to have distinct distributed representations
when involved in different relations. For exam-
ple, a new score function ∥hr + r− tr∥22 models
entities and relations in distinct spaces, and per-
forms the translation between entity embeddings
in relation space. The idea is in the same spirit
as TransH (Wang et al., 2014b) and TransR (Lin
et al., 2015). However, a downside of leveraging
those losses is that they will bring additional com-
putation overhead. Our method aims to trade off
the computation costs and effectiveness. Exploring
computation-light methods that involve alternative
losses is one of the future investigations.

Pre-trained LMs We have explored two pre-
trained LM families: BERT and RoBERTa. There
are three possible directions along this line. First,
as indicated in the experimental findings, larger
LMs often store more semantics, which can im-
prove the semantic embedding module of LASS.

We propose to examine larger pre-trained LMs,
such as GPT-2 (Radford et al., 2019), GPT-
3 (Brown et al., 2020), and Megatron-LM (Shoeybi
et al., 2019). Incorporating longer language de-
scriptions (e.g., Wikipedia page) of the entities in
the knowledge graphs will provide richer knowl-
edge for improved natural language understand-
ing. Second, the fine-tuning procedure of the deep
LMs for KG completion tasks, especially link pre-
diction, is still computationally inefficient. In-
vestigating light LM architectures, such as AL-
BERT (Lan et al., 2020), to speed up the training
process, is one of the promising directions. Finally,
our proposed method is generally useful for many
knowledge-driven downstream NLP tasks (e.g.,
question answering, factual probing) as well as low-
resource NLP tasks. Ensembling our method with
autoregressive models (e.g., GPT-2) will enable the
method to perform text generation tasks.

5 Related Work

Pre-trained LMs Pre-trained LMs, such as
BERT, have recently been used to obtain state-
of-the-art results in many NLP benchmarks (De-
vlin et al., 2019; Liu et al., 2019). These mod-
els are usually based on Transformers (Vaswani
et al., 2017) and trained on unlabeled text corpora.
They are used to improve downstream tasks via em-
bedding (Peters et al., 2018), fine-tuning (Radford
et al., 2018), or few-shot learning (Radford et al.,
2019). Fine-tuning bidirectional Transformers is
the most widely used scheme in recent NLP appli-
cations, and the approach described in this paper is
also based on this scheme. The main difference is
that we design a structured loss on top of the LMs
aiming to capture structures in natural language.

Knowledge Graph Embedding KG embedding
aims to map entities and their relations to a con-
tinuous vector space. Traditional KG embedding
methods represent each entity or each relation with
a fixed vector. For any triplet (h,r,t), they use a scor-
ing function f(h, r, t) to model its likelihood. The
scoring function of TransE (Bordes et al., 2013)
is a negative translational distance. It can be aug-
mented with different geometric transformations
such as linear projections (Wang et al., 2014b; Lin
et al., 2015) or rotations (Sun et al., 2019). Other
models based on bilinear transformations (Yang
et al., 2015), and convolutions (Dettmers et al.,
2018), also show promising results on KG comple-
tion benchmarks. Our structured loss is motivated
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by TransE. The main differences are the following.
TransE (Bordes et al., 2013) treats the relation as
a translation of the embeddings from the head to
the tail. Therefore h+ r ≈ t when (h, r, t) holds.
TransE designs a margin-based ranking loss based
on the l2 norm ∥h+ r− t∥22. The key differences
between LASS and TransE are: (i) LASS lever-
ages the natural language semantics in LMs, while
TransE does not; (ii) LASS is a probabilistic struc-
tured loss, and is more computationally efficient
and data-efficient compared to TransE. The main
advantage of the probabilistic loss is that we elimi-
nate the norm calculation that TransE requires to
prevent the training process from trivially minimiz-
ing its loss by increasing the embeddings of entities
or relations. The ranking loss of TransE calculates
the loss of some training examples as zeros, which
will not contribute to the optimization procedure.
Our probabilistic loss makes use of all the training
examples. Besides, we introduce corrupted rela-
tions in the loss, which provides more flexibility in
incorporating the KG structure.

Traditional KG embedding approaches afore-
mentioned regard entities and relations as basic
units, without using any extra information. How-
ever, studies (Socher et al., 2013; Wang et al.,
2014a; Xie et al., 2016) show that a KG model that
models the natural language descriptions of entities
and relations usually outperforms those methods
that only model the structure of knowledge triplets.
Petroni et al. (2019) use LMs as virtual KGs to
answer factual questions. ERNIE (Zhang et al.,
2019b) integrates structural KGs into pre-trained
models to improve knowledge-driven NLP tasks.
By contrast, we aim to combine both the structures
and semantics of the KGs via a unified optimiza-
tion procedure for the task of KG completion. KG-
BERT (Yao et al., 2019) models KG completion
tasks as sentence classification tasks and solves
them by fine-tuning pre-trained LMs. There are
several key differences between our LASS and KG-
BERT (Yao et al., 2019): (i) LASS reconstructs the
structures of KGs via structure embedding, while
KG-BERT does not; (ii) LASS unifies the link pre-
diction and triplet classification under the same
architecture, while KG-BERT designs different ar-
chitectures for different tasks; (iii) LASS works
with two families of LMs, while KG-BERT only
works with BERTBASE. LASS is not particularly
designed for BERT, shedding light on understand-
ing the role of semantics in LMs for KG comple-

tion.

6 Conclusion

We propose a new embedding method that lever-
ages both semantics and structures of the knowl-
edge graphs for the task of knowledge graph
completion, and offers additional benefits in low-
resource settings. The method maps a knowledge
graph triplet to an embedding space via fine-tuning
language models, where the forward pass captures
semantics and the loss reconstructs structures. Our
method has shown significant improvements on
knowledge graph completion benchmarks. The
implementation has made no modifications to the
language model architectures. The results suggest
that the learned embeddings are generally useful
in downstream knowledge-driven applications, and
potentially useful for more natural language un-
derstanding tasks. We hope our results will foster
further research in this direction.

7 Ethical Considerations

We hereby acknowledge that all of the co-authors of
this work are aware of the provided ACM Code of
Ethics and honor the code of conduct. The follow-
ings give the aspects of both our ethical considera-
tions and our potential impacts to the community.
This work uses pre-trained LMs for knowledge
graph completion. The risks and potential misuse
of LMs are discussed in Brown et al. (2020). There
are potential undesirable biases in the datasets, such
as unfaithful descriptions from Wikipedia. We do
not anticipate the production of harmful outputs af-
ter using our model, especially towards vulnerable
populations.

8 Environmental Considerations

We use BERT and RoBERTa as our pre-trained
LMs. According to the estimation in Strubell
et al. (2019), pre-training a base model costs 1,507
kWh·PUE and emits 1,438 lb CO2, while pre-
training a large model requires 4 times the re-
sources of a base model. In addition, our fine-
tuning takes less than 1% gradient-steps of the
number of steps of pre-training. Therefore, our en-
ergy cost and CO2 emissions are relatively small.
Besides, the results in the low-resource settings
show that our method has better sampling effi-
ciency. This indicates that we can further reduce
energy consumption when training with fewer data.
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A Experimental Setup Details

We describe additional details of our experimental
setup including datasets and comparison methods
in this section.

A.1 Datasets

We introduce the link prediction and triplet classifi-
cation datasets as below.

A.1.1 Link Prediction
• FB15k-237. Freebase is a large collaborative

knowledge graph consisting of data composed
mainly by its community members. It is an online
collection of structured data harvested from many
sources, including individual and user-submitted
wiki contributions (Pellissier Tanon et al., 2016).
FB15k is a selected subset of Freebase that con-
sists of 14,951 entities and 1,345 relationships
(Bordes et al., 2013). FB15K-237 is a variant
of FB15K where inverse relations and redundant
relations are removed, resulting in 237 relations
(Toutanova et al., 2015).

• WN18RR. WordNet is a lexical database of
semantic relations between words in English.
WN18 (Bordes et al., 2013) is a subset of Word-
Net which consists of 18 relations and 40,943
entities. WN18RR is created to ensure that the
evaluation dataset does not have inverse relations
to prevent test leakage (Dettmers et al., 2018).

• UMLS. UMLS semantic network (McCray,
2003) is an upper-level ontology of Unified Med-
ical Language System. The semantic network,
through its 135 semantic types, provides a con-
sistent categorization of all concepts represented
in the UMLS. The 46 links between the semantic
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DistMult ⟨r,h, t⟩ h, r, t ∈ Rk

ConvKB concat(g([h, r, t] ∗ ω))w h, r, t ∈ Rk

ComplEx ℜ(⟨r,h, t⟩) h, r, t ∈ Ck

ConvE ⟨σ(vec(σ([r,h] ∗Ω))W), t⟩ h, r, t ∈ Rk

RotatE −∥h ◦ r − t∥2 h, r, t ∈ Ck, |ri| = 1
REFE −arctanh(∥−⟨h,Ref(r)⟩ ⊕c t∥) h, r, t ∈ Rk

HAKE RotatE − ∥sin((h+ r− t)/2)∥1 h, r, t ∈ Rk

ComplEx-DURA ComplEx − ⟨h, r⟩2 − ∥t∥2 h, r, t ∈ Ck

Table 6: The score functions fr(h, t) of shallow structure embedding models for knowledge graph embedding,
where ⟨·⟩ denotes the generalized dot product, ◦ denotes the Hadamard product, σ denotes activation function and ∗
denotes 2D convolution. · denotes conjugate for complex vectors, and 2D reshaping for real vectors in the ConvE
model. Ref(θ) denotes the reflection matrix induced by rotation parameters θ. ⊕c is Möbius addition that provides
an analogue to Euclidean addition for hyperbolic space.

types provide the structure for the network and
represent important relationships in the biomedi-
cal domain.

A.1.2 Triplet Classification
• WN11 and FB13 are subsets of WordNet and

FreeBase respectively for triplet classification,
where Socher et al. (2013) randomly switch en-
tities from correct testing triplets resulting in a
total of doubling the number of test triplets with
an equal number of positive and negative exam-
ples.

A.2 Comparison Methods
We compare LASS to three types of knowledge
graph completion methods: shallow structure em-
bedding, deep structure embedding, and language
semantic embedding.1

A.2.1 Shallow Structure Embedding
TransE (Bordes et al., 2013), TransH (Wang et al.,
2014b), TransR (Lin et al., 2015), TransD (Ji et al.,
2015), TransG (Xiao et al., 2016), TranSparse-
S (Ji et al., 2016), DistMult (Yang et al., 2015),
ConvKB (Nguyen et al., 2018), ComplEx (Trouil-
lon et al., 2016), ConvE (Dettmers et al., 2018),
RotatE (Sun et al., 2019), REFE (Chami et al.,
2020), HAKE (Zhang et al., 2019a), and ComplEx-
DURA (Zhang et al., 2020) are methods based only
on the structure of the knowledge graphs. DistMult-
HRS (Zhang et al., 2018) is an extension of Dist-
Mult which is combined with a three-layer hierar-
chical relation structure (HRS) loss. Each of these

1We refer the readers to (Ji et al., 2021) for a more compre-
hensive review of the knowledge graph completion methods.

methods proposes a scoring function regarding a
knowledge triplet, without using the natural lan-
guage descriptions or names of entities or relations.
The scoring functions are shown in Table 6.

A.2.2 Deep Structure Embedding
• NTN (Neural Tensor Network) (Socher et al.,

2013) models entities across multiple dimensions
by a bilinear tensor neural layer.

• DOLORES (Wang et al., 2018) is based on bi-
directional LSTMs and learns deep representa-
tions of entities and relations from constructed
entity-relation chains.

• KBGAT proposes an attention-based feature em-
bedding that captures both entity and relation
features in any given entity’s neighborhood, and
additionally encapsulates relation clusters and
multi-hop relations (Nathani et al., 2019).

• GAATs integrates an attenuated attention mecha-
nism in a graph neural network to assign different
weights in different relation paths and acquire the
information from the neighborhoods (Wang et al.,
2020).

• NePTuNe takes advantage of both TuckER and
NTN by carefully crafted nonlinearities and a
shared core tensor intrinsic to the Tucker decom-
position (Sonkar et al., 2021).

• ComplEx-N3-RP introduces an auxiliary train-
ing task to predict relation types as a self-
supervised objective. (Chen et al., 2021).
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A.2.3 Language Semantic Embedding
• TEKE (Wang and Li, 2016) takes advantage of

the context information in a text corpus. The
textual context information is incorporated to ex-
pand the semantic structure of the knowledge
graph and each relation is enabled to own dif-
ferent representations for different head and tail
entities.

• AATE (An et al., 2018) is a text-enhanced
knowledge graph representation learning method,
which can represent a relation/entity with differ-
ent representations in different triples by exploit-
ing additional textual information.

• KG-BERT (Yao et al., 2019) considers triples in
knowledge graphs as textual sequences, where
each textual sequence is a concatenation of text
descriptions of the head entity, the relation, and
the tail entity. Then KG-BERT treats the knowl-
edge graph completion task as a text binary clas-
sification task, and then solves it by fine-tuning a
pre-trained BERT.

• StAR (Wang et al., 2021) partitions each triplet
into two asymmetric parts as in translation-
based graph embedding approach, and encodes
both parts into contextualized representations
by a Siamese-style textual encoder (BERT or
RoBERTa).


