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Abstract
A popular natural language processing task decades ago, word alignment has been domi-
nated until recently by GIZA++, a statistical method based on the 30-year-old IBM mod-
els. New methods that outperform GIZA++ primarily rely on large machine translation mod-
els, massively multilingual language models, or supervision from GIZA++ alignments it-
self. We introduce Embedding-Enhanced GIZA++, and outperform GIZA++ without any of
the aforementioned factors. Taking advantage of monolingual embedding spaces of source
and target language only, we exceed GIZA++’s performance in every tested scenario for
three languages pairs. In the lowest-resource setting, we outperform GIZA++ by 8.5, 10.9,
and 12 AER for Ro-En, De-En, and En-Fr, respectively. We release our code at https:
//github.com/kellymarchisio/ee-giza.

1 Introduction

Word alignment techniques were once ubiquitous in the machine translation (MT) literature, as
they formed a critical part of statistical machine translation (SMT) systems. Since the advent of
neural machine translation (NMT), word alignment is no longer a step in typical NMT training,
but is still important for other tasks such as annotation transfer (e.g. Yarowsky and Ngai, 2001;
Rasooli et al., 2018), as a post-processing step of MT to reinsert markup (e.g. Müller, 2017),
and for some mapping-based unsupervised MT methods such as Artetxe et al. (2019).

GIZA++ (Och, 2003), a statistical alignment model, has been the most commonly used
tool for word alignment quality for 20 years and is based the IBM translation models that are
yet a decade older (Brown et al., 1993). Though a handful of neural systems have outperformed
GIZA++, these rely on large MT models (e.g. Stengel-Eskin et al., 2019; Chen et al., 2020;
Zenkel et al., 2020), massively multilingual language models (e.g. Garg et al., 2019b; Jalili Sa-
bet et al., 2020; Dou and Neubig, 2021), supervision from human-annotated alignments (Nagata
et al., 2020), or combinations of the above.

We introduce Embedding-Enhanced GIZA++ (EE-GIZA++), an improvement to GIZA++
without any of the aforementioned factors. EE-GIZA++ biases GIZA++ to align semantically
similar words from a shared embedding space. We outperform GIZA++ in all tested settings

∗ Work completed at Johns Hopkins University.
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on three language pairs. EE-GIZA++ is particularly strong in comparison with GIZA++ when
parallel training data is scarce: using only ∼500 lines of bitext, it outperforms GIZA++ by 10.9
AER1 and 12.0 AER for De-En and Fr-En, respectively.

2 Related Work

Fast-align is a statistical aligner similar to GIZA++. It is a reparameterization of IBM Model 2
(Dyer et al., 2013). eflomal is another highly-performant non-neural aligner (Östling and Tiede-
mann, 2016). We use GIZA++ as our base system because it commonly-used and trusted for
generating high-quality alignments. Numerous improvements to GIZA++ have been proposed
(e.g. Vaswani et al., 2012).

Recent work involves using neural translation models to guide or extract alignments, view-
ing attention as a proxy for alignment (e.g. Peter et al., 2017; Li et al., 2018; Garg et al., 2019b;
Zenkel et al., 2019, 2020; Chen et al., 2020). Other aligners use massive multilingual lan-
guage models with contextualized embeddings such as mBERT (Devlin et al., 2019). Like us,
Jalili Sabet et al. (2020) experiment with mapped monolingual embedding spaces, but exceed
the GIZA++ baseline only when using spaces such as mBERT and XLM-R (Conneau et al.,
2020). Dou and Neubig (2021)’s approach is similar to the aforementioned authors, but they
improve results by finetuning mBERT on auxiliary tasks. Nagata et al. (2020) use mBERT and
require supervision with human-annotated alignments.

Pourdamghani et al. (2018) use word embedding similarity to augment parallel data seen
by GIZA++, improving alignment and downstream low-resource MT. Jalili Sabet et al. (2016)
also use nearest-neighbors in a word embedding space to alter IBM Model 1, but their perfor-
mance does not match ours. Perhaps most similar to our work, Songyot and Chiang (2014)
incorporate word similarity into GIZA++ using a feedforward neural network trained to model
word similarity, with a hyperparameter to control the influence of the neural model.

3 Background

Let S be a source-language sentence of tokens (s1, s2, ..., sm) and T be a target-language sen-
tence (t1, t2, ..., tl). Alignments are defined as A ⊆ {(s, t) ∈ S × T} where each s, t are
meaningfully related—usually, translations of one another. Performance is typically measured
with Alignment Error Rate (AER; Och and Ney, 2000a).

3.1 GIZA++

GIZA++ is a popular statistical alignment and MT toolkit (Och and Ney, 2000b, 2003) which
implements IBM Models 1-5 (Brown et al., 1993) and the HMM Model (Vogel et al., 1996),
trained using expectation-maximization (EM). The default training setup is to run five iterations
each of IBM Model 1, HMM, Model 3, and Model 4. GIZA++ is highly effective at aligning
frequent words in a corpus, but error-prone for infrequent words.

IBM Models The IBM models developed more than 30 years ago for MT are useful for
alignment. IBM Model 1 relies on lexical translation probabilities p(f |e) for source word e
and target word f . Model 2 adds an alignment model p(j | i, l,m), predicting source position
j from target position i of sentences with lengths m and l, respectively. Model 3 adds a fertility
model. Model 4 and the HMM Model replace the alignment with a relative reordering model.
After training, the most likely alignment can be computed for a sentence pair.

1Alignment Error Rate (Och and Ney, 2000a).

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas 
 

Orlando, USA, September 12-16, 2022. Volume 1: Research Track 

265



3.2 Monolingual Embedding Space Mapping
Non-contextual vector representations of words (“word embeddings”, “word vectors”) are com-
mon in NLP (e.g. Mikolov et al., 2013; Bojanowski et al., 2017). Word vectors trained on
monolingual data embed the word into an N-dimensional space where distance and angle have
meaning. Mapping monolingual embedding spaces to a shared crosslingual space is common,
particularly for bilingual lexicon induction and cross-lingual information retrieval.

Procrustes Problem Techniques that map monolingual embedding spaces to a crosslingual
space often solve a variation of the generalized Procrustes problem (e.g., Artetxe et al., 2018b;
Conneau et al., 2018; Patra et al., 2019; Ramı́rez et al., 2020). Given word embedding matrices
X,Y ∈ Rn×d where x ∈ X , y ∈ Y are word vectors in source and target languages, one finds
the map W ∈ Rd×d that minimizes distances for each pair (x, y) known to be translations:

argmin
W

∥XW − Y ∥F

When restricting W to be orthogonal (WWT = I), Schönemann (1966) showed that the closed-
form solution is W = V UT , where UΣV is the singular value decomposition of Y TX .

After mapping X and Y to a shared space with W , translations are extracted via nearest-
neighbor search. A popular distance metric is cross-domain similarity local scaling (CSLS) to
mitigate the “hubness problem” (Conneau et al., 2018).

4 Method

Figure 1: Proposed Method: Embedding-Enhanced GIZA++. 1) Map monolingual embeddings
to crosslingual space. Calculate CSLS for cooccurring words and take softmax to calculate a
probability distribution (p map). 2) Use statistical aligner to calculate separate probability dis-
tribution over cooccuring words (p align). 3) Interpolate distributions with weight proportional
to source word’s frequency. Normalize. 4) Replace the statistical model’s translation probabil-
ity table with updated probability distribution. 5) Repeat Steps 2-4 for each iteration of EM.

GIZA++ is highly effective at inducing the correct alignment for frequent words when
parallel resources are abundant, but is error-prone for rare words. Because word embeddings
can be trained on large amounts of monolingual data, rare words from a parallel corpus may be
well-enough represented in a large monolingual corpus that reasonable word embeddings can be
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trained. Our key insight is that for infrequent words, finding a translation via nearest-neighbors
in a shared embedding space may be more reliable than using a statistical aligner. We thus
incorporate embedding space mapping into GIZA++ training, giving more or less influence to
the statistical aligner depending on word frequency. Figure 1 shows the method.

1. Map embedding spaces. Word embedding spaces X and Y for source and target language,
respectively, are mapped to a crosslingual space using VecMap2 (Artetxe et al., 2018a).

2. Calculate translation probability distribution from mapped spaces. Let CoY (x) be the
words from the target language that cooccur with source word x in the corpus. For each x, we
calculate a probability distribution over possible alignments from CoY (x) with a softmax over
the CSLS scores (We use τ = 0.1.) We use the mapped embedding spaces for source and target
languages to calculate CSLS.

pmap(y|x) =
exp (CSLS(x, y)/τ)∑

y′∈CoY (x)

exp (CSLS(x, y′))/τ)

3. Integrate with GIZA++. Recall that IBM Models 1, 3, 4, and HMM maintain a lexical
translation table of palign(y|x) for every cooccurring source-target word pair. During training of
IBM Model 1 and the HMM, we interpolate the lexical translation table with embedding-based
translation probabilities after each iteration of EM. For each cooccurring pair (x, y), calculate:

score(x, y) = λ
pmap(y|x)

freq(x)
+ palign(y|x)

where freq(x) is the raw frequency of x in the source-side of the corpus and λ is a hyperparam-
eter. The effect is that pmap is given more weight for infrequent words, in accordance with our
goal to trust the embedding space mapper for infrequent words and the statistical aligner for
frequent words. Then normalize over cooccuring words:

p(y|x) = score(x, y)∑
yi∈CoY (x)

score(x, yi)
(1)

We update GIZA++’s lexical translation table with the new value from Equation 1 for all
cooccurring pairs, then begin the next iteration of EM.3 This process is repeated for all iterations
of IBM Model 1 and HMM model training. IBM Model 3 and 4 are trained as usual. Integrating
probabilites from pmap into IBM Models 3 and 4 is for future work.

Steps 1-3 are done in source→target and target→source directions. Alignments are sym-
metrized with grow-diag-final (Koehn et al., 2003).

5 Experimental Setup

We use the same training setup as previous work4 (Garg et al., 2019b; Zenkel et al., 2019, 2020;
Chen et al., 2020; Dou and Neubig, 2021). Training corpora for German-English (De-En),
English-French (En-Fr), and Romanian-English (Ro-En) are 1.9M, 1.1M, and 448K lines, and
test sets are 508, 447, and 248 lines, respectively. Validation sets do not exist, so we tune λ on

2github.com/artetxem/vecmap
3If a word from the bitext is not present in the word embedding space, its translation probability is not updated.
4https://github.com/lilt/alignment-scripts. Data: (Mihalcea and Pedersen, 2003; Koehn, 2005;

Vilar et al., 2006)
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1 million lines of De-En.5 λ is set to 10,000. We use the VecMap implementation of CSLS and
SciPy for some utility functions and softmax calculation (Virtanen et al., 2020; Harris et al.,
2020). For pretrained word embedding spaces, we use the publicly-available Wikipedia word
vectors trained using fastText from Bojanowski et al. (2017).6 We limit vocabulary size to
200,000 and perform embedding mapping with VecMap in unsupervised mode.

De-En Ro-En En-Fr
Corpus Size GIZA++ Ours GIZA++ Ours GIZA++ Ours

Test Set Only 44.2 33.3 (-10.9) 42.8 34.3 (-8.5) 26.9 14.9 (-12.0)
1000 41.0 31.1 (-9.9) 41.5 33.6 (-7.9) 20.0 11.4 (-8.6)
2000 37.7 29.1 (-8.6) 39.6 32.9 (-6.7) 17.2 10.1 (-7.1)
5000 34.5 26.9 (-7.6) 38.2 32.0 (-6.2) 14.0 8.5 (-5.5)

10,000 31.9 25.5 (-6.4) 36.1 30.4 (-5.7) 11.7 7.5 (-4.2)
20,000 29.3 24.2 (-5.1) 35.2 30.3 (-4.9) 10.0 7.1 (-2.9)
50,000 26.6 22.6 (-4.0) 34.2 29.7 (-4.5) 8.6 6.3 (-2.3)

100,000 25.4 21.9 (-3.5) 33.4 29.3 (-4.1) 7.8 6.1 (-1.7)
200,000 24.0 21.2 (-2.8) 32.7 29.4 (-3.3) 7.0 5.8 (-1.2)
500,000 21.6 20.3 (-1.3) 26.5 25.5 (-1.0) 6.1 5.7 (-0.4)

1,000,000 20.7 20.1 (-0.6) n/a n/a 6.1 5.5 (-0.6)
1,900,000 20.6 19.9 (-0.7) n/a n/a n/a n/a

Table 1: Main Results. Alignment Error Rate (AER) of EE-GIZA++ vs. GIZA++ baseline
(lower is better). Test set is included in corpus size. Ro-En 500K is the full 448K training set.
Bidirectional, symmetrized (grow-diag-final).

Figure 2: Visualization of Main Results. Alignment Error Rate (AER) of EE-GIZA++ vs.
GIZA++ baseline for increasing amounts of training data. Lower is better.

5This was the approximate average size of training data for all languages.
6https://fasttext.cc/docs/en/pretrained-vectors.html
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6 Results

The main results are presented in Table 1 and visualized in Figure 2. We observe that EE-
GIZA++ consistently outperforms GIZA++ by a large margin in every tested scenario. When
aligning the test set alone with no additional bitext, EE-GIZA++ dramatically outperforms
GIZA++: by 8.5 AER for Ro-En, 10.9 AER for De-En, and 12 AER for En-Fr. This rep-
resents improvements of approximately 20%, 25%, and 45% for Ro-En, De-En, and En-Fr,
respectively. The error-rate improvement is especially notable when we consider that each test
set has only approximately 250-500 lines. When expanding the training set to include a total
of 10,000 lines, we continue to observe strong gains with our method: with absolute improve-
ments of 5.7, 6.4, and 4.2 AER for Ro-En, De-En, and En-Fr. These represent improvements of
approximately 15.8%, 20.1%, and 35.9%, respectively.

Statistical Baselines De-En Ro-En En-Fr
GIZA++ 20.6 26.5 6.2
eflomal* 22.6 25.1 8.2
fast-align* 27.0 32.1 10.5

Massively-Multilingual
Jalili Sabet et al. (2020) 19.† 27.2*7 6.†
Dou and Neubig (2021) 15.6 23.0 4.4

no fine-tuning 17.4 27.9 5.6

Bilingual NMT-Based
Zenkel et al. (2019) 21.2 27.6 10.0
Garg et al. (2019b) 20.2 26.0 7.7

using GIZA++ output 16.0 23.1 4.6
Zenkel et al. (2020) 16.3 23.4 5.0
Chen et al. (2020) 15.4 21.2 4.7

Ours 19.9 25.5 5.3

Table 2: Supplemental results in high-resource settings compared to models that use additional
resources. “Massively multilingual” models use mBERT. NMT models likely fail in low-bitext
scenarios (our focus). Bidirectional. *reported in Dou and Neubig (2021). †Jalili Sabet et al.
(2020) report one less significant digit.

Supplemental Results: High-Resource We use the full data sets for De-En, Ro-En, and En-
Fr and compare to existing work in Table 2.8 We outperform the three statistical baselines,
except eflomal on Ro-En. EE-GIZA++ outperforms Jalili Sabet et al. (2020) on Ro-En and
En-Fr, which utilizes a massively-multilingual language model. Dou and Neubig (2021) with
fine-tuning outperforms our model, though they use mBERT which is trained on 104 languages.
Notably, Garg et al. (2019a) use GIZA++ output as supervision. EE-GIZA++ performs better
than GIZA++, so AER might improve if supervised with our alignments.

7As Jalili Sabet et al. (2020) use the 2005 Ro-En test set from https://web.eecs.umich.edu/

˜mihalcea/wpt05, we report Dou and Neubig (2021)’s Ro-En results here for consistency with the others, which
use the 2003 test set (https://web.eecs.umich.edu/˜mihalcea/wpt.

8Many of these use the grow-diag symmetrization heuristic, but we use grow-diag-final.
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7 Conclusion and Future Work

We introduce EE-GIZA++, an unsupervised enhancement to GIZA++ that uses word embed-
dings for improved word alignment in low-bitext settings, without the use of NMT or massively-
multilingual language models that to-date have been the strongest competitors to GIZA++. EE-
GIZA++ outperforms GIZA++ by 8.5, 10.9, and 12 AER in lowest-bitext scenarios for Ro-En,
De-En, and En-Fr, respectively. Future work should examine performance of EE-GIZA++ on a
diverse set of languages with varying scripts and amounts of data available.
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Vilar, D., Popović, M., and Ney, H. (2006). Aer: Do we need to “improve” our alignments? In
International Workshop on Spoken Language Translation (IWSLT) 2006.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wil-
son, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey,
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