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Abstract
Massively Multilingual Transformer based Lan-
guage Models have been observed to be sur-
prisingly effective on zero-shot transfer across
languages, though the performance varies from
language to language depending on the pivot
language(s) used for fine-tuning. In this work,
we build upon some of the existing techniques
for predicting the zero-shot performance on a
task, by modeling it as a multi-task learning
problem. We jointly train predictive models
for different tasks which helps us build more
accurate predictors for tasks where we have test
data in very few languages to measure the ac-
tual performance of the model. Our approach
also lends us the ability to perform a much
more robust feature selection, and identify a
common set of features that influence zero-shot
performance across a variety of tasks.

1 Introduction

Multilingual models like mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020) have
been recently shown to be surprisingly effective
for zero-shot transfer (Pires et al., 2019) (Wu and
Dredze, 2019), where on fine-tuning for a task on
one or a few languages, called pivots, they can
perform well on languages unseen during training.
The zero-shot performance however, is often not
uniform across the languages and the multilingual
models turn out to be much less effective for low re-
source languages (Wu and Dredze, 2020; Lauscher
et al., 2020) and the languages that are typologi-
cally distant from the pivots (Lauscher et al., 2020).
What affects the zero-shot transfer across different
languages is a subject of considerable interest and
importance (K et al., 2020; Pires et al., 2019; Wu
and Dredze, 2019; Lauscher et al., 2020), however
there is little conclusive evidence and a few papers
even show contradictory findings.

Lauscher et al. (2020) recently, showed that it
is possible to predict the zero shot performance of
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mBERT and XLM-R on different languages by for-
mulating it as a regression problem, with pretrain-
ing data size and typological similarities between
the pivot and target languages as the input features,
and the performance on downstream task as the pre-
diction target. Along similar lines Srinivasan et al.
(2021) and Dolicki and Spanakis (2021) explore
zero-shot performance prediction with a larger set
of features and different regression techniques.

However, the efficacy of these solutions are
severely limited by the lack of training data, that
is, the number of languages for which performance
metrics are available for a given task. For instance,
for most tasks in the popular XTREME-R (Ruder
et al., 2021) benchmark, there are data points for
7-11 languages. This not only makes zero-shot
performance prediction a challenging problem, but
also a very important one because for practical de-
ployment of such multilingual models, one would
ideally like to know its performance for all the lan-
guages the model is supposed to handle. As Srini-
vasan et al. (2021) shows, accurate performance
predictors can also help us build better and fairer
multilingual models by suggesting data labeling
strategies.

In this work, we propose multi-task learn-
ing (Zhang and Yang, 2017) as an approach to
mitigate training-data constraints and consequent
over-fitting of the performance predictors to tasks
and/or datasets. The contributions of our work are
fourfold. First, we experiment with different multi-
task learning approaches, such as Group Lasso
(Yuan and Lin, 2006), Collective Matrix Factor-
ization (Cortes, 2018), Multi-Task Deep Gaussian
Process Regression (Bonilla et al., 2008) and Meta
Agnostic Meta Learning (Finn et al., 2017) for
11 tasks. We observe an overall 10% reduction
in performance prediction errors compared to the
best performing single-task models. The gains are
even stronger when we just consider the tasks with
very few data points (≤ 10), where we see a 20%
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drop in the mean absolute errors. Second, an in-
teresting consequence of modelling this problem
via multi-task learning is that we are able to pre-
dict performance on low resource languages much
more accurately, where in some cases single-task
approaches may perform even worse than the sim-
ple averaging baselines. Third, apart from the fea-
tures used for zero-shot performance prediction
in the previous work (Lauscher et al., 2020; Srini-
vasan et al., 2021; Dolicki and Spanakis, 2021),
we also utilize metrics quantifying the quality of
multilingual tokenizers as proposed in (Rust et al.,
2021) as features in our predictive models, which
turn out to have strong predictive power for certain
tasks. To the best of our knowledge, our work is
the first to explore the impact of tokenizer quality
specifically on zero-shot transfer. And fourth, our
multi-task framework in general lends us with a
much more robust selection of features affecting
the zero-shot performance. This, in turn, lets us
investigate the critical open question on what influ-
ences the zero-shot performances across languages
more rigorously. As we shall see, our findings cor-
roborate some of the previous conclusions, while
others are extended or annulled.

2 Background and Related Work

Zero Shot Transfer. Multilingual models like
mBERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2020) have shown surprising effective-
ness in zero-shot transfer, where fine-tuning the
MMLM on a task in some source language often
leads to impressive performance on the same task in
other languages as well without explicitly training
on them. Pires et al. (2019) first observed this phe-
nomenon for NER (Tjong Kim Sang, 2002; Tjong
Kim Sang and De Meulder, 2003; Levow, 2006)
and POS tagging (Nivre et al., 2018) tasks. Concur-
rently, Wu and Dredze (2019) also showed this sur-
prisingly cross lingual transfer ability of mBERT
additionally on tasks like Document Classification
(Schwenk and Li, 2018), Natural Language Infer-
ence (Conneau et al., 2018) and Dependency Pars-
ing (Nivre et al., 2018).
Factors Affecting Zero Shot Transfer. Pires
et al. (2019) showed that vocabulary memoriza-
tion played little role in zero-shot generalization as
language pairs with little word piece overlap also
exhibited impressive crosslingual performance. K
et al. arrived at a similar conclusion by training
BERT on an artificially generated language to zero

out the word overlap with the target languages,
and observed only minor drops in the performance
compared to training the model on English. On the
contrary Wu and Dredze (2019), observed strong
correlations between the sub-word overlap and the
zero-shot performance in four out of five tasks.

Wu and Dredze (2020) showed that mBERT per-
formed much worse for zero-shot transfer to low
resource languages (i.e., less pre-training data) than
high resource ones on POS Tagging, NER and De-
pendency Parsing tasks. Lauscher et al. (2020)
also had a similar observation on tasks like XNLI
and XQuAD (Artetxe et al., 2020), though they
found that the zero-shot performance on NER, POS
tagging and Dependency Parsing tasks might not
strictly depend on the pre-training size and could be
better explained by different linguistic relatedness
features like syntactic and phonological similarities
between the language pair. Similar dependence on
the typological relatedness such as word order had
also been observed by Pires et al. (2019).

Performance Prediction. Prior work has explored
predicting the performance of machine learning
models from unlabelled data by either measuring
(dis)agreements between multiple classifiers (Pla-
tanios et al., 2014, 2017) or by utilizing underlying
information about data distribution (Domhan et al.,
2015). In the context of NLP Birch et al. (2008)
explored predicting the performance of a Machine
Translation system by utilizing different explana-
tory variables for the language pairs. Lin et al.
(2019) proposed a learning to rank approach to
choose transfer languages for cross lingual learn-
ing using several linguistic and dataset specific fea-
tures.

Recently, there has been an interest in predict-
ing the performance of NLP models without ac-
tually training or testing them, by formulating it
as a regression problem. Xia et al. (2020) showed
that using experimental settings for an NLP exper-
iment as inputs it is possible to accurately predict
the performance on different languages and model
architectures.Ye et al. (2021) extended this work
by proposing methods to do a fine-grained esti-
mation of the performance as well as predicting
well-callibrated confidence intervals. Specifically
predicting the zero-shot performance of MMLMs
was first explored in Lauscher et al. (2020), where
they used a linear regression model to estimate the
cross-lingual transfer performance based on pre-
training data size and linguistic relatedness features.
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Srinivasan et al. (2021) tackled this problem by uti-
lizing XGBoost Regressor for the prediction along
with a larger set of features. Dolicki and Spanakis
(2021) explored individual syntactic features for
zero-shot performance prediction instead of work-
ing with aggregate similarity values, and showed
about 2 to 4 times gain in performance. We ex-
tend all of these works by considering a multi-task
learning approach, where performance prediction
in a task utilizes not only the data available for that
task, but also the patterns observed for other tasks.

3 Problem Setup

We begin by defining the multi-task performance
prediction problem and then describe the different
linguistic and MMLM specific features used.

3.1 Multi-Task Performance Prediction
Problem

Consider a pre-trained multilingual model M,
trained using self supervision on a set of languages
L. Let T be the set of downstream NLP tasks, P
be the set of pivot (source) languages for which
training data is available for the downstream tasks
for fine-tuning and T be the set of target languages
for which validation/test data is available. Note that
P ⊂ L and T ⊆ L. We use the zero-shot setting
similar to Lauscher et al. (2020) which enforces P
and T to be disjoint sets1, i.e., P ∩ T = ∅.

We then define yM,t
p,t ∈ R as the zero-shot per-

formance on language t ∈ T on finetuning M on
task t ∈ T in pivot language p ∈ P . Let xMp,t ∈ Rn

be the n-dimensional feature vector representing
the corresponding train-test configuration. Since
for our experiments we train and evaluate the per-
formance prediction for a single model at a time,
we will simplify the notations to ytp,t and xp,t.

The predictor model can then be defined as the
function fΘ,Φ : Rn × T → R, where Θ ∈ Rdg de-
notes the shared parameters across the tasks and the
task specific parameters are given by Φ ∈ Rds×|T|.
The objective function for training such a predictor
model can be defined as:

J(Θ,Φ) =
∑
t∈T

∑
p∈P

∑
t∈T

∥f(xp,t, t; Θ,Φ)− ytp,t∥22

+ λg∥Θ∥1 + λs∥Φ∥1,1 + λgroup∥Φ∥1,q
(1)

1Though beyond the scope of the current work, it is possi-
ble to extend this to a few-shot setting as discussed in Srini-
vasan et al. (2021).

The second and third terms regularize the global
and task specific parameters independently, while
the last term, l1/lq norm with q > 1, ensures a
block sparse selection of the task specific param-
eters. This term ensures a multi-task learning be-
havior even when there are no parameters shared
across the tasks (i.e., Θ = ∅) through selection of
common features across the tasks. Setting Θ = ∅
and λgroup = 0 leads to the single task setup of
Lauscher et al. (2020) and Srinivasan et al. (2021).

3.2 Features

We divide the set of features into two higher level
categories, viz. the pairwise features defined for
the pivot and target that measure the typological
relatedness of the languages, and the individual
features defined for the target language reflecting
the state of its representation in M.

3.2.1 Pairwise Features
Instead of directly using the different typological
properties of the the two languages as features,
we use the pairwise relatedness to avoid feature
explosion.
Subword Overlap : We define the subword over-
lap as the percentage of unique tokens that are
common to the vocabularies of both the pivot and
target languages. Let Vp and Vt be the subword
vocabularies of p and t. The subword overlap is
then defined as :

osw(p, t) =
|Vp ∩ Vt|
|Vp ∪ Vt|

(2)

Similarity between Lang2Vec vectors: Follow-
ing Lin et al. (2019) and Lauscher et al. (2020),
we compute the typological relatedness between p
and t from the linguistic features provided by the
URIEL project (Littell et al., 2017). We use syntac-
tic (ssyn(p, t)), phonological similarity (spho(p, t)),
genetic similarity (sgen(p, t)) and geographic dis-
tance (dgeo(p, t)). For details, please see Littell
et al. (2017).

3.2.2 Individual Features
Pre-training Size: We use the log10 of the size
(in words) of the pre-training corpus in the target
language, SIZE(t), as a feature.
Rare Typological Traits: Srinivasan et al. (2021)
proposed this metric to capture the rarity of the
typological features of a language in the represen-
tation of M. Every typological feature in WALS
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database is ranked based on the amount of pre-
training data for the languages that contain the fea-
ture. For the language t, Mean Reciprocal Rank
(MRR) of all of its features is then calculated and
used as a feature – WMRR(t).
Tokenizer Features : In their recent work, Rust
et al. (2021) proposed two metrics, viz. tokenizer’s
fertility and proportion of continued words, to
evaluate the quality of multilingual tokenizers
on a given language. For target t, they define
the tokenizer’s fertility, FERT(t), as the average
number of sub-words produced for every tokenized
word in t’s corpus. On the other hand, the
proportion of continued words, PCW(t), measures
how often the tokenizer chooses to continue a
word across at least two tokens. They show that
the multilingual models perform much worse on
a task than their monolingual counterparts when
the values of these metrics are higher for the
multilingual tokenizer. We include FERT(t) and
PCW(t) as features.

An important thing to note here is that the we do
not use identity of a language as a feature while
training the models, hence the performance predic-
tion models are capable of generating predictions
on new languages unseen during training. How-
ever, if the features of the new languages deviate
significantly from the features seen during training,
the predictions are expected to be less accurate as
also observed in Xia et al. (2020); Srinivasan et al.
(2021) and is one of the main reasons for exploring
a multi-task approach.

4 Approaches

We extensively experiment with a wide-array of
multi-task as well as single-task regression mod-
els to provide a fair comparison between different
approaches to zero-shot performance prediction.

4.1 Baselines

Average Score Within a Task (AWT) : The per-
formance for a pivot-target pair (p , t) on a task
t is approximated by taking the average of the
performance on all other target languages (pivot
being fixed) in the same task t, i.e., f(xp,t, t) =

1
|T |−1

∑
t′∈T −{t} y

t
p,t′ .

Average Score across the Tasks (AAT) : Here
instead of averaging over all the target languages
within a task, we approximate the performance on
a given target language by averaging the scores

for that language across the other tasks, i.e.,
f(xp,t, t) =

1
|T|−1

∑
t′∈T−{t} y

t′
p,t.

4.2 Single Task Models
Lasso Regression: Lauscher et al. (2020) train
different linear regression models for each task.
Along similar lines, we experiment with linear re-
gression, but also add an L1 regularization term, as
we observed it usually leads to better predictors.
XGBoost Regressor: As shown in Srinivasan et al.
(2021), XGBoost (Chen and Guestrin, 2016) gen-
erally obtains impressive performance on this task,
and hence we include it in our experiments as well.

4.3 Multi Task Models
Group Lasso: l1/lq norm based block-
regularization has been shown to be effective for
multi-task learning in the setting of multi-linear
regression (Yuan and Lin, 2006; Argyriou et al.,
2008). For each task, consider separate linear
regression models represented by the weight
matrix Φ ∈ Rn×|T|. The l1/lq regularization term
is given as: ∥Φ∥1,q =

∑n
j=1(

∑|T|
t=1 |Φjt|q)1/q ,

where Φjt denotes the weight for the feature j in
the task t. For q > 1, minimizing this term pushes
the lq-norms corresponding to the weights of a
given feature across the tasks to be sparse, which
encourages multiple predictors to share similar
sparsity patterns. In other words, a common set of
features is selected for all the tasks. We use q = 2
for the group regularization term.

Since this can be restrictive in certain scenarios,
some natural extensions to Group Lasso, such as
Dirty Models (Jalali et al., 2010) and Multi Level
Lasso (Lozano and Swirszcz, 2012), have been pro-
posed that separate out the task specific and global
parameters. We experimented with these meth-
ods and observed equivalent or worse performance
compared to Group Lasso.
Collective Matrix Factorization (CMF) with
Side Information: Low rank approximation for
the task weights matrices forms one family of meth-
ods for multi-task learning (Zhang and Yang, 2017;
Pong et al., 2010; Ando et al., 2005). As a direct
analogue with collaborative filtering, here we can
think of the tasks as users and pivot-target pairs
as items. Consider the matrix Y ∈ R|T|×|P×T |,
where each element of the matrix correspond to
ytp,t. We can then decompose the matrix into task
and language-pair specific factors as

Y ∼ TLT (3)
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where T ∈ R|T|×dlatent and L ∈ R|P×T |×dlatent

are the task and language-pair factor matrices, and
dlatent is the number of factors.

Additionally, in order to incorporate the fea-
ture information about the language pairs as dis-
cussed in section 3.2, we incorporate Collective
Matrix Factorization approach (Cortes, 2018). It
incorporates the attribute information about items
and/or users in the factorization algorithm by de-
composing the language-pair feature matrix X ∈
R|P×T |×n as LFT , such that L is shared across
both decompositions. This helps to learn the latent
representations for the pivot-language pairs from
the task-wise performance as well as different lin-
guistic and MMLM specific features2. In relation
to Equation 1, we can think of task factors T to cor-
respond to the task specific parameters Φ, language-
pair factors L as the shared parameters Θ and the
predictor model as f(xp,t, t; Θ,Φ) = (TLT )(p,t),t.
Both L and T are regularized seperately, but there
is no group regularization term (λgroup = 0).

Ye et al. (2021) also uses a Tensor Factoriza-
tion approach for performance prediction which is
similar to our CMF method. However, they train
separate models for each task and factorize over
metric specific attributes instead for a fine-grained
prediction.
Multi-Task Deep Gaussian Process Regression
(MDGPR): We use the multi-task variant of Gaus-
sian Processes proposed in Bonilla et al. (2008)
and utilize deep neural networks to define the ker-
nel functions as in Deep GPs (Wilson et al., 2016).
For comparison, we also report the scores of the
single-task variant of this method which we denote
as DGPR. See Appendix (section A.1) for details.

Apart from these we also explore other multi-
task methods like Model Agnostic Meta Learning
(MAML) (Finn et al., 2017), details of which we
leave in the appendix (section A.1).

5 Experimental Setup

In this section, we discuss our test conditions,
datasets and training parameters for the different
experiments.

5.1 Test Conditions

We consider two different test conditions: Leave
One Language Out (LOLO) and Leave Low Re-
source Languages Out (LLRO).

2Note that we can use a similar approach for providing
side information for the tasks as well.

Leave One Language Out: LOLO is a popu-
lar setup for multilingual performance prediction
(Lauscher et al., 2020; Srinivasan et al., 2021),
where for a given task, we choose a target language
and move all of its instances from the prediction
dataset to the test data. The models are then trained
on the remaining languages and evaluated on the
unseen test language. This is done for all the target
languages available for a task, and the Mean Ab-
solute Error (MAE) across languages is reported.
In the multi-task setting we evaluate on one task
at a time while considering the rest as helper tasks
for which the entire data is used including the test
language3.
Leave Low Resource Languages Out: Through
this evaluation strategy we try to emulate the real
world use case where we only have test data avail-
able in high resource languages such as English,
German and Chinese, and would like to estimate
the performance on under-represented languages
such as Swahili and Bengali. We use the language
taxonomy provided by Joshi et al. (2020) to cate-
gorize the languages into six classes (0 = low to
5 = high) based on the number of resources avail-
able. We then move languages belonging to class
3 or below to our test set and train the models on
class 4 and 5 languages only. Similar to LOLO,
here too we allow the helper tasks to retain all the
languages.

5.2 Tasks and Datasets

We use the following 11 tasks provided in
XTREME (Hu et al., 2020) and XTREME-R
(Ruder et al., 2021) benchmarks: 1. Classifica-
tion: XNLI (Conneau et al., 2018) , PAWS-X
(Yang et al., 2019), and XCOPA (Ponti et al., 2020)
2. Structure Prediction: UDPOS (Nivre et al.,
2018), and NER (Pan et al., 2017) 3. Question An-
swering: XQUAD (Artetxe et al., 2020), MLQA
(Lewis et al., 2020), and TyDiQA-GoldP (Clark
et al., 2020) 4. Retrieval: Tatoeba (Artetxe and
Schwenk, 2019), Mewsli-X (Botha et al., 2020;
Ruder et al., 2021), and LAReQA (Roy et al., 2020)

All of these datasets have training data present
only in English i.e. P = {en}, and majority of the
tasks have fewer than 10 target languages.

3Note that this is a reasonable relaxation to make as it is
closer to the real world use case where we would have the
evaluation data for some languages in the standard tasks and
would like to utilize that to make predictions on the same
languages for the new ftask.
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MMLM Task |T | Baselines Single Task Models Multi Task Models

Average within Task Average across Tasks Lasso XGBoost DGPR Group Lasso CMF MDGPR MAML

XLMR

MLQA 7 2.92 2.26 4.33 2.91 3.26 2.21 2.66 2.96 4.89
PAWS 7 3.34 0.9 0.8 1.28 1.27 1.32 1.39 2.71 6.62

XCOPA 8 4.52 5.91 2.42 4.16 4.73 2.69 2.03 1.96 6.28
TyDiQA 9 4.29 5.48 5.89 5.63 6.56 5.04 5.88 4.61 4.96
XQUAD 10 4.90 4.22 4.54 6.56 4.13 4.16 3.86 3.15 6.85
LAReQA 10 2.10 1.51 1.53 1.56 1.78 1.52 1.87 2.69 8.22
MewsliX 10 16.61 15.48 15.70 21.16 15.66 13.73 14.62 10.07 9.33

XNLI 14 3.07 2.07 1.97 1.53 2.16 2.17 2.17 3.54 4.55
WikiANN 32 15.22 11.61 10.14 10.26 12.64 10.92 11.36 9.15 13.19
Tatoeba 35 8.69 8.68 5.82 7.14 6.80 5.83 6.08 8.09 9.72
UDPOS 48 10.15 7.65 7.52 5.12 6.02 7.72 7.89 5.88 10.71

Average 19 6.89 5.98 5.51 6.12 5.91 5.21 5.44 4.98 7.76
Average (|T | ≤ 10) 9 5.53 5.11 5.03 6.18 5.34 4.38 4.62 4.02 6.73

mBERT
Average 19 8.69 6.57 5.55 6.86 6.10 5.45 5.08 5.12 8.14

Average (|T | ≤ 10) 9 6.96 5.64 4.99 6.54 5.73 4.44 4.18 4.53 7.51

Table 1: Mean Absolute Error (scaled by 100 for readability) for LOLO for different approaches across tasks. We
also report the average MAE across all tasks (“Average”) and for tasks which has less than or equal to 10 languages
(“Average (|T | ≤ 10)”). Task-wise results for mBERT can be found in the Appendix (table 2)

5.3 Training Details
We train and evaluate our performance prediction
models for mBERT (bert-base-multilingual-cased)
and XLM-R (xlm-roberta-large). For training XG-
Boost, we used 100 estimators with a maximum
depth of 10. For Group Lasso, we used the imple-
mentation provided in the MuTaR software pack-
age4, and used a regularization strength of 0.01.
We optimized CMF’s objective function using Al-
ternating Least Squares (ALS), used 5 latent factors
with a regularization parameter equal to 0.1, and
used the Collective Matrix Factorization python
library5. In case of MDGPR, we used Radial Basis
Function as the kernel and a two-layer MLP for
learning latent features, with 50 and 10 units fol-
lowed by ReLU activation. We set the learning rate
and epochs as 0.01 and 200, and implemented it
using GPyTorch6.

6 Results and Discussion

6.1 LOLO Results
Table 1 shows MAE (in %) for LOLO for differ-
ent single-task and multi-task models on the tasks.
For XLMR, we observe that multi-task models, pri-
marily MDGPR, often outperform the best single-
task models by significant margins, and for tasks
like MewsliX we even see about 36% reduction in
MAE. Overall, we see about 10% drop in LOLO
errors on average for MDGPR compared to the
best performing single-task model i.e. Lasso Re-
gression. As expected, the benefit of multi-task

4https://github.com/hichamjanati/mutar
5https://github.com/david-cortes/

cmfrec
6https://gpytorch.ai/

learning is even more prominent when we consider
the tasks for which only a few (≤ 10) data points
are available. Here we see about 20% reduction
in errors. For mBERT as well, we have similar
observations, except that CMF performs slightly
better than MDGPR.

Note that the Average across task baseline is
quite competitive and performs better than single-
task XGBoost and MAML in average, and better
than all models for LAReQA.

Figure 2 plots the dependence of the number of
helper tasks on the performance of the multi-task
models. As expected, MAE decreases as helper
tasks increase, especially for MDGPR and CMF.
On a related note, the Pearson Correlation coeffi-
cient between MAE and number of tasks a target
language is part of is found to be −0.39, though
the trend in this case is not as clear.

6.2 LLRO Results

Predicting the performance on low resource lan-
guages, for which often standard training and test
datasets are not available, can be an important use
case where multi-task performance prediction can
be helpful. Figure 6 in appendix shows the class-
wise (Joshi et al., 2020) distribution of languages
for the tasks that we consider in our experiments.
As one would expect, for most tasks, test data is
available for languages belonging to class-4 and
class-5. Training performance prediction models
without any task to transfer from can therefore,
possibly lead to poor generalization on the low re-
source languages. On the other hand, for the same
reason - lack of test data, building accurate predic-
tors for low-resource languages is necessary.
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MAE values for the LLRO evaluation setup are
shown in figure 1 for XLMR. Results for mBERT
follow similar trends and are reported in the Ap-
pendix (figure 7). For both XLMR and mBERT
we observe that the three main multi-task models –
Group Lasso, CMF and MDGPR – outperform the
single-task models and baselines. Interestingly, for
XLMR, the single task models XGBoost and Lasso
perform even worse than the Average within Tasks
baseline. Overall we see around 18% and 11%
drop in MAE for Group Lasso over the best per-
forming single-task model, for XLMR and mBERT
respectively.

6.3 Feature Importance

An interesting consequence of zero-shot perfor-
mance prediction is that the models can be di-
rectly used to infer the correlation (and possibly
causation) between linguistic relatedness and pre-
training conditions and zero-shot transferability.
Multi-task learning, in this context, help us make
more robust inferences, as the models are less prone
to overfitting to a particular task or dataset.

Figure 3 shows the SHAP values of the features
for the Group Lasso model trained on XLMR’s
zero-shot performance data. As expected for Group
Lasso, we see a block-sparsity behavior among the
tasks. Features such as Rare Typological Traits
(WMRR(t)), Tokenizer’s Fertility (FERT(t)) and
Genetic Similarity (sgen(p, t)) are ignored in all the
tasks. In contrast, for the single-task lasso regres-
sion (Figure 9 in Appendix), we see different sets
of features selected for different tasks, which for
the scale at which we operate, might not be indica-
tive of the actual factors that affect the zero-shot
performance in these tasks.
Subword Overlap. Among the features that get se-
lected for all tasks, we observe that Subword Over-
lap (osw(p, t)) typically gets higher importance in
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Figure 3: Task-wise mean SHAP values of different fea-
tures for the Group Lasso model trained on XLMR zero-
shot performance data. Higher value implies stronger
effect.

retrieval (LAReQA and MewsliX) and sentence
classification tasks (PAWS-X, XNLI). Since the re-
trieval tasks that we consider, as described in Ruder
et al. (2021), measure the alignment between the
cross lingual representations of semantically simi-
lar sentences, having a shared vocabulary between
the languages can leak information from one to an-
other (Wu and Dredze, 2019) which might improve
the retrieval performance. Interestingly, if we com-
pare this with the feature importance scores for the
single task lasso model (Figure 9 in Appendix),
we do see MewsliX task getting higher importance
for the subword overlap, but LAReQA gets virtu-
ally zero SHAP value for this feature, showcasing
how single-task models can misinterpret two simi-
lar tasks as requiring very different features. Our
observation reinforce the generally held notion that
vocabulary overlap between the pivot and target is
beneficial for zero-shot transfer (Wu and Dredze,
2019), especially for retrieval tasks, though some
studies have argued otherwise (Pires et al., 2019; K
et al., 2020).
Tokenizer Features. For structure prediction
(UDPOS and WikiAnn) and question answering
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(XQUAD and TyDiQA) tasks that require mak-
ing predictions for each token in the input, we
see that the tokenizer feature, PCW(t), receive a
higher SHAP value. In contrast, for single-task
lasso, here too we do not observe high importance
of this feature across these related tasks. Rust
et al. (2021) note that languages such as Arabic
where mBERT’s multilingual tokenizer was found
to be much worse than it’s monolingual counter-
part, there was a sharper drop in performance of
mBERT compared to the monolingual model for
QA, UDPOS and NER tasks than for sentiment
classification. We believe that XLMR’s surpris-
ingly worse performance than mBERT for Chi-
nese and Japanese on UDPOS might be correlated
with it’s significantly worse tokenizer for these lan-
guages based on the fertility (FERT) and Percent-
age Continued Words (PCW) feature values (see
Appendix A.2 for exact values). The high SHAP
values for PCW(t) further strengthen our belief7.
Pre-training Size. Similar to the findings of
Lauscher et al. (2020), we observe that pre-training
corpus size has low SHAP value, and therefore,
lower importance for lower level tasks such as
UDPOS and NER, and higher SHAP values for
higher level tasks like XNLI. Additionally, we ex-
tend their observations to tasks such as XCOPA,
Tatoeba, MLQA and LAReQA where pre-training
size seem to play a significant role in the perfor-
mance prediction. Again, compared to single Lasso
Regression model, we see a different selection pat-
tern: Pre-training size receives a high SHAP value
for UDPOS while for XNLI it is negligible. This
neither fully conforms with our observations on the
multi-task feature selections, nor with the previous
work (Lauscher et al., 2020).
Typological Relatedness Features. Out of all the
typological relatedness features, we found Geo-
graphical Distance (dgeo(p, t)) receiving highest
SHAP values for all tasks, implying that geograph-
ical proximity between the pivot-target pair is an
important factor in determining the zero-shot trans-
ferability between them. Lauscher et al. (2020) also
observe positive correlations between geographical
relatedness and zero-shot performance. The cross-
task importance of geographic distance (unlike the
other relatedness features) might be attributed to
the 100% coverage across languages for the geo-

7Note that Rust et al. (2021) shows the importance of
tokenizer metrics for the case where the multilingual models
are fine-tuned on the target language, whereas we analyze
their importance for zero-shot transfer.

graphical vectors in the URIEL database. In con-
trast, Syntactic and Phonological vectors have miss-
ing values for a majority of the languages (Littell
et al., 2017).

Like Lauscher et al. (2020), we also see some
dependence on syntactic (ssyn(p, t)) and phono-
logical (spho(p, t)) similarities for XLMR’s zero
shot performance on XNLI and XQUAD tasks
respectively. However, in both cases we found
that the tokenizer feature PCW(t) receives a much
higher SHAP value. Interestingly, genetic simi-
larity (sgen(p, t)) is not selected for any task, ar-
guably due to the block sparsity in feature selection
of Group Lasso. We do see some tasks receiv-
ing high SHAP values for sgen(p, t) in single-task
lasso (Figure 9 in Appendix). However, the num-
ber of such tasks as well as the SHAP values are
on the lower side, implying that genetic similarity
might not provide any additional information for
zero-shot transfer over and above the geographical,
syntactic and phonological similarities.

Similar trends are observed in the case of
mBERT as well (Figure 10 in appendix), with
some minor differences. For instance, instead of
PCW(t), FERT(t) receives higher SHAP value;
ssyn(p, t) also receives higher importance, espe-
cially for tasks like UDPOS and XNLI, which
is consistent with the findings of Lauscher et al.
(2020).

7 Conclusion and Future Work

In this paper, we showed that the zero-shot per-
formance prediction problem can be much more
effectively and robustly solved by using multi-task
learning approaches. We see significant reduction
in errors compared to the baselines and single-task
models, specifically for the tasks which have test
sets available in a very few languages or when try-
ing to predict the performance for low resource
languages. Additionally, this approach allows us
to robustly identify factors that influence zero-shot
performance. Our findings in this context can be
summarized as follows.

1. Subword overlap between the pivot and target
has a strong positive influence on zero-shot trans-
fer, especially for Retrieval tasks. 2. Quality of
the target tokenizer, defined in terms of how of-
ten or how aggressively it splits the target tokens
negatively influences zero-shot performance for
word-level tasks such as POS tagging and Span ex-
traction. 3. Pre-training size of the target positively
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influences zero-shot performance in many tasks,
including XCOPA, Tatoeba, MLQA and LAReQA.
4. Geographical proximity between pivot and target
is found to be uniformly important across all the
tasks, unlike syntactic and phonological similari-
ties, which are important for only some tasks.

This last finding is especially interesting. As
described earlier, geographical proximity is a more
clear, noise-free and complete feature compared to
the other relatedness metrics. However, one could
also argue that since neighboring languages tend
to have high vocabulary and typological feature
overlap due to contact processes and shared areal
features, geographical distance is an extremely in-
formative feature for zero-shot transfer. Two direct
implications of these findings are: (1) for effective
use of MMLMs, one should develop resources in
at least one pivot language per geographic regions,
and (2) one should work towards multilingual tok-
enizers that are effective for most languages.

There are a number of directions that can be
explored in future related to our work. The predic-
tion models can be extended to a multi-pivot and
few-shot settings, as described in Srinivasan et al.
(2021). Further probing experiments could be de-
signed to understand the role of sub-word overlap
on zero-shot transfer of Retrieval tasks.
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A Appendix

A.1 Additional Details of Approaches Used
Gaussian Process Regression (GPR): We start
by briefly reviewing Gaussian Processes (GP) in
context of the zero-shot performance prediction
problem. For a pivot-target language pair (p, t) and
a task t, the GP prior and the likelihood function
can be defined as:

f ∼ N (µt,Kt); y|f(xp,t) ∼ N (ytp,t; f(xp,t), σ
2
t )

(4)
where µt is the mean and Kt

(p,t),(p′,t′) =

kt(xp,t, xp′,t′) is the kernel of the GP defined on
the task t. σ2

t denotes the noise variance.

Deep Gaussian Process Regression (DGPR): We
use DGP (Wilson et al., 2016) to learn rich features
from the observed data. Specifically, the kernel
kt(xp,t, xp′,t′) now takes the transformed inputs as

kt(xp,t, xp′,t′) = kt(g(xp,t), g(xp′,t′)) (5)

where g(x) is a non-linear mapping given by a deep
network. Please refer to Wilson et al. (2016) for a
detail account on optimization of DGP.

Multi-Task Deep Gaussian Process Regression
(MDGPR): We use the multi-task variant of Gaus-
sian Processes proposed in Bonilla et al. (2008)
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where inter-task similarities are learnt solely based
on the task identities and the observed data for
each task. Instead of learning task-specific ker-
nels kt(g(xp,t), g(xp′,t′)), we will have a common
kernel over the inputs as k(g(xp,t), g(xp′,t′)) and
a positive semi-definite matrix Ktask for learning
inter-task similarities. Specifically, we define the
multi-task kernel Km as follows

km([xp,t, t], [xp′,t′ , t
′]) =

k(g(xp,t), g(xp′,t′)) ∗ ktask(t, t
′) (6)

The GP prior will be defined by replacing the
task specific kernel Kt in the equation 4 with the
multi-task kernel Km. We use the optimization
steps similar to DGP and the inference is done by
using the standard GP formulae.

Relating MDGPR to equation 1, the global pa-
rameters Θ are the parameters of the deep network
g, and the task specific parameter Φ is the positive
semi-definite matrix Ktask.
Model Agnostic Meta Learning (MAML):
MAML (Finn et al., 2017) is a popular meta learn-
ing algorithm that can be used to quickly adapt
Deep Neural Networks on new tasks in a few-shot
setting. In MAML, the set of initialization param-
eters for the neural network are explicitly learned
such that the network can generalize well on a new
task with a small number of gradient steps and
training samples.

Relating to equation 1, the global parameters Θ
can be considered as the initial set of parameters
for the neural network that are learned and shared
across all the tasks. Task specific parameters Φ are
adapted from Θ by taking K gradient steps using
the task’s performance data.

For evaluating a task t, we consider rest of the
tasks in our dataset as helpers (t′ ∈ T−{t}) and use
them to train the initial set of parameters Θ. The
initial parameters are then updated by fine-tuning
the network on the training set for t using gradient
descent.

A.2 Comparison between mBERT and
XLMR Tokenizers

The FERT and PCW metrics as proposed by Rust
et al. (2021), have been compared for mBERT and
XLMR in figure 4. As can be seen, for most lan-
guages the metric values are similar across the
two tokenizers, however for languages like Chi-
nese and Japanese, there is a dramatic increase in
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Figure 4: Comparison of Tokenizer metrics as described
by Rust et al. (2021) on different languages for MBERT
and XLMR. For most languages both model’s have simi-
lar values of fertility and proportion of continued words,
however for Chinese and Japanese the values for XLMR
are much higher, which might indicate the subpar qual-
ity of XLMR’s tokenizer in these languages.
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Figure 5: Zero-shot performance comparison between
mBERT and XLMR on (a) UDPOS and (b) WikiANN
(NER) tasks, as given in Ruder et al. (2021)

the values for XLMR. Interestingly, when we com-
pare the zero-shot performance between mBERT
and XLMR on structure prediction tasks like UD-
POS and WikiANN, we see a surprisingly large
drop (upto 20% absolute drop) in the performance
for XLMR on these both Chinese and Japanese,
whereas usually XLMR outperforms mBERT on
these tasks (Refer to figure 5). This observation
along with the feature importance for the tokenizer
features that we observed for Group Lasso (3) indi-
cate that tokenizer quality might play some role in
the zero-shot transfer capabilities of the multilin-
gual models.
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Task |T | Baselines Single Task Models Multi Task Models

Average within Task Average across Tasks Lasso XGBoost DGPR Group Lasso CMF MDGPR MAML

MLQA 7 4.87 4.59 6.39 7.47 6.12 3.45 3.18 2.42 3.75
PAWS 7 4.01 2.96 3.97 3.01 3.53 2.34 2.75 1.92 6.77

XCOPA 8 3.44 3.63 3.54 4.24 3.10 3.30 2.86 2.59 5.38
TyDiQA 9 5.06 7.08 3.42 6.44 3.94 5.09 4.59 3.92 8.34
XQUAD 10 6.56 2.97 2.89 4.69 3.26 4.16 4.37 3.13 4.86
LAReQA 10 5.57 2.79 2.59 4.40 2.64 2.22 1.96 1.75 8.74
MewsliX 10 19.23 15.48 12.15 15.54 17.52 10.53 9.54 15.99 14.72

XNLI 14 5.29 2.94 3.29 2.60 2.95 3.18 3.89 2.98 5.05
WikiANN 32 14.79 10.54 9.37 11.13 11.51 10.30 8.91 8.62 11.80
Tatoeba 35 14.63 11.86 6.43 9.57 6.38 6.46 7.21 6.16 12.13
UDPOS 48 12.10 7.43 7.05 6.37 6.18 8.94 6.58 6.87 7.97

Average 19 8.69 6.57 5.55 6.86 6.10 5.45 5.08 5.12 8.14
Average (|T | ≤ 10) 9 6.96 5.64 4.99 6.54 5.73 4.44 4.18 4.53 7.51

Table 2: Mean Absolute Errors (Scaled by 100 for readability) for different models trained to predict the zero shot
performance of mBERT. In the “Average” row we average the MAEs across all the tasks and in the “Average Low”
Res Tasks", we consider the tasks with fewer than 10 target languages and take the average of the MAEs for those
tasks.
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Figure 6: Class wise distribution of languages for dif-
ferent tasks. Languages have been categorized based on
the taxonomy provided by Joshi et al. (2020)
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mBERT
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Figure 8: Number of helper tasks vs. LOLO MAE for
mBERT. Errors for different model types (Group Lasso,
CMF and MDGPR) and tasks are scaled by diving them
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Figure 9: Task-wise mean SHAP values of different
features for the Single Task Lasso Regression model
trained on XLMR zero-shot performance data.
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Figure 10: Task-wise mean SHAP values of different
features for the Group Lasso model trained on mBERT
zero-shot performance data.

5466



S
IZ

E
(t

)

W
M

R
R

(t
)

P
C

W
(t

)

F
E

R
T

(t
)

d
g
eo

(p
,t

)

s s
y
n
(p
,t

)

s p
h
o(
p,
t)

s g
en

(p
,t

)

o s
w

(p
,t

)

XCOPA
LAReQA
MewsliX

MLQA
TyDiQA
PAWS-X

WikiANN
XNLI

Tatoeba
UDPOS
XQUAD

0.24 0 0.45 0 0.01 0.23 0.07 0 0

0.25 0 0 0 0.21 0.04 0.5 0 0

0.33 0.01 0 0.17 0 0.02 0 0 0.47

0 0.03 0 0.03 0.3 0 0.16 0.07 0.41

0.31 0 0 0.24 0 0 0.45 0 0

0 0.05 0 0.1 0.25 0 0 0 0.6

0 0.24 0.01 0 0 0 0 0 0.75

0.2 0.05 0.09 0 0.17 0.18 0.08 0 0.21

0.5 0 0.09 0 0 0.37 0 0 0.04

0.44 0 0 0.25 0 0.21 0 0.04 0.06

0.04 0 0 0 0.12 0.55 0.24 0.05 0

Mean SHAP values (MBERT) - Lasso Regression

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 11: Task-wise mean SHAP values of different
features for the Single Task Lasso Regression model
trained on mBERT zero-shot performance data.

5467


