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Introduction

It is our great pleasure to welcome you to the Second Workshop on When Creative AI Meets
Conversational AI (CAI2).

This workshop focuses on intersection directions of creative AI and conversational AI that are influencing
millions of people by real-world applications, such as digital assistants, virtual singers, voice boxes and
metaverse. With the rapid development of emotional, creative digital assistants, we believe that future
conversational AI systems can be further enhanced and boosted by the rapid developing creative AI
technique: poeming, painting, gaming, and singing.

We have received a large number of submissions and accepted 9 long and short research papers.
The papers cover directions of emotional chatbots, task-oriented question answering, humor detection,
language models for speech recognition, task-oriented data construction, AI writing assisting, dialog
controlling by prompts, food preference detection through conversation, and diffusion models for artwork
creation.

We would like to thank everyone who submitted a paper to the workshop. We would also like to express
our gratitude to the members of the Program Committee for their timely reviews, and for supporting the
tight schedule by providing reviews at short notice.

We hope that you enjoy the workshop!

The CAI2 Organizers

October 2022
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Abstract

Dialog modelling faces a difficult trade-off.
Models are trained on a large amount of text,
yet their responses need to be limited to a
desired scope and style of a dialog agent. Be-
cause the datasets used to achieve the former
contain language that is not compatible with
the latter, pre-trained dialog models are fine-
tuned on smaller curated datasets. However,
the fine-tuning process robs them of the ability
to produce diverse responses, eventually
reducing them to dull conversation partners.
In this paper we investigate if prompting can
mitigate the above trade-off. Specifically, we
experiment with conditioning the prompt on
the query, rather than training a single prompt
for all queries. By following the intuition that
freezing the pre-trained language model will
conserve its expressivity, we find that com-
pared to fine-tuning, prompting can achieve a
higher BLEU score and substantially improve
the diversity and novelty of the responses.

1 Introduction

Prompting large language models (LLM) has
recently demonstrated an impressive performance
on a number of natural language processing
(NLP) tasks such as machine translation (Radford
et al., 2019), summarisation (Li and Liang, 2021)
or question answering (Schick and Schütze,
2021a). Prompts are tokens which are appended or
prepended to the input of a language model. They
are employed to induce the model into generating
useful information, while keeping the model
weights frozen. Soft prompts, continuous trainable
vectors prepended to the model input, have in
particular proven useful for a number of tasks
(Liu et al., 2021a). While requiring fine-tuning
of only a relatively small number of parameters,
they excel in a few-shot setting. Furthermore, as
the underlying LLM’s grow in parameter size,

∗Work done while at Apple.

Figure 1: Dynamic prompt conditions the prompt on
the query using the controller; a Transformer encoder.

they become competitive even in the full data
setting (Lester et al., 2021). Simultaneously,
prompts remove the burden of storing the full
copy of a fine-tuned LLM for every task, which
becomes increasingly useful as the LLM size
grows. Crucially for us, prompting preserves the
LLM parameters which should help retain their
general language abilities for a downstream task.

Dialog modelling is the task of generating a re-
sponse given the previous dialog turn, the query (Li
et al., 2016b). Dialog models are typically trained
using the maximum-likelihood estimation (MLE)
objective. However, MLE-trained models have a
high propensity to provide dull responses, such as

“I don’t know” (Sordoni et al., 2015; Serban et al.,
2016; Zhao et al., 2017). While state-of-the-art
models, such as DialoGPT (Zhang et al., 2020),
can overcome this issue by training large models
on massive amounts of data, a trade-off emerges.
On the one hand, these models are expressive by
virtue of the large datasets they are trained on. On
the other hand, the same scale of training data and
model parameters is responsible for the lack of
control over the content of their responses.

Since dialog models are not useful without the
ability to control their responses, in this paper, we
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turn to prompting as a possible method of exerting
such control. Instead of fine-tuning the entire
model, we keep the weights of the model intact,
tuning only the prompts (and word embeddings)
in an effort to preserve the models’ expressivity.
Furthermore, we develop a dynamic-prompt,1
which conditions the prompt on the query in
an effort to dynamically induce the response by
having a different prompt for every turn of the
conversation, see Fig. 1. The intuition is to separate
the task of language generation, which LLM’s are
very good at, from the task of selecting appropriate
responses, which LLM’s struggle to learn from the
limited examples they are fine-tuned on.

In our experiments with DailyDialog dataset,
we find that the dynamic prompt outperforms both
fine-tuning and the soft-prompting of DialoGPT in
terms of a BLEU4 score. The best dynamic prompt
model achieves 0.12 BLEU4 compared to 0.11 and
0.08 of fine-tuning and soft-prompting respectively.
Furthermore, the dynamic prompt finds the best
trade-off between the BLEU score and novelty
as well as the diversity of responses, maintaining
above 0.90 novelty and diversity as the BLEU4
score increases, while the other models can not.
Finally, we find that dynamic-prompting on GPT-2
achieves the best BLEU4 results, improving over
prompted DialoGPT by an additional 19% and
casting doubt about the utility of dialog-specific
pre-training when it comes to prompting.

2 Prompting for Dialog Generation

Fine-tuning a pre-trained model on a small dialog
dataset degrades the novelty of the responses (Sor-
doni et al., 2015). Prompting opens up a possibility
of exerting control over the model behaviour, with-
out touching the majority of the weights that might
be useful for generating novel responses (Lester
et al., 2021). However, typical prompting methods
are restrained in using a single prompt for a single
task. In this section, we motivate the dynamic
prompt as a natural next step in generalising the
prompting paradigm for dialog modelling.

1Our work is concurrent to Gu et al. (2021) who develop
a similar prompting method. However, our research is mo-
tivated by a different question from theirs. Specifically, we
investigate how prompting can help with inducing creative
responses, which we measure on the novelty and diversity
metrics introduced below. Their work, on the other hand, fo-
cuses on improving performance on traditional metrics such
as BLEU, NIST, METEOR and ROUGE-L.

Prompting. Auto-regressive models with bil-
lions of parameters trained on a language mod-
elling objective, such as OpenAI’s GPT-3 (Brown
et al., 2020), have demonstrated a strong few-shot
performance without the need to update the model
parameters. Instead of fine-tuning the model with
target task examples, a manually designed prompt,
for example in the form of a natural language sen-
tence describing the task, is fed to the model to
solicit the desired response. For instance, to induce
a translation the model might be told to: Translate
English to French. The description is followed up
with pairs of examples of English sentences and
their French translations. To derive a new transla-
tion the model is fed an English sentence alone and
it is left to infer the French translation. However,
not all human-designed prompts elicit the desired
response. In practice ensembles of many prompts
have gone some way in improving the performance,
but still necessitate humans in the loop to design
the said prompts (Schick and Schütze, 2021a).

Soft-prompting. To address this short-coming,
recent work has found that prefixing and fine-
tuning vocabulary tokens is a more expressive
solution, which can learn the prompt from the
data directly, without a need of a human prompt
designer (Liu et al., 2021a). The soft prompts are
not constrained by encoding existing tokens in
the vocabulary and can freely encode parameters
to facilitate the task. Empirically, soft prompts
achieve better performance than their hard prompt
counterparts and in a few-shot setting outperform
fine-tuning of the entire model.

Dynamic-prompting. Soft prompts are re-
stricted in utilising only a single prompt of a
constant number of tokens for each task. We
hypothesise that there are many tasks where the
desired response for every input will be hard to
solicit through a single shared general prompt.
For example, the task of dialog generation has
a general requirement to generate semantically
and syntactically coherent, engaging responses.
However, an individual response might have
specific properties that are only relevant within
the context of the query. While soft prompts
are likely to solicit the more general tasks, such
as machine translation or question answering,
possibly because they exist in the training data
to begin with, the more nuanced requirements
might be heavily context-dependent. Therefore,
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Figure 2: BLEU4, novelty and diversity scores for fine-tuning, soft-prompting and dynamic-prompting. Full
line is GPT-2, dashed line is DialoGPT.

we condition the prompt on the context to enable
learning different prompts for different queries.
We describe the method in detail below.

3 Method

Notation. Let a dialogue be denoted as x1 · · ·xN
where N is the sequence length. We denote di-
alogue history as S = x1, · · · , xm and target
sequence as T = xm+1, · · · , xN . Now we can
compute the conditional probability P (T | S) as
a product of a series of conditional probabilities:

p(T | S) =
N∏

n=m+1

p (xn | x1, · · · , xn−1) (1)

This probability can be parametrized by an auto-
regressive language model (in our case DialoGPT).

Fine-tuning. For our experimental baseline, we
simply fine-tune pre-trained DialoGPT on the Dai-
lyDialog dataset, see § 4.

Soft-prompting. For soft-prompting, we
prepend a prompt F = z1, · · · , zm at the begin-
ning of S. Prompt tokens are randomly initialised
word embeddings appended to the DialoGPT
vocabulary. In our experiments, we set the length
of the soft prompt to the length of S. Now, to
compute the probability of the target given the
dialogue history and prompt, we compute:

p(T | S, F ) = (2)
N∏

n=m+1

p (xn | z1, · · · , zm, x1, · · · , xn−1)

We instantiate the pre-trained DiaoGPT, but this
time we freeze all of the model parameters, except
the word embedding weights. While in a typical
soft-prompting experiment only the prompt em-
beddings are tuned, we found that for our dialog

setting the performance suffers considerably when
the model is constrained to train only the parame-
ters of prompt embeddings, which is why we relax
this requirement. Furthermore, we do not calculate
the loss for the logits corresponding to the prompt.
This is because we don’t know the ground truth of
what the prompt should be.

Dynamic-prompting. Finally, we extend the
soft-prompting paradigm by conditioning the
prompt F on the query S to find a unique prompt
for every query, see Fig. 1. We use an auto-
regressive Transformer encoder to generate the
prompt embeddings:

h1, · · · ,hm = Transformer(x1, · · · , xm) (3)

Now, we use h as our prompt token embeddings
and prepend them to the query embeddings inside
the DialoGPT model. The model is otherwise
trained the same way as the soft-prompting model
above. The Transformer encoder is trained jointly
with the embeddings.

4 Experimental Setup

Datasets. We conduct our experiments on the
DailyDialog dataset consisting of 13, 118 di-
alogues, split into 11, 118/1, 000/1, 000 train-
ing/validation/test sets (Li et al., 2017). We only fo-
cus on single-turn dialog modelling and process the
dataset so that our pairs of queries and responses
correspond to every two steps in a conversation. In-
spired by Li and Liang (2021), we train our models
on 10%, 20%, 30%, 50%, 70%, and 100% of the
DailyDialog dataset to observe how the number of
training samples affects the performance. We keep
the validation and test sets full-sized for all exper-
iments. For full experimental details, see App. B.

Metrics. We follow Li et al. (2017) and evaluate
the models using BLEU4 score. Since we do not
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want the model to simply repeat the responses
it has memorised from the training data, i.e. the
dull response issue, we additionally introduce two
new metrics: novelty and diversity. We define
novelty as the proportion of model outputs on the
test set that are not found in the training set. Given
a test set, diversity is defined as the number of
unique model outputs divided by the total number
of outputs. A good dialog model should be able to
achieve a high BLEU4 score, while maintaining a
high level of novelty and diversity in its responses.

Models. We experiment with two models,
DialoGPT (Zhang et al., 2020), a state-of-the-art
dialog model, and GPT-2 (Radford et al., 2019) the
model DialoGPT is fine-tuned from. We choose
the latter model to gain insight into how useful in-
domain pre-training of DialoGPT is for prompting.

5 Results

Our main results are contained in Fig. 3. First,
we compare the performance of prompting vs
fine-tuning on the DialoGPT model. We find that
under the full data setting the dynamic prompt
model outperforms the soft prompt model and
even the fine-tuned model on all three metrics.
With a BLEU4 of 0.12 dynamic prompt is 9%
better than fine-tuning (0.11) and 15% better than
a soft prompt (0.08). The difference is even more
dramatic when we compare the corresponding
diversity and novelty scores. Dynamic prompt
achieves a novelty of 0.93 and diversity of 0.96,
an improvement of 9% (0.85) and 10% (0.87)
respectively over the soft prompt, and an even more
pronounced improvement of 26% (0.74) and 22%
(0.79) respectively over fine-tuning the model.

Next, we observe that soft-prompting is com-
petitive in the low data setting and outperforms
fine-tuning. However, with more than 30% of
the training data available, soft-prompting stops
improving altogether and begins to under-perform
the other models. Dynamic prompt on the other
hand maintains the best BLEU4 score no matter
the amount of training data.

Now we turn to the question of novelty and
diversity degradation. We observe that the dynamic
prompt does not suffer from this issue nearly as
much as the other models. In contrast, for the
soft-prompted and fine-tuned models, the better
the BLEU4 score gets the lower the novelty drops.
While soft prompt already mitigates this drop-off,
degrading slower than DialoGPT, dynamic prompt

does not suffer from this effect and maintains
above 90% novelty throughout. Similarly, for
diversity, the dynamic prompt maintains around
0.95 score for any percentage of training data,
while the soft prompt drops down over time and
fine-tuning hovers around 0.80.

Finally, we can turn to the comparison of
DialoGPT and GPT-2. Against our expectations,
DialoGPT under-performs GPT-2 on BLEU4
despite the former having been pre-trained on
dialog-specific data. The performance improve-
ment is most notable in the case of the dynamic
prompt, where GPT-2 (0.14) achieves 19% higher
performance than DialoGPT (0.12). On the other
hand, fine-tuning either model leads to nearly
identical performance. You can find our discussion
of this phenomenon in App. A, all our results in
App. C and example outputs in App. D.

6 Related Work

Our work builds on two strains of thought. First,
we deal with the problem of dull responses in
dialog modelling. Related work includes the use
of reinforcement learning (Li et al., 2016b), latent
variables (Cao and Clark, 2017) and decoding
techniques to mitigate this issue (Li et al., 2016a).

Second, we build on the idea of continuous
prompting, which was developed concurrently by
Lester et al. (2021) and Li and Liang (2021). There
are many variations of the prompting paradigm.
For instance, we fine-tune the embeddings along
with the prompts, but Liu et al. (2021b) tune the
prompt with the full model. Schick and Schütze
(2021b) on the other hand tune only the model,
while keeping the prompt fixed.

7 Conclusion

We find dynamic-prompting bests fine-tuning
by generating more novel and diverse responses
with a higher BLEU score while training only a
small portion of the DialoGPT/GPT-2 parameters.
Thus proving itself as a useful method for miti-
gating dialog modelling issue of dull responses.
Prompting the general purpose GPT-2 achieves
much higher performance than prompting the
specialist DialoGPT model, suggesting that for
pre-training data, diversity is more valuable for
dialog modelling than dialog-specific information.
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A Appendix A: Discussion

Liu et al. (2021a) designed their soft prompt based
on the observation that context can control the
LLM without the need to change its parameters.
They demonstrate that the context might be hard
to find among the existing word embeddings and
instead learn it via back-propagation. We go a
step further and demonstrate that when it comes
to dialog generation it is harder to learn a single
prompt than to learn a function that conditions
the prompt on the query. We believe that this is
because there is no single context, represented by
words or embeddings, that can capture a complex
task such as a conversation. This becomes intuitive
if we separate the task of language generation
from the task of making a conversation. The
conversation is an interaction of the query with
the state of the conversation agent. Without the
ability to respond to the query the agent/language
model is simply saying whatever is the most
probable response. A prompt can induce some
general modification over this response, but there
is no process by which the agent can react to the
query. In our dynamic prompt setting, the agent,
represented by the controller module, is allowed
to learn how to respond to each query.

The separation of thought from language produc-
tion is of course not a new idea. Under the language
of thought hypothesis, mentalese is the language
of thought (Rescorla). While similar to natural
language in its compositional structure, mentalese
is separate from language itself. From this per-
spective, building models that separate the task of
learning a language from that of learning how to
use language makes perfect sense. Following this
intuition, it also makes sense to pre-train the lan-
guage model on general language, rather than a
specific task. We believe that in our setting, the su-
perior language ability of GPT-2 allows for a better
Controller in the dynamic prompt setting.

B Appendix B: Experimental Details

We implement our models using the Pytorch and
Huggingface libraries. We experiment with total
of 36 configurations, testing three learning meth-
ods (Fine-tuning, Soft-prompting and Dynamic-
prompting) on two LLMs (DialoGPT and GPT-2)
and six data regimes (10%, 20%, 30%, 50%, 70%,

and 100%). In each configuration, we run 12 trials
of different learning rates ∈ [3×10−6, 0.009], with
a batch size of 8, for a maximum of 300 epochs
(with early stopping after 100 epochs), and select
the best model by validation BLEU. Each trial is
done on a single GPU with 32GB memory, and the
maximum training time is 14 days. To generate the
model output, we always use only greedy decoding.

C Appendix C: Full Results

Figure 3: BLEU scores for fine-tuning, soft-
prompting and dynamic-prompting. Full line is
GPT-2, dashed line is DialoGPT.
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Data Model BLEU1 BLEU2 BLEU3 BLEU4 Novelty Diversity

10% fine-tuning 0.138 0.063 0.044 0.034 0.850 0.732
soft-prompting 0.149 0.075 0.057 0.046 0.908 0.895
dynamic-prompting 0.158 0.081 0.060 0.048 0.902 0.889

20% fine-tuning 0.148 0.078 0.060 0.050 0.827 0.764
soft-prompting 0.170 0.100 0.080 0.067 0.921 0.926
dynamic-prompting 0.181 0.104 0.082 0.068 0.942 0.941

30% fine-tuning 0.176 0.108 0.088 0.075 0.810 0.809
soft-prompting 0.184 0.114 0.093 0.078 0.921 0.928
dynamic-prompting 0.187 0.118 0.097 0.082 0.940 0.944

50% fine-tuning 0.185 0.123 0.104 0.090 0.791 0.813
soft-prompting 0.196 0.119 0.096 0.080 0.884 0.903
dynamic-prompting 0.201 0.137 0.115 0.098 0.939 0.952

70% fine-tuning 0.172 0.118 0.101 0.089 0.714 0.756
soft-prompting 0.204 0.124 0.098 0.080 0.869 0.889
dynamic-prompting 0.210 0.146 0.123 0.104 0.930 0.958

100% fine-tuning 0.197 0.141 0.122 0.109 0.737 0.787
soft-prompting 0.201 0.121 0.094 0.076 0.847 0.874
dynamic-prompting 0.232 0.166 0.140 0.119 0.933 0.961

Table 1: The full results of our experiments on DailyDialogue with DialoGPT.

Data Model BLEU1 BLEU2 BLEU3 BLEU4 Novelty Diversity

10% fine-tuning 0.147 0.069 0.049 0.039 0.910 0.852
soft-prompting 0.158 0.080 0.060 0.048 0.910 0.903
dynamic-prompting 0.166 0.082 0.060 0.047 0.939 0.917

20% fine-tuning 0.170 0.088 0.066 0.054 0.903 0.856
soft-prompting 0.170 0.098 0.077 0.065 0.881 0.878
dynamic-prompting 0.188 0.111 0.088 0.074 0.930 0.932

30% fine-tuning 0.172 0.102 0.082 0.070 0.855 0.837
soft-prompting 0.188 0.119 0.099 0.084 0.906 0.916
dynamic-prompting 0.207 0.133 0.111 0.095 0.923 0.934

50% fine-tuning 0.181 0.120 0.102 0.089 0.806 0.799
soft-prompting 0.201 0.127 0.103 0.087 0.873 0.902
dynamic-prompting 0.233 0.164 0.141 0.124 0.924 0.947

70% fine-tuning 0.209 0.134 0.111 0.095 0.883 0.900
soft-prompting 0.204 0.128 0.103 0.086 0.897 0.917
dynamic-prompting 0.234 0.168 0.143 0.124 0.912 0.946

100% fine-tuning 0.201 0.144 0.125 0.111 0.742 0.801
soft-prompting 0.211 0.133 0.106 0.087 0.845 0.874
dynamic-prompting 0.258 0.190 0.164 0.142 0.913 0.944

Table 2: The full results of our experiments on DailyDialogue with GPT-2.
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D Appendix D: Examples

Query Dynamic-prompting Fine-tuning Soft-prompting

I think it unwise for
either of us to be
inflexible. How about
meeting each other
halfway?

Do I know how to meet
these employees?

Then, what’s your
countr-offer?

That’s verywise for ei-
ther of us. How about
meeting another person
in person?

It’s a success all right.
The kids keep trying to
catch me.

You better attach some
good ones too.

I’m getting more and
more special.

I’m glad you’re here.

You can audition music
on line, and you can au-
dition it off line after
downloading it, so you
needn’t pay for it.

But when I am getting
done I will make a big
fan list.

Is that a lot of people’s
music here?

Actually, I have been
thinking about taking
the notes from the
book.

What date would you
like to fly? Saturday,
July 25. How many
people will be travel-
ing?

You’d better get a lot of
tickets first.

A few people are com-
ing to get me.

Two flight attendants
will be coming with
you.

It’s more violent than
TV news! What time is
it anyway?

I don’t know, but you
are still beating around
the bush. You aren’t go-
ing to be able to stop
anybody who looks
like you.

Oh, man! I didn’t no-
tice it.

It’s after ten o’clock, af-
ter the candles, so it’s
hard for me to make a
decision.

Table 3: Example responses generated by the models under consideration. Red indicates reused training data
response.
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Abstract 

Despite rapid advancement in the field of 

Constrained Natural Language Generation, 

little time has been spent on exploring the 

potential of language models which have 

had their vocabularies lexically, 

semantically, and/or phonetically 

constrained. We find that most language 

models generate compelling text even 

under significant constraints. We present a 

simple and universally applicable 

technique for modifying the output of a 

language model by compositionally 

applying filter functions to the language 

models vocabulary before a unit of text is 

generated. This approach is plug-and-play 

and requires no modification to the model. 

To showcase the value of this technique, we 

present an easy to use AI writing assistant 

called “Constrained Text Generation 

Studio” (CTGS). CTGS allows users to 

generate or choose from text with any 

combination of a wide variety of 

constraints, such as banning a particular 

letter, forcing the generated words to have 

a certain number of syllables, and/or 

forcing the words to be partial anagrams of 

another word. We introduce a novel dataset 

of prose that omits the letter “e”. We show 

that our method results in strictly superior 

performance compared to fine-tuning alone 

on this dataset. We also present a 

Huggingface “space” web-app presenting 

this technique called Gadsby. The code is 

available to the public here: 

https://github.com/Hellisotherpeople/Cons

trained-Text-Generation-Studio 

1 Introduction 

Constrained writing is a literary approach in which 

the writer decides to impose patterns, constraints, 

or conditions on their text. The most obvious 

example of this application is within poetry – but 

many other communities of writers also find 

imposing constraints on themselves to be 

enjoyable. We can divide constraints into two 

types, soft-constraints and hard-constraints.  

    Soft constraints are the kind that are fuzzy, e.g. 

deciding to write in a certain style. Soft constraints 

are almost exclusively applied at the sequence 

level, rather than being applied directly on each 

token. Hard constraints are concrete lexical, 

semantic, or phonetic requirements about the 

contents of a token or sequence. In this paper, we 

are presenting a system that applied token level 

hard-constraints to large-scale language models.  

    One notable group who create hard-constrained 

texts are the Oulipo (short for Ouvroir de littérature 

potentielle; roughly translated as the “workshop of 

potential literature”) writing collective. Oulipo 

affiliated writers have produced a prolific amount 

of constrained literature since the 1960s. Oulipos 

founder has described the writers within the 

collective as "rats who construct the labyrinth from 

which they plan to escape".  

    One does not need to be a rodent to find 

“recreational linguistics” useful. Any suitor who 

has pledged their affection in print can attest to how 

difficult it can be to write good love poetry; and 

being able to generate rhyming text that also has 

the lengths of consecutive words matching the 

digits of pi is sure to swoon all but the most frigid 

of mathematicians. 

    Natural Language Generation has advanced at a 

breakneck pace. As models have scaled up, their 

Most Language Models can be Poets too: An AI Writing Assistant  

and Constrained Text Generation Studio  
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performance on a wide variety of tasks has 

improved. More recent work shows that 

sufficiently large models such as the “Pathways 

Language Model” (Chowdhery et al., 2022) unlock 

new capabilities for common sense reasoning. The 

probabilistic nature of language models makes 

their impressive performance particularly 

intriguing.  

    Ultimately, all language models involve some 

form of sampling from their vocabulary of all 

possible tokens that they could generate. In this 

paper, we explore the idea of adding arbitrarily 

compositional lexical, semantic, and/or phonetic 

filters to the crucial step of a language model 

sampling from its vocabulary during its decoding 

phase. Among other things, we observe that 

language models can remain coherent even with a 

remarkable amount of filters applied to their 

vocabulary. We thus find that it is perfectly 

appropriate to expect coherent output from a model 

like GPT-2 (Radford et al., 2019), when, for 

instance, its vocabulary is filtered to ban any word 

with the letter “e”, the letter “a” is forced to appear, 

and the length of the token must be longer than 3.  

    In this paper, we introduce two systems which 

take advantage of this constrained vocabulary 

technique: An AI writing assistant called 

Constrained Text Generation Studio (CTGS) and a 

Huggingface “space” web-app called “Gadsby”1.   

   Constrained Text Generation Studio is a GUI tool 

for recreational linguists, poets, creative writers, 

and/or researchers to use and study the ability of 

large-scale language models to recommend 

relevant text in nearly any situation. After 

                                                           
1 Available here: 
https://huggingface.co/spaces/Hellisotherpeople/Ga
dsby 

specifying and downloading one of the thousands 

of language models made available on the 

Huggingface model hub, users can use CTGS to 

specify a list of constraints or “filters” that the 

vocabulary of the language model must pass 

through before it can be sampled from. After any 

combination of the filters are specified, users can 

either use traditional decoding methods to generate 

tokens from the constrained vocabulary 

automatically, or they can manually select their 

continuation from the list of valid tokens. CTGS 

was created with the idea of being “like Photoshop 

but for Constrained Text Generation”.  

    Gadsby is a Huggingface hosted webapp which 

demonstrates the ability for language models to 

generate coherent text with several different pre-

selected combinations of filters. Gadsby was 

named after one the most famous constrained 

works of fiction, which is a 270 page book written 

without the letter E. Gadsby is missing features that 

CTGS has, including composability of filters, 

optional human selection of continuations, and text 

transforms – but it includes filter pre-sets to 

showcase the robustness of language models to 

constraints. The most notable of these pre-sets is 

called “E-Prime” 2 , which filters the specified 

language models vocabulary to avoid any form of 

the verb “to be”.  

2 Prior Work 

We are not the first to explore Constrained Natural 

Language Generation with Language Models. 

Probably the closest prior work to our own comes 

2 The wikipedia article about this is fascinating: 
https://en.wikipedia.org/wiki/E-Prime 

 

Figure 1: A use-case diagram of the algorithm  
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from Pascual et al. (2021). They propose a single 

plug-and-play semantic filter which shifts the 

sampling probabilities of a language models 

vocabulary towards a user defined keyword or set 

of keywords. CTGS instead offers a rich array of 

compositional lexical, phonetic, and semantic 

filters, and it preserves the original language 

models sampling probabilities with the exception 

of the filtered out tokens, which are banned.  

    Swanson et al. (2014) show that language 

models using Constrained Beam Search can 

effectively generate text with the constraint of 

either banning or requiring certain words to appear 

in a sequence. Notably, the transformers library 

from Huggingface recently integrated this 

functionality 3 . Constrained Beam Search is 

effective for translation and other sequence-to-

sequence tasks, but it makes it impossible for the 

language model to assist humans on a per-token 

basis. CTGS adopts an optional human-in-the-loop 

approach where the user can decide which token to 

choose following the listed constraints at each step, 

rather than necessarily relying on sampling. Given 

the inherit creativity required for Constrained 

Writing, using language models for inspiration 

rather than blindly generating with them is 

uniquely helpful for recreational linguists.  

    Kumar et al. (2021) propose a method for 

Controlled Text Generation by formulating it as an 

optimization problem given a list of constraints and 

using gradient descent to maximize the log 

probability of the language model as well as the 

constraint objectives. The constraints that they 

provide are exclusively sequence level. By 

contrast, CTGS’s filters are at the token level and 

are correspondingly much more appropriate for 

Oulipo or Poetry. Their method also requires a 

potentially lengthy optimization process. 

    Lu et al. (2021) propose a reinforcement learning 

based technique for generating sequences with 

conceptual constraints. This method requires 

training and is not applicable for hard lexical or 

phonetic constraints. 

    Zhang et al. (2020) developed a technique for 

solving the problem of hard-constraint generation. 

They propose to pre-train a model by progressively 

inserting tokens between existing tokens in a 

parallel manner. They introduce a large scale 

                                                           
3 An excellent blog post about this can be found here: 
https://huggingface.co/blog/constrained-beam-
search 

language model pre-trained this way and which is 

fine-tuned on hard-constrained tasks called 

POINTER. Their work only looks at the constraint 

of requiring certain words to appear in a sequence. 

Our work explores a wide variety of constraints and 

requires no training.   

    Other work related to constrained text generation 

which explores the potential of global constraint 

satisfaction at the sequence level comes from 

Mireshghallah et al. (2022). Surrogate models, 

such as BertScore, enforce these global constraints. 

Our writing assistant enforces constraints at the 

local level, and allows human intervention at any 

point.  

    Some intriguing work from the Task Oriented 

Dialogue community has parallels with our work. 

Balakrishnan et al. (2019) showcase how 

constrained decoding can be obtained by controlled 

modification of the model representation. They 

find that this technique improves semantic 

correctness as measured on the weather dataset.  

3 Implementation Details 

In this section, we explore the quirks, caveats, and 

details of the implementation of our technique 

within CTGS.  

3.1 Filters 

To enable a filter, a user checks the corresponding 

box, which will cause a larger group of settings to 

become visible. These settings are specific to each 

individual filter. After the relevant settings are 

specified, the button at the bottom of the settings 

enables the filter, and a list of filters which are 

enabled is shown at the top of the filters window.  

    CTGS at the time of writing includes 21 filters. 

Many of these filters are lexical, such as constraints 

which ban or force particular letters. Other filters 

are distance based, such as the semantic filter, 

which uses an auxiliary fasttext (Bojanowski, et al., 

2016) model to remove language model 

vocabulary tokens which don’t meet or exceed the 

specified semantic similarity threshold with a user 

supplied word.  

Probably the most interesting of the included 

filters are phonetic in nature. CTGS includes filters 

for syllable count, meter, rhyme, and phonetic 

matching. CTGS achieves this feat by using the the 
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Carnegie Mellon Pronouncing Dictionary 

(CMUdict) 4 . The “double metaphone” phonetic 

algorithm is used for direct phonetic matching. 

These sorts of filters unlock the potential for poetry 

generation by large-scale language models since 

the rhyme, syllable, or meter constraints inherit to 

poetry are directly forced within the language 

models vocabulary.  

3.2 Tokenization 

Most of the constraints have the additional 

unpleasant side-effect of subverting the intention 

and value of subword tokenization schemes. This 

is because the filters assume that a language model 

generates its words all in one-step. Subword 

tokenization became the de facto default for large 

language models because increasing the 

vocabulary size of a language model dramatically 

increases the computational and memory footprint 

of the model. As the size and sophistication of 

language models has gone up, their vocabulary 

sizes have stayed constant5.  This is frustrating for 

our technique, which naively assumes that a filter 

can be applied to a subword – an assumption which 

is often not true. 

Unfortunately, most Language Models don’t 

“signpost” as to whether they are generating a full 

word or a subword, requiring heuristic techniques 

to be used if one wanted to construct a “subword 

                                                           
4 Available here: 
https://github.com/cmusphinx/cmudict 

aware” filter. Even more startlingly, we observe 

that language models occasionally generate 

functionally the same continuation with subwords 

that they could have generated with direct words 

found within the vocabulary. Many of the filters in 

CTGS will absolutely cripple a language models 

ability to generate rare words which would be 

vectorized into subwords by the language models 

tokenizer. CTGS in its current form thrives when it 

is using a language model with a huge vocabulary.  

Luckily, modern language models with huge 

vocabularies exists. One of these is “Transformer-

XL”, which showcased the value of using a word-

tokenizer and an autoregressive architecture for 

generating coherent text (Dai et al., 2019). Its 

word-tokenizer doesn’t leverage sub words, and 

thus these models do not succumb into the 

previously discussed issues. The default pre-

trained models that Dai et al made available have a 

vocabulary size of 267735 tokens. That’s a 5.32x 

increase in size over GPT-3! Unfortunately, one 

must also incur a significant penalty in memory and 

compute costs for this privilege. 

4 Dataset without the “e” 

One of the issues that large language models 

present for constrained writers is that even when 

heavily fine-tuned on a particular dataset, they 

5 E.g. GPT, GPT-2, and GPT-3 all have a vocab size of 
50257 words. 

Figure 2: CTGS with the "Distilled-GPT2” (distilgpt2) model loaded. Users can right click within the 

textbox for a list of all possible continuations matching the currently selected filters 

Users can right click anywhere within the text box to get a    
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frequently ignore their constraints. For example, 

poetry models that were fine-tuned on the works of 

William Shakespeare frequently stumble and fail to 

maintain rhyme or meter.6 We show that language 

models, which are fine-tuned even on the simple 

lexical constraint of omitting the letter “e”, still 

occasionally ignore their constraints. In fact, even 

when these models are overtrained to an absurd 

degree, complete adherence to these constraints is 

unlikely.  

Such behavior motivates the creation of datasets 

which include some forms of hard lexical, 

semantic, or phonetic constraints. By doing so, we 

can measure how often language models ignore 

them, and more importantly, we can show that this 

method of filtering out these tokens before the 

generation step leads to strictly better performance 

and eliminates these kinds of errors. 

We present a dataset, called “Lipogram-e”, 

which consists of all known complete book-length 

English works which do not use the letter “e”. This 

dataset includes all of Gadsby by Ernest Vincent 

Wright, all of A Void by Georges Perec, and almost 

all of Eunoia by Christian Bok 7 . We name it 

“Lipogram-e” because a lipogram is a text where 

the author omits one or more letters from the 

alphabet.  

While it may be possible to produce a dataset 

without the letter “e” by simply computationally 

looking through an existing large scale dataset for 

sentences which match that constraint, doing so 

would result in jumbled and incoherent training 

examples, with little relation to each other. By 

contrast, books and prose written with constraints 

have clear, coherent narratives. We chose the 

constraint of banning “e” because it is extremely 

easy to computationally verify and because there is 

no potential for error from the filter function.  

5 Experiment 

We design the experiment to measure how often a 

language model makes constraint-based mistakes 

on the Lipogram-e dataset. We look at the 

perplexity and the ignored constraint error rate of 

GPT-2-medium. We choose GPT-2-medium 

because of its relatively well-understood fine-

tunability.  We compare the untrained GPT-2 model 

to the regularly fine-tuned model, and the over-

fine-tuned model. We show that in all instances, 

                                                           
6 An observation that has also been made by others: 
see here: https://www.gwern.net/GPT-2 

applying the constraint to ban the letter “e” from 

the vocabulary of these models results in both 

improved perplexity, as well as zero ignored 

constraint errors.  

6 Discussion and Observations 

Language models that have had their vocabularies 

filtered act significantly differently from unaltered 

models. Because the filters remove significant 

amounts of entries with high probability of being 

generated, models are more likely to behave 

undesirably. Some of the undesirable behavior 

observed included models generating total 

gibberish, generating repetitive text, generating 

potentially personally identifying information, 

generating profanity, and generating computer 

code. The more tokens which are filtered, and the 

higher their probability, the more likely it is that 

models will end up in these degenerate states. We 

hope that this paper motivates further and more 

exhaustive analysis of the vocabularies of language 

models and in particular, what properties they have 

when altered.  

Filtering the vocabularies of language models 

opens up unique possibilities for adversarial 

machine learning. Any model which is exposing its 

full probability distribution before decoding could 

potentially be “attacked” by a sophisticated actor 

who has figured out what they “don’t want” the 

7 Eunoia is a work where each chapter only uses one 
vowel. We omit the chapter that uses the vowel “e” 

Model Perplexity 

on test split 

Ignored 

Constraint 

Error % 

GPT-2 237.37 

 

28.2 

 

GPT-2 with  

constraint filter 

211.53 0 

GPT-2 fine-tuned 

for 5 epochs 

78.24 

 
0.5 

 

GPT-2 fine-tuned 

for 5 epochs with 

constraint filter 

77.99 0 

GPT-2 fine-tuned 

for 20 epochs 
75.58 

 

0.3 

 

GPT-2 fine-tuned 

for 20 epochs 

with constraint 

filter 

75.10 0 

Table 1: Results of the experiment on the 

Lipogram-e dataset 
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model to generate. This could dramatically reduce 

the number of generations needed to leak specific 

information.  

Similar techniques for filtering the output of all 

generative models could be explored in the future. 

Highly sophisticated text-to-image models like 

DALL-E from Ramesh et al. (2021) and Stable-

Diffusion from Ho and Salimans (2021) might 

have interesting and unique behavior if pixel based 

filters that are analogous to our technique can be 

developed.  

It would be extremely interesting to see how this 

technique will work with large scale language 

models such as OpenAIs GPT-3 or Huggingfaces 

BLOOM model. It is likely to make this technique 

extremely sophisticated, but large scale models 

frequently are not released to the public and their 

vocabularies probability distributions are not 

always exposed to the end user.  

7 Final Thoughts and Conclusion 

In this paper, we introduced the AI constrained 

writing assistant called CTGS, explained its 

features and rationale, and mused about its 

potential use cases. We also introduced a 

Huggingface hosted webapp which demonstrates 

the plug-and-play nature of constraining the 

vocabulary of a language model. We introduced a 

dataset of English books which do not contain the 

letter “e” called “Lipogram-e”. We showed that our 

technique results in lower perplexity and zero 

ignored constraint errors in a variety of 

circumstances. Finally, we discussed the unique 

behaviors that models with constraints have.   

    We also hope to use this paper to serve as a call 

to action for the language modeling community to 

not abandon research into word level tokenizers 

and training models using them. If that’s not 

possible, at least some form of “signposting” 

should be built into subsequently trained models 

using potentially a new subword tokenization 

scheme designed for this purpose. We hope this 

paper motivates future work on word-level 

tokenization, and on language models trained with 

extremely large vocabularies.  
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Abstract

We propose a Korean multimodal dialogue sys-
tem targeting emotion-based empathetic dia-
logues because most research in this field has
been conducted in a few languages such as En-
glish and Japanese and in certain circumstances.
Our dialogue system consists of an emotion
detector, an empathetic response generator, a
monitoring interface, a voice activity detector,
a speech recognizer, a speech synthesizer, a
gesture classification, and several controllers to
provide both multimodality and empathy dur-
ing a conversation between a human and a ma-
chine. For comparisons across visual influence
on users, our dialogue system contains two ver-
sions of the user interface, a cat face-based user
interface and an avatar-based user interface. We
evaluated our dialogue system by investigat-
ing the dialogues in text and the average mean
opinion scores under three different visual con-
ditions, no visual, the cat face-based, and the
avatar-based expressions. The experimental re-
sults stand for the importance of adequate vi-
sual expressions according to user utterances.

1 Introduction

As dialogue systems for human-machine conver-
sations have attracted attention from the public,
various multimodal dialogue systems with the pur-
pose of healthcare (Wada and Shibata, 2007), em-
pathetic conversation (Ishii et al., 2021) or multi-
party attentive listening (Inoue et al., 2021b) have
been recently introduced because multimodality
makes conversations more entertaining (Pollmann
et al., 2020). Most research in this field has been
conducted by few research groups in industry or
university because of the complicated architecture
inherent in multimodal dialogue systems to con-
trol multimodal recognition or representation. Con-
sequently, most multimodal dialogue systems are

*Equal contribution

limited to a few languages such as English and
Japanese.

Empathy is also the main factor for more human-
ized conversation (Zech and Rimé, 2005) along
with multimodality. Researches on empathetic dia-
logues (Lin et al., 2020; Zheng et al., 2021; Zhong
et al., 2020; Li et al., 2021; Kim et al., 2021a;
Sabour et al., 2022) are also focused on a few lan-
guages from a lack of empathetic dialogue datasets.
Although a Korean empathetic dataset (Yang et al.,
2020) and a Korean empathetic dialogue genera-
tion model (Jang et al., 2022) have been recently
published, a Korean empathetic dialogue system
supporting multimodality has not been studied.

This paper makes the following contributions:

1. We propose an emotion-based Korean multi-
modal empathetic dialogue system composed
of an emotion detector, an empathetic re-
sponse generator, a monitoring interface, a
voice activity detector, a speech recognizer,
a speech synthesizer, a gesture classification,
and several controllers.

2. We provide three different visual-representing
conditions to compare the user’s behaviors
and opinion scores. The three conditions in-
clude no visualization (a black screen), a cat
face-based emotion expression, and an avatar-
based gesture expression.

3. We evaluate our dialogue system with six par-
ticipants collected for our experiments. The
experiments are performed under three differ-
ent visual-expressing conditions. We analyze
the experimental results which are dialogues
in text form and average mean opinion scores.

The remainder of this paper is formed as follows.
We explain our emotion-based Korean multimodal
empathetic dialogue system in Section 2. In Sec-
tion 3, the experimental results of our dialogue sys-
tem are discussed. Section 4 contains the related
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work in multimodal dialogue systems and empa-
thetic dialogues. Finally, we draw our conclusion
in Section 5.

2 Empathetic Dialogue System

We illustrate the emotion-based Korean multimodal
empathetic dialogue system. As shown in Fig. 1,
the overall architecture of the dialogue system is
composed of modules on a device and server(s).
The device must be equipped with at least a mi-
crophone, a speaker, a display, and a computer for
voice activity detection, speech recognition, speech
synthesis, and visual expression. The visual expres-
sion is derived from either a cat face-based emotion
expression (V1) or an avatar-based gesture expres-
sion (V2). The modules on server(s) are an emo-
tion detector, an empathetic response generator, a
monitoring service, and the main controller to re-
ceive inputs (user information and a user speech in
text) from the device and to send outputs (a system
response in text, a detected emotion class, and esti-
mated probabilities of a user emotion and a system
dialogue strategy) to the device. Those modules
can operate on the device instead of server(s) if the
computing and memory resources on the device
afford them. Otherwise, they can be executed on a
single server or several servers in consideration of
the resources on the server(s).

2.1 Emotion Classification Model

For generating more empathetic responses, utiliza-
tion of user emotions is essential. Therefore we
need an emotion classification model recognizing
the user’s emotion from the current user utterance
among happy, sad, fear/anxiety, angry, surprise, dis-
gust, and neutral in accordance with Ekman’s six
basic emotions (Ekman, 1992). The text emotion
classification model (Lim et al., 2021) on the basis
of Korean-English T5 (KE-T5) (Kim et al., 2021b),
a T5 (Raffel et al., 2020)-based pre-trained model
for both English and Korean, is adopted as the
emotion detection model in our architecture. And
the emotion detection model is re-trained on the
extended version of the Korean empathetic con-
versation corpus (Yang et al., 2020) because the
dataset used in (Lim et al., 2021) is on the basis of
eight emotions.

2.2 Dialogue Generation Model

The dialogue generation model aims to automati-
cally generate system responses in an empathetic

manner, based on the latest three user utterances
by utilizing the user emotion and the system’s dia-
logue strategy. The user emotion is decided among
the seven emotions as defined in Section 2.1, and
the system dialogue strategy is determined among
clarification, back-channel, facilitation, approval,
disapproval, surprise, encouragement, evaluation,
echoic, greeting, opinion, suggestion, and persona
according to the extended version of the Korean
empathetic conversation corpus (Yang et al., 2020).
The KE-T5-based empathetic dialogue model (Jang
et al., 2022) is employed as the empathetic re-
sponse generation model in our architecture after
the model is re-trained on the extended version of
the Korean empathetic conversation corpus (Yang
et al., 2020) because the persona class is added to
the strategy classes.

2.3 User Interface

For human-machine multimodal interaction, we
provide two versions of a user interface which are
a cat face-based and an avatar-based user interface.
Whenever our empathetic dialogue system starts,
either of them can be chosen to deliver adequate
visual-representation to the system responses. Both
versions receive user information such as a user ID
and user voice in speech. Once the user voice is
detected, the speech recognition (speech to text) of
the Web Speech API transforms the voice into the
text so that emotion detection and empathetic re-
sponse generation modules can obtain and process
the text through the main controller on a server. Af-
ter the emotion detection and empathetic response
generation modules produce the recognized user
emotion and the system response in the form of
text, their outputs are sent to the chosen version of
the user interface for the motion expression and the
speech synthesis (text to speech).

2.3.1 Cat Face-Based User Interface

The first version (V1) of the user interface, a cat
face-based Web user interface, receives the gen-
erated system response in text form and the de-
tected user emotion for the speech synthesis and
the emotion expression respectively. According to
the emotion types in Section 2.1, seven different
cat face-based motions are designed to express the
user’s emotion as shown in Fig. 2. The device can
therefore provide the audio and visual interaction
simultaneously to the user, through the audio con-
troller and the emotion expression controller.
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Figure 1: Overall architecture of our emotion-based Korean multimodal empathetic dialogue system

(a) Happy (b) Sad (c) Fear/Anxiety (d) Angry (e) Surprise (f) Disgust (g) Neutral

Figure 2: Seven different cat face-based motions

2.3.2 Avatar-Based User Interface

The second version (V2) of the user interface, an
avatar-based Unity user interface, receives the gen-
erated system response in the form of text, the de-
tected user emotion, and the suggested system dia-
logue strategy for speech synthesis and gesture ex-
pression. The current gesture classification module
randomly selects a gesture from the seven differ-
ent general-purpose avatar gestures as depicted in
Fig. 3. The gestures include holding out one hand
(A) or both hands (D), tilting (B) or nodding (E)
the head, crossing the arms (C), and putting one
hand (F) or both hands (G) on the chest. If some
specific-purpose gestures are added afterward, the
gesture classification module can utilize the given
user emotion and system strategy to choose a more
appropriate gesture for future work. The synthe-
sized system voice in speech and the chosen gesture
class are transmitted to the avatar controller so that
the avatar server can send both information to the
avatar client. Then the avatar client on the device
can play the voice and gesture motion concurrently.

2.3.3 Monitoring Interface

The monitoring web interface is provided for par-
ticipants so that they can check their current and

some recent past emotions, and the current sys-
tem dialogue strategy, as illustrated in Fig. 4. The
x-axis and y-axis of the user emotion graph repre-
sent the time when the emotion is detected and the
estimated emotion probabilities. And the system
dialogue strategy probabilities are presented in the
radial graph.

3 Experiments

For evaluating our emotion-based Korean multi-
modal empathetic dialogue system, we analyze
the dialogue logs and the averaged mean opinion
scores (MOS) achieved by six participants. MOS
is commonly used to assess the dialogue system
since no existing automatic evaluation metrics cor-
rectly measure the performance of the dialogue
generation task. Our dialogue system was also eval-
uated in three different visual-representing condi-
tions which are no visual (a black screen), the cat
face-based, and the avatar-based expression meth-
ods.

3.1 Experimental Settings

A 160 cm kiosk built in a microphone, a speaker,
a display, and a computer is employed for all our
experiments conducted with six participants and
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(a) Gesture A (b) Gesture B (c) Gesture C (d) Gesture D (e) Gesture E (f) Gesture F (g) Gesture G

Figure 3: Seven different general-purpose avatar gestures

Figure 4: Monitoring interface drawing estimated probabilities of a current system strategy and latest user emotions

three visual expressing conditions. A participant
starts a conversation with the kiosk given the condi-
tion, finishes the conversation when the participant
wants, has a pause while other participants have
a conversation with the kiosk, starts another con-
versation with the kiosk under another condition
different from the first condition, and iterates the
same steps until the participant tests all three vi-
sual conditions. The order of conditions given to
each participant is randomly shuffled so that the
evaluation results are not affected by the order.

For the speech synthesis, the Kakao text-to-
speech API is selected because it provides a calm
female voice in Korean, which sounds proper for
most empathetic dialogues.

3.2 Experimental Results

For observing the changes in terms of participants’
behavior, the dialogue logs were recorded individ-
ually depending on the participant and the visual
condition. The numbers of user utterances per dia-
logue and words per user utterance are calculated
on average, as shown in Table 1. The average num-
ber of words per user utterance for all three condi-

tions is almost the same, whereas the users tend to
talk less with the cat face and more with the avatar.

The participants graded each evaluation item on
a 5-point scale from 1 to 5. A participant consid-
ers an evaluation item very bad if the participant
scores 1 for the item, whereas scoring 5 means
very good. The questionnaire was given to the par-
ticipants before the experiment and contained the
questions as described in Table 2. Except for Q4,
all participants gave a mark for each conversation
under a given visual condition. Question Q4 was
only rated when no black screen was provided. We
observed that the participants gave higher MOS
with the cat face although we utilize the same emo-
tion detector and the empathetic dialogue generator
for all conditions. In case of question Q4, the partic-
ipants considered that the emotion-based cat face
expression was more proper than the random gen-
eral purpose gesture-based avatar expression. The
overall satisfaction scores (Q5) showed that the par-
ticipants were the most satisfied with the cat face
and the least satisfied with the avatar. The result
that the avatar-based representation achieved lower
MOS than the black screen implies the importance
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Evaluation item None Cat face Avatar
The average number of user utterances per dialogue 17.0 16.3 18.3
The average number of words per user utterance 3.8 4.0 4.0

Table 1: Average numbers of user utterances per dialogue and words per user utterance under three visual conditions

Evaluation item None Cat face Avatar
Q1 The recognized emotion was correct 4.2 4.2 4.2
Q2 The system strategy was appropriate 3.8 4.0 3.7
Q3 The system response was appropriate 4.0 4.0 3.3
Q4 The cat face or avatar gesture matched with the system response n/a 3.8 2.8
Q5 The overall dialogue satisfied me 4.0 4.2 3.3

Table 2: Average mean opinion scores under three visual conditions

of providing appropriate visual-representation by
understanding given user utterances.

4 Related Work

Several social robots providing multimodal in-
teraction have been introduced for different pur-
poses. The baby seal-shaped robot PARO was de-
veloped by the National Institute of Advanced
Industrial Science and Technology in Japan for
robot therapy (Wada and Shibata, 2007). And the
PARO robot was utilized for examining whether
the robot can support family caregivers caring for
older persons with dementia (Inoue et al., 2021a).
The Pepper robot, a wheeled humanoid robot pro-
duced by SoftBank Robotics, was initially designed
for business-to-business in SoftBank stores and
has been utilized for a variety of applications for
business-to-consumer, business-to-academics, and
business-to-developers (Pandey and Gelin, 2018).
(Glas et al., 2016) created the ERICA robot, one
of the most humanlike android robots, whose func-
tionalities include conversation, advanced sensing,
and speech synthesis. And the abilities of the ER-
ICA robot extended into one-on-one attentive lis-
tening (Inoue et al., 2020) and multi-party attentive
listening (Inoue et al., 2021b). The ERICA robot
was also utilized for empathetic conversation dur-
ing the Covid-19 quarantine (Ishii et al., 2021).

As empathy plays a crucial role in communica-
tion, there have been several attempts to generate
more empathetic system responses in text-based
conversations. An end-to-end empathetic chatbot
CAiRE (Lin et al., 2020) recognizes user emo-
tions and generates responses in an empathetic
manner, based on the Generative Pre-trained Trans-
former (Radford et al., 2018). (Zheng et al., 2021)

proposed a multi-factor hierarchical framework for
empathetic response generation, which consists of
communication mechanism, dialog act, and emo-
tion. (Zhong et al., 2020) suggested a novel large-
scale dataset (PEC) and a BERT (Devlin et al.,
2019)-based response selection model for persona-
based empathetic conversations. (Li et al., 2021)
and (Kim et al., 2021a) focused on emotion causes
for generating empathetic responses. (Sabour et al.,
2022) leveraged commonsense to achieve addi-
tional information such as user’s situations and
feelings. And the information was utilized for the
enhancement of empathetic response generation.

5 Conclusion

This paper proposes an emotion-based Korean mul-
timodal empathetic dialogue system whose sub-
modules include an emotion detector, an empa-
thetic response generator, a monitoring interface, a
web interface, and a unity interface. We evaluated
our dialogue system by analyzing the dialogues in
text and the average mean opinion scores under the
three different visual-representing conditions and
observed the significance of proper visual expres-
sions. For future research, gesture classification
with more specific-purpose gestures and system
emotion expression corresponding to the system
response will be considered.
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Abstract

Task-Oriented Dialog (TOD) systems often
suffer from dialog breakdowns - situations in
which users cannot or do not want to proceed
with the conversation. Ideally TOD systems
should be able to detect dialog breakdowns to
prevent users from quitting a conversation and
to encourage them to interact with the system
again. In this paper, we present BETOLD, a
privacy-preserving dataset for breakdown de-
tection. The dataset consists of user and sys-
tem turns represented by intents and entity an-
notations, derived from NLU and NLG dia-
log manager components. We also propose
an attention-based model that detects potential
breakdowns using these annotations, instead of
the utterances’ text. This approach achieves
a comparable performance to the correspond-
ing utterance-only model, while ensuring data
privacy.

1 Introduction

Task-Oriented Dialog (TOD) systems (Zhang et al.,
2020) enable users to complete specific tasks, such
as booking a reservation at a restaurant. Unlike
open-domain dialog systems (Huang et al., 2020),
where the aim is to maximize user engagement, in
TOD systems it is crucial to optimally assist a user
to fulfill the task at hand. Detecting dialog break-
downs due to miscommunications potentially paves
the way to intervene and rescue the dialog, improve
customer satisfaction and motivate the user to con-
tinue interacting with the system (Brandtzæg and
Følstad, 2018).

A dialog breakdown is often defined as a point in
the dialog where the user gives up the conversation
without completing the task, often due to not under-
standing the intended meaning of user’s utterance
(Martinovski and Traum, 2003; Higashinaka et al.,
2015). If conversational system engineers can un-
derstand when and why a conversation is likely
to break down, they can build systems that pre-

vent broken dialogs, or design conversational break-
down recovery strategies (Benner et al., 2021).

The Dialog Breakdown Detection Challenge
(DBDC) has motivated the academic community’s
interest in the breakdown detection problem, which
is the goal of predicting the occurrence of a
breakdown at some point in the conversation (Hi-
gashinaka et al., 2016). This challenge also came
with the release of English and Japanese datasets
for addressing this task. Despite the great value
of these proposed datasets, they only provide the
sequence of user and system utterances. Utterances
are indeed useful to detect a breakdown, however,
in certain contexts, especially in industry, a stake-
holder may decide not to share and release the texts
for privacy preserving purposes (Xu et al., 2021).

The utterances produced by a user during a
task-oriented conversation often contain privacy-
sensitive information. Let us consider a dialog
system in a company that handles issues relating to
human resources as an example. The system may
receive data regarding an employee’s health status
or compensation, i.e., data that a company is un-
willing to share. In this paper, we demonstrate that
even without access to the text of the conversation,
it is still possible to identify a breakdown. In fact,
traditional dialog systems often provide synthetic
annotation of the user and system utterances as the
intents and entities, originating from the Natural
Language Understanding (NLU) and Natural
Language Generation (NLG) components (Wahde
and Virgolin, 2022). In particular, the NLU
component classifies the user utterances into
intents (book_appointment) and extracts
entities (user_name=“John Smith”). The
NLG component consists of a closed set of
possible system utterances (each defined by a
unique intent), often parameterized by or supple-
mented with entities (e.g. “restaurant_name
is open on day_of_the_week”, where
restaurant_name and day_of_the_week
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BETOLD DBDC DSTC2

Annotation
Features

Task-oriented dialogs Yes partially Yes
Task domain phone repair mixed restaurant, tourist info
Annotation by automatic human human
Has intents Yes Yes Yes
Has entities Yes No Yes

Breakdown
Features

BD* annotated by system human human
BD label Yes Yes NO**

BD defined as
caller hangup &
transfer request

nonsensical
system reply

inferred from
intent

Number of classes 2 3 2
Partial BD label No Yes No
BD initiated by caller Yes No Yes

System
Abilities ASR and TTS Yes No No

Statistics
# Dialogs 13,524 615 2,115
# utterances per dialog
(median)

10 20 12

Table 1: Comparison of our BETOLD and other two publicly available datasets used for breakdown detection. *BD
stands for “breakdown”. **User’s intent “restart” could be used as a substitute for breakdown.

are two entities).
In our study, we propose a simple yet effective

way to automatically create a new breakdown de-
tection dataset, given an existing TOD system. In
particular, we consider a phone-call scenario, in
which a customer talks to a digital assistant to
schedule a service appointment for their mobile
phone. In our experience, two central events indi-
cating caller’s frustration with the current dialog
state and projected outcomes are: a) hang-ups, b)
requests to talk to a human agent. Therefore, we
consider caller hang-ups and transfer to human re-
quests as dialog breakdowns.

We also release a novel task-oriented dialog
dataset BETOLD (Breakdown Expectation for
Task-Oriented Long Dialogues) with the proposed
annotation schema. The dataset contains real
human-agent conversations, between customers
and our modular dialog system. The system au-
tomatically annotates the user utterances with NLU
intents and entities, and generates appropriate NLG
responses which contain NLG intents and accom-
panying entities.

Finally, we propose an attention-based model,
capable of taking these features into account. Our
results show that, instead of relying only on the
word tokens of the utterances, the use of NLU and
NLG intents is sufficient to confidently predict a
breakdown in a task-oriented conversation, there-
fore reaching satisfactory results while guarantee-
ing the privacy of the data.

2 Related Work

2.1 Datasets for Breakdown Detection

Only few task-oriented dialog breakdown datasets
are openly available. We report the most relevant
ones in Table 1. Overall, they are small and human-
annotated, and with varying definitions of dialog
breakdown.

The Dialogue Breakdown Detection Challenge
(DBDC) offers a small dataset with 615 English
conversations, annotated with system utterances
that cause dialog breakdown (Higashinaka et al.,
2016). It contains three classes: breakdown, pos-
sible breakdown, and no breakdown. However, no
intents and entities annotations are available. Ad-
ditionally, opposite to BETOLD, most of conver-
sations in DBDC are open-domain. Another open-
source alternative is the Dialog State Tracking Chal-
lenge (DSTC2) dataset, which unfortunately lacks
breakdown annotations (Williams et al., 2014).
However, 7 out of 2,115 conversations have an in-
tent “Restart” which. If more prevalent, this could
be used as a substitute for breakdown.

Similar to our work, Gorin et al. (1997) anno-
tated 10,000 TODs between customers and agents.
Subsequent experiments with the same dataset iden-
tified user hangup and requests to transfer to human
agent as a specific learning problem, as proposed
in our work (Walker et al., 2000). However, the
dataset is not publicly available. Further exam-
ples of closed-source studies feature predicting in-
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teraction quality from automatically extracted fea-
tures (Schmitt et al., 2011) or manually-annotated
features by AMT workers (Meena et al., 2015).
These studies used publicly available un-annotated
datasets, however the authors did not release their
annotations.

2.2 Models for Breakdown Detection

The initial approaches to the breakdown identifi-
cation problem focused on extracting features that
can characterize a breakdown (Schmitt et al., 2011;
Meena et al., 2015; Walker et al., 2000). Textual
features can be used to compute similarity between
the system utterance and user utterance (Meena
et al., 2015), or detecting emotions from utter-
ances and using them as indicators of a dialog
breakdown (Schmitt et al., 2011; Matsumoto et al.,
2022). Alternatively, dialog manager-generated
tabular features such as repetitions, negations, or
utterance counts can be considered as well (Walker
et al., 2000; Schmitt et al., 2011).

With advent of the DBDC challenge, novel ap-
proaches have been proposed, yet limited by the
available dataset features. These approaches rely
solely on the textual utterances and the number
of turns. They explore both traditional (Kato and
Sakai, 2017; Sugiyama, 2021) and deep learning-
based models (Hendriksen et al., 2021; Wang et al.,
2021; Park et al., 2017). Given the sequential na-
ture of dialogs, many models exploit sequential
architectures, such as RNN or LSTM (Hendriksen
et al., 2021; Wang et al., 2021; Shin et al., 2019;
Lee et al., 2020), or they use an attention mech-
anism to determine the utterance embeddings on
which to focus the attention (Park et al., 2017).
Considering the encoding of the text, different ap-
proaches have been investigated: from the use
of static word embeddings such as Glove and
Word2Vec (Hendriksen et al., 2021) to contextu-
alized embeddings, e.g., BERT (Sugiyama, 2021;
Shin et al., 2019).

3 A Privacy-Preserving Dataset for
Breakdown Detection

3.1 Dataset Creation

The considered conversations are based on real
conversations between a human and a task-oriented
dialog system, with the goal of scheduling or can-
celing an appointment. The user interacts with the
system over the phone. We considered four scenar-
ios in which a phone call could end:

• successful calls: the caller hangs up after the
caller’s goal has been satisfied (e.g. the agent
has successfully scheduled a booking);

• agent-initiated forwarded calls: the agent
takes the decision to forward the call (e.g.
technical problems with the system);

• user-initiated forwarded calls: the user ex-
plicitly requests to talk to an operator, identi-
fied by the transfer_to_human intent. (This
may include NLU misclassifications);

• user-initiated caller hangup: all the remain-
ing calls.

A conversational engineer strives to avoid both user-
initiated forward calls and user-initiated hangups.
However, observing the data, we can see that the
caller’s behavior changes depending on the num-
ber of turns. There is no way to prevent the caller
from hanging up in the initial turns: This is the
case when a user does not want to speak to a digital
assistant at all. We report in Figure 1 the distribu-
tion of the different types of phone calls over the
number of turns.

Figure 1: Distribution of the different types of phone
calls over the number of turns on a sample of 45,385 con-
versations.

Given these considerations, we focus on user-
initiated forward calls and hang-ups occurring late
in the conversation. We will refer to these calls as to
LUHFs (Late User-initiated Hang-ups or Forward
calls), a particular class of dialog breakdowns.

LUHFs are the types of calls that we aim to
predict (positive examples). We consider as late
conversations all the calls that reach at least the 8th
turn. On the other hand, late successful calls are
the negative examples of the dataset. In particular,
we sample successful calls and then truncate the
conversations at a random point (still, after the
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Utterance Intent Entities

S: Are you a registered customer? ask_if_current_client
H: Uhm no negate
S: Can I book your service appointment under the
phone number ending in <1234>?

confirm_phone_number user_phone_suffix

H: Yeah that’s correct confirm
S: What is the brand, model and year of your phone
device?

new_user_profile_brand_model_year

H: It’s a <phonepink> why 100 <2022> inform brand_device, year
S: What is the model of phone device? ask_device_model
H: It is <y100> inform model_device
S: What is the battery health percentage of your phone
device?

ask_for_battery_health

H: <zero> inform numeric
S: What is your first name? ask_first_name ask_last_name
H: My name’s <John> inform client_name
S: Great, what is your last name? ask_last_name
H: <Smith> inform client_name
S: What service does your phone device need? ask_desired_service
H: Uhm <battery replacement> inform type_of_repair

Table 2: Extract of a conversation between the system and a human. The entity values are enclosed by angular
parentheses in the utterances.

“late”-call threshold). The user-initiated forward
calls are also truncated from the point when the
caller asks to be transferred. The ratio successful
calls/LUHFs is 2:1. As a result, the dataset contains
13,524 calls (4,508 LUHFs and 9,016 not LUHFs).

Let us notice that the dataset contains noisy data
because it is automatically annotated. Conversa-
tions may lead to a user-initiated forward, for ex-
ample, even if there was no indication of user frus-
tration. Similarly, a user may become irritated with
the conversation but still decide to end the call.
Moreover, it is worth noticing that the provided
annotation is not at the utterance-level. Instead,
a LUHF/not LUHF annotation refers to the over-
all conversation. In other words, if a conversation
is a LUHF, we are not aware of at which point
of the conversation a breakdown occurred. These
elements make the predictions more challenging.

3.2 Dataset Features

The dialog system is composed of different mod-
ular components, including an NLU and an NLG
component. The NLU provides annotations to the
user’s utterances, i.e. the intent and the entities, rec-
ognized by an intent classifier and a named-entity
recognition system respectively. The NLG also pro-
vides the name of the intent and the entities, uttered
by the system. The NLG intents are always differ-
ent from the NLU intents. On the other hand, the

NLG and NLU may have some entities in common.

3.3 Dataset Anonymization for Privacy
Preservation

We anonymize the original data to protect the pri-
vacy of the original conversation content. In par-
ticular, we remove natural-language text and entity
values. Keeping only the intent and entity annota-
tions guarantees the privacy of the data.

We report an example of a fictitious conversa-
tion in Table 2, reporting the utterances exchanged
between the system and a human. The detected
entities are enclosed by angular parentheses in the
utterances. We can notice that the caller releases
sensitive information, such as the name and phone
number. The entities and the intents are a synthetic
way to represent the utterances, and therefore to
substitute the utterances with these annotations is
a valid way to proceed. One may argue that, in
order to not lose much information, it could be
possible to keep the text and remove only the en-
tity values. This approach would work fine only
with a perfect NLU that is able to recognize all the
entities in the text. As we can see from Table 2,
the entity model_device is not detected the first
time. Moreover, the caller may reveal other types
of sensitive information that an NLU is not sup-
posed to detect. Since the NLU is prone to these
errors and may not detect an entity in the text, it is
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indeed safer to remove all the textual information
to preserve the privacy of the data.

# labels

# not LUHFs 9016
# LUHFs 4508
# LUHs 2477
# LUFs 2765

# turns
min 8
max 34
avg 10

# NLG and NLU unique intents 91
# NLG and NLU unique entities 41

Table 3: BETOLD dataset statistics.

Table 3 reports the main dataset statistics. The
resulting privacy-preserving dataset, named BE-
TOLD (Breakdown Expectation for Task-Oriented
Long Dialogues), is available at the following link:
https://github.com/telepathylabs
ai/BETOLD_dataset.

4 An Attention-based Model for LUHF
Detection

The task in BETOLD dataset is to classify if a
conversation between a human and the system is
a LUHF or not. In this setting, it is fundamental
to keep track of what happened in the past, rep-
resented by the dialog history. We therefore in-
vestigate an attention-based architecture (Vaswani
et al., 2017), that has proved to perform well in sev-
eral dialog-related tasks (Qin et al., 2021; Colombo
et al., 2020; Zhao and Kawahara, 2019; Hori et al.,
2016), including dialog breakdown detection (Park
et al., 2017).

4.1 Model Architecture

A conversation between a human and the system
can be represented as a sequence x of n tuples,
where each element of a tuple represents a differ-
ent feature. Here, the features include the caller
name (either NLG or NLU), the intents, and the
entities. The sets of possible values (also called
vocabularies) of each feature are represented by C,
I , and E for the caller names, intents and entities
respectively. The sequence x is then:

x = (c1, i1, e1), (c2, i2, e2), . . . , (cn, in, en) (1)

where (cj , ij , ej) is a tuple composed of a caller
name cj ∈ C, an intent ij ∈ I and an entity set

ej ∈ P(E) and j = 1, . . . , n. We refer to the
entities as entity set, because for each tuple, we can
have zero, one or more entities. The vocabulary
sets C, I and E have different dimensions, to which
we add an unknown symbol for unseen elements
and a padding symbol.

For each of these features, the model learns em-
bedded representations of dimension m. These
vector representations are then summed up, obtain-
ing a m-dimensional vector, which is then passed
through a positional encoding layer, to keep track
of the order of each element of the sequence. The
resulting sequence of m-dimensional vectors is
used as input to the Transformer encoder. The
Transformer encoder is a stack of t encoder lay-
ers of l dimensionality. The output sequence of
the Transformer encoder is averaged and the re-
sulting vector passes through a sequence of linear
layers. Finally, we apply a sigmoid function to the
last layer to get the predicted score (LUHF or not
LUHF). We use a weighted Binary Cross Entropy
(BCE) loss to optimize.

Figure 2 shows a sketch of the proposed archi-
tecture. Each type of feature is represented in a
different color.

5 Experimental Setting

5.1 Text-only Baseline

Our goal is to demonstrate that a text-free model
can achieve comparable performance to a text-
based model. As a consequence, we consider the
text-only model to be our baseline model. The
available text is represented by the user and sys-
tem utterances. We use Sentence-BERT (Reimers
and Gurevych, 2019) to generate a contextualized
sentence representation for each utterance.

We use the same type of architecture as the pro-
posed model to ensure a fair comparison, except
that the model’s input is different, i.e. dense vector
representations of text. We call this model TEXT.

5.2 Models

We compare the text-only baseline TEXT with dif-
ferent variants of the proposed model. To identify
the single contribution of the entities and intents,
we consider two variants of the model, namely INT
and ENT, as the models that rely solely on intents
or entities respectively. We then consider a model
that combines all the features (intents, entities, and
caller type (NLU or NLG)), referred to as IEC.
The implementation of the models is available at
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Figure 2: Sketch of the model architecture. To train the LUHF/not LUHF classifier multiple features are embedded
and summed before a transformer encoder block followed by linear layers. The represented features are callers
(orange, possible callers are “NLG” and “NLU”), intents (yellow, 91 intent names from NLU and NLG), and entities
(blue, 41 entity names from NLU and NLG).

the following link: https://github.com/t
elepathylabsai/dialog_breakdown_
detection.

5.3 Hyperparameter Setting

For running the experiments, we split the dataset
into three parts: 80% for training, 10% for testing,
and 10% for validation. We run all models for 50
epochs and then select the best model based on the
validation set. We augment the training data by
adding successful calls. In particular, we truncate
the successful calls at random points and use them
to expand the training data. We added 30% more
successful calls to the overall training data. We
do not perform data augmentation for the LUHFs
because the LUHF annotation refers to the overall
conversation and we have no hints about at which
point in the conversation something went wrong.

We use grid search to determine the optimal hy-
perparameter configuration of the models. In partic-
ular, since we are more interested in the prediction
of a LUHF rather than the prediction of a not LUHF,
we select the optimal configuration based on the
F1 score of the LUHF class. For the text-only
model TEXT, we use the all-MiniLM-L6-v2
pre-trained model to obtain the utterance represen-

tations.1 Any document embedding model can be
used to generate the utterances representations and
feed the TEXT model. We run the TEXT model on
the non-anonymized version of BETOLD, ensur-
ing the same train/test/validation splits for a fair
comparison. See Appendix A for further details on
the hyperparameters.

6 Results

6.1 Quantitative Analysis
Table 4 reports the results of the models in terms of
the F1 score for each class and the macro-averaged
score. As a first remark, the models ENT and INT
obtain a similar performance. This is probably due
to the fact that some intents can be recognized by
the entities of which they are composed. But since
not all the intents are characterized by entities, the
ENT model is not able to reach the same perfor-
mance as the INT one.

Focusing on the IEC model, which combines
the intents, entities, and caller type, we can notice
that this model gets improved performance with re-

1See https://huggingface.co/sentence-t
ransformers/all-MiniLM-L6-v2. In a preliminary
investigation, we tried different pre-trained sentence embed-
ding models made available by Hugging Face. Here, we report
the results with the best performing model.
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LUHF
F1

not LUHF
F1

Macro avg
F1

TEXT 0.798± 0.016 0.903± 0.005 0.850± 0.010
INT 0.727± 0.018 0.877± 0.002 0.802± 0.010
ENT 0.707± 0.018 0.867± 0.007 0.787± 0.011
IEC 0.744± 0.008 0.879± 0.003 0.812± 0.005

Table 4: Results of the considered models in terms
of F1 score. We report the average and the deviation
of 5 independent runs with the same hyperparameter
configuration.

spect to the INT and ENT counterparts, as expected.
IEC also obtains good performance if compared
with the text-only baseline. It is worth noticing
that the TEXT model is indeed a strong baseline:
the intents and entity annotations provided by the
dialog manager synthesize the meaning of an utter-
ance, mapping them to a finite set of intents and
entities. With this process, we inevitably lose some
information about the dialog. Moreover, intent and
entity annotations are prone to classification errors:
the NLU may misclassify an intent or it may not
detect an entity. Despite these difficulties, the IEC
model can reach a comparable performance to the
TEXT baseline, suggesting that it is possible to con-
fidently identify a breakdown even without taking
text into account.

6.2 Qualitative Analysis

In this section, we discuss some qualitative exam-
ples of the IEC model on the test set, one of a
LUHF classification and one of a not LUHF mis-
classified as a LUHF.

Let us consider the conversation shown in Ta-
ble 5. For each step of the conversation, we report
the corresponding caller type (NLG or NLU), the
intent, the entities, and the probability of identi-
fying a LUHF. We filter out the first steps of the
conversations due to space limitations. Let us re-
call that the LUHF annotation corresponds to the
overall call. Therefore the model was not trained
on each step of the conversation because there is
no information about if a breakdown occurred at
a given step. We will further discuss this issue in
Section 7. Nevertheless, we can still compute the
probability of identifying a LUHF at each step for
a conversation, by generating a synthetic dataset
composed of the same conversation but incremen-
tally truncated.

Table 5 shows that the probability of detecting
a LUHF increases as the conversation progresses.

However, the probability often decreases after a
user input, represented by an NLU annotation. We
presume that this behavior happens because a user
is less likely to hang up after replying and would
wait until the next utterance before deciding to
hang up. For example, at step 23, a user negates
the proposed date of the system. This may be a
signal of a breakdown and indeed the probabil-
ity of a LUHF increases at step 24. The intent
time_asked_unavailable_propose_new indicates an
NLG intent where a time preference proposed by
the user is unavailable, therefore the system pro-
poses a new time. This can be an additional signal
for a breakdown, which in fact increases the proba-
bility of detecting a LUHF.

In Table 6, we report an example of a not LUHF
that has been classified as a LUHF at the final
step of the conversation. As before, we eliminated
the early steps of the call, where the conversation
flowed nicely. At steps 13 and 16, the probability
of predicting a LUHF increases, although there are
no clear indications of a breakdown. It is worth not-
ing that in the previous example the probability of a
LUHF also increased after the intent propose_date
(Table 5). Many LUHFs may happen in correspon-
dence to this intent, therefore biasing the model to
believe that this intent is an indication of a break-
down.

7 Limitations

As mentioned in Section 3.1, the labels in BETOLD
are automatically assigned to each conversation.
Therefore, it is possible that a conversation where
everything goes smoothly but suddenly the user
decides to hang up is classified as LUHF. Simi-
larly, the user may decide to reach the end of the
conversation even if they are extremely unsatisfied
with the call. This case is not considered a dialog
breakdown.

In addition to this issue, a LUHF annotation ap-
plies to the overall call and is not an indication of
what happened during at each step of the conver-
sation. A model that generalizes well should be
able to predict whether a LUHF happened at each
step of the call. The process of data augmentation
described in Section 5.3 is an attempt to address
this issue. This is, however, limited to not LUHF
calls, given that we have no guarantees on when
a breakdown happened in a conversation. Instead,
we are quite confident that, if a call was successful,
it was also successful in the previous steps.
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Step Caller Intent Entities
Probability
of LUHF

9 NLG ask_for_battery_health 0.002
10 NLU inform numeric 0.000
11 NLG ask_first_name 0.109
12 NLU inform client_name 0.002
13 NLG ask_last_name 0.296
14 NLU inform client_name 0.016
15 NLG ask_desired_service 0.344
16 NLU user_initial_request type_of_repair 0.033
17 NLG ask_additional_service 0.262
18 NLU inconclusive 0.012
19 NLG transportation_of_device ask_to_schedule,

ask_means_of_transportation
0.253

20 NLU confirm 0.014
21 NLG inform_schedule_inspection 0.012
22 NLG propose_date transportation_type_selection,

available_slot_to_schedule
0.269

23 NLU negate 0.033
24 NLG ask_time_preference 0.378
25 NLU user_proposed_date time_range_indication 0.153
26 NLG time_asked_unavailable_propose_new transportation_type_selection,

available_slot_to_schedule,
user_request_start_time

0.922

27 NLU negate 0.764
28 NLG ask_time_preference 0.960

Table 5: Example of LUHF conversation correctly classified.

Figure 3 shows a density histogram of the proba-
bility by class of predicting a LUHF, averaged over
all the conversation steps, for the test set conversa-
tions. As we can observe in the plot, the average

Figure 3: Histogram of the average probability of pre-
dicting a LUHF by class.

probability of predicting a LUHF in a not LUHF
call is low in general. We recall that we have
more data available for the successful calls (the
not LUHFs are two times more than the LUHFs
and, in addition, we add 30% more successful calls

through augmentation). Therefore, it is not surpris-
ing to see that the not LUHF distribution is more
skewed towards to 0 than the LUHF distribution.
Moreover, the results shown in the plot correspond
to the average score across many steps of the con-
versation. A breakdown may happen very late in
the conversation, thus resulting in an overall low
average score. However, this is hard to determine
through an automatic investigation and would re-
quire a manual inspection.

8 Conclusions

In this paper, we proposed a simple way to auto-
matically generate a breakdown detection dataset
in task-oriented dialogs, where the breakdown la-
bels are extracted by user-initiated events. This
dataset guarantees the privacy of the data by only
keeping the annotations from NLU and NLG com-
ponents. We proposed an attention-based model
which uses these types of annotations. As a result,
we demonstrated that a model does not necessarily
require textual utterances to predict a breakdown;
yet, it can benefit from the NLG and NLU intents
and entities, automatically provided by a classical
dialog system.
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Step Caller Intent Entities
Probability
of LUHF

11 NLG transportation_of_device ask_means_of_transportation,
ask_to_schedule

0.164

12 NLU confirm 0.005
13 NLG ask_time_preference 0.391
14 NLU confirm 0.011
15 NLG inform_schedule_inspection 0.005
16 NLG propose_date transportation_type_selection,

available_slot_to_schedule
0.678

Table 6: Example of not LUHF conversation misclassified as a LUHF.

We also discussed some possible limitations of
the model and the dataset, connected to the annota-
tion schema. An automatic annotation, as it often
happens, results in noisy data. However, we do
believe that the proposed dataset is a promising
starting point, which can save resources and could
be further improved through manual annotations.

As highlighted by the qualitative analysis, it is
worth further investigating the results to understand
which elements play a role in the detection of a
LUHF. The implementation of explainability meth-
ods can be an important tool in this context (Lund-
berg and Lee, 2017). Given the transformer-based
architecture of our proposed model, current explain-
ability tools (Kokhlikyan et al., 2020; Attanasio
et al., 2022) can enrich our investigation of the role
of each attention head in the breakdown predic-
tion. For that, gradient-based methods can give an
overview of the importance of individual features
as well as of the interactions.
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A Hyperparameter Search

We report the hyperparameter space in Table 8. Ta-
ble 7 shows the optimal hyperparameters selected
after the grid search approach. We train the models
for 15 epochs and select the best result based on
the F1 score for the LUHF class on the validation
set.

B Computing Infrastructure

We ran the experiments on a machine equipped
with AMD® Ryzen 9 5900hx CPU, NVIDIA
GeForce RTX 3060 GPU with CUDA v11.4, Driver
Version 470.141.03 and 32GB RAM.
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Parameter Description Value

Embedded representations dimension l 400
Transformer Encoder embeddings dimension m 128
# layers of the Transformer Encoder t 3
# attention heads of the Transformer Encoder 16
Dropout ratio applied in the Transformer Encoder 0.01
Learning Rate 0.0001
Size of layers of decoding stage (256, 32)
Optimizer Adam
Number of epochs 15
BCE weight for not LUHFs 1.0
BCE weight for LUHFs 3.0

Table 7: Hyperparameters used for training the models.
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Parameter Description Value

Embedded representations dimension l [256, 400, 800]
Transformer Encoder embeddings dimension m [64, 128, 256]
# layers of the Transformer Encoder t [1, 3, 5]
# attention heads of the Transformer Encoder [4, 8, 16]
Dropout ratio applied in the Transformer Encoder [0.01, 0.1, 0.5]
Learning Rate [0.0001, 0.0005, 0.001]

Size of layers of decoding stage
[(256, 32), (256, 128, 32),
(256, 64), (256, 128, 64),

(256, 128, 64, 32)]
Optimizer Adam
Number of epochs 50
BCE weight for not LUHFs 1.0
BCE weight for LUHFs [1.0, 3.0, 5.0, 10.0]

Table 8: Hyperparameter space used for grid search.
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Abstract

With great success in single-turn question an-
swering (QA), conversational QA is currently
receiving considerable attention. Several stud-
ies have been conducted on this topic from
different perspectives. However, building a
real-world conversational system remains a
challenge. This study introduces our ongoing
project, which uses Korean QA data to de-
velop a dialogue system in the insurance do-
main. The goal is to construct a system that
provides informative responses to general in-
surance questions. We present the current re-
sults of single-turn QA. A unique aspect of
our approach is that we borrow the concepts
of intent detection and slot filling from task-
oriented dialogue systems. We present details
of the data construction process and the exper-
imental results on both learning tasks.

1 Introduction

Although there has been significant progress in
single-turn question answering (QA), it cannot
cover complex questions of realistic scenarios (Fu
et al., 2020). Recently, multi-turn (conversational)
QA has emerged as an alternative to address this
problem by clarifying the questions via conver-
sation (Qu et al., 2019a, 2020; Li et al., 2019;
Reddy et al., 2019). Conversational QA is a cat-
egory of dialogue systems which are divided into
task-oriented, chitchat, and QA systems (Deriu
et al., 2020; Zaib et al., 2021). However, QA is
not always distinct from the other two categories.

In this study, we are interested in building a dia-
logue system in a restricted domain, insurance. The
system aims to provide users with general descrip-
tions of cancer insurance. We assumed the task
is not pre-defined and should be specified from
the data. A significant difficulty is that complete
conversational data does not exist. Therefore, we
needed to find other types of source data similar to

∗Corresponding author: Young-Min Kim

the dialogues between users and experts on cancer
insurance. The first is Q&A data from a Korean
online QA service.

Although our goal is to construct a multi-turn
dialogue system, this study covers only the single-
turn QA corresponding to the target system’s front
part. The novelty of the present study is that we
designed the system considering the further exten-
sion to multi-turns. Therefore, unlike the existing
KB-based or neural QA systems, we borrow the
concept of intent detection and slot filling from
task-oriented dialogue systems (Gao et al., 2018).

The Transformer-based pre-trained models such
as Bidirectional Encoder Representations from
Transformers (BERT) achieved excellent perfor-
mance for NLP tasks. BERT is one of the pioneers
of the pre-trained language representation models
(Devlin et al., 2018). Since it was proposed in 2018,
a paradigm shift has taken place in the NLP domain.
Most NLP tasks now are based on pre-trained lan-
guage models. Meanwhile, there are also previous
studies using directly BERT embeddings directly
to express queries for conversational QA or FAQ
retrieval (Qu et al., 2019b; Mass et al., 2020; Qu
et al., 2020; Sakata et al., 2019). We use a Korean
version of Electra (Clark et al., 2020), a variant of
BERT, for intent detection and slot filling.

This study introduces intermediate results of our
ongoing project on dialogue system construction
in the insurance domain. We encountered many
challenging situations from the first stage, data col-
lection. We designed the system to be constructed
using single-turn QA data but to finally serve as
a multi-turn dialogue system. In the remainder of
this paper, we describe the process of constructing
training data for insurance QA in Section 2. Then
the methods used for intent detection, slot filling,
and the other approaches for the answer retrieval
are presented in Section 3. Section 4 presents the
experimental results for both learning tasks, includ-
ing a quantitative analysis of the answer retrieval
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result. Then we conclude with some future works
in Section 5.

2 Insurance Data for Question
Answering

2.1 Data Collection and Preprocessing
Consumer counseling data in the insurance domain
does not come to the public because of informa-
tion privacy. Therefore, we collected single-turn
Q&A data from an online QA service called Naver
Knowledge iN (KiN)1, which is part of the biggest
Korean web portal, Naver. Login portal users can
ask questions and the answerers voluntarily par-
ticipate in the service. There are various subject
sections in which tasks are allocated according to
their nature. We scraped the Q&A pairs answered
by 25 insurance experts in the insurance sector. The
number of scraped Q&A pairs is 12,734.

For a realistic system, we limited our target to
cancer insurance. We filtered out the pairs that did
not include “cancer” in the title. The remaining
data had three main issues for constructing a di-
alogue system. First, it is not conversational be-
cause Naver KiN consists of single-turn Q&A data
that are inappropriate for dialogue systems. Sec-
ond, both task-oriented and QA types of questions
were mixed. Although the questions sought rele-
vant information, some were relatively close to the
task completion, such as recommendations or buy-
ing. Third, the intents and slots were not explicit.
Though there are rough sub-categories of the ques-
tions, it is challenging to specify user intentions.
Moreover, the primary entity types were unclear
because the task was undefined. Considering all
these issues, we began by defining the user intents
and main tasks, unlike the general QA system. We
then defined the appropriate slots to complete the
task. This is also intended for further extension to
multiple turns.

2.2 Topic Modeling
The user intentions in our data are not explicit, un-
like typical task-oriented systems. Moreover, the
questions are usually not represented clearly be-
cause general users do not know the insurance ter-
minologies that precisely describe their situations.
We also found that some sentences were literal
questions, while the others provided information.

All of the above characteristics make defining in-
tents challenging. Topic modeling can be an appro-

1https://kin.naver.com/

priate solution to address this problem. It identifies
latent topics from a set of documents in an unsu-
pervised manner. We applied the following LDA
(Blei et al., 2003), on the question data to extract
common themes of user questions.

Several preprocessing such as stopwords elimi-
nation and noun extraction have been applied be-
fore training the model. The number of topics was
fixed to 30, considering perplexity, coherence, and
manual validation of topic model results. We re-
categorized the extracted topics as six different
upper topics: recommendation, specific cancers,
money-related, special contracts, particular insur-
ance companies, and insurance terminologies.

Then we manually classified each question into
one of the six topics. To facilitate the process, we
distributed keywords to each topic that represent
the topics well. The candidate keywords were high-
rank words of topic modeling results. A question
with several keywords of a particular topic can be
classified as the topic. Finally, we had the Q&A
pairs with the topic label. The pairs of two topics,
recommendation and particular insurance compa-
nies, were eliminated because the answers related
to these two topics can be too subjective. For con-
venience, we excluded samples with more than 200
syllables in the question. Finally, we ahd 2,295
Q&A pairs as source data.

2.3 User Intents and Main Task

The Q&A pairs with the topic label were the source
data for the system construction. We preprocessed
the questions to imitate multi-turn conversations. A
question was first separated into sentences, and we
supposed that each corresponded to an utterance.
Each sentence was a data instance in terms of intent
detection.

We manually annotated each sentence with a
user intent label considering the pre-annotated
topic. A user intent here means a detailed purpose
of the utterance. Therefore, it is different from the
higher-level user intention that can be interpreted
as a task. The finally defined intent types are listed
in Table 1. In addition to the 2,295 Q&A pairs, we
added manually generated 892 pairs to handle the
class imbalance and data insufficiency issues. As
an utterance can be a question or an information-
offering one, the intents were also classified into
two different categories: Request and Inform.

The high-level categories of Request intents may
be interpreted as tasks for the dialogue system. For

36



Table 1: Intent type definition

Intent type Definition Action Type Count

Personal information Provide personal information for consultation Inform 503
Subscription information Subscribed insurance policy Inform 480
Emphasis Emphasis user request Inform 147
Insurance options required Options added to insurance policies Inform 197
Cancer diagnosis details A history of cancer diagnosis Inform 149
Approximate premium or claim Premium or claim that cannot be categorized into the others Request 576
Claim availability Questions about claim availability Request 189
Claim process Queries the insurance claims payment process Request 63
Claim Questions about claim with a stated amount Request 75
Duplicate coverage Questions about duplicate coverage availability Request 85
Premium Questions about premium with a stated amount Request 67
Non-payment Payment of unpaid insurance premiums Request 41
Considerations Questions to consider when subscribing to insurance Request 80
Subscribe Insurance policy subscription request Request 288
Terminology Meaning Request explain on Terminology terms Request 95
Termination Request for termination of insurance Request 62
Greeting Greeting Greeting 94

example, Claim availability, Claim process, and
Claim can be classified into a high-level category,
Claim-related. Although the high-level category
does not correspond to a task to complete like task-
oriented systems; it can serve to reduce the scope of
the QA. In other words, we borrowed the concepts
of “task” and “slot” from task-oriented systems,
expecting they could contribute to the clarification
of user requirements.

2.4 Slots

The slots necessary for filling can be defined using
concrete examples. We assumed several hypotheti-
cal conversation scenarios because the source data
did not include conversational situations. Several
slots can be defined from these scenarios. More-
over, we examined the frequent nouns extracted
from the source data to determine whether they
could be used as slot values. Finally, we obtained
11 slots, as presented in Table 2.

2.5 KB for Answers

Once the system recognizes what the user asks, it
returns an appropriate answer. To this end, we con-
structed a KB as an FAQ, apart from the source
Q&A pairs. We preferred choosing an operator
from the KB over the source data because the real
solutions are diverse for the same questions. The
KB was constructed using FAQs provided by nine
insurance companies and included various tech-
niques, from common insurance sense to insurance
products. There were 817 FAQ pairs. We also con-
structed an insurance terminology dictionary using
term lists provided by four insurance companies.

3 Methods

3.1 Intent Detection and Slot Filling

We used a Korean ELECTRA version for intent
detection and slot filling. ELECTRA is an efficient
model which modified Masked LM in BERT to
achieve performance similar to BERT with a lower
computing power. Multilingual versions are also
available, but a language-specific model generally
outputs a better result.

Intent detection is interpreted as a classification
problem, and slot filling corresponds to a sequence
labeling task. The two models are trained sepa-
rately using the same pre-trained model learned
using Korean Wikipedia data. The selected pre-
trained model is KoElectra-base_v3 developed by
monologg2. The model has been fine-tuned for both
tasks.

3.2 Sentence BERT for FAQ mapping

Even if we finished the construction of the KB
and the training data, we had a critical issue with
building a dialogue system. We did not know which
questions in the source data were answerable by
the FAQ in KB. In other words, we needed the
mappings between the source and KB questions.
This process was for making a golden standard.
Therefore, manual mapping is ideal; however, it is
time-consuming.

Sentence-BERT(SBERT) can be an effective
labor-saving tool. SBERT is a derivative model
of BERT and is mainly used to calculate sentence
expressions (Reimers and Gurevych, 2019). It has

2https://github.com/monologg/KoELECTRA
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Table 2: Slot definition and the examples

Slot Definition Example Count

GENDER User’s gender 여성(woman) 127
INSURANT Family relation of the insurant 아버지(father) 189
COMPANY Insurance company name 삼성생명(Samsung Life Insurance) 117
PAYMENT Costs paid by users, including premium 보험료(premium) 773
CANCER_TYPE Cancer to be covered by insurance 위암(cancer of the stomach) 151
DISEASE_LOG User’s disease history 위암(cancer of the stomach) 679
JARGON Insurance-specific terms 고지의무(duty to notify) 907
PLAM_NAME Name of insurance policy 내인생플러스보험(My Life Plus Insurance) 51
BODY_PART Body parts subject to disease 갑상선(Thyroid) 157
OPERATION_LOG User’s surgical history 갑상선수술(thyroid surgery) 288
INSURANCE_TYPE Types of insurance 실손보험(indemnity insurance) 1,555

a pooling layer that is added to the existing BERT
and uses Siamese Network and Triplet Network
architectures. SBERT provides better sentence em-
beddings, especially when computing sentence sim-
ilarity. Therefore, we used a Korean version of
SBERT to map the source and KB questions.

The mapping process is as follows: 1) compute
the SBERT embeddings of the source and FAQ
questions, 2) for each source question, find the
three most similar FAQ questions using cosine sim-
ilarity, 3) manually map the source question and
a FAQ question if the questions are semantically
similar.

Two annotators carried out the mapping for
cross-validation. After the annotation, approxi-
mately half of the source questions were mapped
to the FAQ questions Q.

3.3 Symbol replacement in slot filling data
via dictionary mapping

Among the slots, PLAN_NAME is difficult to detect
because of its low occurrence and high diversity in
values. Moreover, the slot values usually consist of
multiple words and have descriptive phrases. These
characteristics make recognizing the slot challeng-
ing. Another problem is that the newly-coined plan
names continuously occur.

To enhance the detection performance of the slot,
we invented a simple but effective heuristic method.
The method uses a dictionary of insurance product
names. The dictionary was constructed using real
plan names scraped from insurance company web-
sites. In addition to the original training data for
slot filling, we added sentences with the masked
product names. The added sentences had product
names identified by dictionary mapping and prede-
fined special symbols replace the product names.

This method has three advantages. First, it is ef-
fective for the complex slot values, including words

from other slots. Many existing plan names include
the words signifying INSURANCE_TYPE or COM-
PANY. We could handle this issue by replacing the
plan names with symbols. Second, it can contribute
to solving the imbalanced dataset problem. This
method showed similar effects to synonym substitu-
tion, one of the text data augmentation methods. As
a result, the prediction performance was improved
by 3-5% compared to the previous one. Third, post-
processing was unnecessary, even though we use
a dictionary as important external information. We
got both the benefits of dictionary matching and
language model at a time. In this way, we could
enhance the recall value of PLAN_NAME. Figure 1
shows the sentence embedding architecture when
applying our approach.

3.4 Answer Retrieval

There are two types of QA: Knowledge-based QA
and IR-based QA (Jurafsky and Martin, 2009). The
former requires a well-structured KB, whereas the
latter the large quantities of texts. However, as our
case does not apply to either, we take another ap-
proach similar to the FAQ retrieval. Even though
the further goal of this study is a conversational di-
alogue system, we aim at a single-turn QA for now.
Therefore, we propose a transitionary retrieval ap-
proach to select the most similar FAQ given a user
question.

After manual FAQ mapping in Section 3.2, we
got a set of source questions mapped to the most
similar FAQs. Given a source question (utterance),
the mapped FAQ can be the correct response that
our QA system should return. We devised a simple
but effective method to retrieve the most similar
FAQ for a user utterance.

We used the detected slot values and the TF-IDF-
based keywords in the proposed method to retrieve
a proper FAQ. There were three different types of
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Figure 1: Sentence embeddings by symbol replacement via dictionary mapping

information to retrieve a good FAQ: 1) set A - the
slot values and keywords detected from the user
utterance; 2) set B - the slot values and keywords
existing in the question part of each FAQ; and 3)
set C - the slot values and keywords existing in the
source questions that were mapped to each FAQ.

The overlapping score between sets A and B was
computed for a given utterance and FAQ pair. A
similar score was also computed for A and C. The
weighted sum of these scores was the similarity
score of the utterance-FAQ pair. We selected the
FAQ that had the highest similarity score given an
utterance.

4 Experiments

First, we present the experimental results for intent
detection and slot filling. The former is a typical
classification problem, and the latter can be inter-
preted as a sequence labeling task, as introduced in
Section 3. KoElectra was for the training in both
tasks. Second, we described the performance of
answer retrieval from the FAQs. The weighted sum
of the three scores was the similarity score of the
utterance-FAQ pair: We selected the FAQ that had
the highest similarity score given an utterance.

4.1 Intent detection and slot filling
Table 3 presents the experimental results of intent
detection. The micro-averaged f1-score for 17 dif-
ferent intent types was 0.71. The result can be re-
garded as good given insufficient training data and
many classes.

We had unsatisfactory results in the Claim pro-
cess and Premium because some categories were
similar to them, such as Approximate premium or
claim and Claim availability. If the question was
precisely for the insurance premium amount, the

model classified the query into the class Premium.
If not, the result was usually the class Approximate
premium or claim. There are also a contextual sim-
ilarity between the classes Claim availability and
Claim process.

Table 3: Intent detection result

Intent type precision recall f1-score

Personal information 0.83 0.79 0.81
Subscription information 0.84 0.83 0.83
Emphasis 0.97 0.89 0.93
Insurance options required 0.51 0.56 0.54
Cancer diagnosis details 0.59 0.79 0.68
Approximate premium or claim 0.58 0.57 0.58
Claim availability 0.67 0.83 0.74
Claim process 0.17 0.08 0.11
Claim 0.55 0.79 0.65
Duplicate coverage 0.88 0.68 0.77
Premium 0.30 0.25 0.27
Non-payment 0.75 0.50 0.60
Considerations 0.78 0.44 0.56
Subscribe 0.64 0.69 0.67
Terminology meaning 0.64 0.64 0.64
Termination 0.86 0.92 0.89
Greeting 1.00 0.92 0.96
macro average 0.68 0.66 0.66
micro average 0.71 0.71 0.71

For further verification, we show T-SNE visual-
ization of 12th layer of the trained KoELECTRA
in Figure 2. In the area marked with “1”, there is a
mix of the instances from two different classes, Pre-
mium (light green) and Approximate premium or
claim (yellow). There is also another area, marked
with “2”, where the instances from Claim availabil-
ity (dark green) Claim process (cyan). This result
signifies that we further need to modify the cate-
gory definition to separate well these confusable
ones.

Table 4 lists the slot filling results. The micro-
averaged f1-score is 0.95, which is a high value
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Figure 2: The T-SNE visualization of 12th layer of the
trained KoELECTRA.

considering the number of slots. The worst f1-score,
0.58, is observed in the class PLAN_NAME, as we
can easily guess from the discussion in Section 3.3.
However, the result is enhanced compared to the
other models trained without dictionary mapping,
introduced in Section 3.3. Considering the class
imbalance and insufficient training data, we found
that the result was satisfactory.

Table 4: Slot filling result

Entity type precision recall f1-score

GENDER 1.00 0.96 0.98
INSURANT 0.97 0.97 0.97
COMPANY 0.81 0.80 0.81
PAYMENT 0.93 0.99 0.96
CANCER_TYPE 0.93 0.83 0.88
DISEASE_LOG 0.89 0.93 0.91
JARGON 0.90 0.93 0.91
PLAN_NAME 0.46 0.76 0.58
BODY_PART 0.84 0.89 0.86
OPERATION_LOG 0.95 1.00 0.97
INSURANCE_TYPE 0.97 0.96 0.97
macro average 0.88 0.91 0.89
micro average 0.95 0.95 0.95

4.2 Answer Retrieval
We evaluated the FAQ retrieval results using the
gold standard described in section 3.2. The accu-
racy was 70% on the test data. We also obtained
acceptable results when generating random ques-
tions.

Table 5 presents two examples of the FAQ re-
trieval. Patterns exist in the mappings between the
query and the FAQ. The two questions in the table
show the representative ways. For the first query,

the word “다시” (again) is the primary keyword
enabling the mapping, which came from the set A
introduced in Section 3.4. The second FAQ corre-
sponds to a vast range of queries. Therefore, the
FAQ is mapped to the appropriate queries espe-
cially conditioned on the slots and keywords of
mapped source questions in the training data (set C
in Section 3.4). Thus, the reason for mapping varies
such that our strategy using the weighted sum score
is proven effective for the answer retrieval.

Table 5: FAQ retrieval examples

example

Query 이전에 위암으로 보장을 받았는데, 다
시암에걸리면보장받을수있나요?
(I had previously guaranteed stomach
cancer. Can I get it if it recurs?)

1. Retrieved FAQ 보험금은한번만보장되나요?
(Is this insurance guaranteed only once?)

2. Retrieved FAQ 암진단확정시보험금청구서류및절
차가어떻게되는지궁금합니다.
(What are the procedures and documents
required to claim insurance when diag-
nosed with cancer?)

3. Retrieved FAQ 지급기준이어떻게되나요?
(What are the claim requirements for
customer insurance?)

Query 오늘 보험에 가입했는데 언제부터 보
장을받을수있나요?
(I bought insurance today, when I could
get a guarantee?)

1. Retrieved FAQ 지급기준이어떻게되나요?
(What are the claim requirements for
customer insurance?)

2. Retrieved FAQ 가입하면바로보장을받을수있나요?
(Can I get a guarantee right away if I
subscribe?)

3. Retrieved FAQ 보험금 청구를 하면 언제쯤 보험금이
지급되나요?
(How long does it take to claim insur-
ance?)

5 Conclusions

In this study, we built a single-turn dialogue sys-
tem corresponding to the front part of our target
system for the insurance domain. Our final goal is
to construct a multi-turn dialogue system that can
return informative counselors about insurance. For
future scalability, the concept of intention detec-
tion and slot filling was borrowed, therefore, for
this purpose, training data and KB was constructed
on their own. We obtained an encouraging result
for both tasks despite the limited quantity of the
source. To enhance the performance of the slots
with low occurrence and high-value diversity, we
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proposed a slot replacement method through dic-
tionary mapping. The method also provided a good
result. Future work first includes modifying cat-
egory definitions and improving answer retrieval
performance. Furthermore, we will re-design the
system for the multi-turn dialogues. We expect the
extracted intents and slot values to be effectively
used for the multi-turn system.

Acknowledgement

This work was supported by two projects, AI-based
ScienceOn User Behavior Prediction Technology,
funded by KISTI (202200000001712) and Devel-
opment of Next Generation Artificial Intelligence
Assistant System Technology, funded by AIITONE
(202200000000124).

References
David M. Blei, Andrew Y. Ng, Michael I. Jordan, and

John Lafferty. 2003. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:2003.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. CoRR, abs/2003.10555.

Jan Deriu, Alvaro Rodrigo, Arantxa Otegi, Guillermo
Echegoyen, Sophie Rosset, Eneko Agirre, and Mark
Cieliebak. 2020. Survey on evaluation methods for
dialogue systems. Artificial Intelligence Review.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bin Fu, Yunqi Qiu, Chengguang Tang, Yang Li,
Haiyang Yu, and Jian Sun. 2020. A survey
on complex question answering over knowledge
base: Recent advances and challenges. CoRR,
abs/2007.13069.

Jianfeng Gao, Michel Galley, and Lihong Li. 2018.
Neural approaches to conversational AI. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics: Tutorial Abstracts,
pages 2–7.

Dan Jurafsky and James H. Martin. 2009. Speech
and language processing: an introduction to natural
language processing, computational linguistics, and
speech recognition, 2nd Edition. Prentice Hall se-
ries in artificial intelligence. Prentice Hall, Pearson
Education International.

Xiaoya Li, Fan Yin, Zijun Sun, Xiayu Li, Arianna
Yuan, Duo Chai, Mingxin Zhou, and Jiwei Li. 2019.
Entity-relation extraction as multi-turn question an-
swering. CoRR, abs/1905.05529.

Yosi Mass, Boaz Carmeli, Haggai Roitman, and David
Konopnicki. 2020. Unsupervised FAQ retrieval with
question generation and BERT. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 807–812, Online. As-
sociation for Computational Linguistics.

Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W. Bruce
Croft, and Mohit Iyyer. 2020. Open-retrieval con-
versational question answering. In Proceedings of
the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR ’20, page 539–548, New York, NY, USA. As-
sociation for Computing Machinery.

Chen Qu, Liu Yang, W. Bruce Croft, Yongfeng Zhang,
Johanne R. Trippas, and Minghui Qiu. 2019a. User
intent prediction in information-seeking conversa-
tions. In Proceedings of the 2019 Conference on Hu-
man Information Interaction and Retrieval, CHIIR
’19, page 25–33, New York, NY, USA. Association
for Computing Machinery.

Chen Qu, Liu Yang, Minghui Qiu, W. Bruce Croft,
Yongfeng Zhang, and Mohit Iyyer. 2019b. Bert with
history answer embedding for conversational ques-
tion answering. In Proceedings of the 42nd Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR’19, page
1133–1136, New York, NY, USA. Association for
Computing Machinery.

Siva Reddy, Danqi Chen, and Christopher D. Manning.
2019. CoQA: A Conversational Question Answer-
ing Challenge. Transactions of the Association for
Computational Linguistics, 7:249–266.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3982–3992, Hong Kong, China. Association
for Computational Linguistics.

Wataru Sakata, Tomohide Shibata, Ribeka Tanaka, and
Sadao Kurohashi. 2019. Faq retrieval using query-
question similarity and bert-based query-answer rel-
evance. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR’19, page
1113–1116, New York, NY, USA. Association for
Computing Machinery.

Munazza Zaib, Wei Emma Zhang, Quan Z. Sheng,
Adnan Mahmood, and Yang Zhang. 2021. Con-
versational question answering: A survey. CoRR,
abs/2106.00874.

41



Proceedings of the 2nd Workshop on When Creative AI Meets Conversational AI (CAI2), COLING 2022, pages 42–47
October 12–17, 2022.

Can We Train a Language Model Inside an End-to-End ASR Model? -
Investigating Effective Implicit Language Modeling

Zhuo Gong1, Daisuke Saito1, Sheng Li2, Hisashi Kawai2, and Minematsu Nobuaki1
1The University of Tokyo, Tokyo, Japan

2National Institute of Information and Communications Technology, Kyoto, Japan
gongzhuo@gavo.t.u-tokyo.ac.jp

Abstract

Language models (LM) have played crucial
roles in automatic speech recognition (ASR)
to enhance end-to-end (E2E) ASR systems’
performance. There are two categories of ap-
proaches: finding better ways to integrate LMs
into ASR systems and adapting on LMs to
the task domain. This article will start with
a reflection of interpolationbased integration
methods of E2E ASR’s scores and LM’s scores.
Then we will focus on LM augmentation ap-
proaches based on the noisy channel model,
which is intrigued by insights obtained from the
above reflection. The experiments show that
we can enhance an ASR E2E model based on
encoder-decoder architecture by pre-training
the decoder with text data. This implies the
decoder of an E2E model can be treated as an
LM and reveals the possibility of enhancing the
E2E model without an external LM. Based on
those ideas, we proposed the implicit language
model canceling method and then did more
discussion about the decoder part of an E2E
ASR model. The experimental results on the
TED-LIUM2 dataset show that our approach
achieves a 3.4% relative WER reduction com-
pared with the baseline system, and more ana-
lytic experiments provide concrete experimen-
tal supports for our assumption.

1 Introduction

In the 1980s, a significant step was achieved by
introducing the acoustic model (AM) and language
model (LM) into ASR framework. From that time,
the methodology of ASR shifted from the more in-
tuitive template-based approach (a straightforward
pattern recognition paradigm) towards a more rig-
orous statistical modeling framework (Juang and
Rabiner, 2005). Moreover, those two concepts of
AM and LM became the foundation of ASR that
we are familiar with nowadays. Relying solely on
acoustic observations proved to be insufficient to
achieve human-like performance.

With the rapid development of deep learning
techniques, many powerful neural network-based
systems were invented in the new century. Among
them, various end-to-end (E2E) systems become
prevail (Battenberg et al., 2017; Chan et al., 2016;
Kim et al., 2017; Watanabe et al., 2018; Vaswani
et al., 2017), which are benefited from sufficient
computing power and data sets. From this stage,
E2E ASR becomes the mainstream of modern ASR
techniques. We have emphasized the importance
of LMs in ASR, but how an independent LM can
be utilized in an E2E system? The answers are LM
integration, and LM adaptation (Zhao et al., 2019;
Shan et al., 2019; Sriram et al., 2018). LM integra-
tion increases accuracies of E2E ASR systems in
practical indeed. However, intuitively, if an E2E
ASR model is powerful enough, there is no need
for an extra LM. So, the question becomes how an
LM can benefit an E2E ASR system. To be more
specific, we need to figure out what happens when
we try to integrate the E2E ASR model with an LM
and how to adapt an LM to an ASR domain. Fur-
thermore, can we reveal the capability of language
modeling in an E2E ASR model?

In this paper, we try to answer those questions
theoretically and experimentally. Firstly, we an-
alyzed shallow fusion of LM integration mathe-
matically using LM adaptation framework (McDer-
mott et al., 2019). Then, we proposed an implicit
LM canceling method to fully control the language
modeling functionality of an E2E ASR system. Fi-
nally, we discussed the feasibility that a decoder
of an E2E ASR model could be treated as an LM
by experiments. To the best of our knowledge,
we are the first to analyze the language modeling
functionality of the decoder part in an E2E ASR
model.

The rest of this paper is structured as follows.
Section 2 discusses the most common LM inte-
gration approach (shallow fusion) to explore its
essence from the perspective of probability models.
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Then we try to figure out a way to compose LM
integration and LM adaptation tasks into a single
method in Section 3 and 4. In Section 5, we ana-
lyze the result and reveal crucial insights about a
decoder’s characteristics in an E2E ASR system
from several experiments. We conclude the paper
in Section 6.

2 Related Work

2.1 LM Integration
In conventional ASR systems, whether or not based
on deep learning, an LM is an essential part of the
whole system. While in E2E models, an LM is
not necessary since they can decode the interme-
diate representations of input features into a word
sequence independently. For an E2E model, it is
still beneficial to introduce an LM into the model.
an LM is helpful for introducing extra corpora in-
formation. The main LM integration approaches in
the previous work (Zhao et al., 2019; Shan et al.,
2019; Sriram et al., 2018) are referred to as shallow,
deep, and cold fusions. In the following section, we
focus on investigating the details of shallow fusion.

In Eq. 1 of shallow fusion, s(y|x) is the final
score of output tokens based on input features x.
The βPenalty(|y|) is a penalty item, and it is a
function of the output sequence length |y| aiming
at suppressing longer candidates. Since a longer
sequence tend to produce more meaningless words,
such as ah, em, its length should be suppressed.
Moreover, α, β are hyper-parameters weighted to
determine each item’s importance in this equation.

s(y|x) = log(PE2E(y|x))
+ α log(PLM (y)) + βPenalty(|y|) (1)

where PE2E(y|x) and PLM (y) represent the con-
ditional probabilities of a specific output sequence
given input features to an E2E ASR model and an
LM.

2.2 LM Adaptation
LM integration is just the first step to introduce
LMs into ASR framework. To make an LM fit
into a speech domain, we need to introduce LM
adaptation. Then, we show how this method can
be applied to LM integration analysis.

In previous work (McDermott et al., 2019), the
density ratio approach is proposed as a transfer
learning method based on Bayes’ rule. This pre-
vious work studied LM representations in an E2E

model. Moreover, this approach makes the follow-
ing assumptions:

Table 1: List of key variables and their descriptions.

Variable Description

Pϕ(W,X)

The source domain ϕ has
some true joint distribution
Pϕ(W,X) over text (W) and

audio (X)

Pτ (W,X)
The target domain τ has

another true joint distribution
Pτ (W,X)

Pϕ(W |X)

A source domain E2E model
(e.g., RNN-T (Battenberg

et al., 2017)) captures
Pϕ(W |X) reasonably well

Pϕ(W ) and
Pτ (W )

Separately trained LMs (e.g.,
RNN-LMs) capture Pϕ(W )
and Pτ (W ) reasonably well

pϕ(X|W )
and

pτ (X|W )

pϕ(X|W ) as an acoustic
model is roughly equal to
pτ (X|W ), i.e. the two

domains are acoustically
consistent

According to Bayes’s rule, we have:

pϕ(X|W ) = pϕ(X)Pϕ(W |X)/Pϕ(W ) (2)

Similarly, for the target domain:

pτ (X|W ) = pτ (X)Pτ (W |X)/Pτ (W ) (3)

Since these two acoustic models roughly are the
same:

P̂τ (W |X) = k(X)
Pτ (W )

Pϕ(W )
Pϕ(W |X) (4)

With k(X) = pϕ(X)/pτ (X) shared by all hy-
potheses W , and density ratio method is named
after the ratio Pτ (W )/Pϕ(W ). Based on Eq. 4 we
can give the score function of decoding process:

Score(W |X) = logPϕ(W |X) + λτ logPτ (W )

−λϕ logPϕ(W ) + β

(5)

where Score(W |X) is our decoding logits score
during beam search.
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3 Implicit LM Canceling Method

Inspired by the density ratio approach, we propose
to restructure the shallow fusion of Eq.1 in a more
general way:

Prescoring(W |X) = βPE2E(W |X)1−λPLM (W )λ

= β

(
PE2E(X|W )PE2E(W )

PE2E(X)

)1−λ

PLM (W )λ

= β

(
PE2E(X|W )PE2E(W )PLM (W )λ/1−λ

PE2E(X)

)1−λ

where Prescoring(W |X) is the score for a word se-
quence W given an observation X . PE2E(W |X)
stands for our E2E model which gives the proba-
bility score of a word sequence given an observa-
tion X , and PLM (W ) stands for an independent
LM. PE2E(X|W ) stands for an implicit pronuncia-
tion model inside the E2E model, while PE2E(W )
represents the implicit LM inside the E2E model
which we focus on. Since PE2E(X) is same for
different word sequence candidate, this term should
be omitted during scoring.

Then we have a probability score,

exp(score(W |X)) = (6)

PE2E(X|W )PE2E(W )PLM (W )λ̂,

where λ̂ = λ/1− λ

As we can see from Eq.6, the LM of an ASR
system including an E2E model and an actual LM
is PE2E(W )PLM (W )λ̂. That means by shallow
fusion we can modify the final LM during rescor-
ing. Moreover, it gives us the ability to change the
implicit LM in an E2E model.

P (W |X) = PE2E(W |X)PLM (W )/PE2E(W )

=

(
PE2E(X|W )PE2E(W )

PE2E(X)

)
PLM (W )

PE2E(W )

=
PE2E(X|W )PLM (W )

PE2E(X)

(7)

where P (W |X) is the probability model of the
whole E2E ASR system which includes an E2E
ASR model and an LM.

It should be noticed that we have no direct con-
trol (modify this model) over this implicit LM (as
the probability density function PE2E(W )) during
decoding. One way to take control of the final LM

is to cancel the E2E model’s implicit LM and re-
place it with our external LM. This can be achieved
by Eq.7. Just like what has been done in the density
ratio approach, we train an E2E ASR model and a
LM on audio and transcripts of the source domain
speech corpus, and then another LM is pre-trained
on extra gigantic corpora and fine-tuned on source
domain text to approximate the true distribution of
source domain. During decoding, the score func-
tion is Eq.8.

score(W |X) = logPE2E(W |X)

+ logPLM (W )− logPE2E(W )
(8)

where score(W |X) is the score for beam searching
We propose it as implicit LM canceling method.

This kind of approach has no requirements for the
E2E model (e.g., RNN-T in density ratio approach)
and does not require hyper-parameters to tune the
importance of two LMs. Thus, we can build an
experimental ASR system based on the state-of-
the-art transformer-encoder decoder model plus
CTC loss (Kim et al., 2017) function in Fig. 1. The
detailed settings can be found in Section 5.2.

Figure 1: Transformer-based E2E ASR model jointly
trained with CTC loss.
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4 The Implicit LM of An E2E ASR
System

We can check the assumption that the decoder of
an E2E model can be treated as an LM from two
aspects:

1. Is there a structure supporting the function of
an LM in the E2E model?

2. Does it behave like an LM?

The decoder of this E2E model should poten-
tially be an LM because it is an auto-regression
model, just like a normal language model, which
receives a token sequence and outputs the next to-
ken. It has transformer layers for memorizing infor-
mation from the training set. And from Fig. 1 the
multi-head attention layers which receive a word
sequence and hidden states from the encoder are
built relatively independent. So, we can assume the
layers which did not receive hidden states directly
from the encoder would be dominated by outputs
(subword). Those characteristics above fulfill the
first aspect. We can check the second statement
by sampling token sequences in an auto-regression
manner or calculate its perplexity about an LM’s
behaviors. Moreover, the above clarification leads
to our new proposal: the decoder of an E2E model
can be treated as an LM and be pre-trained on text
data before E2E training to improve the E2E model.
We will validate this in the following experiments.

5 Experiments

5.1 Task Descriptions

The experiments contain two parts: to validate our
LM canceling method’s performance and test a de-
coder’s potential as an LM with more experiments.

Figure 2: The Workflow of training implicit language
model for E2E ASR model.

1. The first part is the same as a standard shallow
fusion method. We calculate output logits
of three models and apply Eq.7 during beam
searching in the testing stage.

2. The second part in Fig. 2 is to train a decoder
in an E2E ASR model as an LM. We imple-
ment this idea in a straightforward way. We
set the intermediate vectors from the encoder
to zeros and feed the decoder text corpus to
output embedding in Fig. 1 just as if we are
training a norm LM while completely omit
the encoder. And then, several different ex-
periments are conducted based on a decoder
we trained in this manner. The decoders’ per-
plexities and word error rate (WER) of the
E2E ASR model with a different decoder are
calculated as results.

5.2 Experimental Settings

We adopt a Transformer-based ASR system com-
prised of 6 encoder blocks and 6 decoder blocks
with the feed-forward inner dimension of 2048,
the model dimension of 256, and the attention
head number 4, which are unchanged in all exper-
iments. The input features were 240-dimensional
log Mel-filterbank energy features (80-dim static,
+∆, and +∆∆). The feature is extracted with a
10-ms frameshift of a 25-ms window. Each feature
was mean- and variance-normalized per speaker,
and every four frames were spliced (three left, one
current, and zero right). The low and high cutoff
frequencies were set to 20 Hz and 8,000 Hz, re-
spectively. Speed perturbation was not used in the
fine-tuning stage. We then subsampled the input
features every three frames. The model was jointly
trained with CTC (weight α = 0.2). The “noam"
optimizer was used with 25,000 warmup steps and
an initial learning rate of 5. The model was trained
with ESPnet toolkit (Watanabe et al., 2018) using
batch-size 32 for 30 epochs on an 11-GB GTX1080
TI GPU.

The experiment is conducted on TED-LIUM2
(Rousseau et al., 2012), and the LMs are trained
on text data offered by this corpus. Moreover, the
LMs are four-layer transformer models.

5.3 Results and Discussions

The performances of the proposed LM canceling
method are shown in Table 2 ( +Transcripts LM
means shallow fusion of the baseline model and
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Table 2: Word Error Rate (WER) Results of E2E ASR with different LM settings

E2E baseline +Transcripts LM (A) +Text LM (B) -A+B
11.7 11.6 10.5 11.3

Figure 3: WER of decoder pretrained E2E model and
E2E model trained from scratch.

Figure 4: Perplexity of the decoder trained on tran-
scripts, the E2E baseline model trained on paired audio
and transcripts and an independent LM trained on tran-
scripts.

an LM trained on transcripts from the baseline cor-
pus; +Text LM means shallow fusion of baseline
model and an LM trained on extra text corpus; -
A+B means applying the method in Eq.8). We
have to admit that results are not good as expected.
One main reason is that we have made a strong
assumption that the implicit LM PE2E(W ) of an
E2E model can be represented by an independent
explicit LM. In the following section, we investi-
gate why this assumption works not well.

To check the potential that a decoder can be
treated as an LM further, we did more analytic
experiments. We pre-trained the decoder (C) by
feeding it transcripts from the source domain and
set the hidden states to be zero vectors. Those
hidden states are supposed to be passed from the

Figure 5: Perplexity of pre-trained E2E model during
E2E training.

encoder to the decoder of the same E2E model.
This method can ensure that no acoustic related
weights will change during training of the decoder.
After this decoder pre-training process, the E2E
model (D) with the pre-trained decoder will be
trained in the speech corpus. A baseline model (E)
of the same structure as the previous one will be
trained from scratch.

Several experiments are also conducted on the
corpus TED-LIUM2, and all the LM training (in-
cluding an independent LM (F) and the decoder
(D)) are done on transcripts data of the speech cor-
pus. All the E2E models are built on the same struc-
ture of transformer-based sequence-to-sequence
model.

The results in Fig. 3 show that pre-training the
decoder (C) as a language model does improve the
performance of this E2E model (D). Fig. 4 shows
the perplexity results for the decoder (C) and the
LM (F) trained on transcripts and the E2E model
(E) trained on the same transcripts with paired au-
dio data.

As we can see in Fig. 4, the decoder’s (C) per-
plexity effectively decreased during training and
even decreased more rapidly than the LM (F),
which may be related to more layers in the decoder.
This can prove that the decoder (C) can be trained
like an LM effectively. Moreover, the perplexity of
the E2E model (E) trained from scratch decreased
slowly. This phenomenon can explain why the im-
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plicit LM in the E2E model (in Table 2) should not
be canceled by an external LM (A) trained even
on the same transcripts. Because the LM perfor-
mances of them are not even close. Fig. 5 gives
the perplexity tendency of the decoder (C) in E2E
training shown in Fig. 3.

The most interesting observation from it is that
even the whole E2E model (D) becomes more ac-
curate during training, but the decoder (C) part of
it becomes worse as an LM, which implies the E2E
training may harm the implicitly language model-
ing in the decoder (C). This phenomenon alerts all
of the developers working on E2E models, and we
will make an in-depth investigation to cope with it.

6 Conclusions

This article reflected why we introduced LMs into
E2E ASR systems and discussed how LM integra-
tion benefits an E2E ASR system by generalizing
shallow fusion by probability density function in-
spired by LM adaptation in ASR. In the general
version of shallow fusion, insights about whether
there is an implicit LM and how to modify it are
obtained. This work reveals the decoder’s potential
to be trained and improve E2E models by training
the decoder independently without external LMs.
Moreover, we proposed the implicit LM canceling
method. In the ordinary design of this transformer-
based system, the decoder needs hidden states from
an encoder, but we set these hidden states to zeros
vectors to avoid acoustic feature-related weights
changing in the decoder during pre-training. In the
future, we will find a more sophisticated way to
pre-train the decoder, alter the structure, modify
the loss function, or change the training sched-
ule. Moreover, we will try to figure out a way
to suppress the degeneration phenomenon of the
decoder’s LM function (C) during E2E training.

In the next step, we plan to find a more sophisti-
cated way to pre-train the decoder, alter the struc-
ture, modify the loss function, as well as change
the training schedule. Moreover, we will try to
figure out a way to suppress the degeneration phe-
nomenon of the decoder’s LM function (C) during
E2E training.
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Abstract

Dialogue systems that aim to acquire user mod-
els through interactions with users need to have
interviewing functionality. In this study, we
propose a method to generate interview dia-
logues to build a dialogue system that acquires
user preferences for food. First, we collected
118 text-based dialogues between the inter-
viewer and customer and annotated the commu-
nicative function and semantic content of the
utterances. Next, using the corpus as training
data, we created a classification model for the
communicative function of the interviewer’s
next utterance and a generative model that
predicts the semantic content of the utterance
based on the dialogue history. By represent-
ing semantic content as a sequence of tokens,
we evaluated the semantic content prediction
model using BLEU. The results demonstrated
that the semantic content produced by the pro-
posed method was closer to the ground truth
than the semantic content transformed from the
output text generated by the retrieval model and
GPT-2. Further, we present some examples of
dialogue generation by applying model outputs
to template-based sentence generation.

1 Introduction

Traditionally, dialogue systems have been char-
acterized in terms of whether they are task- or
non-task-oriented. In task-oriented dialogue sys-
tems, such as an airline ticket reservation system
(Hemphill et al., 1990), eliciting specific informa-
tion from the user, such as the date, time, and desti-
nation of the flight, is an important functionality for
completing the task. However, in non-task-oriented
dialogue systems, the system does not have a clear
goal of eliciting information from the user, and the
content of the dialogue is free.

In this study, as another type of dialogue sys-
tem, we focus on interviewing systems, in which
the goal is to acquire a user model through a flex-
ible flow of dialogue. Specifically, we propose

Figure 1: Overview of the proposed method: taking dia-
logue history as input, a model predicts the interviewer’s
intent (communicative function), another model decides
the content of the utterance (semantic content), and the
outputs of these models are combined to generate a re-
sponse. (For details, refer to Section 4)

a method for interviewing a user’s preference for
food. To generate such dialogues, the system must
be able to generate appropriate questions to elicit
the user’s preferences for food while touching on
various topics in the food domain, such as how to
eat, how to cook, etc., without limiting the content
of the dialogue as a task-oriented dialogue does.

One possible approach for achieving the require-
ments discussed above is end-to-end neural net-
work, where dialogue generation is the task of
predicting the next utterance using dialogue his-
tory as input (Vinyals and Le, 2015; Serban et al.,
2016). This method is widely used to generate
open-domain dialogues, such as chitchats. How-
ever, it requires a large amount of dialogue data
to learn the model. Otherwise, less informative
and contextually inappropriate utterances are fre-
quently generated. To overcome this drawback, we
propose a method that first determines the intention
and semantic content of the interviewer’s next utter-
ance and then combines these to generate questions
from the interviewer.

Figure 1 shows the proposed approach. First,
we trained two models. The first is a classification
model that takes the dialogue history as input and
determines the interviewer’s intention for the next
utterance. The second is a generator model, which
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also takes the dialogue history as input and outputs
the semantic content of the utterance, including the
target (e.g., dish or ingredient) mentioned in the
utterance and its related information (e.g., taste or
how to eat). Next, a template for sentence gener-
ation is selected based on these two outputs, and
they are applied to the selected template to gener-
ate sentences. Compared to learning a model that
directly generates a surface expression, the models
for predicting the intent and semantic content of an
utterance can be learned using a smaller amount of
data. Additionally, because the content of an utter-
ance is determined based on the context obtained
from the dialogue history, appropriate utterances
that are related to the preceding utterances can be
generated.

The contributions of this study are as follows:

• Collection of 118 text-based dialogues for in-
terviewing food preferences.

• Proposal of an annotation schema for utter-
ance intention and semantic content of utter-
ances, and creation of a dataset with these
annotations.

• Creation of a classification model for utter-
ance intention and a generative model of se-
mantic content of utterances.

• Demonstration of the effectiveness of the pro-
posed method using an automated evaluation
method.

• Presentation of examples of dialogues gener-
ated by the proposed method, and discussion
of the quality of the dialogues.

2 Related Work

Task-oriented dialog systems are typically designed
to collect information from users. For example,
previous studies have proposed an airline ticket
reservation system (TIS) (Hemphill et al., 1990),
a restaurant reservation system (Henderson et al.,
2014), and interview systems to collect informa-
tion, such as public opinion polls and class evalua-
tion interview systems (Johnston et al., 2013; Stent
et al., 2006). In these systems, the purpose of the
dialogue is to obtain information to accomplish a
predefined task.

Meanwhile, chitchat does not have a clear goal
as a task-oriented dialogue does, but this type of
dialogue has the potential to elicit a variety of in-
formation from the user. For example, the system
asks follow-up questions such as "Please tell me
more about the keyword" by using a keyword from

the user’s preceding utterance. To improve such
interviewing functionality, relevant topics and ques-
tions should be selected and the dialogue strategies
should be modified. To address these issues, we
propose a method to determine the target object
and semantic content of the system response based
on the dialogue context.

Previous studies on dialogue generation have
proposed different techniques to generate task- and
non-task-oriented dialogue. Early studies on gener-
ating open-domain chitchat proposed DNN-based
techniques to generate system responses by exploit-
ing the data-driven approach (Sordoni et al., 2015a;
Vinyals and Le, 2015; Serban et al., 2016). Re-
cent studies have proposed incorporating useful
information (that is relevant to the domain) and re-
sponses into the model, thus improving the quality
of generated responses (Li et al., 2018). Some stud-
ies have exploited word-based information, such
as nouns extracted from the user’s preceding ut-
terances and a set of keywords predicted to be
used in the response (Serban et al., 2017; Xu et al.,
2021). Other studies have used knowledge ontolo-
gies, including commonsense (Wu et al., 2020;
Zhang et al., 2020; Moon et al., 2019; Galetzka
et al., 2021). However, these end-to-end methods,
in which training models directly generate system
responses, require a large amount of training data,
and our corpus was not sufficiently large for this
approach.

In traditional task-oriented dialogue systems, the
information required to achieve the dialogue goals
is limited to the task domain. Therefore, the inter-
nal state of the system is defined as a slot–value
pair, and the system generates responses through
the following modules: a) understanding the user’s
utterance, b) determining the system action (e.g.,
the intention and the slot–value as the utterance con-
tent) based on the internal state, and c) generating
a response sentence from the system action. The
action of the system is determined by rule-based,
statistical-based (Young et al., 2010), deep learn-
ing (Chen et al., 2019) and reinforcement learning
approaches (Sankar and Ravi, 2019).

In this study, we exploited the approach de-
scribed above, which represents the interviewer’s
utterance as structured semantic content composed
of the intent of the utterance, the objects mentioned
in the utterance, and their attributes and values. We
created a machine learning model to predict these
types of information and generate responses based
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on the determined actions.

3 Data Collection and Dataset Making

This study aims to generate interview dialogues
that elicit information about users’ food prefer-
ences. For this purpose, we collected role-play
conversations between an interviewer and a cus-
tomer and constructed a corpus from the collected
conversations.

3.1 Interview Dialogue Collection

Subject pairs were created with participants re-
cruited by crowdsourcing. One subject was as-
signed the role of an interviewer and the other, the
role of a customer. They conducted a text-based
chat session in Japanese on the web. After typing
an utterance and pressing the send button, the mes-
sage was added to the chat screen. They were also
instructed to take turns sending the messages.

The participants playing as interviewers were
requested to engage in conversations to elicit food
preferences from customers. The participants play-
ing as customers were asked to indicate their food
preferences. We allowed the customers to respond
to their real preferences or to pretend to be someone
else.

After the dialogue, each participant answered a
questionnaire. The interviewers were asked to de-
scribe the client’s food preferences obtained from
the conversation, and the dishes they would like
to recommend to the customer. The customers
were asked to describe the food preferences they
expressed in the dialogue. They were also asked to
describe the dishes they would like the interviewer
to recommend to them.

To create a dialogue model capable of generat-
ing responses that considered the interviewer’s dia-
logue strategy and dialogue history, we requested
the participants to input at least 20 turns from each
party and 40 turns in total. This was a task comple-
tion requirement.

3.2 Annotation

Structured semantic labels were assigned to clas-
sify the interviewees’ utterances and understand
their semantic content. Following the idea of struc-
tured semantic labels discussed in the Dialogue
Act annotation (Bunt et al., 2012), we represented
each utterance as a combination of communicative
function and semantic content.

More specifically, a dialog consists of messages
sent by the user in the chat, and one message may
include multiple sentences. We annotated each
sentence in interviewer’s message. To annotate sen-
tences in the interviewer’s message in our corpus
collected in Section 3.1, we first defined labels for
communicative function and semantic content.
Communicative Function:　

We defined 32 labels for the communicative
functions based on those for SWBD-DAMSL (Ju-
rafsky, 1997) and Meguro et al. (2014). We used
SWBD-DAMSL to label backward utterances, in-
cluding understanding, answer, and agreement (Ap-
pendix A). For self-disclosure (SD) and questions
(Q), we used labels defined in the Meguro et al.
(2014) as references and added new labels such
as preferences, experiences, and habits. For the
preference labels, we added the polarity: positive,
negative, and neutral.
Semantic Content:

The semantic content expresses the meaning of
a sentence, whereas the communicative function
specifies the intention of a sentence, as discussed
above. In our corpus, many of the interviewer’s
questions referred to the name of the dish and its
ingredients, tastes, recipes, and how to eat. Based
on this observation, we defined semantic content
as a combination of utterance objects (e.g., dishes
and ingredients) and their attributes (e.g., tastes and
cooking methods).

Figure 2 shows the structure of the semantic con-
tent and list of values for <verb>, <ObjectType>,
and <ObjectAttribute>. Two examples of semantic
content were assigned to an interviewer sentence.

In Example A “I ate hot curry”　in Figure 2,
the verb is "eat" and its object is "hot curry". The
object is the first argument (argument_1) of the
verb:eat, and the relationship between this verb
and the object is expressed as a verb frame.
verb frame:
<verb>: We defined five verbs that are frequently
used in conversations regarding food. They con-
sider direct objects as arguments. We also defined
negative forms for them by adding “!”. For ex-
ample, the negative form for “like” is “!like.” In
addition to these 10 verbs, “think” and “other” were
added, and 12 verbs were defined in total.
object-features:

We defined four types of features for an ob-
ject. These are ObjectType, ObjectName, Ob-
jectAttribute, and AttributeValue. These are
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Figure 2: Structure of semantic content and values for <verb>, <ObjectType>, and <ObjectAttribute>. Two
examples of interviewer sentence and its semantic content are shown at the bottom of the figure.

called the object features. The “hot curry”
is an object of the verb ‘eat’. It contains
a set of features: ObjectType=’Dish’, Object-
Name=’curry’,ObjectAttribute=’taste’, and At-
tributeValue=’hot’. We simply expressed this set
as (Dish, curry, taste, hot). Details of the object
features are presented below.

<ObjectType>: We defined 10 object types:
Dish, Ingredient, and Drink. Each name begins
with a capital letter. For example, “Dish” is as-
signed as the ObjectType value for curry, "Ingre-
dient" for carrot, and "Genre+Cuisine" for Indian
food.

<ObjectName>: This feature indicates the name
of the target object in an interviewer’s sentence.

<ObjectAttribute>: As shown in Example-A in
Figure 2, there are many detailed questions and
utterances about the target object, such as the taste
of the food, its recipe, and how to eat it. We be-
lieve that such information is important for food
preferences. To include it in the semantic content,
we defined the attributes of objects with a specific
ObjectType. The values of these attributes are de-
scribed later in this study.

<AttributeValue>: The value for the ObjectAt-
tribute is specified in this section. A set of possible
values is not defined, and the value is freely speci-
fied, as in ObjectName.

For example, the ObjectType of "hot curry" is a
’Dish’, and ObjectType=’Dish’ can take an Objec-
tAttribute (see Figure 2, Allowed to take <Objec-

tAttribute>?: Yes). Then, “hot” belongs to “taste”,
which is defined as an ObjectAttribute. As a re-
sult, "hot curry" is interpreted as an object feature.
ObjectType=’Dish’, ObjectName=’curry’, Objec-
tAttribute=’taste’，AttributeValue=’hot’.

When the interviewer’s utterance is a question,
such as a Yes/No question or WH question, the
object of the question is indicated as a ’?’. For
example, in the WH question, "What taste of curry
do you like?", the AttributeValue for ObjectAt-
tribute=’taste’ is the target of this question. In
this case, the semantic content is described as [like,
[(Dish, curry, taste, ?)]] .

For a Yes/No question, where (default) values
are already assigned, the features are described as
ObjectName+? and AttributeValue+?. For exam-
ple, the semantic content for “Do you like curry
hot?” is described as [like, [(Dish, curry, taste,
hot?)]]

Some sentences, such as "Steak is good"
(Example-B in Figure 2), express an evaluation of
the target object. In such a case, "think" is assigned
to (<verb>), and two arguments are used; the ob-
ject information is described in argument_1 and the
evaluation in (argument_2). In this example, ar-
gument_2 describes a pair of values: “Evaluation”
and the (<EvaluationValue>) denoting the value of
the evaluation. Thus, (argument_2) is [Evaluation,
good].
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Figure 3: Training a Semantic Content Generation (SCG) model: The description in the parentheses of Seman-
tic_content is used when the target sentence includes the corresponding information.

4 Models

With the goal of building a dialogue system that
generates the interviewer’s appropriate questions
to acquire the customer’s food preferences, we
present two machine learning models in this section
for communicative function prediction and seman-
tic content generation.

4.1 Semantic Content Generation (SCG)

As part of the interviewing system, we created a
Semantic Content Generation (SCG) model that
generates the semantic content of the interviewer’s
next sentence. The model takes the history of mes-
sages of both the interviewer and customer as input
and predicts the semantic content of the last sen-
tence in the next interviewer’s message 1. The
representation of semantic content follows the an-
notation scheme described in Section 3.2.

To train the SCG model, we used a pre-trained
Japanese language model 2 of the Transformer-
based GPT-2 model (Radford et al., 2019), which
is commonly used for conversation generation and
fine-tuned it using our own small dataset described
in Section 3.1.

Figure 3 illustrates GTP-2 fine tuning to create
the SCG model. Each sample of the training data
is a pair of dialogue context and semantic content
of the interviewer’s next sentence. As the dialogue
context, messages preceding the prediction target
sentence are concatenated. The end of each context
message is indicated by [SEP] special token. The
maximum number of context messages is five. This

1When the next interviewer message consists of multiple
sentences, the semantic content of the last sentence is used as
the prediction target. This is because the main assertion of the
message is often made in the last sentence.

2japanese-gpt2-small: https://huggingface.co/rinna/japanese-
gpt2-small

sequence is concatenated with the semantic content
of the prediction target (the interviewer’s sentence)
and fed to GPT-2.

The semantic content is represented as a se-
quence of tokens: verb, object-features, and eval-
uation description if necessary. Example-1 in Fig-
ure 3 shows an example of object-features con-
sisting of ObjectAttribute and AttributeValue, in
which the semantic content of the interviewer’s
next sentence is ”[like, [(Dish, pasta, type-of, ?)]]”
(original sentence: “What kind of pasta do you
like?”). The verb, ObjectType, ObjectName, Objec-
tAttribute, and AttributeValue are concatenated into
a sequence. Each of these is separated by a [SEP].
Additionally, the <s> and </s> tokens indicate the
beginning and end of each sample, respectively.
In Example-2, the semantic content contains the
evaluation part: “[think, [(Dish, steak)], [Evalua-
tion, good]]” (original sentence: “Steak is good.”),
where the second argument [Evaluation, good] is
added.

Each input sequence is tokenized by the tok-
enizer, and GPT-2 optimizes the model weights
by minimizing the negative log-likelihood for the
next-token prediction.

4.2 Communicative Function Prediction
(CFP)

This section proposes a Communicative Function
Prediction (CFP) model that predicts the commu-
nicative function label to specify the intention
of the next interviewer’s message, such as self-
disclosure and questions.

A fine-tuning approach was employed to train
the CFP model. We used the BERT (Devlin et al.,
2019) Japanese pre-trained model3.

3BERT base Japanese: https://huggingface.co/cl-
tohoku/bert-base-japanese-whole-word-masking
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Figure 4: Training a model for communicative function
prediction (CFP)

As demonstrated in Figure 4, the input is a dia-
logue context consisting of multiple previous mes-
sages concatenated using [SEP]. This sequence is
the same as that used to train the SCG model in
Section 4.1. Using this sequence as the input, we
trained a model that predicted the communicative
function label of the interviewer’s next message.

We use the representation of the final layer of
the special classification token ([CLS]), which is
placed at the beginning of the input, as the input
for a downstream classification task. As described
in Section 5.1, the communicative function classi-
fier predicts 7 labels, reduced from the 32 labels
presented in Section 3.2.

5 Experiments and Evaluation

5.1 Detail of Dataset

Table 1(top) lists the details of the corpus collected
in Section 3. Table 1(bottom) shows the num-
ber of instances 4 that was used to train the CFP
and SCG models. The dataset was divided into
train/valid/test sets at a ratio of 7:1:2.

Although we defined 32 communication func-
tion labels in the original dataset, many of them
were not frequently observed. Thus, we merged the
labels whose frequency was lower than 20% of all
samples and used the seven labels listed in Table 2
in this experiment.

We calculated the inter-coder reliability using
three dialogues annotated by two coders. For the
seven labels of communicative function, Cohen’s
kappa was 0.75, which indicated substantial agree-
ment. For semantic content, which is a combination
of verb and object-features, the percentage of agree-
ment was 0.72. Because we achieved a sufficient
agreement level, the remaining data were annotated
by either coder.

4Messages that were not related to the task (e.g., greetings
at the beginning of the task, gratitude at the end of the task)

Table 1: Details of the interview dialogue corpus col-
lected (top) and number of instances used to train the
CFP and SCG models (bottom).

# dialogues 118
# messages 4871

- interviewer 2471
- customer 2400

# sentences 8921
- interviewer 4647
- customer 4274

train/validation/test
# dialogues 84 / 10 / 24
# instances for
communicative function

1735 / 209 / 482

# instances for
semantic content

1663 / 205 / 458

Table 2: Merged communicative function labels

SD-Fact&Experience Q-Fact&Experience
Q-Habit Q-Preference-Positive
Q-Preference-Neutral Reply
Other

5.2 Baselines
We compared the proposed models with two base-
line models: the retrieval model and text generation
model.
Retrieval Model: We simply applied a technique
used in information retrieval to a response selec-
tion, as proposed in (Ritter et al., 2011; Sordoni
et al., 2015b). The customer’s message and the
interviewer’s response to it were paired as an in-
put–response pair. In the response selection pro-
cess, among all pairs, the one whose input sentence
had the highest similarity to the customer’s input
was selected, and the response part of this pair was
used as the system’s (interviewer’s) response. The
sentence vector was a hidden representation of the
[CLS] token obtained from BERT, and cosine simi-
larity was used to calculate the sentence similarity.
Text Generation Model: A GPT-2 language
model was trained using pairs of dialogue context
and the next interviewer’s sentence. The difference
from the SCG model is that the dialogue context
was paired with the text (not the semantic content)
of the interviewer’s response. Therefore, this model
generated an interviewer’s response text rather than

were excluded from the dataset.
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Table 3: Average BLEU-4 scores. Numbers in paren-
theses indicate the length of the dialogue history in the
best model using the validation dataset. In the retrieval
model, the length of the dialogue history was set to one.

Model BLEU-4 score
(standard deviation)

Retrieval 11.5 (20.6)
Text Generation (N=4) 13.0 (22.3)
SCG (Proposed) (N=3) 17.3 (24.7)

the semantic content of the sentence.

5.3 Automated Evaluation for SCG

To evaluate the output produced by the models,
we conducted an automated evaluation using the
BLEU with respect to the semantic content. For
this purpose, we treated the semantic content of
the target interviewer’s sentence as a sequence of
words (e.g., “like[SEP]Dish[SEP]pasta[SEP]type-
of[SEP]?”) and used it as the ground truth.

For the SCG model, the BLEU score was calcu-
lated by comparing the generated semantic content
with the ground truth. For the retrieval model, the
semantic content annotation for the response part
was compared to the ground truth. For the text gen-
eration model, the semantic content was assigned
by annotating the generated message and compar-
ing it with the ground truth to calculate the BLEU
score.

As an evaluation of semantic content consisting
of a combination of the verb and object-features,
we show the average of BLEU scores using 4-
grams in the test set in Table 3. The proposed
model achieved the highest BLEU score. We
changed the dialogue context length from 1 to 5
and found that a model with a dialogue context
length of three achieved the best performance in
the validation dataset. These results suggest that
the proposed SCG model performed the best in re-
producing the semantic content of the interviewer’s
message.

5.4 Performance of CFP

We evaluated the performance of the CFP model
by setting the length of the context to three as this
setting performed best in the SCG model. The
results showed that the model performance for the
seven-classes classification was 0.39 in accuracy
and 0.30 in weighted average of the F1 score.

5.5 Samples of Generated Response

In this section, we present examples of the
responses generated by our interview system.
We first describe the template-based response-
generation mechanism and then discuss examples
of interview generation.
Template-based Response Generation

As shown in Figure 1, the system receives out-
puts from the SCG and CFP models and gener-
ates the interviewer’s responses using the template-
based generation method.

Suppose that the outputs from the two prediction
models are as follows:
communicative function label: Q-Preference-
Positive
semantic content: like[SEP]Dish[SEP]pasta[SEP]
type-of[SEP]?

By referring to this information: communica-
tive function=’Q-Preference-Positive’, verb=’like’,
ObjectAttribute=’type-of’, and AttributeValue=’?’,
the system selects a template: “{ObjectName} no
Shurui de Nani ga Sukidesuka?” (in English, ”What
kind of {ObjectName} do you like?”). Then, a re-
sponse sentence is generated by replacing {Object-
Name} with the value ’pasta’.
Discussion on Generated Responses

Table 4 presents the sequence of five context
utterances and the interviewer’s utterance which
follows the context. “Human” is the real inter-
viewer utterance (ground truth). “Retrieval,” “Text
Generation,” and “Proposed” are the outputs by the
methods examined in our experiment.

In Dialogue-1 in Table 4, the interviewer utter-
ance generated by the retrieval model asks whether
the user eats vegetables. This utterance is not ap-
propriate because in previous-3, the customer had
already said that he/she eats vegetables. By con-
trast, the proposed model generated a question to
elicit more information according to the current
context of the hot-pot dish by asking the favorite
ingredients for the dish.

In Dialogue-2 in Table 4, all three models failed
to generate an utterance about the current topic
focus (cheese), but the retrieval and text genera-
tion models still successfully generated a natural
response. However, the utterance generated by the
proposed model appears to be abrupt. This is be-
cause the selected template was not appropriate or
expressive. Providing more templates and improv-
ing the template selection mechanism are necessary
to generate more expressive responses.
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Table 4: Two dialogue examples. Each table contains 5 messages (previous-5 to -1) preceding the prediction target
interviewer’s sentence, human ground truth responses (Human), and model outputs: Retrieval, Text Generation, and
Proposed system. I/C indicates interviewer and customer.

6 Conclusion

In this study, we created a dialogue model to inter-
view the food preferences of users. Text-based dia-
logues between an interviewer and customer were
collected, and the communicative function and se-
mantic content of the interviewer’s utterances were
annotated. Using this dataset, we created models
to predict the communicative function of the inter-
viewer’s utterances and generate semantic content.
The outputs of these two models were then applied
to template-based response generation to produce a
response. In the model evaluation for generating se-
mantic content, the proposed model outperformed
the two baseline models, retrieval and generative,
in the automatic evaluation using BLEU-4.

As future work, we will improve the response
generation mechanism to generate a variety of ex-
pressions because the current template-based re-
sponse generation may not be sufficient in its ex-
pressiveness. For example, one of the ideas would
be presenting candidates such as Japanese, Chi-
nese, and Italian when asking about preferences for
a genre and asking the user to select one. It would
also be useful to predict the user’s preference based
on the dialog history and user information and gen-
erate questions such as "Do you prefer Chinese
to Italian? Thus, by using question content (e.g.,
genre) and related vocabulary and knowledge (Chi-
nese and Italian as examples of genre), the question
variation can be increased. Another possibility is

to automatically extract or determine the response
templates through machine learning, but this is a
challenging task.

Further, a user study should be conducted, as it is
known that automatic evaluation using BLEU does
not always correlate with human evaluation (Liu
et al., 2016). In the user study, users interact with
the system, and then they evaluate the quality of
the responses generated from the system, and judge
whether the system effectively elicits information
from the user.
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Communicative function set

SELF-DISCLOSURE(SD-) Provide own information and opinions about food.
SD-Fact&Experience e.g., I ate pasta yesterday.
SD-Preference-Positive e.g., I like oranges.
SD-Preference-Negative e.g., I don’t like fish.
SD-Preference-Neutral e.g., Coriander is iffy.
SD-Habit e.g., I often drink coffee.
SD-Desire e.g., I want to eat pizza.
SD-Plan e.g., I will have sushi tonight.
SD-Other
QUESTION (Q-) Ask questions about their food information and opinions.
Q-Fact&Experience e.g., What did you eat for breakfast?
Q-Preference-Positive e.g., What is your favorite dish?
Q-Preference-Negative e.g., What food do you dislike?
Q-Preference-Neutral e.g., Can you eat apples?
Q-Habit e.g., Do you eat eggs often?
Q-Desire e.g., What do you want to eat for dinner?
Q-Plan e.g., What are you planning to eat for dinner?
Q-Other
Proposal Recommendations. e.g., Chocolate is recommended.
Acknowledge Encourage the conversational partner to speak. e.g., Huh. Yes.
Appreciation Express understanding. e.g., Okay. I understand.
Repeat Repeat the partner’s utterance.
Summarize&Reformulate Paraphrasing, evaluating, and summarizing the partner utterance.
Exclamation Express emotion utterance. e.g., Oh.
Accept&Agree&Sympathy Expressing affirmation or agreement.
Partial Accept Partially expressing affirmation or agreement.
Maybe Ambiguous utterance. e.g., Maybe so.
Partial Reject Partially express denial or disagreement.
Reject&Non-Sympathy Express denial or disagreement.
Greeting Greeting. e.g., Hello.
Thanks Express thanks. e.g., Thank you.
Apology Express apologies. e.g., Excuse me.
Filler Utterance that fills in the pauses when stuck. e.g., Umm. Well.
Other Other utterances.

We defined the labels with reference SWBD-DAMSL (Jurafsky, 1997) and Meguro et al. (2014)’s
dialogue acts.
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Abstract

Artistic painting has achieved significant
progress during recent years. Using a varia-
tional autoencoder to connect the original im-
ages with compressed latent spaces and a cross
attention enhanced U-Net as the backbone
of diffusion, latent diffusion models (LDMs)
have achieved stable and high fertility image
generation. In this paper, we focus on en-
hancing the creative painting ability of cur-
rent LDMs in two directions, textual condition
extension and model retraining with Wikiart
dataset. Through textual condition extension,
users’ input prompts are expanded with rich
contextual knowledge for deeper understand-
ing and explaining the prompts. Wikiart dataset
contains 80K famous artworks drawn during
recent 400 years by more than 1,000 famous
artists in rich styles and genres. Through the
retraining, we are able to ask these artists to
draw artistic and creative paintings on modern
topics. Direct comparisons with the original
model show that the creativity and artistry are
enriched.

1 Introduction

Artistic painting has achieved significant progress
during recent years thanks to the appearing of hun-
dreds of GAN variants (Jabbar et al., 2020; Wang
et al., 2021). However, adversarial training has
been reported to be notoriously unstable and can
lead to mode collapse. To escape from adversar-
ial training and inspired by non-equilibrium ther-
modynamics, diffusion probabilistic models (Sohl-
Dickstein et al., 2015), such as noise-conditional
score network (NCSN) (Song and Ermon, 2019),
denoising diffusion probabilistic models (DDPM)
(Ho et al., 2020), stable diffusion models in latent
spaces (Rombach et al., 2021) have achieved GAN-
level sample quality without adversarial training.
These diffusion models are appealing with rather
flexible model architectures, exact log-likelihood
computation, and inverse problem solving without

re-training models.
There are two Markov chain style processes in

a typical diffusion model. The first process is a
forward diffusion process which appends multiple-
scale random noise to a given data sample “step by
step” or “in jump” until the disturbed sample slip
into a predefined isotropic Gaussian distribution.
This process does not include trainable parameters.
The second process is a reverse diffusion process
which generates a target distribution data sample
from pure noise guided by some (user-input) pre-
given conditions. A parameterized deep learning
model is required in this reverse process.

Intuitively speaking, the forward diffusion pro-
cess can be recognized as “directional blasting
of a building” x0 to “ruins with dusts” xT . The
learning algorithm is a reverse engineering which
learns how to (re-)construct a building (expressed
by pθ(xt−1|xt) with a parameter set θ and t ∈
{1, ..., T}) from each step of inverse directional
blasting (expressed by q(xt−1|xt, x0)) of each
given building sample x0. In one step of this re-
verse engineering, xt−1 represents “one complete
wall” in a building and xt represents “concrete and
sands” that can be used to construct the complete
wall xt−1 in a reconstruction process or can be ob-
tained from the complete wall xt−1 in a forward
“blasting” process. The reconstruction process is
learned from the blasting process with targets such
as noise prediction in DDPM (Ho et al., 2020) or
score prediction using score matching strategy in
NCSN (Song and Ermon, 2019).

We follow a recent impressive work of high-
resolution image synthesis with LDMs by given
textual or visual conditions1 (Rombach et al., 2021).
There are several proposals in this LDM. The first
proposal is applying the encoder part of a pre-
trained variational autoencoder to project images
into low-dimension latent spaces and then perform

1https://github.com/CompVis/
stable-diffusion
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diffusion/construction processes. Training diffu-
sion models on such a low-dimension representa-
tion space allows us to reach a near-optimal point
between computation complexity reduction and de-
tail preservation to boost virtual fidelity of con-
structed images. The second is a cross-attention-
enhanced (Vaswani et al., 2017) U-Net framework
(Ronneberger et al., 2015) in the diffusion model
where general conditioning inputs such as text or
bounding boxes are taken as memory (i.e., keys and
values in the cross-attention layers) for the query
(latent representations of images to be generated)
to retrieve information on. Finally, the decoder
module in the variational autoencoder is applied to
recover the target image into high-resolution.

We aim at improving the creativity of image
synthesis, or painting, using conditional LDMs. It
is relatively difficult to precisely define the concept
of creativity since it is subjective and influenced
by culture, history, and region. The color, style,
objects included in painting reflect rich emotions
of numerous topics. For example, when we are
given a textual condition, “a painting of a virus
monster playing guitar”, we can recognize noun
entities such as “virus monster” and “guitar” and
a verbal action “playing”. What are the emotions
involved in this textual hint? Happy, surprise and
funny should be the major emotions. The painting
requires less imagination since we should better
include the entries with a determined action.

However, there are challenges for the models to
draw painting for rather high-level topics such as
“urbanization of China” or “Asian morning”. These
textual hints should be enriched and extended with
concrete objects and actions to tell a story in a
painting or in a series of paintings. Extensions to
“urbanization of China” include “originally a col-
lection of fishing villages, Shenzhen rapidly grew
to be one of the largest cities in China”, “a train
runs on the snow-capped mountains of the Qinghai-
Tibet Plateau”, and “left-behind children running in
wheat-field”. Given an initial textual hint, we lever-
age Wikipedia and large-scale pretrained language
models to execute this extension.

In addition, we retrain existing checkpoints by
the WikiArt paintings dataset2 which has a collec-
tion of 81,444 fine-art paintings from 1,119 artists,
ranging from fifteenth century to modern times.
This dataset contains 27 different styles (e.g., Mini-

2https://www.wikiart.org/ and can be down-
loaded from https://archive.org/download/
wikiart-dataset/wikiart.tar.gz

malism, Symbolism, Realism) and 45 different gen-
res. As far as our knowledge, it is currently the
largest digital art datasets publicly available for
research usage. This dataset was used to train an
ArtGAN (Tan et al., 2017) where conditions such
as categorical label information was used for art-
work synthesis. In this paper, we embed the textual
information of artists, year, styles, and genres as
additional conditions to the LDM. Through this
way, we can explicitly invite Vincent van Gogh or
Rembrant to help us “draw” artworks of modern
topics such as “urbanization of China”.

This paper is organized as follows. In Section
2, we briefly review the background knowledge re-
quired for understanding the stable diffusion mod-
els (Rombach et al., 2021). In particular, we de-
scribe the two processes defined in DDPM (Ho
et al., 2020), the variational autoencoder frame-
work and loss functions used in it (Esser et al.,
2020), cross attention enhanced U-Net which acts
as the backbone of the diffusion model, and pseudo
numerical methods integrated with DDIMs for fast
sampling. In Section 3, we describe our proposal
of extending users’ prompts by pretrained language
models and existing knowledge resources. In Sec-
tion 4, we show detailed information of the Wikiart
dataset and our pipeline of retraining. We describe
the experiments in Section 5 and finally conclude
in Section 6.

2 Background

Diffusion models have been successfully used in
image generation (Rombach et al., 2021), text-to-
speech synthesis (Popov et al., 2021; Jeong et al.,
2021), sing synthesis and conversion (Liu et al.,
2021; Xue et al., 2022), music generation (Mittal
et al., 2021) and healthcare Medical Anomaly De-
tection (Wolleb et al., 2022). Surveys can be find in
(Croitoru et al., 2022; Cao et al., 2022; Yang et al.,
2022).

We limit our discussion to text-to-image gen-
eration by leveraging the LDMs (Rombach et al.,
2021) and existing checkpoints3. We briefly re-
view the core processes and target objectives of
DDPMs (Ho et al., 2020) that are used in LDMs. In
addition, variational autoencoders enhanced with
KL-divergence, cross-attention embedded U-Net
(Ronneberger et al., 2015; Vaswani et al., 2017),
CLIP pretrained language models (Radford et al.,

3https://huggingface.co/CompVis/
stable-diffusion-v-1-4-original
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xT xt xt-1 x0 … … 
pθ(xt-1|xt) 

q(xt-1|xt, x0)= q(xt|xt-1)q(xt-1|x0)/q(xt|x0) 

as “reference” to pθ(xt-1|xt) 

q(xt|xt-1)  

diffusion process reconstruction process 

Figure 1: The Markov chain of forward diffusion (back-
ward reconstruction) process of generating a sample by
step-by-step adding (removing) noise. Image adapted
from (Ho et al., 2020).

2021) and sampling algorithms such as that used
in denoising diffusion implicit models (DDIMs)
(Song et al., 2020) and pseudo numerical methods
(Liu et al., 2022) will be briefly reviewed.

2.1 DDPM
Given a data point x0 sampled from a real data dis-
tribution q(x) (x0 ∼ q(x)), Ho et al. (2020) define
a forward diffusion process in which small amount
of Gaussian noise is added to sample x0 in T steps
to obtain a sequence of noisy samples x0, ..., xT .
A predefined (hyper-parameter) variance schedule
{βt ∈ (0, 1)}Tt=1 controls the step sizes:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI); (1)

q(x1:T |x0) :=
T∏

t=1

q(xt|xt−1). (2)

When T → ∞, xT is equivalent to following an
isotropic Gaussian distribution. Note that, there
are no trainable parameters used in this forward
diffusion process.

Let αt = 1 − βt and ᾱt =
∏t

i=1 αi, we can
express an arbitrary step t’s diffused sample xt by
the initial data sample x0:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt. (3)

Here, noise ϵt ∼ N (0, I) shares the same shape
with x0 and xt.

In order to reconstruct from a Gaussian noise
input xT ∼ N (0, I), we need to learn a model pθ
to approximate the conditional probabilities to run
the reverse diffusion process:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)); (4)

pθ(x0:T ) := p(xT )
T∏

t=1

pθ(xt−1|xt). (5)

Note that the reverse conditional probability is
tractable by first applying Bayes’ rule to three
Gaussian distributions and then completing the
“quadratic component” in the exp(·) function:

q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI) (6)

= q(xt|xt−1, x0)
q(xt−1|x0)
q(xt|x0)

(7)

∝ exp(− 1

2β̃t
(xt−1 − µ̃t)

2). (8)

Here, variance β̃t is a scalar and mean µ̃t depends
on xt and noise ϵt:

β̃t =
1− ᾱt−1

1− ᾱt
βt; (9)

µ̃t =
1√
αt

(xt −
1− αt√
1− ᾱt

ϵt). (10)

Intuitively, q(xt−1|xt, x0) acts as a reference to
learn pθ(xt−1|xt). We can use the variational
lower bound (VLB) to optimize the negative log-
likelihood:

− logpθ(x0) ≤ −logpθ(x0)+
DKL(q(x1:T |x0) ∥ pθ(x1:T |x0)). (11)

Using the definitions of q(x1:T |x0) in Equation
2 and pθ(x0:T ) in Equation 5, a loss item Lt (1 ≤
t ≤ T − 1) is expressed by:

Lt = DKL(q(xt|xt+1, x0) ∥ pθ(xt|xt+1)) (12)

= Ex0,ϵt

[
1

2 ∥ Σθ(xt, t) ∥22
∥ µ̃t − µθ(xt, t) ∥2

]
.

We further reparameterize the Gaussian noise term
instead to predict ϵt from time step t’s input xt and
use a simplified objective that ignores the weight-
ing term:

L
simple
t = Et∼[1,T ],x0,ϵt

[
∥ ϵt − ϵθ(xt, t) ∥2

]
(13)

= E
[
∥ ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t) ∥2

]
.

In (Rombach et al., 2021), LDMs are proposed
so that the diffusion processes are performed in
compressed latent spaces through a pretrained vari-
ational autoencoder E(x0):

LLDM
t = Ez0=E(x0),ϵt,t

[
∥ ϵt − ϵθ(zt, t) ∥2

]
(14)

= E
[
∥ ϵt − ϵθ(

√
ᾱtz0 +

√
1− ᾱtϵt, t) ∥2

]
.

In order to perform condition-based image synthe-
sis, a pre-given textual prompt (or other formats
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such as layout) y is first encoded by a domain spe-
cific encoder τθ(y) and then sent to the model to
predict ϵθ:

LLDM
t = EE(x0),ϵt,t

[
∥ ϵt − ϵθ(zt, t, τθ(y)) ∥2

]
.

(15)
Here, τθ(y) acts as memory (key and value) in the
cross-attention mechanism (Vaswani et al., 2017)
and can be jointly trained together with ϵθ’s U-Net
framework (Ronneberger et al., 2015) from image-
conditioning pairs. In the text-to-image generation
task of (Rombach et al., 2021), a 12-layer trans-
former with a hidden dimension of 768 is used4

(Radford et al., 2021) to encode textual prompts.

2.2 Variational Autoencoder GAN with
KL-divergence

The variational autoencoder is pretrained (Esser
et al., 2020) beforehand and used directly for en-
coding the original data sample into latent space
and for decoding the reconstructed z0 back to the
original sizes of x0. In order to combine the effec-
tiveness of the inductive bias of CNNs with the ex-
pressivity of transformers, both the encoder (E) and
the decoder (or, generator, G) parts of the autoen-
coder use ResNet blocks and self-attention blocks.
Adversarial learning is used to train this vector
quantised GAN framework with a combination of
several losses:

(1) a reconstruction loss:

Lrec =∥ x − G(q(E(x))) ∥2, (16)

where q(·) is element-wise quantization in (Esser
et al., 2020) and a simple 2D 1×1 convolution
network in the stable diffusion implementation. We
set x̂ = G(q(E(x)) hereafter.

(2) a perceptual loss using the learned perceptual
image patch similarity (LPIPS) loss (Zhang et al.,
2018):

Scale(x) = (x − shift)/scale,

gi(x) =∥ VGGi(Scale(x)) ∥2,

Lper =
4∑

i=0

{
lini((gi(x)− gi(x̂))2)

}
. (17)

Here, “shift” and “scale” respectively stands for
mean vector and standard deviation vector of each
channel of the images in the training data. A pre-
trained VGG checkpoint5 is used here and VGGi

4https://huggingface.co/openai/
clip-vit-large-patch14

5https://download.pytorch.org/models/
vgg16-397923af.pth

stands for the i-th layer’s output tensor with half-
size down sampling shapes (e.g., h,w=256, 128,
64, 32, 16 and c=64, 128, 256, 512, 512). A group
of “dropout + conv2d 1×1” (linear) modules lini
are used project the mean square distances of x and
x̂ into channel number of 1 and then average on
height and width. The five scale losses are added
up together as the final perceptual loss.

(3) a KL loss between the diagonal Gaussian
distribution constructed from q(E(x)) = [µ; logσ2]
and N (0, I):

LKL(N (µ,σ2) ∥ N (0, I)) =
∑

c,h,w

(µ2 + σ2 − 1− logσ2)/2, (18)

where c is channel number, h is height and w is
width for an image. The output tensor q(E(x)) is
separated into two parts (e.g., from (6, 64, 64) to
two (3, 64, 64) shape tensors) for the mean and the
log of the variance of the Gaussian distribution.

(4) GAN losses which includes the following
component:

Lg = −logD(x̂), (19)

Ld = Hinge(D(x),D(x̂)) (20)

=
relu(1−D(x)) + relu(1 +D(x̂))

2
. (21)

Here, D stands for a patch-based discriminator that
aims to differentiate between real and reconstructed
images. Adaptive weight is used to combine these
losses and more details can be found in (Esser et al.,
2020):

L = Lrec+λ1Lper+λ2LKL+λ3Lg+λ4Ld. (22)

In the configuration used in this paper, λ1 = 1.0,
λ2 = 1e− 06. Specially,

λ3 =
∇Glast [Lrec + λ1Lper]

∇Glast [Lg] + δ
. (23)

Here, ∇Glast stands for the gradient of the combined
reconstruction and perceptual losses with respect
to the last layer of G, and δ = 1e − 4 is used for
numerical stability. The model sets λ3 = λ4 = 0.0
at the first M (e.g., 50,000) iterations to focus on
training the reconstruction and perceptual abilities
of the model. After M iterations, λ4 is set to be 1.0
for adversarial learning.
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2.3 U-Net with Cross Attention

In (Rombach et al., 2021), a U-Net with a multi-
head cross attention mechanism (Vaswani et al.,
2017) is used to predict ϵθ with a MSE loss for
training (Equation 15). In a typical U-Net im-
plementation, there are five blocks, a time em-
bedding block that embeds an input time step t,
input/middle/output blocks that perform convolu-
tional and self-attention based representations of zt
and their cross attentions with conditional memory
τθ(y), and finally a out block that projects the result
tensor back to the shape of zt.

The input block performs a down sampling with
a stack of “resnet + spatial transformer” modules
(e.g., 12 modules from (channel, height, width)
shape of from (4, 64, 64) to (1280, 8, 8)). Then, the
middle block with “resnet + transformer + resnet”
modules links the input and output blocks without
changing the shape of the tensor. Next, the output
block performs a up sampling with the same num-
ber of modules of the input block (e.g., 12 modules
from shape (1280, 8, 8) to (320, 64, 64)). There are
residual-style shortcut links here: each module’s
output is sent respectively from the input block to
the output block with the same level. The final
out block uses a 2D convolutional layer to project
the hidden channel number (e.g., 320) back to the
original channel number (e.g., 4).

2.4 DDIMs and Pseudo Numerical Methods

DDIMs (Song et al., 2020) generalizes DDPMs via
a class of non-Markovian diffusion processes that
lead to the same training objective and give rise to
implicit models that generate high quality samples
much faster. In the non-Markovian forward pro-
cess, a real vector σ ∈ RT

≥0 is introduced to index
a family of inference distributions:

qσ(x1:T |x0) := qσ(xT |x0)
T∏

t=2

qσ(xt−1|xt, x0);

qσ(xT |x0) = N (
√
ᾱT x0, (1− ᾱT )I);

qσ(xt−1|xt, x0) = N (µ̃(x0, xt, σt), σ2
t I);

µ̃(x0, xt, σt) =
√
ᾱt−1x0+

√
1− ᾱt−1 − σ2

t

xt −
√
ᾱtx0√

1− ᾱt
.

The mean function µ̃(x0, xt, σt) is chosen to ensure
that qσ(xt|x0) = N (

√
ᾱtx0, (1 − ᾱt)I) without

depending on σ anymore.
In the generative process of DDIM, the denoised

observation x0 is predicted from pre-given xt (re-
verse usage of Equation 3):

fθ(xt, t) := (xt −
√
1− ᾱtϵθ(xt, t))/

√
ᾱt.

Then, a sample xt−1 can be generated from xt via:

xt−1 =
√
ᾱt−1fθ(xt, t)

+
√

1− ᾱt−1 − σ2
t ϵθ(xt, t) + σtϵt. (24)

When σt = 0 for all t, the coefficient of ϵt becomes
zero and samples are generated from xT to x0 with
a fixed procedure. The DDIM(·) is thus defined as:

xt−1, fθ(xt, t) = DDIM(xt, ϵt, t). (25)

To accelerate the reconstruction process and
keep the sample quality, DDIMs (Equation 25)
are included in pseudo numerical methods (Liu
et al., 2022) which treat DDPMs as solving dif-
ferential equations on manifolds. In (Rombach
et al., 2021)’s code implementation6 (Algorithm 1),
a linear multi-step algorithm, the Adams-Moulton
method7, is used. This pseudo numerical algorithm
includes a gradient part of 2nd order pseudo im-
proved Euler, 2nd/3rd/4th order Adams-Bashforth
methods, and a transfer part of DDIM. Here, the
discrete indices t−1, t+1 stand for next (e.g., from
T to T − 1) and former time steps, respectively.

3 Textual Condition Extension

We perform textual condition extension by lever-
aging wikipedia as the knowledge base and large-
scale pretrained language models as implicit knowl-
edge graphs. The pipeline is depicted in Figure 2.
Given a textual prompt, we first match it with the
title list in wikipedia. At the same time, the input
prompt is sent to (1) a pretrained language model,
T5 (Raffel et al., 2019), to continue writing by tak-
ing the given prompt as a prefix hint and to (2) a
pretrained dialog model, DialoGPT8 (Zhang et al.,
2019) that takes the input prompt as “query” and
consequently generate “responses”.

Wikipedia’s titles and contents are used for
matching the input prompt and T5/DialoGPT’s out-
puts. We use BM25 (Robertson, 2009) here to

6https://github.com/CompVis/
stable-diffusion/blob/main/ldm/models/
diffusion/plms.py#L218-L232

7https://en.wikipedia.org/wiki/Linear_
multistep_method#CITEREFHairerN%C3%
B8rsettWanner1993

8https://github.com/microsoft/DialoGPT
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Algorithm 1: Pseudo linear multi-step
(PLMS) algorithm enhanced by DDIM

1 xT ∼ N (0, I);
2 for t = T, T − 1, ..., 1 do
3 et = ϵθ(xt, t);
4 if t == T then
5 # pseudo improved Euler-2nd;
6 xt−1, fθ(xt, t) = DDIM(xt, et, t);
7 et−1 = ϵθ(xt−1, t− 1);
8 e′t = (et + et−1)/2;
9 else if t == T-1 then

10 # PLMS-2nd (Adams-Bashforth) ;
11 e′t = (3et − et+1)/2;
12 else if t == T-2 then
13 # PLMS-3rd (Adams-Bashforth) ;
14 e′t = (23et − 16et+1 + 5et+2)/12;
15 else
16 # PLMS-4th (Adams-Bashforth) ;
17 e′t = (55et − 59et+1 + 37et+2 −

9et+3)/24;

18 xt−1, fθ(xt, t) = DDIM(xt, e′t, t);
19 return x0;

simplify the matching process. From the result doc-
ument(s), we further compute sentence importance
to rank their content fertility and the relationship
with the initial prompt. We use the (English) text
part of LAION-5B9 and Wikiart to train a TF-IDF
model and then use it to score the prompts in the
result prompt list. With a higher score, we subjec-
tively believe that the prompt can possibly yield
better images. To score the “relationship” with the
initial prompt u, we embed a pair of initial and
result prompts by T5 and compute their cosine sim-
ilarity. Thus, the importance of a result prompt v is
computed by:

w(v) = TFIDF(v)+λ1Cos(T5(u),T5(v)). (26)

Here, λ1 stands for a hyper-parameter to balance
the scale of two scores.

In addition, we encourage the result prompts
to include spatial and temporal information. We
leverage a named entity recognizer10 and regular
expressions to recognize place/region names, ad-
dresses, time, and date. The number of spatial and
temporal entities discounted by a hyper parameter

9https://laion.ai/blog/laion-5b/
10https://github.com/kamalkraj/BERT-NER
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Figure 2: The textual prompt extension pipeline
by retrieving wikipedia and continue generating by
T5/DialoGPT pretrained language models (Raffel et al.,
2019; Zhang et al., 2019).

λ2 is added with w(v) for the final scoring of a
prompt.

4 Retraining with WikiArt

Different artists have quite different numbers of
paints in WikiArt dataset. The top-3 artists are
Vincent van Gogh, Nicholas Roerich, and Pierre
Auguste Renoir with 1,889, 1,860, and 1,400 paint-
ings, respectively. The top-10, top-20, and top-30
artists share 14.18%, 21.80%, and 27.62% of the
samples, respectively. Figure 3 shows the distribu-
tion of the number of paintings and their authors.

We first retrain the CLIP text encoder with the
same tokenizer with the LDM fixed. This stage is
expected to map the captions used in Wikiart to
stable diffusion’s latent space. Then, we fine-tune
the text encoder and the LDM jointly. This stage is
expected to help the LDM to enrich its knowledge
of artworks from different artists, in different styles
and genres.

5 Experiments

We use a DGX-A100-80GB server with 8 NVIDIA
A100-80GB GPU cards. The original code and set-
tings of the stable diffusion model’s checkpoint v1-
4 is reused. During inferencing, single GPUs are
used with ddim_eta=1.0, ddim_steps=200, height
and width are both 512, and scale is set to be 5.0.
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Figure 3: Top-30 artists and their painting numbers in Wikiart.

5.1 Direct Comparison with Original LDMs

Figure 4 directly compares the images generated by
the original model and that retrained under Wikiart.
We used the same prompts as described in (Rom-
bach et al., 2021). For direct comparison, we also
directly copy the first two rows from their original
paper. We list four rows picked from the top-30
artists (Figure 3). The painting skills and styles of
the artists are reflected. For example, in our first
row all "drawn" by Vincent van Gogh, it is rela-
tively easy to distinguish them from other artists:
star sky appears often and the Zombie painting is
telling a rich story of the author himself.

When the "street sign" is given in the first col-
umn, the original paper’s two results mainly fo-
cused on the photo-style signs themselves. Yet, for
the artists, the background’s nice street views are
also important parts of the final painting, such as
the sky, the forest, the building and the people with
an orange umbrella. With these hints, we mod-
estly draw a preliminary conclusion that our four
paintings (rows 3 to 6) of the first column are more
creative and include richer sounding environments
and humane information.

Column three, five and six are drawn from
prompts which include “fake objects” which do
not frequently exist in the real-world. The “half
mouse half octopus” is more like photos in the
original paper (column 3, first 2 rows), our images
are closer to hand-drawn paints. When drawing a
“chair that looks like an octopus”, all the rows in
column six are close to artworks.

The final column can be regarded as an indus-
trial design oriented prompt. With the artists’ style

and genre included, we can positively imagine that
when these paints are printed in real-world T-shirts,
people will show their interests of further personal-
ized customization and buy them.

5.2 Textual Condition Extension Results

We use the former example of “urbanization of
China” to show the results of textual condition ex-
tension. Figure 5 shows four artworks by four fa-
mous artists, Vincent van Gogh, Nicholas Roerich,
Pierre Auguste Renoir and Claude Monet. Inter-
estingly, the major elements frequently used by
artists are also reflected here. For example, the star
sky of Vincent van Gogh, the water and boats of
Claude Monet. The major elements included in the
four paintings are also interesting, combinations
of Chinese traditional buildings and skyscrapers,
combinations of individual houses and mountains,
rather crowded endless buildings and blurry sky,
and Chinese traditional building style boats with
super high skyscrapers around the rivers.

Figure 6 shows the same four artists’ artwork
for an extended prompt related to one of the most
rapidly developed cities, Shenzhen, during the ur-
banization of China. With the extended prompts,
the model could generate more expressive images.
For Vincent van Gogh, a moon in the middle of
the sky, with fishing-boats near and high buildings
in the far view. The same elements of fish boats
and skyscrapers are all included in the other three
paintings. Interestingly, for Nicholas Roerich, even
the skyscrapers are drawn by following traditional
Chinese style.

Figure 7 shows the same four artists’ artwork for
an extended prompt related to a train running on
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the snow-capped mountains, during the urbaniza-
tion of China. With the extended prompts, again,
the model could generate more expressive images
and keep the characters of each artist. The gen-
eral styles and viewpoints of the four artists are
reflected: now we have the mountain as the “sky”
of Vincent van Gogh and the “sky and mountain”
in Claude Monet looks like a reversed river.

Figure 8 shows the same four artists’ artwork
for an extended prompt related to children running
in wheat-fields, during the urbanization of China.
With the extended prompts, again, the model could
generate more expressive images with rich emo-
tional colors such as blue skies, golden wheat fields,
and running-enjoy children. The general styles and
viewpoints of the four artists are reflected, such as
Vincent van Gogh’s sky and the skirts of the two
girls from Claude Monet.

Full images of the top-30 artists (Figure 4) of the
one initial prompt and three extended prompts are
shown in Figure 9, 10, 11 and 12 respectively.

5.3 Diversity and Styles

We finally investigate the diversity and style influ-
ences. Figures 13, 14, 15 and 16 shows the 27
styles of Vincent van Gogh, each style with 5 sam-
ples (per row), for the former prompt “left-behind
children running in wheat-field”. Most images are
with a "van Gogh" style sky. The diversity is en-
sured by comparing the columns in each row. Since
Vincent van Gogh is famous for “Post Impression-
ism” (Figure 16, row 2), the characteristics of other
styles are relatively less recognizable. The balanc-
ing of between keeping the typical style of van
Gogh and introducing new styles is relatively dif-
ficult. Still, from the five images of style “Ukiyo
e” (Figure 14, row 2), we can recognize that the
children are with Japanese traditional cloths and
hair styles (so do the buildings behind).

6 Conclusion

In order to improve the creativity of LDMs, we
have proposed two directions of extending the input
prompts and of retraining the original model by the
Wikiart dataset. We take the 1,000 artists in recent
400 years as the major source of both creativity
and artistry. With these proposals, the resulting
diffusion models can ask these famous artists to
draw novel and expressive paints of modern topics.

We believe this is an interesting topic and has
industrial design requirements for real-world ap-

plications, such as cloth designing, advertisement
posters, and game character designing. Through
drawing the real-world’s topics with the help of
hundreds to thousands famous artists, it is reason-
able to learn the creativity and fertility from these
artists’ eyes.
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Figure 4: Direct comparison with the same prompts used in (Rombach et al., 2021) yet different artists.
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Vincent van Gogh Nicholas Roerich 

Claude Monet Pierre Auguste Renoir 

Figure 5: Four artists’ artworks for the same prompt of “a painting of urbanization of china”.
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Vincent van Gogh Nicholas Roerich 

Claude Monet Pierre Auguste Renoir 

Figure 6: Four artists’ artworks for the same extended prompt of “originally a collection of fishing villages, Shenzhen
rapidly grew to be one of the largest cities in China”.
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Vincent van Gogh Nicholas Roerich 

Claude Monet Pierre Auguste Renoir 

Figure 7: Four artists’ artworks for the same extended prompt of “a train runs on the snow-capped mountains of the
Qinghai-Tibet Plateau”.
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Vincent van Gogh Nicholas Roerich 

Claude Monet Pierre Auguste Renoir 

Figure 8: Four artists’ artworks for the same extended prompt of “left-behind children running in wheat-field”.
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Figure 9: Top-30 artists’ artworks for the same extended prompt of “a painting of urbanization of china”.
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Figure 10: Top-30 artists’ artworks for the same extended prompt of “originally a collection of fishing villages,
Shenzhen rapidly grew to be one of the largest cities in China”.
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Figure 11: Top-30 artists’ artworks for the same extended prompt of “a train runs on the snow-capped mountains of
the Qinghai-Tibet Plateau”.
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Figure 12: Top-30 artists’ artworks for the same extended prompt of “left-behind children running in wheat-field”.
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Figure 13: Vincent van Gogh’s seven styles (Minimalism, Abstract Expressionism Fauvism, Naive Art Primitivism,
Symbolism, Color Field Painting, Pointillism), each style with five samples (per row).
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Figure 14: Vincent van Gogh’s seven styles (Baroque, Ukiyo e, Early Renaissance, Action painting, Contemporary
Realism, Mannerism Late Renaissance, Analytical Cubism), each style with five samples (per row).
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Figure 15: Vincent van Gogh’s seven styles (New Realism, Northern Renaissance, Cubism Impressionism, Expres-
sionism, Realism, High Renaissance), each style with five samples (per row).
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Figure 16: Vincent van Gogh’s six styles (Pop Art, Post Impressionism, Synthetic Cubism Art Nouveau Modern,
Rococo, Romanticism, ), each style with five samples (per row).
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Abstract

Memes are a widely used means of communica-
tion on social media platforms, and are known
for their ability to “go viral”. In prior works,
researchers have aimed to develop an AI system
to understand humor in memes. However, ex-
isting methods are limited by the reliability and
consistency of the annotations in the dataset
used to train the underlying models. Moreover,
they do not explicitly take advantage of the
incongruity between images and their captions,
which is known to be an important element of
humor in memes. In this study, we first gath-
ered real-valued humor annotations of 7,500
memes through a crowdwork platform. Based
on this data, we propose a refinement process
to extract memes that are not influenced by
interpersonal differences in the perception of
humor and a method designed to extract and uti-
lize incongruities between images and captions.
The results of an experimental comparison with
models using vision and language pretraining
models show that our proposed approach outper-
formed other models in a binary classification
task of evaluating whether a given meme was
humorous.

1 Introduction

Humor is an essential element of human commu-
nication. Studies have shown that humor helps to
build relationships in work environments (Plester,
2009), facilitates smooth discussions on controver-
sial topics (McGhee, 1989), and helps motivate peo-
ple to recognize and challenge misinformation (Yeo
and McKasy, 2021).

Memes are a type of humor that has been preva-
lent in recent years, especially on social media.
These images express multi-modal humor and often
comprise a template image with superimposed up-
per and lower captions. In the example of a meme
shown in Figure 1, the upper caption reads “JOIN

1https://www.funny-memes.org/2013/05/join-marines-
they-said-youll-be-hero.html

Figure 1: An example of a meme from a meme-sharing website
“Best of funny memes”1.

THE MARINES THEY SAID” and the lower cap-
tion reads “YOU’LL BE A HERO THEY SAID”.
Both upper and lower captions are superimposed
onto the template image of a marine in dress uniform
holding an umbrella for the former president Barack
Obama. The humor of memes can be explained by
the incongruity theory (Raskin, 1985; Buĳzen and
Valkenburg, 2004). It is a well-established humor
theory which states that a surprising contradiction
or opposition to an expected situation or interpreta-
tion is a key element of any humor. For example,
the meme shown in Figure 1 has an incongruity
between the caption and the template image; the
caption explains the commonsense of viewers that
a marine would be a hero in the battleground, but
the image is showing the contradicting reality of
a marine doing a boring job of holding an um-
brella for the president. A study on incongruities
in memes has shown that a large number of memes
have image-caption incongruity (Yus, 2021).

Given the substantial impact of memes on on-
line communication, such as their effectiveness
in correcting misinformation (Vraga et al., 2019;
Kim et al., 2021a; Garrett and Poulsen, 2019), re-
searchers have aimed to develop AI systems capable
of understanding humor in memes. However, the
evaluation of memes has proven a difficult task.
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Humor is subjective, and interpersonal differences
may affect the perception of humor for some memes
based on viewers’ cultural background and person-
ality characteristics (Ruch and Hehl, 2010). Hence,
human-annotated datasets of humor in memes tend
to exhibit inconsistent annotations. In addition,
existing methods use vision-language pretraining
models that do not explicitly extract semantic re-
lationships between images and captions. As a
result of this structure, utilizing image-caption in-
congruity is relatively difficult with such models,
although incongruity was shown to be a significant
element in humor of memes (Yus, 2021).

In the present work, we addressed the incon-
sistency of annotations by first creating a meme
dataset with a humor annotation of memes that is
not influenced by interpersonal differences in the
perception of humor. These reliable humor anno-
tations were obtained via an annotation method
called best-worst scaling (BWS) (Louviere, 1992).
Then, the annotations were refined by our proposed
process to eliminate inconsistent examples. The
consistency of each annotation was measured by
quantifying the agreement of annotations between
different annotators.

Based on this data, we propose a method that
explicitly extracts and utilizes image-caption incon-
gruities. Our proposed method combines a vision-
language transformer with a module designed to
extract the features of image-caption similarity. We
validated the performance of our proposed method
by conducting experiments in which we used several
models for comparison to classify whether a given
meme (template image + caption) was humorous.

The contributions of this study are summarized
as follows.

• We created a reliable dataset of memes with an-
notations that quantified their degree of humor
and extracted humor anchors.

• We proposed and implemented a dataset refine-
ment process to separate memes influenced
by interpersonal differences in the perception
of humor. The consistency of the annotations
was thoroughly examined.

• We implemented models to explicitly extract
image-caption incongruities and compared
their output with the baselines implemented
based on pretrained vision-language models.
We showed that our proposed method outper-
formed baselines in evaluating the humor of
memes.

2 Related Work

2.1 Computational Humor Models
Due to the importance of humor in human com-
munication, several previous studies have aimed to
recognize or generate humor of a single modality.
These include research on fixed forms of language-
based humor such as “I like my X like I like my Y, Z”
jokes (Petrović and Matthews, 2013), Knock-Knock
Jokes (Rayz, 2004), miscellaneous short-text hu-
mor (Annamoradnejad and Zoghi, 2020), humor
in dialogues (Ziser et al., 2020; Yoshikawa and
Iwakura, 2020), and visual humor (Chandrasekaran
et al., 2016).

However, few studies have considered multi-
modal humor, such as humor in memes. One study
focused on the task of meme evaluation is a compe-
tition called “Memotion Analysis” (Sharma et al.,
2020). This competition included the task of pre-
dicting the degree of humor of a given meme. The
best-performing model adopted several pretrained
feature extractors and ensemble techniques (Guo
et al., 2020). However, the feature extractors were
all unimodal and trained independently. Therefore,
these methods do not explicitly utilize semantic
relationships between images and captions.

2.2 Humor Dataset
Several methods have been developed to record
human annotations of humorous content, including
rating scales and BWS (Louviere, 1992).

A rating scale presents annotators with a scale
and choices of integers or characters that represent a
place within the scale. For example, the dataset used
for the competition “Memotion Analysis” (Sharma
et al., 2020) was annotated using a rating scale.
Annotators were provided with four choices to
choose from: not funny, funny, very funny, and
hilarious.

Although this method is widely used in vari-
ous disciplines, rating scales are said to have lim-
itations, including the following (Schuman and
Presser, 1996; Baumgartner and Steenkamp, 2001).

• Annotation inconsistencies between different
annotators.

• Annotation inconsistencies by the same anno-
tator.

• Bias in selection within the scale.

BWS was proposed to resolve these limitations
and reduce the number of tasks required. BWS usu-
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ally asks annotators to choose the best- and worst-
fitting items from among four-tuples of items for the
characteristics of interest. Real-valued annotations
(BWS scores) can be acquired using maximum
difference scaling (MaxDiff) (Finn and Louviere,
1992), a method to conduct and process BWS. To
obtain real-valued scores of N items, [1.5𝑁, 2.0𝑁]
four-tuples of items were annotated so that each
item was evaluated more than about five times.
Then, a BWS score was calculated for an item 𝐴 by
subtracting the number of times 𝐴 was selected as
best-fitting by the number of times it was selected as
worst-fitting, and dividing the result by the number
of times 𝐴 was evaluated.

The score obtained using this equation is a real
value ranging from -1 (worst) to 1 (best).

This method has been proven to produce more
reliable annotations compared to rating scales (Kir-
itchenko and Mohammad, 2017), and has also been
used to evaluate the humor of jokes of the form “I
like my X like I like my Y, Z” (Yamane et al., 2021).

3 Dataset Construction

To construct our reliable dataset, we first obtained a
collection of memes from a meme-sharing website.
Then, the memes were annotated by crowdworkers.
Finally, the annotations were filtered and refined to
eliminate inconsistent annotations. As a result, we
compiled 1,450 memes with reliable and consistent
annotations.

3.1 Data Collection and Preprocess

To create the dataset, we first scraped 693,465
memes (3,000 template images, 143 - 300 captions
per template) from Meme Generator2. The scraped
memes were selected in order of the number of
likes they had received to ensure that the dataset
included sufficient high-quality memes.

Before asking crowdworkers to annotate the hu-
mor in these memes, we conducted preprocessing
to reduce the number of memes containing words
that were not in English or that were profane.

First, to minimize the number of captions that
were not in English, we checked whether each cap-
tion could be encoded only using ASCII characters.
This filtering process eliminated captions written
in languages that do not use ASCII characters and
also removed emojis. However, it was not possible
to eliminate captions written in languages that use

2https://memegenerator.net/

the same alphabet as English, such as Spanish. Al-
though it would be possible to strictly filter captions
by checking whether all the included words were
present in an English dictionary, we chose not to
adopt this approach as meme captions often contain
slang or deliberately misspelled words that do not
appear in any English dictionary.

As we asked crowdworkers to annotate the humor
in memes, we needed to minimize their exposure
to profanity. Therefore, we used an open-source
library called “profanity-filter” to detect and filter
profanity3. Although this library enabled the fil-
tration of major profanities, it was not possible to
remove inappropriate words that were misspelled
or partially concealed.

Finally, image templates that contained more
than 150 captions after the two filtering processes
were selected and compiled. The resulting prepro-
cessed data contained 296,850 memes (1,979 image
templates with 150 captions per template).

3.2 Human Annotation Task Using BWS

To obtain real-valued reliable humor annotations
for these memes, we asked crowdworkers on Ama-
zon Mechanical Turk (AMT)4 to complete three
tasks, including answering whether a meme was in
English, choosing up to three words that were essen-
tial to understanding the humor in the meme, and
choosing the most and least humorous meme from
among four memes. In our research, we annotated
7,500 memes (100 template images with 75 cap-
tions per template) by creating 11,250 four-tuples
(1.5N).

Annotation tasks were published on AMT and
included two sections with a total of 27 questions.

Section 1 (questions 1 - 24) first asked annotators
about their understanding of the meme provided.
This question aimed to filter memes that were not in
English and not filtered in the preprocessing phase.

Then, annotators were asked to write up to three
words in the caption that were necessary to under-
stand the meme (we refer to this data as a humor
anchor). If the meme presented was not in English,
they were instructed to write “NIE” (not in English)
in the first box and leave the other boxes blank. This
question aimed to extract humor anchors for each
meme and also to evaluate the quality of the annota-
tion (For example, if an annotator chose words that
were obviously not important, such as “the”, we

3https://pypi.org/project/profanity-filter/
4https://www.mturk.com/
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concluded that annotations provided by that worker
might be of low quality).

Finally, in Section 2 (questions 25 - 27), an-
notators were asked to choose the most and least
humorous meme from among the four presented.
The examples of questions that were presented to
the annotators are listed in the appendix.

To ensure the quality of the annotations, the task
required workers to be located in the U.S., to have
a Human Intelligence Task (HIT) Approval Rate
greater than or equal to 98%, and to have at least
500 HITs previously approved. In addition, workers
were warned beforehand that the task may contain
adult content, as the “profanity filter” did not suffice
to eliminate all memes with explicit words.

3.3 Post-process
The resulting annotations were first processed to
calculate and compile their BWS scores to obtain
the raw dataset.

To ensure the quality of the annotations, the
following additional post-processing was performed
to produce the post-processed dataset.

• Only the annotations on which workers spent
more than ten seconds per question were used.

• Memes which annotators identified as “Not in
English” were not used.

• Only memes annotated by more than three
people annotated after the other two post-
processes were conducted, were used.

This filtering process has reduced the number
of human-annotated memes to 6,900 for the post-
processed dataset.

3.4 Refining to Filter-out Interpersonal
Differences in Perception of Humor

As previous studies have shown that perceptions
of humor may be influenced by individual person-
ality characteristics, we analyzed the correlation
between differences in BWS score (𝑑) and human
agreement (𝑎) to explore how this influence af-
fected our dataset. To do so, we first derived a
total of 39,045 hierarchical pairs from the 7,809
annotated four-tuples which were used to create
the post-processed dataset. (For example, when an
annotator chose 𝐴 as most humorous and 𝐷 as least
humorous from among four choices 𝐴, 𝐵, 𝐶, 𝐷,
we derived five hierarchical pairs 𝐴 > 𝐵, 𝐴 > 𝐶,
𝐴 > 𝐷, 𝐵 > 𝐷, and 𝐶 > 𝐷.) Then, for the 39,045
pairs that were retrieved, 𝑑 was defined as follows,

Figure 2: The figure shows the relationship between BWS
score difference and human agreement. Blue dots with a blue
connecting line represent the average human agreement 𝑎, and
black bars represent their standard errors.

given the calculated BWS scores of meme A (𝑆𝑎)
and B (𝑆𝑏).

𝑑 = |𝑆𝑎 − 𝑆𝑏 | (1)

Then, let us consider 𝑁𝑐 as the number of hierar-
chical pairs matching the hierarchical relationship
derived from the BWS score, and 𝑁𝑤 as the number
of hierarchical pairs which contradict the hierarchi-
cal relationship derived from the BWS score (e.g.,
given a pair of memes 𝐴 and 𝐵 with BWS score of
𝑏𝐴 = 1 and 𝑏𝐵 = −1, and if we derived the three
following hierarchical pairs (𝐴 > 𝐵), (𝐴 > 𝐵),
(𝐴 < 𝐵), then 𝑁𝑐 and 𝑁𝑤 would be 𝑁𝑐 = 2 and
𝑁𝑤 = 1). Human agreement 𝑎 is defined and
calculated as follows.

𝑎 =
𝑁𝑐

𝑁𝑐 + 𝑁𝑤
(2)

Finally, BWS score differences were binned with
a unit of Δ𝑑 = 0.07, and the average human agree-
ment scores were calculated. The result is shown
in Figure 2.

It was observed that for meme pairs with a BWS
score of more than 1.0, the average of human agree-
ment reached around 0.9, and for those with a
BWS score of more than 1.4, the average of human
agreement was close to 1.0.

Therefore, we conducted an additional refining
process to eliminate examples with BWS scores
between -0.5 and 0.5. This refined dataset can be
considered to contain memes that are mostly not
influenced by interpersonal differences in humor
perception. The refined dataset includes 1,450
annotated memes.
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(a) Relationships between BWS score and ranks for the dataset
before refinement.

(b) Relationship between BWS score and rank for the refined
dataset.

Figure 3: The figures show the relationship between BWS
score and rank for the refined dataset. Blue dots represent
examples of memes, and the red line indicates the hypothetical
case of a uniform distribution of BWS scores.

3.5 Dataset Statistics

Figure 3 shows the relationship between BWS score
and rankings of memes based on their BWS score
for the dataset before and after refinement. It may
be observed that before refinement, there were
fewer examples with a BWS score close to 1 or -1
compared to those close to 0.

In terms of the refined dataset, there was a large
gap between ranks 200 and 900. This means that
examples with a BWS score of 0.5 or -0.5 constituted
about half of the dataset, and examples with scores
more than 0.5 or less than -0.5 were uniformly
distributed.

In Figure 4, we provide two examples of memes
from the refined dataset. These are examples of
memes for which annotators were consistent regard-
ing their degree of humor.

(a) An example of memes
in the refined dataset with
a BWS score of 1.

(b) An example of
memes in the refined
dataset that has a BWS
score of -1.

Figure 4: This figure presents two examples of memes from the
refined dataset. Annotators were consistent in their evaluation
of the humor of these two memes.

To evaluate the consistency of the annotations
in each dataset, we examined split-half reliability
(SHR). SHR was calculated by first randomly split-
ting the annotation tasks into two halves. Thus,
of the 3,801 tasks published on AMT, 1,900 tasks
were designated as group A, and the other 1,901
tasks were designated as group B. Then, memes
in each group were subjected to post-processing
and the BWS scores of the memes were calculated
separately. Finally, we analyzed Spearman’s rank
correlation coefficient between two rankings of
memes based on the BWS scores calculated from
groups A and B. As may be observed from Figure
5, the refinement process was able to eliminate
examples that involved inconsistency in the percep-
tion of humor by annotators to improve the rank
correlation coefficient.

3.6 Comparison with Other Meme Datasets
A comparison between our newly created dataset
and some existing meme datasets is shown in Table
1. The ImgFlip575K Meme Dataset5 compiles
memes from the meme-generating website Imgflip6.
While this dataset is exceptionally large, it does
not include humor annotations by humans. The
Memotion Dataset 7k was created for the sentiment
analysis competition task in (Sharma et al., 2020).
Although this dataset includes humor annotations
created by human annotators, they were created
using a rating scale, which is known to create
biases in annotations (Kiritchenko and Mohammad,
2016). In comparison, our post-processed dataset
is comparable to the Memotion dataset in size,
while ensuring the reliability of annotations via the
comparative annotation method and filtering post-

5https://github.com/schesa/ImgFlip575K_Dataset
6https://imgflip.com/
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(a) Correlation between binned BWS scores for memes in
group A and group B for the dataset before refinement.

(b) Correlation between binned BWS scores for memes in
groups A and B for the refined dataset.

Figure 5: The figures show the correlation between BWS scores for memes in groups A and B. To obtain this figure, BWS scores
were binned in to 5 bins (-1 to -0.6, -0.6 to -0.2, -0.2 to 0.2, 0.2 to 0.6, 0.6 to 1). The darkness of each hexagon represents the
number of memes plotted in each spot, with darker shades representing more memes. The Spearman’s rank correlation coefficient
for the post-processed dataset was 0.01, whereas that of the refined dataset was 0.52.

processing. Finally, to the best of our knowledge,
our refined dataset is the only available dataset that
considers interpersonal differences in the perception
of humor and includes examples with consistent
annotations.

4 Meme Evaluation Model Based on the
Incongruity Theory

Studies have shown that many memes exhibit incon-
gruities between images and their captions, which
express humor (Yus, 2021). Therefore, we hypoth-
esized that a module designed explicitly to extract
incongruities between an image and its caption
would improve a model’s ability to classify whether
a given meme is humorous.

To extract incongruities between image and text,
we propose an incongruity extraction module con-
sisting of CLIP image and text encoder (Radford
et al., 2021), which is highlighted in orange in Fig-
ure 6. In this proposed method, a template image
and caption are each fed into the corresponding
pretrained CLIP encoder to obtain feature vectors
of both the image (𝒗I ∈ R512) and the caption
(𝒗T ∈ R512). Since pretrained CLIP encoders are
trained such that the encoded feature vectors of a
similar image and caption are located close to each
other in the same latent space, we hypothesized that
a feature vector 𝒗CLIP ∈ R512 calculated by equation
3 would include encoded semantic information on
the relativity of the input image to the input caption.

𝒗CLIP = 𝒗I − 𝒗T (3)

Figure 6: The figure shows an overview of the proposed method,
which combines a module designed to extract incongruity
between image and text with a ViLT encoder. In the incongruity
extraction module, highlighted in orange, feature vectors of
a template image and caption are extracted using the CLIP
image and text encoders. The two resulting feature vectors are
then subtracted and concatenated with the output of the ViLT
encoder to be fed into an MLP. The numbers written next to
the arrows represent the dimension of each vector.

We considered this information encoded in 𝒗CLIP

to be useful in determining the level of incongruity
between an image and its caption because image-
text incongruity can be considered as a type of
semantic relationship between image and text.

After obtaining 𝒗CLIP as a feature representing
incongruity between an image and a caption, 𝒗CLIP

is concatenated with the output features of a ViLT
encoder (𝒗ViLT ∈ R768) and fed into a multilayer
perceptron (MLP) model to predict whether a given
meme is humorous, as shown in Figure 6.
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Dataset Instances Humor Annotation
by Human

Annotation
Method

Ensured Reliability
of Annotation

Ensured Consistency
of Annotation

ImgFlip575K 575,948
Memotion 6,991 ✓ Rating-scale

Raw (Ours) 7,500 ✓ BWS
Post-processed (Ours) 6,900 ✓ BWS ✓

Refined (Ours) 1,450 ✓ BWS ✓ ✓

Table 1: Comparison of our datasets to other meme datasets. Our post-processed dataset is comparable to the Memotion Dataset
7k in size, with the advantages of guaranteed reliability via BWS and the additional filtering processes. Our refined dataset
ensures the consistency of the included humor annotations.

5 Experiments

5.1 Experimental Setting
To compare and evaluate the performance of the
proposed method with the other models compared
on the task of classifying humor in memes, we used
1,411 memes in the refined dataset with both upper
and lower captions.

To train and evaluate the models, we conducted
a ten-fold cross-validation, in which 1,411 memes
were randomly divided into ten subsamples such
that all memes with the same template image be-
longed to the same subsample. The memes were
distributed such that all subsamples had approxi-
mately the same amount of memes. The subsample
with a minimum number of memes had 131 memes,
and that with a maximum number had 153.

To evaluate the models, each model was trained
and evaluated ten times with the data divided into
training, validation, and testing sets with a ratio
of 8:1:1. For each evaluation step, the weight of
the model that achieved the highest classification
accuracy on the validation set was chosen to be
evaluated on the testing set. We recorded classifi-
cation accuracy scores calculated on ten different
testing sets.

In addition, to minimize the effect of random
initialization of the MLP model on the results of the
evaluation, we conducted ten-fold cross validation
with eight runs over different random seeds. There-
fore, a total of 80 accuracy scores were obtained
from each model, and the average accuracy score
and standard error for each model were used for
quantitative comparisons.

5.2 Models for Comparison
To validate the performance of the proposed model,
we experimented with two additional models.

The first model encoded meme template images
and captions into visual and textual features using
a pretrained ViLT model (Kim et al., 2021b). As

meme captions can be divided into upper and lower
captions, a [SEP] token was inserted between these
two parts before they were transformed into word
embeddings. The output features of the ViLT
encoder were then fed into an MLP model designed
to output the probability with which a given meme
could be classified as humorous.

In our proposed model, we supposed that the
subtracted features of CLIP represented incongruity
between an image and its caption, and considered
this useful to improve performance on the humor
classification task. To validate this statement, we
implemented another model which did not subtract
features provided by CLIP, but instead concatenated
both encoded features of images and their captions
to the ViLT output.

5.3 Parameters and Optimization Settings

All models in the experiment used three-layer MLPs
with two hidden layers with a dimension of 768.
A dropout layer with a dropout probability of 0.5
was added to all models to prevent overfitting. The
models were trained with the objective of minimiz-
ing the binary cross-entropy loss using the Adam
optimizer (Kingma and Ba, 2015). The weight
decay parameter was set as 0.01, and the learning
rate as 0.0001 for all models.

6 Results and Discussion

6.1 Quantitative Analysis

The result of the experiment is shown in Table 2.
From the Table, it was observed that the proposed
model (ViLT + CLIP incongruity) outperformed
all other models for comparison. First, the pro-
posed model was able to achieve around 5% better
results compared to the model using only ViLT.
This shows that the module designed to extract
incongruities between image and text improved per-
formance. Furthermore, the proposed model also
outperformed the model that used ViLT and full
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Model Accuracy

ViLT 53.0 ± 0.2

ViLT+CLIP full feature 56.7 ± 0.4

ViLT+CLIP incongruity 57.7 ± 0.4

Table 2: The table show results of humor classification perfor-
mance of the proposed model (ViLT + CLIP incongruity) and
the other models compared.

CLIP features. This further strengthens our propo-
sition that a model able to extract incongruities
between image and text performs well in evaluating
humor in memes, as the subtraction process of our
proposed model extracted incongruities more ex-
plicitly compared to the baseline model using full
CLIP features.

6.2 Qualitative Analysis
We also performed a qualitative analysis of the
results to explore the characteristics of the proposed
model. To conduct the analysis, we analyzed the
classification results of the same testing set for all
models used in the experiment.

We first recognized that both ViLT and the pro-
posed model were able to identify memes with
BWS scores greater than 0.7 as humorous with high
accuracy. Out of ten memes with a BWS score
greater than 0.7, ViLT was able to correctly identify
nine as humorous, and the proposed model was
able to correctly identify all ten. This signifies
that memes that almost all annotators agreed were
humorous were evaluated accurately by both ViLT
and the proposed model.

In addition, the proposed model also outper-
formed other models in evaluating memes with
BWS scores less than 0.7. Figure 7 shows two
examples of memes that only the proposed model
was able to correctly identify as humorous. The
two memes involve incongruity between the image
and the caption. The meme on the left is humor-
ous because of the incongruity of an adult man
making a childish statement about not wanting to
do homework. In addition, the meme on the right
also involves an incongruity between the image and
the caption; it shows an intimidating man with a
serious face, but the caption is pointing out a trivial
notion, mocking people who post their every meal
on social media.

In contrast, some examples of the analyzed
memes showed a limitation of the proposed model;
for some meme image templates, the proposed
model seems to have output the classification based

(a) This meme is humor-
ous because of the incon-
gruity of an adult man
making a childish state-
ment about not wanting
to do homework.

(b) This meme is humor-
ous because of the incon-
gruity between an intimi-
dating man with a serious
face and the trivial notion
of mocking people who
post their every meal on
social media.

Figure 7: The figures show two examples of memes with
image-caption incongruity, which only the proposed model
was able to correctly identify as humorous.

only on the image. For example, for all memes
created from a template image called “sad-trooper”,
the proposed model predicted the memes as not
being humorous regardless of their captions. While
we could not identify the cause of this limitation, it
is possible that for some template images, the image
feature vector obtained by CLIP was embedded in
a space far from the embedded vectors of other
meme image templates and captions. This would
produce subtracted feature vectors that are almost
the same for all memes with a given image template
regardless of their captions.

7 Conclusion

Constructing a computational system to evaluate hu-
mor in memes is difficult due to the lack of datasets
of memes with reliable and consistent humor annota-
tions and the complexity of searching and extracting
cross-modal incongruities between images and their
captions. To overcome these challenges, we first
created a dataset of memes annotated using BWS
and proposed a refining process which was able to
eliminate examples of memes affected by interper-
sonal differences in the perception of humor. Then,
we used the refined dataset to train and validate the
effectiveness of the proposed method, which was
designed to extract incongruities between images
and their captions to accurately classify whether
a given meme is humorous. The experimental re-
sults showed that the proposed model was able to
extract and utilize incongruities between images
and their associated captions to outperform other
multi-modal models on the humor classification
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task. This demonstrates the importance of using
features that represent incongruities when evaluat-
ing humor in memes. Possible future work includes
using the features representing incongruities not
only to evaluate but also to generate new humorous
memes from text or image input.
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A Appendix

A.1 AMT Interface for Annotating Humor in
Memes

In this section, we provide examples of the inter-
face shown to annotators of AMT to obtain humor
annotations of memes.

In Section 1 (questions 1 - 24), annotators were
first asked to select one of three choices on their

understanding of the meme provided, as shown in
Figure 8. Memes identified as not in English were
eliminated in the post-process.

Then, annotators were asked to write up to three
words in the caption that were necessary to un-
derstand the meme, as shown in Figure 9. If the
presented meme was not in English, the annotators
were asked to input “NIE” in the first box and leave
the other two boxes blank. It was designed such
that if an annotator entered a word that is not in the
meme presented, the interface would show an error
saying, "You may not input a word that is not in the
caption".

The two questions shown in Figure 8 and 9
were asked for 12 separate memes within a task,
constituting the first 24 questions presented to the
annotators.

Finally, in Section 2 (questions 25 - 27), an-
notators were asked to choose the most and least
humorous meme from among the four presented, as
shown in Figure 10. It was ensured that annotators
could not select the same meme as most and least
humorous. Memes presented in questions 25 - 27
are identical to the memes that were annotated in
questions 1 - 24.
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Figure 8: AMT interface asking annotators to select their understanding of the meme. Annotators were asked to choose whether
they understood the humor in the meme or if the meme was not in English. This question was used to filter-out memes that were
not in English. This question was asked for 12 separate memes in each task.
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Figure 9: AMT interface asking annotators to write up to three words that are necessary to understand the meme. This question
was used to extract important words to understand the humor in memes (humor anchor).
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Figure 10: AMT interface asking annotators to choose the most and least humorous meme out of the four presented. The
annotations were used to calculate the BWS score of each meme.
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