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Abstract
Whether neural networks are capable of com-
positional generalization has been a topic of
much debate. Most previous studies on this
subject investigate the generalization capabili-
ties of state-of-the-art deep learning architec-
tures. We here take a more bottom-up ap-
proach and design a minimal model that dis-
plays generalization on a compositional bench-
mark, namely, the gSCAN dataset. The model
is a hybrid architecture that combines lay-
ers trained with gradient descent and a selec-
tive attention mechanism optimized with an
evolutionary strategy. The architecture has
around 60 times fewer trainable parameters
than models previously tested on gSCAN, and
achieves comparable accuracies on most test
splits, even when trained only on a fraction of
the dataset. On adverb to verb generalization
accuracy, it outperforms previous approaches
by 65 to 86%. Through ablation studies, neu-
ron pruning, and error analyses, we show that
weight decay and attention mechanisms facili-
tate compositional generalization by encourag-
ing sparse representations divorced from irrel-
evant context. We find that the model’s sample
efficiency can mainly be attributed to its selec-
tive attention mechanism.

1 Introduction

Compositionality is a core aspect of human cogni-
tion. It is what allows us to produce and understand
infinite combinations of known concepts, be it in
the realm of language, vision, or motor skills. Re-
garding artificial intelligence (AI) systems, compo-
sitionality holds the promise of more human-like,
robust generalization on out-of-distribution data, as
well as increased sample efficiency. Composition-
ality in neural networks has thus been the subject
of numerous empirical investigations – with mixed
results. Several studies using a variety of deep neu-
ral network architectures have found that models
either failed on compositional tasks or succeeded
given enough data, but could do so without relying

on systematic compositional rules (Baroni, 2020;
Lake and Baroni, 2018; Loula et al., 2018; Subra-
manian et al., 2019; Keysers et al., 2019; Hupkes
et al., 2020; Andreas et al., 2019; Chaabouni et al.,
2020). Others found that such architectures could
reach compositional solutions without being explic-
itly constrained to do so, but that this ability varied
dramatically across random initializations of the
same model (Liška et al., 2018; McCoy et al., 2020;
Weber et al., 2018).

The main focus of these studies has been on
testing whether state-of-the-art deep learning archi-
tectures are able to learn compositionally. We here
take a different approach, namely that of specifi-
cally building a minimal model that is able to solve
a set of compositional generalization tasks, then
using this model as a tool for analyzing when and
how generalization occurs. Our dataset of choice
for this investigation is gSCAN, a challenge bench-
mark for systematic generalization in grounded
language understanding.

The model we use is a hybrid architecture, con-
taining some weights that are trained with gradient
descent, some that are optimized with an evolu-
tionary strategy, and some that are initialized ran-
domly and left frozen. A detailed justification of
these design choices is given in Section 4.2. The
architecture has around 60 times fewer trainable pa-
rameters than models previously tested on gSCAN,
which allows us to run extensive ablation studies
and error analyses to investigate factors contribut-
ing to generalization performance. We find that our
best-performing model breaks down the gSCAN
tasks into simpler, reusable parts and combines
them using only 13 neurons in its final decision
layer. It achieves accuracies comparable with pre-
viously proposed models on most test splits and
outperforms them on adverb to verb generalization
by 65 to 86%, even when trained on as little as 2%
of the full dataset.
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2 Related Work

2.1 Compositional Generalization
A number of works have addressed the challenge
of building AI systems that generalize composition-
ally. Neural Module Networks were designed for
visual question answering and achieve systematic-
ity by dynamically assembling question-specific
models out of trainable reusable components (An-
dreas et al., 2016a,b). Other approaches explore
ways of encouraging compositional representations
in commonly used state-of-the-art models without
major architectural changes. In this vein, Hupkes
et al. (2018) and Baan et al. (2019) find that atten-
tive guidance during training helps develop small
functional groups of neurons that yield more com-
positional solutions by seq2seq models on lookup
table tasks. Andreas (2020) and Akyürek et al.
(2020) propose data augmentation schemes that
promote compositional learning in instruction fol-
lowing and morphological analysis. Ontanon et al.
(2022) focus on the effect that design decisions
such as position encodings, weight sharing, or
model hyper-parameters can have on the composi-
tional generalization abilities of Transformer mod-
els. Finally Power et al. (2021) identify weight
decay as being particularly effective at improving
generalization on a binary operation table task.

2.2 Grounded instruction following
Several datasets have been proposed in recent years
for training embodied agents to follow instructions
in simulated 2D or 3D environments (Hermann
et al., 2017; Yu et al., 2018a; Misra et al., 2018;
Chaplot et al., 2018; Yu et al., 2018b; Deruyt-
tere et al., 2019; Chevalier-Boisvert et al., 2019;
Shridhar et al., 2020). One such task is gSCAN,
which was specifically introduced as a benchmark
for compositionality in grounded language under-
standing and contains 8 test splits for assessing
different kinds of out-of-distribution generalization
(Ruis et al., 2020). Previous approaches to solv-
ing gSCAN include language-conditioned message
passing (Gao et al., 2020), compositional networks
(Kuo et al., 2021), neuro-symbolic, dual-system
models (Nye et al., 2021), and the introduction of
auxiliary tasks (Jiang and Bansal, 2021; Heinze-
Deml and Bouchacourt, 2020). The most success-
ful model to date uses a general-purpose Trans-
former architecture with cross-modal attention and
solves 5 out of 8 tasks (Qiu et al., 2021).

As outlined in the introduction, our goal is not

necessarily to compete with these previous ap-
proaches. Instead we aim to devise a parameter-
efficient model that can serve as a tool for a more
in-depth investigation of the factors influencing per-
formance on the different gSCAN test splits, and
to contextualise the results with previous findings
on out-of-distribution generalisation.

2.3 Neuroevolution

Evolutionary algorithms (EA) are stochastic,
gradient-free methods that explore multiple areas
of a search space in parallel. This work was par-
ticularly inspired by Tang et al. (2020), who com-
bine neuroevolution techniques with self-attention
to solve vision-based RL tasks. Their model ex-
tracts relevant patches from input images through a
hard (non-differentiable) attention mechanism, op-
timized via an EA rather than more commonly used
techniques like RL. The most attended-to patches
are then passed on to an LSTM controller which
determines the agent’s action. The authors find that
this approach significantly reduces the number of
model parameters needed compared to previous
methods, as well as offering increased interpretabil-
ity and higher robustness to out-of-distribution
modifications (Tang et al., 2020).

3 Background

Our architecture makes use of an Echo-State Net-
work (ESN) and the covariance matrix adaptation
evolution strategy (CMA-ES) to reduce the number
of learnable parameters needed (see Section 4.2).
As both are not commonly used in NLP, we here
provide some background on these techniques.

3.1 Echo-State Networks

A basic ESN consists of an input layer W r
i , a recur-

rent neural network (RNN) or so-called reservoir,
and an output layer Wo. The reservoir’s state is
updated at each discrete time step as follows:

x[n+ 1] =(1− α)x[n] + αf
(
W r
i u[n]

+W r
r x[n]

)
, (1)

where α is a leak rate, x[n] is the current reser-
voir activation state, f is a the hyperbolic tangent
function, u[n] is the external input, and W r

r is the
reservoir’s internal weight matrix. The ESN’s out-
put is computed as

y[n+ 1] =g(Wox[n+ 1]), (2)
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where g is an activation function. Crucially, W r
i

and W r
r are randomly initialized and left untrained.

Only Wo is optimized. This leads to considerably
faster training times than for conventional RNNs
where all weights are learned (Gauthier et al., 2021).
ESNs’ main areas of application therefore include
resource-constrained contexts like robotics and
edge computing (Nakajima, 2020).

3.2 CMA-ES

CMA-ES is a black-box optimization algorithm. It
has been empirically shown to perform robustly
on a range of tasks and requires very little pa-
rameter tuning (Hansen et al., 2010), making it
the EA of choice for optimizing the model in
Tang et al. (2020) which inspired our architecture.
CMA-ES works by iteratively sampling λ candi-
date solutions from a multivariate normal distribu-
tion N (m,σ2, C) with mean m, step size σ and
covariance matrix C. At each generation, the can-
didate solutions’ fitness is evaluated according to
some function f , and m, σ, and C are adjusted to
increase the probability of success. As the CMA-
ES algorithm is not a main focus of this work, we
relegate details on how the parameters are updated
to Appendix A and refer the interested reader to
Hansen and Ostermeier (2001) for a more in-depth
description of the method.

4 Experiment setup

4.1 gSCAN Benchmark

The gSCAN environment is a grid with objects
of various shapes, sizes, and colors. It is repre-
sented as a 16 × 6 × 6 array, where 6 is the grid
size and 16 is the dimension of the binary feature
encoding for each grid cell. The agent receives
synthetically generated English language instruc-
tions which it must carry out using 6 output actions,
such as walking or turning. Some combinations
are held out of the training set. Out-of-distribution
generalization is then assessed on nine separate
test splits, listed in Table 1, measured using exact
match accuracy of predicted action sequences. The
full dataset has ≈ 370, 000 training and ≈ 20, 000
test sequences. Hupkes et al. (2020) propose to
distinguish between five interpretations of model
compositionality, namely, the systematic recom-
bination of known parts and rules (systematicity),
the extension of predictions beyond lengths seen
during training (productivity), robustness to syn-
onym substitutions (substitutivity), dependence on

Table 1: Overview of gSCAN’s compositional test
splits

Test Split Held-out Examples

A: Random Random (in-distribution)

B: Yellow Squares
Yellow squares as targets if
referred to as yellow

C: Red Squares Red squares as targets
D: Novel Direction Targets south-west of the agent

E: Relativity
Circles of size 2 referred to as small
(references are relative to other grid
objects, not tied to absolute sizes)

F: Class inference
Pushing squares of size 3 (heavy
objects are pushed/pulled twice)

G: Adverb k = 1
All except k mentions of cautiously
(looking both ways before each step)

H: Adverb to verb
Commands containing both pull and
while spinning (turning 4 times)

I: Length Action sequences of length ≥ 15

local vs global structures (localism), and the pref-
erence for rules vs exceptions (overgeneralization).
Following this taxonomy, split G tests the model’s
one-shot learning capabilities, or overgeneraliza-
tion. Split I tests for productivity. We mainly con-
sider splits B, C, D, E, F, and H, which focus on
systematic generalization and substitutivity.

4.2 Model
To solve a gSCAN task, the agent requires knowl-
edge of the command to carry out, the grid state,
and its own past actions. The latter is needed to
keep track of e.g. the number of turns completed
when “spinning". In the following, we describe
how these inputs are represented and processed.

Reservoir To create the representation of the
language command we chose an ESN, due to its
ability to capture information about all input words
and their order in a single vector, without requiring
any weight updates. This fit our goal of keeping the
number of trainable parameters low. The instruc-
tion to the agent is tokenized, one-hot encoded, and
input sequentially to a reservoir with 400 hidden
neurons, which is updated after each token accord-
ing to Equation 1. All reservoir neurons are ran-
domly connected to an output layer Wo of size 64,
yielding a 64-dimensional command embedding.

Selective attention The selective attention part
of the model is responsible for extracting task-
relevant information from the input grid. The com-
mand embedding xlang ∈ R1×64 is passed through
a layer Wlang ∈ R64×16. The resulting vector is
convolved with the input grid at each position to
obtain a heatmap over grid G ∈ R16×6×6. The x-
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and y-coordinates and the 16-dimensional feature
vector for the most-attended grid cell g∗ are then
extracted:

g∗ = argmax
(
(xlang ·Wlang) ∗G

)
(3)

Because this argmax operation is non-
differentiable, we follow Tang et al. (2020)’s
approach of using CMA-ES to optimize Wlang.
However, in contrast to Tang et al., we apply the
attention matrix to feature vectors rather than
image patches, and we do not evolve all learnable
parameters in our model. This is because our
model has significantly more parameters than that
of Tang et al. and the time and space complexity
of CMA-ES is quadratic in the dimensionality of
its objective function – restricting its application
to problems with no more than a few hundred
variables (Varelas et al., 2018). Therefore, only this
selective attention part of the model is optimized
using CMA-ES. The rest is trained using gradient
descent. Inspired by joint attention mechanisms
and parental guidance during child learning, the
CMA-ES receives auxiliary feedback on whether
the correct target object was most attended to.
We also test and report the results for a version
where the CMA-ES receives as feedback the
cross-entropy loss produced by the agent’s final
prediction outputs (see Section 5.1).

Action attention The action attention part of
the model serves as the agent’s “memory" of
past outputs. The command embedding under-
goes self-attention, yielding a weighted embedding
alang ∈ R1×64. This is then passed through another
attention layer Wact ∈ R64×200 and multiplied
element-wise with a vector xact ∈ R200×1 contain-
ing the agent’s one-hot encoded past 20 actions and
orientations:

aact = (alang ·Wact)� xact (4)

As there is no argmax operation involved, Wa is
trained with conventional gradient descent.

Controller Finally, the outputs of the selective
and action attention modules are concatenated with
the agent’s current x- and y-coordinates and orien-
tation, as well as the unweighted command embed-
ding and input to the agent’s controller to predict
the agent’s next step. The controller consists of a
layer normalization layer, a layer with 100 hidden
ReLU units, and an output layer of size 6.

In total, the model has a little under 5 · 104 train-
able parameters, compared to around 3 · 106 for
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Figure 1: Schematic visualization of the proposed
model

models previously tested on gSCAN (Qiu et al.,
2021). A schematic overview is shown in Figure 1.

4.3 Training details

The weights of the ESN were initialized with a
spectral radius of 0.99 and a density of 1e− 2. The
leaking rate was set to 1e − 1. For the CMA-ES,
we used a population size of 8 and an initial nor-
mal distribution with standard deviation 1e − 1.
Optimization was implemented with the pycma
library1. For the part of the model trained via gra-
dient descent, we used the Adamax optimizer and
a learning rate cycle with an upper boundary of
1e− 2. Weight decay was set to 1e− 4 and models
were trained with batch size 4,096 for 100 epochs
unless otherwise specified. All performance results
are based on 10 runs. Each run used a different ran-
dom seed for model weight initialization. However,
the same 10 seeds were used for all tested modi-
fied or ablated architectures, so that all compared
models started with the same 10 sets of weights.
Experiments were implemented in Pytorch2 and
run on a server with 4 NVIDIA RTX 3090 GPUs
and a 24 core Epyc CPU. The training time for
one model was approximately 1.3 hours on the full

1pypi.org/project/cma/
2pytorch.org
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dataset, 16 minutes on the 10% subset, and 9 min-
utes on the 2% subset. Code is publicly available
at https://github.com/lemonk6/minmodgscan.

5 Results

5.1 Performance

As shown in Table 2, the model with auxiliary at-
tention feedback reaches competitive accuracy on
splits A, C, E, and F. On split H, it outperforms
previous proposals by 65 to 86%. To see if gener-
alization extended to other combinations, we also
tested two custom splits. The first is a variation of
task C, where not only red squares, but also yellow
squares, green cylinders, and blue circles never ap-
pear as targets during training. The second is an ex-
tension of split H, where in addition to “pull while
spinning", the agent is never told to “push while
zigzagging" or to “walk hesitantly" during train-
ing. The model generalized to test sets containing
only held-out shape-color and verb-adverb combi-
nations, reaching 98.7% ± 1.5 and 98.9% ± 0.5
accuracy, respectively.

Table 3 compares the performance of models
trained with and without an auxiliary feedback sig-
nal as well as models receiving perfect target lo-
cation inputs, for reference. As can be seen, the
model without an auxiliary signal does learn to fo-
cus on the target in some cases, but performance
across the 10 runs exhibits a high variation. We
also test a model which instead of absolute loca-
tions receives agent-centric row- and column-wise
distances as input, which is sometimes used in RL
goal navigation tasks. This stronger inductive bias
seems to force the agent to more reliably employ
the selective attention mechanism for target loca-
tion, even when it only receives indirect feedback
in the form of cross-entropy loss. Detailed evalua-
tion results are given in B.

5.2 Sample Efficiency

One of the main advantages of our model is its sam-
ple efficiency. As shown in Figure 2, it achieves
around 90% accuracy on splits A and C when
trained on only 1% of the dataset, and 90 - 97%
accuracy on splits A, C, E, and F with 2% of the
data. This is well below the 40% data requirement
threshold identified by Qiu et al. (2021) for their
cross-modal transformer model. Interestingly, the
exact match accuracy on splits B and C peaks at
the 10% subset and declines slightly when given
more data – something we take a closer look at in

Figure 2: Sample efficiency on test splits for models
with selective attention and auxiliary feedback

Section 5.3. Performance on task H increases more
slowly than on other splits and requires at least 10%
of the dataset to surpass 90% accuracy.

5.3 Error Analyses
Attention: We first analyze the mistakes made by
the models trained without auxiliary feedback by
treating the task of focusing on the correct target
as a classification, and analyzing the feature-wise
confusion matrices of the models. This reveals
an accumulated false discovery rate of 66.5% for
the “agent" dimension of the grid cell feature vec-
tors, compared to 0% for the models trained with
feedback. This means the models without attentive
guidance tend to overly focus on the agent. The
location of the agent does coincide with the target
object’s location around 18% of the time, which
might lead to an overreliance on this dimension.
We also find that the models trained without atten-
tion supervision struggle more with under-specified
commands. For example, the models focus on an
object of the correct color in ca. 96% of cases when
the color is explicitly mentioned in the command.
When the target object is only referred to by its
shape or size, the accuracy drops to about 90%.
Detailed confusion matrices can be found in D.1.

Yellow squares: In the case of split B, perfor-
mance exhibits a large variation across instantia-
tions of the same model. Out of 10 runs, approxi-
mately half always achieve accuracies in the range
of 90 - 99% while the others only reach 35 - 55%.
The best performance is achieved with a 10% sub-
set of the training set, where all ten models reach
at least 60% accuracy. A look at the confusion
matrices shows that, on average, models correctly
identify a square as their target object in 97% of
test cases. However, their color accuracy is only
around 75%. Taken together, this suggests that the
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Seq2Seq
(2020)

GECA
(2020)

Heinze
(2020)

Gao
(2020)

Kuo
(2020)

Qiu
(2021)

Jiang
(2021)

Nye
(2021)

Ours
(100%)

Ours
(10%)

A 97.69± 0.2 87.60± 1.2 94.19± 0.7 98.60± 1.0 96.73± 0.6 99.95 ± 0.0 - 74.7 99.7± 0.1 99.5± 0.1
B 54.96± 39.4 34.92± 39.3 86.45± 6.3 99.08± 0.7 94.91± 1.3 99.90 ± 0.1 - 81.3 73.5± 25.4 81.6± 14.3
C 23.51± 21.8 78.77± 6.6 81.07± 10.1 80.31± 24.5 67.72± 10.8 99.25 ± 0.9 - 78.1 99.4± 0.4 99.5± 0.2
D 0.00± 0.0 0.00± 0.0 - 0.16± 0.1 11.52± 8.2 0.00 ± 0.0 - 0.0 2.2± 1.5 3.5± 2.7
E 35.02± 2.4 33.19± 3.7 43.43± 7.0 87.32± 27.4 76.83± 2.3 99.02 ± 1.2 - 53.6 97.4± 2.0 96.8± 1.9
F 92.52± 6.8 85.99± 0.9 - 99.33± 0.5 98.67± 0.1 99.98 ± 0.0 - 76.2 99.1± 0.6 98.3± 1.7
G 0.00± 0.0 0.00± 0.0 - - 1.14± 0.3 0.00 ± 0.0 4.9 0.00 0.00± 0.0 0.0± 0.1
H 22.70± 4.6 11.83± 0.3 - 33.6± 20.8 20.98± 1.4 22.2± 0.01 28.0 21.8 98.4± 1.1 94.2± 3.7

Table 2: Exact match accuracy on gSCAN compositional splits. For our proposed model, we report both the
performance of models trained on the full dataset and of those trained on a 10% subset.

Table 3: Exact match accuracy and attention match ac-
curacy on gSCAN compositional splits for models with
selective attention, optimized with and without auxil-
iary feedback.

perfect att. w/o aux. signal
abs. loc.

w/o aux. signal
rel. dist.

seq.
match

seq.
match

att.
match

seq.
match

att.
match

A 100.0 ± 0.0 59.3 ± 29.1 74.2 ± 21.4 83.0 ± 3.4 92.8 ± 2.2
B 100.0 ± 0.0 50.8 ± 21.1 61.6 ± 17.0 59.5 ± 15.7 70.0 ± 16.7
C 100.0 ± 0.0 70.0 ± 29.5 73.8 ± 24.8 89.7 ± 9.3 91.1 ± 8.4
D 1.9 ± 1.7 0.1 ± 0.2 66.6 ± 28.9 0.8 ± 0.9 91.3 ± 2.6
E 100.0 ± 0.0 50.3 ± 20.4 62.1 ± 17.9 74.1 ± 6.2 84.1 ± 7.6
F 100.0 ± 0.0 52.6 ± 25.0 70.4 ± 20.7 67.5 ± 9.3 84.4 ± 8.0
G 0.0 ± 0.0 0.0 ± 0.0 63.0 ± 15.7 0.0 ± 0.0 73.0 ± 5.8
H 99.3 ± 1.0 37.5 ± 20.2 74.4 ± 14.9 56.4 ± 6.2 89.9 ± 3.9

models overfit to the absence of yellow squares.
Depending on the random initialization of its selec-
tive attention matrix, a model may be more or less
predisposed to generalization on this task. In the
absence of any samples with yellow squares that
could cause a course correction, this predisposi-
tion may be exacerbated with each update and thus
deteriorate performance in the higher-data regimes.

Novel direction: Similar to previous architec-
tures tested on gSCAN, our model has no trouble
identifying the correct targets in split D (Ruis et al.,
2020; Qiu et al., 2021). Its attention match accu-
racy is 100%. However, it cannot navigate to the
identified target successfully. On average, it ends
up in the correct row in 44% of cases, in the right
column in 23% of cases, and never both.

5.4 Ablations

Weight Decay and Action Attention: As shown
in Table 4, ablating weight decay or attention over
past steps causes the most pronounced performance
drops in splits E, F, and H. To compare structural
differences between the ablated models, we per-
form a neuron pruning experiment (detailed results
in C). For every neuron in the trained models’ final
hidden layer, we record the product of its activation
and outgoing weights at each step when processing
a 2% subset of the training set. We then disable

neurons in ascending order of contribution to the
models’ outputs and assess the pruned model’s ex-
act match accuracy. All full models require only 13
hidden neurons to solve all tasks. Without attention
over past actions, 16 neurons are needed to reach
the final accuracy. Models without weight decay
rely almost equally on all 100 neurons. Pruning
any of them leads to decreased performance.

This difference in learned representations is also
illustrated in Figure 3, which shows the weights be-
tween the agent’s past actions and the hidden layer
of three identically initialized models with different
ablations applied. The model with weight decay
and action attention learns the most sparse weights
and focuses on recent steps. The hidden model
without action attention has a similarly sparse hid-
den layer, but a longer "memory", i.e., it takes into
account past actions from further back in the step
sequence. The model without weight decay is very
densely connected.

Selective Attention: To investigate the effect of
selective attention, we train a soft attention version
of the model. Instead of the isolated feature vector
of the most attended grid cell, this model receives
the attention-weighted whole grid as input, similar
to the action attention mechanism. To account for
the higher dimensionality of the input, we increase
the number of neurons in the hidden units to 500.
The relative amount of neurons needed to reach

full
model

w/o weight
decay

w/o action
attention

w/o selective
attention

A 99.7± 0.1 92.5± 1.8 92.2± 2.5 89.6± 3.3
B 73.5± 25.4 74.2± 12.9 73.0± 21.1 69.5± 21.8
C 99.4± 0.4 95.9± 3.0 92.9± 7.6 78.6± 17.1
D 2.2± 1.5 0.1± 0.1 0.0± 0.0 0.3± 0.6
E 97.4± 2.0 73.9± 8.2 85.7± 6.6 72.1± 2.3
F 99.1± 0.6 73.7± 7.8 80.6± 9.3 81.6± 9.9
G 0.0± 0.0 0.4± 0.2 0.0± 0.0 0.0± 0.0
H 98.4± 1.1 39.5± 14.5 23.8± 3.7 65.5± 13.1

Table 4: Exact match accuracy on gSCAN composi-
tional splits for ablated models
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Figure 3: Weights between the agent’s past actions and
the model’s hidden layer, as learned by (a) the full
model, (b) the model with weight decay but no action
attention, and (c) the model with action attention but no
weight decay

Figure 4: Sample efficiency on test splits for models
without selective attention

full accuracy is similar to the model without action
attention – around 18%. Performance-wise, the
ablation causes a drop-off across the board but still
achieves around 90% accuracy on in-distribution
data when trained on the full dataset. However, the
sample efficiency is greatly reduced (see Figure 4).
I.e., models need to have seen a greater number of
input combinations to start generalizing. This is
also supported by a comparison of the confusion
matrices for models with and without selective at-
tention via a χ2-test on split A (details in D.2).
By far the most over-represented feature among
misclassifications by the soft-attention model, as
measured by standardized residuals, is the “square"
dimension. Since squares are held out for splits
B, C, and F, this shape is underrepresented in the
training set. The model thus sees fewer examples
during training, which seems to affect its ability to
generalize to new combinations involving squares
even for in-distribution data.

5.5 “Spontaneous" Generalization

During our ablation studies, we observed that gen-
eralization to the “adverb to verb" split did occur
frequently in models without weight decay and ac-
tion attention, but not in a linear fashion. As shown
in Figure 5, performance on split H would spike on
one training batch, then fall again. Higher system-
atic generalization ability is not necessarily evident
from looking at the performance on in-distribution
data – two models may have the same train loss or
test accuracy, but very different out-of-distribution
accuracies. Such spurious generalization behavior
may also explain the variation in performance on
split H observed by Gao et al. (2020) and Jiang and
Bansal (2021).

One reason often cited for unstable generaliza-
tion is sharp local minima (Keskar et al., 2017).
However, a visualization of the loss landscape of
the models at various points during training shows
relatively flat planes. The landscapes for training
and “adverb to verb" data are simply well aligned
for some model-batch combinations, and less so
for others (see Figure 6). We also investigated
whether the batches used to update the models im-
mediately before out-of-distribution performance
spikes had any special properties that would fa-
cilitate generalization. We saved batches that pre-
ceded an increase on split H accuracy of at least
5%, injected them randomly into the training of
other models, and recorded the difference in perfor-
mance caused. However, we found no statistically
significant improvement over random batches, and
no statistically significant differences in feature or
label distributions of such “spike" batches.

We did find that batch size had an impact on the
likelihood of generalization spikes. We trained 10

2github.com/marcellodebernardi/
loss-landscapes

Figure 5: Accuracy on split H over the course of train-
ing for a model without action attention
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Figure 6: Examples of loss landscapes for models
trained without weight decay, visualized with the loss-
landscapes library 3. Lower planes show the landscapes
for a random training batch of size 256. Upper planes
show the landscapes for the entire “adverb to verb"
split. For some model-batch combinations, the two
align well (left). For others, less so (right).

models without weight decay on 5 different batch
sizes using a 2% subset of the training data. All
models were trained for the same number of ab-
solute updates. For all batch sizes, the random
initialization of the ten models used the same ran-
dom seeds. We then sampled the models’ perfor-
mance on split H at 50 points in regular intervals
during training. As shown in Figure 7, generaliza-
tion performance with smaller batches was higher
but more volatile. Comparing the distribution of
sampled “adverb to verb" accuracies across batch
sizes yielded statistically significant Z-scores > 2
between batch sizes ≤ 512 and ≥ 2048. This is
consistent with previous findings that smaller batch
sizes facilitate better generalization (Smith and Le,
2018; Keskar et al., 2017; Smith et al., 2018; Hof-
fer et al., 2017; Masters and Luschi, 2018). Details
on statistical tests are given in E.

6 Discussion

The core of systematic generalization, namely, the
ability to flexibly compose known parts, is not
something neural networks seem incapable of – as
long as they receive atomic units as inputs that are
separated from irrelevant context. Otherwise, they
may overfit and learn solutions that only perform
well on in-distribution data. Seen from this per-
spective, factors identified as helpful to generaliza-
tion, both in the literature and in this study, are all
mechanisms that can contribute to learning atomic
input units. Weight decay facilitates this by serv-
ing as a kind of inductive simplicity bias (Power
et al., 2021; Kirk et al., 2021). So do soft attention
mechanisms, which filter out irrelevant inputs. So
does the hard attention bottleneck employed in this
paper, by decoupling content, which is only rele-

Figure 7: Distributions of split H accuracy sampled dur-
ing training, for 5 different batch sizes

vant for target identification, from location, which
is only relevant for navigation (Heinze-Deml and
Bouchacourt, 2020; Dubois et al., 2020).

7 Conclusion

In summary, we build on Tang et al.’s neuroevo-
lution approach to selective attention and embed
it in a hybrid model. We apply this model to the
task of systematic generalization in grounded in-
struction following and explore the effect of vari-
ous design decisions on out-of-distribution perfor-
mance. We find that weight decay and attention
mechanisms facilitate compositional generalization
by encouraging sparse representations divorced
from irrelevant context, and that selective atten-
tion dramatically improves the model’s sample effi-
ciency. We also find that, even without weight de-
cay and attention, generalization performance may
improve sporadically during training independent
of in-distribution accuracy, especially with smaller
batch sizes. Studies on out-of-distribution general-
ization should therefore employ a sufficiently high
number of training runs to obtain a reliable estimate
of a models’ generalization robustness.

Although our architecture is specific to the
dataset at hand, the factors contributing to its per-
formance are consistent with related work on sys-
tematic generalization and likely to apply to other
situations as well. However, compositional gener-
alization encompasses a wide range of skills and
even within systematic generalization, solving one
task, e.g., recombining shapes and colors, may not
translate to another, e.g. recombining directions.
Several gSCAN tasks remain unsolved and likely
require different inductive biases than the ones pre-
sented here. We hope that this closer look at the
minimal requirements for generalization on the var-
ious gSCAN test splits can inform future work on
this benchmark going forward.
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A Background on CMA-ES

CMA-ES begins by sampling λ individual solu-
tions x(g+1)

1 , ..., x
(g+1)
λ from a multivariate Gaus-

sian distribution N
(
m(g), σ(g)

2
C(g)

)
with mean

m(g), step size σ(g) and covariance matrix C(g).
The initial mean, step size and covariance matrix
are then adapted iteratively to increase the likeli-
hood of successful solutions as evaluated by some
function f . Mean adaptation is done by shifting m
by the weighted average of the µ best solutions of
generation g (Shala et al., 2020):

m(g+1) = m(g)+cm

µ∑

i=1

wi
(
x
(g+1)
i:σ −m(g)

)
, (5)

where cm is a learning rate. The new step size σ
is determined as follows (Shala et al., 2020):

σ(g+1) = σ(g)exp

(
cσ
dσ

(
‖p(g+1)

σ ‖
E‖N (0, I)‖ − 1

))
,

(6)
where cσ is a separate learning rate, dσ is a

damping parameter, and p
(g+1)
σ is the next gen-

eration’s conjugate evolution path computed as
(Hansen et al., 2003):

p(g+1)
σ = (1− cσ) · p(g)

σ

+
√
cσ · (2− cσ) ·

√
µ

σ(g)
(
x(g+1)
µ − x(g)µ ).

(7)

Finally, the covariance matrix is updated
(Hansen et al., 2003):

C(g+1) = (1− ccov) · C(g)

+ ccov · p(g+1)
c

(
p(g+1)
c

)T
, (8)

where ccov is another learning rate.

B Detailed Evaluation Results

Parameter Size
Hidden layer 28,800
Layer normalization weights 100
Layer normalization biases 100
Output layer 600
Selective attention key matrix 1,024
Self-attention key matrix 4,096
Action attention key matrix 12,800
Total 47,520

Table 5: Overview of our model’s trainable parameters

0.01 0.02 0.1 0.5 1.0

A 0.996± 0.002 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
B N/A N/A N/A N/A N/A
C N/A N/A N/A N/A N/A
D 0.000± 0.000 0.000± 0.000 0.034± 0.032 0.021± 0.025 0.019 ± 0.017
E 0.997± 0.001 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
F 0.995± 0.002 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
G 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000
H 0.610± 0.182 0.790± 0.165 0.999± 0.001 0.988± 0.028 0.993± 0.01

Table 6: Sequence match accuracies on gSCAN com-
positional splits with perfect selective attention trained
on 1%, 2%, 10%, 50%, and 100% of the dataset

Att. Match Exact Match
Exact Match
if Att. Match

A 0.951± 0.015 0.925± 0.018 0.988± 0.006
B 0.786± 0.128 0.742± 0.129 0.988± 0.012
C 0.965± 0.028 0.959± 0.03 1.000± 0.000
D 0.934± 0.021 0.001± 0.001 0.001± 0.002
E 0.839± 0.109 0.739± 0.082 0.909± 0.066
F 0.878± 0.054 0.737± 0.078 0.886± 0.049
G 0.718± 0.07 0.004± 0.002 0.006± 0.003
H 0.918± 0.033 0.395± 0.145 0.441± 0.171

Table 7: Sequence and attention match accuracies on
gSCAN compositional splits with selective attention
but without weight decay (trained on the full dataset)

Att.
Match

Exact
Match

Exact Match
if Att. Match

A 0.947± 0.020 0.922± 0.025 0.996± 0.002
B 0.781± 0.188 0.730± 0.211 1.000± 0.000
C 0.947± 0.066 0.929± 0.076 1.000± 0.000
D 0.931± 0.027 0.000± 0.000 0.000± 0.000
E 0.901± 0.058 0.857± 0.066 0.996± 0.003
F 0.863± 0.073 0.806± 0.093 0.994± 0.005
G 0.772± 0.072 0.000± 0.000 0.000± 0.000
H 0.919 ± 0.032 0.238 ± 0.037 0.272 ± 0.034

Table 8: Sequence and attention match accuracies on
gSCAN compositional splits with selective attention
but without action attention (trained on the full dataset)
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Att. Match Exact Match
Exact Match
if Att. Match

Pull while spinning,
Push while zigzagging,
Walk hesitantly

0.982± 0.008 0.989± 0.005 0.996± 0.002

H:Adverb to verb 0.996± 0.003 0.93± 0.059 0.943± 0.055

Table 13: Sequence and attention match accuracies
on additional held-out verb-adverb combinations and
split H with selective attention and auxiliary feedback
(trained on the full dataset)

Att. Match Exact Match
Exact Match
if Att. Match

Red squares,
Yellow squares,
Green cylinders,
Blue circles

0.991± 0.013 0.987± 0.015 1.000± 0.000

B:Yellow squares 0.855± 0.144 0.829± 0.165 1.000± 0.000
C:Red squares 0.996± 0.006 0.992± 0.007 1.000± 0.000

Table 14: Sequence and attention match accuracies
on additional held-out shape-color target combinations
and splits B and C with selective attention and auxiliary
feedback (trained on the full dataset)

C Neuron pruning

For each neuron in the final hidden layer of the
model, we recorded its activation, multiplied by
its outgoing weight (no biases were used in the
model, except in the layer normalization layer).
We then sorted neurons based on their accumulated
contribution to the final model output and tested
exact sequence accuracy on the gSCAN dev set
with the top X% of neurons active. The rest were
disabled by setting outgoing weights to 0. Detailed
results are shown in Table 15.

% of top hidden
neurons active

unablated
model

w/o action
attention

w/o selective
attention

w/o weight
decay

10% 0.538 ± 0.054 0.354 ± 0.096 0.576 ± 0.054 0.042 ± 0.023
11% 0.664 ± 0.111 0.442 ± 0.117 0.627 ± 0.057 0.044 ± 0.026
12% 0.855 ± 0.108 0.522 ± 0.158 0.671 ± 0.051 0.068 ± 0.027
13% 0.998 ± 0.001 0.649 ± 0.164 0.715 ± 0.045 0.073 ± 0.021
14% - 0.824 ± 0.104 0.782 ± 0.034 0.079 ± 0.025
15% - 0.876 ± 0.090 0.823 ± 0.033 0.083 ± 0.033
16% - 0.904 ± 0.029 0.867 ± 0.034 0.093 ± 0.032
17% - - 0.902 ± 0.024 0.087 ± 0.031
18% - - 0.916 ± 0.025 0.097 ± 0.053
20% - - - 0.126 ± 0.092
30% - - - 0.119 ± 0.069
40% - - - 0.263 ± 0.149
50% - - - 0.486 ± 0.231
60% - - - 0.741 ± 0.171
70% - - - 0.810 ± 0.114
80% - - - 0.874 ± 0.045
90% - - - 0.880 ± 0.048
95% - - - 0.885 ± 0.049
100% - - - 0.906 ± 0.025

Table 15: Exact match accuracy on in-distribution data
for ablated and unablated models with different per-
centages of disabled top contributing hidden neurons

D Error analyses

D.1 Confusion matrices
We collected the feature vectors for the grid cells
that were most attended to by the models trained
with selective attention, but without auxiliary feed-
back. We also collected the feature vectors of the
actual target objects. We then created confusion
matrices for the parts of the feature vector relat-
ing to the agent, to color, to size, and to shape
(shown in Figures 8 - 13). For color and size, we
distinguish between situations where the attribute
is mentioned in the command and those where it is
not.

Figure 8: Confusion matrix for the agent dimension

Figure 9: Confusion matrix for the color dimensions
when color is specified in the command

Figure 10: Confusion matrix for the color dimensions
when color is not specified in the command
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Figure 11: Confusion matrix for the color dimensions
when size is specified in the command

Figure 12: Confusion matrix for the color dimensions
when size is not specified in the command

Figure 13: Confusion matrix for the shape dimensions
(always specified in the command)

D.2 Ablated selective attention

We use a chi-squared test to compare the kind of tar-
get features that models tend to mis-identify when
they are trained with vs. without selective attention.
Figure 14 shows the test’s standardized residuals
for the model trained without selective attention,
i.e., the strength of the difference between observed
and expected values. Squares, the color yellow, and
small object sizes are especially over-represented
in the model’s incorrect target predictions.

(a) dev set (b) test set

Figure 14: Plots of the standardized residuals of a Chi-
square test comparing the wrong predictions of mod-
els trained with vs. without selective attention, on in-
distribution data. We ran this test both on the dev set
(14a) and the test set (14b) with similar results. Circle
color represents absolute value of the residuals. Red in-
dicates that a feature is over-represented, blue indicates
a feature is under-represented. Circle size represents
the number of occurrences in the tested set.

14



E “Spontaneous" generalization

E.1 “Spike" batches
To test if the batches used to update the model
before a spike in performance on split H had any
special properties, we trained a model with batch
size 256 without action attention for 50 epochs
and saved any batches that preceded at least a 5%
increase in exact match accuracy on a 2% subset
of split H. We then trained 10 additional models
(with the same random seeds as used in the batch
size experiments) and injected one of the “good"
batches during training with a chance of 10%. We
recorded the difference to the performance on the
split H dev set before the batch update. A com-
parison of the distributions of split H performance
differences after an update with “good" batch vs. a
normal batch yields a Z-statistic of 0.665, which is
not significant at the 0.05 level.

Injecting “good" batches also does not seem to
increase the overall likelihood of higher perfor-
mance on split H during training. We compared
the distributions of split H accuracies sampled after
each epoch for the models trained with and without
“good" batch injections in the course of training.
A two-sample Kolmogorov-Smirnov test yielded a
p-value of 0.413, which is well above the threshold
of 0.05 and indicates there is no difference between
the distributions. Finally, we compare the distribu-
tion of labels in the “good" batches vs. the normal
batches with a chi-squared test that yields a p-value
of 0.445 – again, indicating little to no difference
between the distributions.

E.2 Effect of batch size
We trained 10 models without weight decay on a
2% subset of the training data with batch sizes 256,
512, 1024, 2048, and 4096. The number of epochs
was adjusted for each batch size so that all models
were trained for the same number of absolute up-
dates. For all batch sizes, the random initialization
of the ten models used the same random seeds. We
then sampled the models’ performance on split H
at 50 points in regular intervals during training and
compared Z-scores for the resulting distributions.
Results are given in Table 16

Batch size 1 Batch size 2 Z-score
256 512 1.35
256 1024 1.03
256 2048 3
256 4096 4.09
512 256 -1.35
512 1024 -0.09
512 2048 2.33
512 4096 3.95

1024 256 -1.03
1024 512 0.09
1024 1024 1.68
1024 4096 2.74
2048 256 -3
2048 512 -2.33
2048 1024 -1.68
2048 4096 1.77
4096 256 -4.09
4096 512 -3.95
4096 1024 -2.74
4096 2048 -1.77

Table 16: Pairwise comparison of distributions of split
H performance sampled during training, for 5 differ-
ent batch sizes. Statistically significant scores (≥ |2|)
marked in bold.
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