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Abstract

Peer assessment is an effective and efficient
pedagogical strategy for delivering feedback
to learners. Asking students to provide quality
feedback, which contains suggestions and men-
tions problems, can promote metacognition by
reviewers and better assist reviewees in revising
their work. Thus, various supervised machine
learning algorithms have been proposed to de-
tect quality feedback. However, all these power-
ful algorithms have the same Achilles’ heel: the
reliance on sufficient historical data. In other
words, collecting adequate peer feedback for
training a supervised algorithm can take several
semesters before the model can be deployed to
a new class. In this paper, we present a new
paradigm, called incremental zero-shot learn-
ing (IZSL), to tackle the problem of lacking
sufficient historical data. Our results show that
the method can achieve acceptable “cold-start”
performance without needing any domain data,
and it outperforms BERT when trained on the
same data collected incrementally.

1 Introduction

Peer assessment is a process whereby students as-
sess other students’ assignments by writing review
comments against a set of assessment criteria pro-
vided by the instructor. This pedagogical strategy
has been extensively applied across various aca-
demic fields and has demonstrated its effectiveness
over the past decades (Double et al., 2020). Further-
more, peer assessment serves as a crucial tool for
delivering necessary feedback in massive open on-
line courses (MOOCs), as this assessment strategy
allows MOOCs to scale up the feedback process
while minimizing ongoing support costs.

Nevertheless, the benefits of peer assessment can
only be achieved with quality peer feedback (Ash-
ton and Davies, 2015; Van Zundert et al., 2010).
Course staff can manually review the credibility
of each submitted feedback, but this is very inef-
ficient. Hence, there has been a surge of interest

in automating the assessment of feedback quality
by machine-learning algorithms. These algorithms
typically assess quality by determining whether
the feedback comprises certain features (e.g., con-
tains “suggestion” and “problem” statements) (Nel-
son and Schunn, 2009). If those characteristics
are not present in the submitted reviews, the peer-
assessment system could suggest that the reviewer
revise the feedback to add the missing features.

Although these machine-learning algorithms for
assessing feedback quality are very effective, they
all have the same Achilles’ heel: dependence on
enough domain-specific peer-feedback data. That
is, for each new discipline, it takes several school
terms to collect sufficient data before the model can
be applied. Thus, a desideratum of peer-assessment
platforms is an effective quality-assessment model
that does not require domain-specific historical data
in “cold-start” condition (i.e., no domain data is
available for training). Additionally, this model
should be capable of using incrementally collected
data to progressively improve its performance.

In this paper, we present an approach, named In-
cremental Zero-shot Learning (IZSL), for address-
ing lack of historical data in automated feedback-
quality evaluation. The core idea of the method
is to treat the problem of detecting quality feed-
back as a natural language inference (NLI) task
and utilize the pre-trained BART-based NLI model
(Yin et al., 2019) to assess feedback quality. Our
results show that IZSL can achieve acceptable per-
formance in the “cold-start” condition on different
datasets, and IZSL can substantially outperform
BERT (Devlin et al., 2018) after training on the
same incrementally collected data.

The rest of the paper is organized as follows: Sec-
tion 2 presents related work. Section 3 describes
datasets. Section 4 elaborates on our IZSL method
for assessing feedback quality. Section 5 presents
experimental results. Section 6 concludes the paper
and provides some discussion about future work.
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Peer-Feedback Comments Sugg. Prob.
No model tests have been added. Basic controller tests generated by scaffold and devise are available. 0 1
The design is written great. It will be better to explain more about the pattern used. 1 0
A little short. Make the conclusion more powerful and mention how you would address it as a teacher. 1 1

Table 1: Sample data. The first two samples are from CS-Peer-Feedback. The last sample is from Ed-Peer-Feedback.
“Sugg.” and “Prob.” indicate whether the comment provides suggestions and mentions problems, respectively.

2 Related Work

2.1 Automated Peer-Feedback Assessment

Automated peer-feedback assessment is defined
as a task of automatically analyzing peer-feedback
comments written by students and highlighting low-
quality comments that need to be revised. The goal
of the task is to improve the overall quality of peer
feedback and consequently improve students’ learn-
ing. As the first step towards building an effective
automated peer-feedback assessment system, Cho
(2008) pioneered various machine-learning meth-
ods to classify peer-feedback units.

Subsequent work typically focused on designing
more sophisticated features or using deep-learning
algorithms to improve the performance. For exam-
ple, Xiong and Litman (2011) designed features to
represent feedback by combining generic linguistic
features and specialized features. Ramachandran
et al. (2017) utilized word-order graphs to repre-
sent review texts to assess the quality of feedback.
Xiao et al. (2020b) leveraged various deep-learning
approaches to detect whether the peer-feedback
comments contain problem statements.

After that, researchers have noticed and tried to
address the problem of lacking training data for
new curricula. For instance, Xiao et al. (2020a) at-
tempted to reduce the need for domain-specific data
by applying transfer-learning and active-learning
techniques. Jia et al. (2021) proposed to leverage
multi-task learning to alleviate the problem. De-
spite the fact that these techniques can considerably
reduce the need for historical data, none of them
can help when we do not have any domain data.

2.2 Zero-shot Learning

Traditionally, zero-shot learning most often refers
to the task of training a classifier on one set of labels
and then evaluating it on a different set of labels
that the classifier has never seen before (Wang et al.,
2019). With the emergence of the pre-training
and fine-tuning paradigm, “zero-shot learning” has
been generalized to refer to the situation where a

pre-trained language model is used to predict for a
downsteam task that it was not even fine-tuned on.

Yin et al. (2019) proposed to use a pre-trained
NLI model as an out-of-the-box zero-shot text clas-
sifier and achieved promising results. A major ad-
vantage of this method over other zero-shot learn-
ing methods (e.g., Schick and Schütze, 2020) is that
NLI-based zero-shot learning does not need access
to task-specific hand-crafted prompt sentences.

3 Dataset

We captured data from Expertiza. In this system,
learners can submit their work and write feedback
comments on peers’ submissions based on a set of
rubric prompts. For example, each reviewer might
be asked to provide a comment for the criterion,
“Does the design incorporate all of the functional-
ity required?” In this paper, the terms “feedback
comments,” “review comments,” and “peer feed-
back” are used interchangeably to mean the textual
responses to criterion in the rubric.

We obtained two datasets from the aforemen-
tioned peer-review platform for this study. The
first dataset, CS-Peer-Feedback, is derived from a
graduate-level object-oriented development course.
This dataset consists of 12,053 data points and is
mildly imbalanced. The second dataset, Ed-Peer-
Feedback, comes from a graduate-level education
course. The dataset contains 172 data points and is
also mildly skewed. Some sample peer-feedback
comments are displayed in Table 1.

All feedback comments have been manually an-
notated by a fluent English speaker who is familiar
with the course context. To measure the reliability
of the labels, we randomly sampled 100 comments
from each dataset and asked a second annotator to
annotate them. We measured the inter-annotator
agreement on each set of 100 randomly selected
samples using Cohen’s κ coefficient. The average
κ scores for the CS-Peer-Feedback dataset and the
Ed-Peer-Feedback data were 0.88 and 0.85, respec-
tively. These scores suggest that the annotations
are reliable (Cohen’s κ > 0.81 (McHugh, 2012)).
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Figure 1: The key idea of IZSL is to convert the problem of evaluating peer-feedback comments into an NLI
problem. The left part shows the traditional text classification setting for assessing feedback comments. The right
part shows the NLI setting that treats the peer feedback as the premise and uses the label to formulate the hypothesis.

4 Methodology

4.1 Problem Formulation

We formulate the task of evaluating peer-feedback
comments as follows: suppose that during the t-
th semester of a class, we could collect a dataset
Dt = (Xt, Y t) consisting of N t data samples,
where Xt = {xt1, xt2, . . . , xtNt} denotes a set of N t

feedback comments collected in the t-th semester,
and Y t denotes corresponding labels indicating
whether the feedback provides suggestions and/or
mentions problems. In practice, these annotations
can be obtained by, e.g., asking reviewees to de-
termine if the received feedback contains the fea-
tures. Additionally, it is worth noting that the la-
bels Y t can only be used for training after they
are collected, i.e., after the t-th semester. In the
“cold-start” condition (i.e., without any histori-
cal data, in the 0-th semester), the task of IZSL
is to craft a classifier FIZSL that can effectively
make predictions for feedback comments X0 with-
out using any domain data to train the model. In
the incremental learning phase (i.e., t > 0), we
would have historical data D<t, where D<t means
(D0, D1, ..., Dt−1) (the data we collected in the
first (t − 1) semesters). The task of IZSL in this
phase is to update the classifier FIZSL using all
historical data D<t and to predict more accurately
the labels for peer-feedback comments Xt.

4.2 Incremental Zero-shot Learning

We now describe our IZSL approach for classify-
ing feedback comments. As shown in Figure 1, the
overall idea of IZSL is to convert a text classifi-
cation problem into a natural language inference
(NLI) problem. NLI is the task of determining
whether, given a premise, a hypothesis is true (en-

tailment) or false (contradiction). We typically treat
the text to be classified (i.e., feedback comments) as
the premise, and construct the hypothesis from the
class name of the label, “This text is about {label},”
where “{label}” can be “suggestions” or “prob-
lems”. If the NLI model tells us that the premise
is likely to entail the hypothesis, we can conclude
that the label is associated with the input feedback
comment and vice versa.

We use BART (Lewis et al., 2019) to craft the
NLI model and initialize all parameters with the
“bart-large-mnli” checkpoint1 (Yin et al., 2019),
which is pretrained on the multi-genre NLI (MNLI)
dataset. In the “cold-start” condition, using the
pretrained weights makes us have an out-of-the-box
NLI model for assessing feedback quality for any
curriculum without needing historical data. This is
not possible for traditional text classification mod-
els, since they need domain data to tune the output
fully-connected layer. Then, in the incremental
learning phase, we use incrementally collected
data to further fine-tune the NLI model.

4.3 Baseline Classification Method
Although traditional text classification models can-
not be applied in the “cold-start” condition, a
BERT-based classifier is implemented to compare
the performance of IZSL in the incremental learn-
ing phase. We build the classifier by stacking a
dense layer on top of BERT. The parameters of
BERT are initialized using a pretained checkpoint,2

and the weights of the dense layer are randomly
initialized using the uniform distribution. Then, we
fine-tune the model utilizing the same incremental
acquisition data as when fine-tuning IZSL.

1https://huggingface.co/facebook/bart-large-mnli
2https://huggingface.co/bert-base-uncased
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Suggestions Problems
Data Model F1 P R AUC F1 P R AUC
0 IZSL 61.2±2.4 70.1±2.8 59.6±1.7 73.5±3.2 60.9±2.4 63.1±2.5 61.2±2.2 70.3±2.3

50 BERT 63.0±16.0 64.8±8.7 68.7±22.2 82.6±10.6 63.4±5.7 69.9±3.2 66.2±2.5 79.9±3.6
IZSL 91.5±1.3 90.0±2.3 94.5±2.7 97.5±1.1 84.8±2.0 85.4±1.5 85.0±2.2 93.4±1.0

100 BERT 65.4±14.1 63.6±15.7 69.6±14.1 85.7±2.3 69.5±9.9 73.7±9.0 71.2±8.4 81.0±10.1
IZSL 92.3±1.5 92.5±2.5 92.2±2.7 97.1±1.3 87.0±2.8 87.7±2.6 87.0±2.8 94.1±1.4

250 BERT 77.9±7.4 76.2±7.0 82.2±7.6 90.9±4.8 83.1±7.1 83.1±7.0 83.6±7.0 90.0±6.1
IZSL 93.5±1.5 92.8±2.9 94.4±0.9 97.9±0.6 87.9±0.8 87.8±0.9 88.4±1.0 94.4±0.7

500 BERT 81.1±7.2 79.2±8.2 84.6±4.4 93.0±4.1 87.3±1.2 87.4±1.2 87.3±1.4 93.5±0.9
IZSL 93.5±0.8 92.8±1.3 94.2±1.2 98.2±1.0 89.1±1.0 89.1±1.1 89.1±1.0 94.9±0.8

750 BERT 90.7±0.5 90.4±1.5 91.0±1.2 97.6±0.4 87.2±5.9 86.6±7.8 88.2±3.2 94.3±1.4
IZSL 93.7±1.9 92.7±3.2 94.9±0.6 98.2±0.5 90.2±0.4 90.2±0.6 90.3±0.4 95.6±0.2

1000 BERT 91.7±1.0 90.5±1.1 93.2±2.0 98.1±0.9 88.8±1.0 88.8±0.9 88.9±1.1 94.6±0.6
IZSL 93.8±0.9 92.7±1.4 94.9±0.9 98.2±0.4 90.4±1.3 90.2±1.2 90.7±1.6 95.9±1.3

Table 2: Performance evaluation of BERT (baseline) and IZSL on CS-Peer-Feedback. The first column is the
number of training samples used. The best results in each setting are marked in bold. Confidence interval = 95% .

Suggestions Problems
Data Model F1 P R AUC F1 P R AUC
0 IZSL 60.5±2.0 67.1±3.2 59.6±1.6 68.8±0.7 57.2±2.3 57.5±2.2 59.6±3.0 64.4±2.3

50 BERT 52.1±14.7 51.3±18.0 56.7±10.9 69.6±9.0 56.3±11.7 59.8±20.4 56.9±7.6 67.4±7.6
IZSL 78.1±3.3 76.9±2.7 82.0±6.8 87.8±1.4 81.7±2.7 84.2±3.4 80.4±4.7 94.2±1.0

100 BERT 68.7±14.8 77.6±11.7 68.5±15.6 80.3±9.2 62.0±14.6 66.3±21.8 64.3±10.5 75.8±15.0
IZSL 82.2±1.8 80.7±1.8 86.1±4.2 90.8±1.3 84.3±3.8 87.5±3.6 82.5±5.0 93.4±2.2

Table 3: Performance evaluation of BERT (baseline) and IZSL on Ed-Peer-Feedback with 95% confidence interval.

5 Evaluation

5.1 Experimental Setup

Training and Optimization Details. We train our
models on eight NVIDIA RTX6000 GPUs (24GB
each) with a total batch size of 8, a learning rate
of 2e-5/3e-5/5e-5, epochs of 2/3, and the Adam
optimizer (Kingma and Ba, 2014).
Handling the Imbalanced Datasets. To alleviate
the problem of class imbalance, we employ a cost-
sensitive approach. Specifically, we weight the
cross-entropy loss function based on the frequency
of each class in the training set.

5.2 Results and Discussion

The evaluation results are shown in Tables 2 and
3. The first row (i.e., for “Data” = 0) of each ta-
ble shows the performance of IZSL when we do
not have any historical data. Then, the following
rows of each table compare the results of IZSL and
BERT when trained with incrementally collected
data. In the “cold-start” phase, the F1 scores
for the labels “Suggestions” and “Problems” on
the CS-Peer-Feedback dataset are 61.2 and 60.9,
respectively. On the Ed-Peer-Feedback dataset,
the F1 scores for these two labels are 60.5 and
57.2, respectively. The results suggest that IZSL
can achieve acceptable “cold-start” performance on

data from different disciplines, considering that it
does not use any domain data. However, it is worth
noting that the performance of the IZSL model
varies on datasets from different domains. It is still
unclear how we can estimate the “cold-start” per-
formance of IZSL on a particular dataset. We leave
this research question to future studies. In the in-
cremental learning phase, we surprisingly find
that the F1 scores of IZSL quickly jump to over
91.5 and 84.8 on the CS-Peer-Feedback dataset
after training with only dozens of training sam-
ples, and we make a similar finding on the Ed-
Peer-Feedback dataset. Our hypothesis for IZSL to
perform better than BERT in “low-data” settings
is that NLI-based classification models have better
generalization ability than traditional classification
methods. However, this hypothesis needs to be
further tested by extensive experiments. By exam-
ining the following rows of the tables, the results
clearly show that IZSL can consistently outperform
BERT on all metrics across all settings, and the con-
fidence intervals suggest that the performance of
IZSL is more stable. To summarize, IZSL can
achieve acceptable “cold-start” performance and
consistently outperform the BERT model in the in-
cremental learning phase, especially when we only
have dozens of incrementally collected data points.

49



6 Conclusion and Future Work

The quality of peer feedback plays a vital role in
peer assessment. However, lacking historical data
for new curricula is a persistent problem. Our work
proposes a novel method for assessing feedback
quality by converting it into an NLI problem. The
approach can potentially be generalized to other
pedagogical tasks. Future plans include investigat-
ing how to improve “cold-start” performance.
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