
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 320 - 335

May 22-27, 2022 c©2022 Association for Computational Linguistics

GLM: General Language Model Pretraining
with Autoregressive Blank Infilling

Zhengxiao Du∗1,2 Yujie Qian∗3 Xiao Liu1,2 Ming Ding1,2 Jiezhong Qiu1,2

Zhilin Yang†1,4 Jie Tang†1,2
1Tsinghua University 2Beijing Academy of Artificial Intelligence (BAAI)

3MIT CSAIL 4Shanghai Qi Zhi Institute
zx-du20@mails.tsinghua.edu.cn yujieq@csail.mit.edu

{zhiliny,jietang}@tsinghua.edu.cn

Abstract

There have been various types of pretrain-
ing architectures including autoencoding mod-
els (e.g., BERT), autoregressive models (e.g.,
GPT), and encoder-decoder models (e.g., T5).
However, none of the pretraining frameworks
performs the best for all tasks of three main cat-
egories including natural language understand-
ing (NLU), unconditional generation, and con-
ditional generation. We propose a General
Language Model (GLM) based on autoregres-
sive blank infilling to address this challenge.
GLM improves blank filling pretraining by
adding 2D positional encodings and allowing
an arbitrary order to predict spans, which re-
sults in performance gains over BERT and T5
on NLU tasks. Meanwhile, GLM can be pre-
trained for different types of tasks by varying
the number and lengths of blanks. On a wide
range of tasks across NLU, conditional and
unconditional generation, GLM outperforms
BERT, T5, and GPT given the same model
sizes and data, and achieves the best perfor-
mance from a single pretrained model with
1.25× parameters of BERTLarge, demonstrat-
ing its generalizability to different downstream
tasks.1

1 Introduction

Language models pretrained on unlabeled texts
have substantially advanced the state of the art in
various NLP tasks, ranging from natural language
understanding (NLU) to text generation (Radford
et al., 2018a; Devlin et al., 2019; Yang et al., 2019;
Radford et al., 2018b; Raffel et al., 2020; Lewis
et al., 2019; Brown et al., 2020). Downstream task
performance as well as the scale of the parame-
ters have also constantly increased in the past few
years.

*The first two authors contributed equally.
†Corresponding authors.
1The code and pre-trained models are available at https:

//github.com/THUDM/GLM

All [START] NLP tasks are generation tasks

All NLP tasks [END] are generation tasks

× L

Figure 1: Illustration of GLM. We blank out text spans
(green part) and generate them autoregressively. (Some
attention edges are omitted; cf. Figure 2.)

In general, existing pretraining frameworks can
be categorized into three families: autoregressive,
autoencoding, and encoder-decoder models. Au-
toregressive models, such as GPT (Radford et al.,
2018a), learn left-to-right language models. While
they succeed in long-text generation and show few-
shot learning ability when scaled to billions of
parameters (Radford et al., 2018b; Brown et al.,
2020), the inherent disadvantage is the unidirec-
tional attention mechanism, which cannot fully cap-
ture the dependencies between the context words
in NLU tasks. Autoencoding models, such as
BERT (Devlin et al., 2019), learn bidirectional con-
text encoders via denoising objectives, e.g. Masked
Language Model (MLM). The encoders produce
contextualized representations that suit natural lan-
guage understanding tasks, but could not be directly
applied for text generation. Encoder-decoder mod-
els adopt bidirectional attention for the encoder,
unidirectional attention for the decoder, and cross
attention between them (Song et al., 2019; Bi et al.,
2020; Lewis et al., 2019). They are typically de-
ployed in conditional generation tasks, such as
text summarization and response generation. 2.
T5 (Raffel et al., 2020) unifies NLU and condi-
tional generation via encoder-decoder models but
requires more parameters to match the performance

2Unconditional generation refers to generating text as a lan-
guage model without finetuning, while conditional generation
refers to sequence-to-sequence tasks.

320

https://github.com/THUDM/GLM
https://github.com/THUDM/GLM

of BRET-based models such as RoBERTa (Liu
et al., 2019) and DeBERTa (He et al., 2021).

None of these pretraining frameworks is flexible
enough to perform competitively across all NLP
tasks. Previous works have tried to unify differ-
ent frameworks by combining their objectives via
multi-task learning (Dong et al., 2019; Bao et al.,
2020). However, since the autoencoding and au-
toregressive objectives differ by nature, a simple
unification cannot fully inherit the advantages of
both frameworks.

In this paper, we propose a pretraining frame-
work named GLM (General Language Model),
based on autoregressive blank infilling. We ran-
domly blank out continuous spans of tokens from
the input text, following the idea of autoencoding,
and train the model to sequentially reconstruct the
spans, following the idea of autoregressive pretrain-
ing (see Figure 1). While blanking filling has been
used in T5 (Raffel et al., 2020) for text-to-text pre-
training, we propose two improvements, namely
span shuffling and 2D positional encoding. Empiri-
cally, we show that with the same amount of param-
eters and computational cost, GLM significantly
outperforms BERT on the SuperGLUE benchmark
by a large margin of 4.6% – 5.0% and outperforms
RoBERTa and BART when pretrained on a corpus
of similar size (158GB). GLM also significantly
outperforms T5 on NLU and generation tasks with
fewer parameters and data.

Inspired by Pattern-Exploiting Training (PET)
(Schick and Schütze, 2020a), we reformulate NLU
tasks as manually-crafted cloze questions that
mimic human language. Different from the BERT-
based models used by PET, GLM can naturally
handle multi-token answers to the cloze question
via autoregressive blank filling.

Furthermore, we show that by varying the num-
ber and lengths of missing spans, the autoregressive
blank filling objective can pretrain language mod-
els for conditional and unconditional generation.
Through multi-task learning of different pretraining
objectives, a single GLM can excel in both NLU
and (conditional and unconditional) text genera-
tion. Empirically, compared with standalone base-
lines, GLM with multi-task pretraining achieves
improvements in NLU, conditional text generation,
and language modeling tasks altogether by sharing
the parameters.

2 GLM Pretraining Framework

We propose a general pretraining framework GLM
based on a novel autoregressive blank infilling ob-
jective. GLM formulates NLU tasks as cloze ques-
tions that contain task descriptions, which can be
answered by autoregressive generation.

2.1 Pretraining Objective

2.1.1 Autoregressive Blank Infilling
GLM is trained by optimizing an autoregressive
blank infilling objective. Given an input text x =
[x1, · · · , xn], multiple text spans {s1, · · · , sm} are
sampled, where each span si corresponds to a
series of consecutive tokens [si,1, · · · , si,li] in x.
Each span is replaced with a single [MASK] to-
ken, forming a corrupted text xcorrupt. The model
predicts the missing tokens in the spans from the
corrupted text in an autoregressive manner, which
means when predicting the missing tokens in a
span, the model has access to the corrupted text
and the previously predicted spans. To fully cap-
ture the interdependencies between different spans,
we randomly permute the order of the spans, simi-
lar to the permutation language model (Yang et al.,
2019). Formally, let Zm be the set of all possi-
ble permutations of the length-m index sequence
[1, 2, · · · ,m], and sz<i be [sz1 , · · · , szi−1], we de-
fine the pretraining objective as

max
θ

Ez∼Zm

[
m∑
i=1

log pθ(szi |xcorrupt, sz<i)

]
(1)

We always generate the tokens in each blank fol-
lowing a left-to-right order, i.e. the probability of
generating the span si is factorized as:

pθ(si|xcorrupt, sz<i)

=

li∏
j=1

p(si,j |xcorrupt, sz<i , si,<j)
(2)

We implement the autoregressive blank infilling
objective with the following techniques. The input
x is divided into two parts: Part A is the corrupted
text xcorrupt, and Part B consists of the masked
spans. Part A tokens can attend to each other, but
cannot attend to any tokens in B. Part B tokens can
attend to Part A and antecedents in B, but cannot
attend to any subsequent tokens in B. To enable au-
toregressive generation, each span is padded with
special tokens [START] and [END], for input and

321

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

× × × ×
× × ×

× ×
×

(a) Sample spans from the input text

Part A:

Part B:

(b) Divide the input into Part A / Part B

GLM
(Transformer w/ masked self-attention)

(c) Generate the Part B spans autoregressively

Q
ue

ry

Key

(d) Self-attention mask

Token

x1 x2 x3 x4 x5 x6

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x5 x6 [E] x3 [E]

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x1

x2

[M]

x4

[M]

[S]

x5

x6

[S]

x3

Target � � � � � x5 x6 [E] x3 [E]
Position 1 1 2 3 4 5 5 5 5 3 3
Position 2 0 0 0 0 0 1 2 3 1 2

x1 x2 x3 x4 x5 x6

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x5 x6 [E] x3 [E]

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x1

x2

[M]

x4

[M]

[S]

x5

x6

[S]

x3

Position 1 1 2 3 4 5 5 5 5 3 3

Position 2 0 0 0 0 0 1 2 3 1 2

x1 x2 x3 x4 x5 x6

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x5 x6 [E] x3 [E]

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x1

x2

[M]

x4

[M]

[S]

x5

x6

[S]

x3

Position 1 1 2 3 4 5 5 5 5 3 3

Position 2 0 0 0 0 0 1 2 3 1 2

x1 x2 x3 x4 x5 x6

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x5 x6 [E] x3 [E]

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x1

x2

[M]

x4

[M]

[S]

x5

x6

[S]

x3

Position 1 1 2 3 4 5 5 5 5 3 3

Position 2 0 0 0 0 0 1 2 3 1 2

x1 x2 x3 x4 x5 x6

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x5 x6 [E] x3 [E]

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x1

x2

[M]

x4

[M]

[S]

x5

x6

[S]

x3

Position 1 1 2 3 4 5 5 5 5 3 3

Position 2 0 0 0 0 0 1 2 3 1 2

x1 x2 x3 x4 x5 x6

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x5 x6 [E] x3 [E]

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x1

x2

[M]

x4

[M]

[S]

x5

x6

[S]

x3

Position 1 1 2 3 4 5 5 5 5 3 3

Position 2 0 0 0 0 0 1 2 3 1 2

x1 x2 x3 x4 x5 x6

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x5 x6 [E] x3 [E]

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x1

x2

[M]

x4

[M]

[S]

x5

x6

[S]

x3

Position 1 1 2 3 4 5 5 5 5 3 3

Position 2 0 0 0 0 0 1 2 3 1 2

x1 x2 x3 x4 x5 x6

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x5 x6 [E] x3 [E]

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x1

x2

[M]

x4

[M]

[S]

x5

x6

[S]

x3

Position 1 1 2 3 4 5 5 5 5 3 3
Position 2 0 0 0 0 0 1 2 3 1 2

x1 x2 x3 x4 x5 x6

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x5 x6 [E] x3 [E]

x1 x2 [M] x4 [M] [S] x5 x6 [S] x3

x1

x2

[M]

x4

[M]

[S]

x5

x6

[S]

x3

Position 1 1 2 3 4 5 5 5 5 3 3
Position 2 0 0 0 0 0 1 2 3 1 2

Position 1
Position 2

Figure 2: GLM pretraining. (a) The original text is [x1, x2, x3, x4, x5, x6]. Two spans [x3] and [x5, x6] are sampled.
(b) Replace the sampled spans with [M] in Part A, and shuffle the spans in Part B. (c) GLM autoregressively
generates Part B. Each span is prepended with [S] as input and appended with [E] as output. 2D positional
encoding represents inter- and intra-span positions. (d) Self-attention mask. Grey areas are masked out. Part A
tokens can attend to themselves (blue frame) but not B. Part B tokens can attend to A and their antecedents in B
(yellow and green frames correspond to the two spans). [M] := [MASK], [S] := [START], and [E] := [END].

output respectively. In this way, our model auto-
matically learns a bidirectional encoder (for Part
A) and a unidirectional decoder (for Part B) in a
unified model. The implementation of GLM is
illustrated in Figure 2.

We randomly sample spans of length drawn from
a Poisson distribution with λ = 3. We repeatedly
sample new spans until at least 15% of the original
tokens are masked. Empirically, we have found
that the 15% ratio is critical for good performance
on downstream NLU tasks.

2.1.2 Multi-Task Pretraining
In the previous section, GLM masks short spans
and is suited for NLU tasks. However, we are
interested in pretraining a single model that can
handle both NLU and text generation. We then
study a multi-task pretraining setup, in which a
second objective of generating longer text is jointly
optimized with the blank infilling objective. We
consider the following two objectives:

• Document-level. We sample a single span
whose length is sampled from a uniform distri-
bution over 50%–100% of the original length.
The objective aims for long text generation.

• Sentence-level. We restrict that the masked
spans must be full sentences. Multiple spans
(sentences) are sampled to cover 15% of
the original tokens. This objective aims for
seq2seq tasks whose predictions are often
complete sentences or paragraphs.

Both new objectives are defined in the same way

as the original objective, i.e. Eq. 1. The only differ-
ence is the number of spans and the span lengths.

2.2 Model Architecture

GLM uses a single Transformer with several mod-
ifications to the architecture: (1) we rearrange
the order of layer normalization and the resid-
ual connection, which has been shown critical for
large-scale language models to avoid numerical
errors (Shoeybi et al., 2019); (2) we use a sin-
gle linear layer for the output token prediction;
(3) we replace ReLU activation functions with
GeLUs (Hendrycks and Gimpel, 2016).

2.2.1 2D Positional Encoding
One of the challenges of the autoregressive blank
infilling task is how to encode the positional infor-
mation. Transformers rely on positional encodings
to inject the absolute and relative positions of the
tokens. We propose 2D positional encodings to
address the challenge. Specifically, each token is
encoded with two positional ids. The first posi-
tional id represents the position in the corrupted
text xcorrupt. For the masked spans, it is the position
of the corresponding [MASK] token. The second
positional id represents the intra-span position. For
tokens in Part A, their second positional ids are
0. For tokens in Part B, they range from 1 to the
length of the span. The two positional ids are pro-
jected into two vectors via learnable embedding
tables, which are both added to the input token
embeddings.

Our encoding method ensures that the model is
not aware of the length of the masked span when

322

Coronet has the best lines of all day cruisers.

Positive
<latexit sha1_base64="cb5S93r+RGEy3gKCUaUf2i3SjJQ=">AAAB6HicbVDJSgNBEK2JW4xb1KMijUHwFGY8qMegF48JmAWSIfR0apI2PQvdPcIw5OjJiwdFvPoV+Q5vfoM/YWc5aPRBweO9KqrqebHgStv2p5VbWl5ZXcuvFzY2t7Z3irt7DRUlkmGdRSKSLY8qFDzEuuZaYCuWSANPYNMbXk/85j1KxaPwVqcxugHth9znjGoj1dJusWSX7SnIX+LMSalyOK59PRyNq93iR6cXsSTAUDNBlWo7dqzdjErNmcBRoZMojCkb0j62DQ1pgMrNpoeOyIlResSPpKlQk6n6cyKjgVJp4JnOgOqBWvQm4n9eO9H+pZvxME40hmy2yE8E0RGZfE16XCLTIjWEMsnNrYQNqKRMm2wKJgRn8eW/pHFWds7Lds2kcQUz5OEAjuEUHLiACtxAFerAAOERnuHFurOerFfrbdaas+Yz+/AL1vs31mKQqQ==</latexit>y

good
<latexit sha1_base64="CZ8abL6hJorh4jxHBPAGp8NppAA=">AAAB63icbVBNSwMxEJ2tX7V+VT16CS1CRSi7HtRj0YvHCvYD2qVk07QNTbJLki0sS/+CFwVFvPqHvPXfmG170NYHA4/3ZpiZF0ScaeO6Mye3sbm1vZPfLeztHxweFY9PmjqMFaENEvJQtQOsKWeSNgwznLYjRbEIOG0F4/vMb02o0iyUTyaJqC/wULIBI9hk0qSSXPSKZbfqzoHWibck5Vqpe/k6qyX1XvG72w9JLKg0hGOtO54bGT/FyjDC6bTQjTWNMBnjIe1YKrGg2k/nt07RuVX6aBAqW9Kgufp7IsVC60QEtlNgM9KrXib+53ViM7j1Uyaj2FBJFosGMUcmRNnjqM8UJYYnlmCimL0VkRFWmBgbT8GG4K2+vE6aV1Xvuuo+2jTuYIE8nEEJKuDBDdTgAerQAAIjeIY3eHeE8+J8OJ+L1pyznDmFP3C+fgCio5Dy</latexit>

v(y)

GLM

<latexit sha1_base64="cIlXHKTMHL8y94GI+KZXnlT1K7g=">AAAB7XicbVDLSgNBEOyNrxhfUY9ehgQhIoRdD+ox6MVjBPOAZAmzk9lkzOzMMjMrLjH/4EEPinj1f7zlb5w8DppY0FBUddPdFcScaeO6Yyezsrq2vpHdzG1t7+zu5fcP6lomitAakVyqZoA15UzQmmGG02asKI4CThvB4HriNx6o0kyKO5PG1I9wT7CQEWysVI9L6dPjSSdfdMvuFGiZeHNSrBTapy/jSlrt5L/bXUmSiApDONa65bmx8YdYGUY4HeXaiaYxJgPcoy1LBY6o9ofTa0fo2CpdFEplSxg0VX9PDHGkdRoFtjPCpq8XvYn4n9dKTHjpD5mIE0MFmS0KE46MRJPXUZcpSgxPLcFEMXsrIn2sMDE2oJwNwVt8eZnUz8reedm9tWlcwQxZOIIClMCDC6jADVShBgTu4Rne4N2Rzqvz4XzOWjPOfOYQ/sD5+gFYz5H0</latexit>

p(y|x)

It is really [MASK]
<latexit sha1_base64="XknPsXXFT3s+dKVLzg736M6sfhc=">AAAB9XicbVC7TsMwFL3hWcKrwMgSUSExVQkDsCAqWBiLRB9SGyrHcVqrjh3ZDlBF/Q8WBh5i5TPYWRB/g9N2gJYjWT465175+AQJo0q77rc1N7+wuLRcWLFX19Y3Notb23UlUolJDQsmZDNAijDKSU1TzUgzkQTFASONoH+R+41bIhUV/FoPEuLHqMtpRDHSRrppB4KFahCbK7sfdoolt+yO4MwSb0JKZx/2afLyZVc7xc92KHAaE64xQ0q1PDfRfoakppiRod1OFUkQ7qMuaRnKUUyUn41SD519o4ROJKQ5XDsj9fdGhmKVRzOTMdI9Ne3l4n9eK9XRiZ9RnqSacDx+KEqZo4WTV+CEVBKs2cAQhCU1WR3cQxJhbYqyTQne9JdnSf2w7B2V3Su3VDmHMQqwC3twAB4cQwUuoQo1wCDhAZ7g2bqzHq1X6208OmdNdnbgD6z3H7R5lks=</latexit>x

Figure 3: Formulation of the sentiment classification
task as blank infilling with GLM.

reconstructing them. It is an important difference
as compared to other models. For example, XL-
Net (Yang et al., 2019) encodes the original posi-
tion so that it can perceive the number of missing
tokens, and SpanBERT (Joshi et al., 2020) replaces
the span with multiple [MASK] tokens and keeps
the length unchanged. Our design fits downstream
tasks as usually the length of the generated text is
unknown beforehand.

2.3 Finetuning GLM
Typically, for downstream NLU tasks, a linear clas-
sifier takes the representations of sequences or to-
kens produced by pretrained models as input and
predicts the correct labels. The practices are differ-
ent from the generative pretraining task, leading to
inconsistency between pretraining and finetuning.

Instead, we reformulate NLU classification tasks
as generation tasks of blank infilling, following
PET (Schick and Schütze, 2020a). Specifically,
given a labeled example (x, y), we convert the in-
put text x to a cloze question c(x) via a pattern
containing a single mask token. The pattern is writ-
ten in natural language to represent the semantics
of the task. For example, a sentiment classification
task can be formulated as “{SENTENCE}. It’s
really [MASK]”. The candidate labels y ∈ Y are
also mapped to answers to the cloze, called ver-
balizer v(y). In sentiment classification, the labels
“positive” and “negative” are mapped to the words
“good” and “bad”. The conditional probability of
predicting y given x is

p(y|x) = p(v(y)|c(x))∑
y′∈Y p(v(y

′)|c(x)) (3)

where Y is the label set. Therefore the probability
of the sentence being positive or negative is propor-
tional to predicting “good” or “bad” in the blank.
Then we finetune GLM with a cross-entropy loss
(see Figure 3).

For text generation tasks, the given context con-
stitutes the Part A of the input, with a mask token
appended at the end. The model generates the text
of Part B autoregressively. We can directly apply
the pretrained GLM for unconditional generation,
or finetune it on downstream conditional generation
tasks.

2.4 Discussion and Analysis

In this section, we discuss the differences between
GLM and other pretraining models. We are mainly
concerned with how they can be adapted to down-
stream blank infilling tasks.

Comparison with BERT (Devlin et al., 2019).
As pointed out by (Yang et al., 2019), BERT fails
to capture the interdependencies of masked tokens
due to the independence assumption of MLM. An-
other disadvantage of BERT is that it cannot fill in
the blanks of multiple tokens properly. To infer the
probability of an answer of length l, BERT needs
to perform l consecutive predictions. If the length l
is unknown, we may need to enumerate all possible
lengths, since BERT needs to change the number
of [MASK] tokens according to the length.

Comparison with XLNet (Yang et al., 2019).
Both GLM and XLNet are pretrained with autore-
gressive objectives, but there are two differences
between them. First, XLNet uses the original posi-
tion encodings before corruption. During inference,
we need to either know or enumerate the length of
the answer, the same problem as BERT. Second,
XLNet uses a two-stream self-attention mechanism,
instead of the right-shift, to avoid the information
leak within Transformer. It doubles the time cost
of pretraining.

Comparison with T5 (Raffel et al., 2020). T5
proposes a similar blank infilling objective to pre-
train an encoder-decoder Transformer. T5 uses
independent positional encodings for the encoder
and decoder, and relies on multiple sentinel tokens
to differentiate the masked spans. In downstream
tasks, only one of the sentinel tokens is used, lead-
ing to a waste of model capacity and inconsistency
between pretraining and finetuning. Moreover, T5
always predicts spans in a fixed left-to-right order.
As a result, GLM can significantly outperform T5
on NLU and seq2seq tasks with fewer parameters
and data, as stated in Sections 3.2 and 3.3.

Comparison with UniLM (Dong et al., 2019).
UniLM combines different pretraining objectives
under the autoencoding framework by changing the

323

attention mask among bidirectional, unidirectional,
and cross attention. However, UniLM always re-
places masked spans with [MASK] tokens, which
limits its ability to model the dependencies between
the masked spans and their context. GLM feeds in
the previous token and autoregressively generates
the next token. Finetuning UniLM on downstream
generation tasks also relies on masked language
modeling, which is less efficient. UniLMv2 (Bao
et al., 2020) adopts partially autoregressive model-
ing for generation tasks, along with the autoencod-
ing objective for NLU tasks. Instead, GLM unifies
NLU and generation tasks with autoregressive pre-
training.

3 Experiments

We now describe our pretraining setup and the eval-
uation of downstream tasks.

3.1 Pretraining Setup

For a fair comparison with BERT (Devlin et al.,
2019), we use BooksCorpus (Zhu et al., 2015) and
English Wikipedia as our pretraining data. We use
the uncased wordpiece tokenizer of BERT with 30k
vocabulary. We train GLMBase and GLMLarge with
the same architectures as BERTBase and BERTLarge,
containing 110M and 340M parameters respec-
tively.

For multi-task pretraining, we train two Large-
sized models with a mixture of the blank infill-
ing objective and the document-level or sentence-
level objective, denoted as GLMDoc and GLMSent.
Additionally, we train two larger GLM models of
410M (30 layers, hidden size 1024, and 16 atten-
tion heads) and 515M (30 layers, hidden size 1152,
and 18 attention heads) parameters with document-
level multi-task pretraining, denoted as GLM410M
and GLM515M.

To compare with SOTA models, we also train
a Large-sized model with the same data, tokeniza-
tion, and hyperparameters as RoBERTa (Liu et al.,
2019), denoted as GLMRoBERTa. Due to resource
limitations, we only pretrain the model for 250,000
steps, which are half of RoBERTa and BART’s
training steps and close to T5 in the number of
trained tokens. More experiment details can be
found in Appendix A.

3.2 SuperGLUE

To evaluate our pretrained GLM models, we
conduct experiments on the SuperGLUE bench-

mark (Wang et al., 2019) and report the standard
metrics. SuperGLUE consists of 8 challenging
NLU tasks. We reformulate the classification tasks
as blank infilling with human-crafted cloze ques-
tions, following PET (Schick and Schütze, 2020b).
Then we finetune the pretrained GLM models on
each task as described in Section 2.3. The cloze
questions and other details can be found in Ap-
pendix B.1.

For a fair comparison with GLMBase and
GLMLarge, we choose BERTBase and BERTLarge
as our baselines, which are pretrained on the same
corpus and for a similar amount of time. We report
the performance of standard finetuning (i.e. classifi-
cation on the [CLS] token representation). The per-
formance of BERT with cloze questions is reported
in Section 3.4. To compare with GLMRoBERTa, we
choose T5, BARTLarge, and RoBERTaLarge as our
baselines. T5 has no direct match in the number
of parameters for BERTLarge, so we present the re-
sults of both T5Base (220M parameters) and T5Large
(770M parameters). All the other baselines are of
similar size to BERTLarge.

Table 1 shows the results. With the same amount
of training data, GLM consistently outperforms
BERT on most tasks with either base or large archi-
tecture. The only exception is WiC (word sense dis-
ambiguation). On average, GLMBase scores 4.6%
higher than BERTBase, and GLMLarge scores 5.0%
higher than BERTLarge. It clearly demonstrates
the advantage of our method in NLU tasks. In
the setting of RoBERTaLarge, GLMRoBERTa can still
achieve improvements over the baselines, but with
a smaller margin. Specifically, GLMRoBERTa outper-
forms T5Large but is only half its size. We also find
that BART does not perform well on the challeng-
ing SuperGLUE benchmark. We conjecture this
can be attributed to the low parameter efficiency of
the encoder-decoder architecture and the denoising
sequence-to-sequence objective.

3.3 Multi-Task Pretraining

Then we evaluate the GLM’s performance in a
multi-task setting (Section 2.1). Within one train-
ing batch, we sample short spans and longer
spans (document-level or sentence-level) with
equal chances. We evaluate the multi-task model
for NLU, seq2seq, blank infilling, and zero-shot
language modeling.

SuperGLUE. For NLU tasks, we evaluate mod-
els on the SuperGLUE benchmark. The results

324

Table 1: Results on the SuperGLUE dev set.

Model
ReCoRD
F1/Acc.

COPA
Acc.

WSC
Acc.

RTE
Acc.

BoolQ
Acc.

WiC
Acc.

CB
F1/Acc.

MultiRC
F1a/EM

Avg

Pretrained on BookCorpus and Wikipedia
BERTBase 65.4 / 64.9 66.0 65.4 70.0 74.9 68.8 70.9 / 76.8 68.4 / 21.5 66.1
GLMBase 73.5 / 72.8 71.0 72.1 71.2 77.0 64.7 89.5 / 85.7 72.1 / 26.1 70.7

BERTLarge 76.3 / 75.6 69.0 64.4 73.6 80.1 71.0 94.8 / 92.9 71.9 / 24.1 72.0
UniLMLarge 80.0 / 79.1 72.0 65.4 76.5 80.5 69.7 91.0 / 91.1 77.2 / 38.2 74.1
GLMLarge 81.7 / 81.1 76.0 81.7 74.0 82.1 68.5 96.1 / 94.6 77.1 / 36.3 77.0
GLMDoc 80.2 / 79.6 77.0 78.8 76.2 79.8 63.6 97.3 / 96.4 74.6 / 32.1 75.7
GLMSent 80.7 / 80.2 77.0 79.8 79.1 80.8 70.4 94.6 / 93.7 76.9 / 36.1 76.8
GLM410M 81.5 / 80.9 80.0 81.7 79.4 81.9 69.0 93.2 / 96.4 76.2 / 35.5 78.0
GLM515M 82.3 / 81.7 85.0 81.7 79.1 81.3 69.4 95.0 / 96.4 77.2 / 35.0 78.8

Pretrained on larger corpora
T5Base 76.2 / 75.4 73.0 79.8 78.3 80.8 67.9 94.8 / 92.9 76.4 / 40.0 76.0
T5Large 85.7 / 85.0 78.0 84.6 84.8 84.3 71.6 96.4 / 98.2 80.9 / 46.6 81.2
BARTLarge 88.3 / 87.8 60.0 65.4 84.5 84.3 69.0 90.5 / 92.9 81.8 / 48.0 76.0
RoBERTaLarge 89.0 / 88.4 90.0 63.5 87.0 86.1 72.6 96.1 / 94.6 84.4 / 52.9 81.5
GLMRoBERTa 89.6 / 89.0 82.0 83.7 87.7 84.7 71.2 98.7 / 98.2 82.4 / 50.1 82.9

Table 2: Results of abstractive summarization on the CNN/DailyMail and XSum test sets.

Model CNN/DailyMail XSum
RG-1 RG-2 RG-L RG-1 RG-2 RG-L

BERTSumAbs (Liu and Lapata, 2019) 41.7 19.4 38.8 38.8 16.3 31.2
UniLMv2Base (Bao et al., 2020) 43.2 20.4 40.1 44.0 21.1 36.1
T5Large (Raffel et al., 2020) 42.5 20.7 39.8 40.9 17.3 33.0
BARTLarge (Lewis et al., 2019) 44.2 21.3 40.9 45.1 22.3 37.3

GLMRoBERTa 43.8 21.0 40.5 45.5 23.5 37.3

are also shown in Table 1. We observe that with
multi-task pretraining, GLMDoc and GLMSent per-
form slightly worse than GLMLarge, but still outper-
form BERTLarge and UniLMLarge. Among multi-
task models, GLMSent outperforms GLMDoc by
1.1% on average. Increasing GLMDoc’s param-
eters to 410M (1.25×BERTLarge) leads to better
performance than GLMLarge. GLM with 515M pa-
rameters (1.5×BERTLarge) can perform even better.

Sequence-to-Sequence. Considering the
available baseline results, we use the Gigaword
dataset (Rush et al., 2015) for abstractive summa-
rization and the SQuAD 1.1 dataset (Rajpurkar
et al., 2016) for question generation (Du et al.,
2017) as the benchmarks for models pretrained
on BookCorpus and Wikipedia. Additionally, we
use the CNN/DailyMail (See et al., 2017) and
XSum (Narayan et al., 2018) datasets for abstrac-
tive summarization as the benchmarks for models

pretrained on larger corpora.

The results for models trained on BookCorpus
and Wikipedia are shown in Tables 3 and 4. We
observe that GLMLarge can achieve performance
matching the other pretraining models on the two
generation tasks. GLMSent can perform better than
GLMLarge, while GLMDoc performs slightly worse
than GLMLarge. This indicates that the document-
level objective, which teaches the model to extend
the given contexts, is less helpful to conditional
generation, which aims to extract useful informa-
tion from the context. Increasing GLMDoc’s pa-
rameters to 410M leads to the best performance on
both tasks. The results for models trained on larger
corpora are shown in Table 2. GLMRoBERTa can
achieve performance matching the seq2seq BART
model, and outperform T5 and UniLMv2.

Text Infilling. Text infilling is the task of pre-
dicting missing spans of text which are consistent

325

Table 3: Results on Gigaword summarization.

Model RG-1 RG-2 RG-L

MASS 37.7 18.5 34.9
UniLMLarge 38.5 19.5 35.8

GLMLarge 38.6 19.7 36.0
GLMDoc 38.5 19.4 35.8
GLMSent 38.9 20.0 36.3
GLM410M 38.9 20.0 36.2

Table 4: Results on SQuAD question generation.

Model BLEU-4 MTR RG-L

SemQG 18.4 22.7 46.7
UniLMLarge 22.1 25.1 51.1

GLMLarge 22.4 25.2 50.4
GLMDoc 22.3 25.0 50.2
GLMSent 22.6 25.4 50.4
GLM410M 22.9 25.6 50.5

Table 5: BLEU scores on Yahoo text infilling. † indi-
cates the results from (Shen et al., 2020).

Mask ratio 10% 20% 30% 40% 50%

BERT† 82.8 66.3 50.3 37.4 26.2
BLM† 86.5 73.2 59.6 46.8 34.8
GLMLarge 87.8 76.7 64.2 48.9 38.7
GLMDoc 87.5 76.0 63.2 47.9 37.6

with the surrounding context (Zhu et al., 2019;
Donahue et al., 2020; Shen et al., 2020). GLM
is trained with an autoregressive blank infilling
objective, thus can straightforwardly solve this
task. We evaluate GLM on the Yahoo Answers
dataset (Yang et al., 2017) and compare it with
Blank Language Model (BLM) (Shen et al., 2020),
which is a specifically designed model for text in-
filling. From the results in Table 5, GLM outper-
forms previous methods by large margins (1.3 to
3.9 BLEU) and achieves the state-of-the-art result
on this dataset. We notice that GLMDoc slightly
underperforms GLMLarge, which is consistent with
our observations in the seq2seq experiments.

Language Modeling. Most language model-
ing datasets such as WikiText103 are constructed
from Wikipedia documents, which our pretraining
dataset already contains. Therefore, we evaluate
the language modeling perplexity on a held-out
test set of our pretraining dataset, which contains
about 20M tokens, denoted as BookWiki. We also
evaluate GLM on the LAMBADA dataset (Paperno

Unidirectional Bidirectional
20

30

40

50

60

A
cc

u
ra

cy

LAMBADA

GLMDoc

GLMDoc – 2D

GLM410M

GLM515M

GPTLarge

Unidirectional Bidirectional
8

10

12

14

16

P
er

p
le

x
il

y

Books&Wiki Test

Figure 4: Zero-shot language modeling results.

et al., 2016), which tests the ability of systems to
model long-range dependencies in text. The task
is to predict the final word of a passage. As the
baseline, we train a GPTLarge model (Radford et al.,
2018b; Brown et al., 2020) with the same data and
tokenization as GLMLarge.

The results are shown in Figure 4. All the models
are evaluated in the zero-shot setting. Since GLM
learns the bidirectional attention, we also evalu-
ate GLM under the setting in which the contexts
are encoded with bidirectional attention. Without
generative objective during pretraining, GLMLarge
cannot complete the language modeling tasks,
with perplexity larger than 100. With the same
amount of parameters, GLMDoc performs worse
than GPTLarge. This is expected since GLMDoc
also optimizes the blank infilling objective. In-
creasing the model’s parameters to 410M (1.25× of
GPTLarge) leads to a performance close to GPTLarge.
GLM515M (1.5× of GPTLarge) can further outper-
form GPTLarge. With the same amount of param-
eters, encoding the context with bidirectional at-
tention can improve the performance of language
modeling. Under this setting, GLM410M outper-
forms GPTLarge. This is the advantage of GLM
over unidirectional GPT. We also study the con-
tribution of 2D positional encoding to long text
generation. We find that removing the 2D posi-
tional encoding leads to lower accuracy and higher
perplexity in language modeling.

326

Table 6: Ablation study on the SuperGLUE dev set. (T5 ≈ GLM – shuffle spans + sentinel tokens.)

Model ReCoRD
F1/Acc.

COPA
Acc.

WSC
Acc.

RTE
Acc.

BoolQ
Acc.

WiC
Acc.

CB
F1/Acc.

MultiRC
F1a/EM Avg

BERTLarge 76.3 / 75.6 69.0 64.4 73.6 80.1 71.0 94.8 / 92.9 71.9 / 24.1 72.0
BERTLarge (reproduced) 82.1 / 81.5 63.0 63.5 72.2 80.8 68.7 80.9 / 85.7 77.0 / 35.2 71.2
BERTLarge (cloze) 70.0 / 69.4 80.0 76.0 72.6 78.1 70.5 93.5 / 91.1 70.0 / 23.1 73.2
GLMLarge 81.7 / 81.1 76.0 81.7 74.0 82.1 68.5 96.1 / 94.6 77.1 / 36.3 77.0

– cloze finetune 81.3 / 80.6 62.0 63.5 66.8 80.5 65.0 89.2 / 91.1 72.3 / 27.9 70.0
– shuffle spans 82.0 / 81.4 61.0 79.8 54.5 65.8 56.3 90.5 / 92.9 76.7 / 37.6 68.5
+ sentinel tokens 81.8 / 81.3 69.0 78.8 77.3 81.2 68.0 93.7 / 94.6 77.5 / 37.7 76.0

Summary. Above all, we conclude that GLM
effectively shares model parameters across natu-
ral language understanding and generation tasks,
achieving better performance than a standalone
BERT, encoder-decoder, or GPT model.

3.4 Ablation Study

Table 6 shows our ablation analysis for GLM.
First, to provide an apple-to-apple comparison with
BERT, we train a BERTLarge model with our im-
plementation, data, and hyperparameters (row 2).
The performance is slightly worse than the official
BERTLarge and significantly worse than GLMLarge.
It confirms the superiority of GLM over Masked
LM pretraining on NLU tasks. Second, we show
the SuperGLUE performance of GLM finetuned as
sequence classifiers (row 5) and BERT with cloze-
style finetuning (row 3). Compared to BERT with
cloze-style finetuning, GLM benefits from the au-
toregressive pretraining. Especially on ReCoRD
and WSC, where the verbalizer consists of multi-
ple tokens, GLM consistently outperforms BERT.
This demonstrates GLM’s advantage in handling
variable-length blank. Another observation is that
the cloze formulation is critical for GLM’s perfor-
mance on NLU tasks. For the large model, cloze-
style finetuning can improve the performance by
7 points. Finally, we compare GLM variants with
different pretraining designs to understand their
importance. Row 6 shows that removing the span
shuffling (always predicting the masked spans from
left to right) leads to a severe performance drop on
SuperGLUE. Row 7 uses different sentinel tokens
instead of a single [MASK] token to represent dif-
ferent masked spans. The model performs worse
than the standard GLM. We hypothesize that it
wastes some modeling capacity to learn the differ-
ent sentinel tokens which are not used in down-
stream tasks with only one blank. In Figure 4, we
show that removing the second dimension of 2D
positional encoding hurts the performance of long

text generation.
We note that T5 is pretrained with a similar blank

infilling objective. GLM differs in three aspects:
(1) GLM consists of a single encoder, (2) GLM
shuffles the masked spans, and (3) GLM uses a
single [MASK] instead of multiple sentinel tokens.
While we cannot directly compare GLM with T5
due to the differences in training data and the num-
ber of parameters, the results in Tables 1 and 6 have
demonstrated the advantage of GLM.

4 Related Work

Pretrained Language Models. Pretraining large-
scale language models significantly improves the
performance of downstream tasks. There are three
types of pretrained models. First, autoencoding
models learn a bidirectional contextualized encoder
for natural language understanding via denoising
objectives (Devlin et al., 2019; Joshi et al., 2020;
Yang et al., 2019; Liu et al., 2019; Lan et al., 2020;
Clark et al., 2020). Second, autoregressive mod-
els are trained with a left-to-right language mod-
eling objective (Radford et al., 2018a,b; Brown
et al., 2020). Third, encoder-decoder models are
pretrained for sequence-to-sequence tasks (Song
et al., 2019; Lewis et al., 2019; Bi et al., 2020;
Zhang et al., 2020).

Among encoder-decoder models, BART (Lewis
et al., 2019) conducts NLU tasks by feeding the
same input into the encoder and decoder, and tak-
ing the final hidden states of the decoder. Instead,
T5 (Raffel et al., 2020) formulates most language
tasks in the text-to-text framework. However, both
models require more parameters to outperform au-
toencoding models such as RoBERTa (Liu et al.,
2019). UniLM (Dong et al., 2019; Bao et al., 2020)
unifies three pretraining models under the masked
language modeling objective with different atten-
tion masks.

NLU as Generation. Previously, pretrained
language models complete classification tasks for

327

NLU with linear classifiers on the learned rep-
resentations. GPT-2 (Radford et al., 2018b) and
GPT-3 (Brown et al., 2020) show that generative
language models can complete NLU tasks such
as question answering by directly predicting the
correct answers without finetuning, given task in-
structions or a few labeled examples. However,
generative models require much more parameters
to work due to the limit of unidirectional atten-
tion. Recently, PET (Schick and Schütze, 2020a,b)
proposes to reformulate input examples as cloze
questions with patterns similar to the pretraining
corpus in the few-shot setting. It has been shown
that combined with gradient-based finetuning, PET
can achieve better performance in the few-shot set-
ting than GPT-3 while requiring only 0.1% of its
parameters. Similarly, Athiwaratkun et al. (2020)
and Paolini et al. (2020) convert structured predic-
tion tasks, such as sequence tagging and relation
extraction, to sequence generation tasks.

Blank Language Modeling. Donahue et al.
(2020) and Shen et al. (2020) also study blank-
ing infilling models. Different from their work,
we pre-train language models with blank infilling
objectives and evaluate their performance in down-
stream NLU and generation tasks.

5 Conclusions

GLM is a general pretraining framework for nat-
ural language understanding and generation. We
show that the NLU tasks can be formulated as con-
ditional generation tasks, and therefore solvable by
autoregressive models. GLM unifies the pretrain-
ing objectives for different tasks as autoregressive
blank infilling, with mixed attention masks and
the novel 2D position encodings. Empirically we
show that GLM outperforms previous methods for
NLU tasks and can effectively share parameters for
different tasks.

Acknowledgements

The work is supported by the NSFC for Distin-
guished Young Scholar(61825602), and Beijing
Academy of Artificial Intelligence (BAAI).

References
Ben Athiwaratkun, Cicero dos Santos, Jason Krone,

and Bing Xiang. 2020. Augmented natural language
for generative sequence labeling. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 375–385.

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan
Yang, Xiaodong Liu, Yu Wang, Jianfeng Gao, Song-
hao Piao, Ming Zhou, and Hsiao-Wuen Hon. 2020.
Unilmv2: Pseudo-masked language models for uni-
fied language model pre-training. In ICML 2020,
volume 119, pages 642–652.

Bin Bi, Chenliang Li, Chen Wu, Ming Yan, Wei
Wang, Songfang Huang, Fei Huang, and Luo
Si. 2020. PALM: Pre-training an Autoencod-
ing&Autoregressive Language Model for Context-
conditioned Generation. In EMNLP 2020, pages
8681–8691.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language Models are Few-Shot
Learners. In NeurIPS 2020.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
Task 1: Semantic Textual Similarity Multilingual
and Crosslingual Focused Evaluation. In Proceed-
ings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1–14.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training Text Encoders as Discriminators Rather
Than Generators. In ICLR 2020.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment
challenge. In Machine Learning Challenges Work-
shop, pages 177–190. Springer.

Michael Denkowski and Alon Lavie. 2014. Meteor
Universal: Language Specific Translation Evalua-
tion for Any Target Language. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 376–380.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In NAACL 2019, pages 4171–4186.

Chris Donahue, Mina Lee, and Percy Liang. 2020. En-
abling language models to fill in the blanks. pages
2492–2501.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xi-
aodong Liu, Yu Wang, Jianfeng Gao, Ming Zhou,
and Hsiao-Wuen Hon. 2019. Unified language
model pre-training for natural language understand-
ing and generation. In NeurIPS 2019, pages 13042–
13054.

328

https://doi.org/10.18653/v1/2020.emnlp-main.27
https://doi.org/10.18653/v1/2020.emnlp-main.27
http://arxiv.org/abs/2002.12804
http://arxiv.org/abs/2002.12804
https://doi.org/10.18653/v1/2020.emnlp-main.700
https://doi.org/10.18653/v1/2020.emnlp-main.700
https://doi.org/10.18653/v1/2020.emnlp-main.700
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/S17-2001
https://aclanthology.org/S17-2001
https://aclanthology.org/S17-2001
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9
https://www.aclweb.org/anthology/W14-3348
https://www.aclweb.org/anthology/W14-3348
https://www.aclweb.org/anthology/W14-3348
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.225
https://doi.org/10.18653/v1/2020.acl-main.225
https://proceedings.neurips.cc/paper/2019/file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c20bb2d9a50d5ac1f713f8b34d9aac5a-Paper.pdf

Xinya Du, Junru Shao, and Claire Cardie. 2017. Learn-
ing to Ask: Neural Question Generation for Reading
Comprehension. In ACL 2017, pages 1342–1352.

Aaron Gokaslan and Vanya Cohen. 2019. Openweb-
text corpus. http://Skylion007.github.
io/OpenWebTextCorpus.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-
enhanced bert with disentangled attention. ArXiv,
abs/2006.03654.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging
nonlinearities and stochastic regularizers with gaus-
sian error linear units. CoRR, abs/1606.08415.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving Pre-training by Representing
and Predicting Spans. Trans. Assoc. Comput. Lin-
guistics, 8:64–77.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In ICLR
2020.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer.
2019. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Trans-
lation, and Comprehension. In ACL 2020, pages
7871–7880.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. pages 74–81.

Yang Liu and Mirella Lapata. 2019. Text Summariza-
tion with Pretrained Encoders. In EMNLP 2019,
pages 3730–3740.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Joel Mackenzie, Rodger Benham, Matthias Petri, Jo-
hanne R. Trippas, J. Shane Culpepper, and Alistair
Moffat. 2020. CC-News-En: A Large English News
Corpus. In CIKM 2020, pages 3077–3084.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t Give Me the Details, Just the Summary!
Topic-Aware Convolutional Neural Networks for Ex-
treme Summarization. In EMNLP 2018, pages
1797–1807.

Giovanni Paolini, Ben Athiwaratkun, Jason Krone,
Jie Ma, Alessandro Achille, Rishita Anubhai, Ci-
cero Nogueira dos Santos, Bing Xiang, and Stefano
Soatto. 2020. Structured Prediction as Translation
between Augmented Natural Languages.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, San-
dro Pezzelle, Marco Baroni, Gemma Boleda, and
Raquel Fernández. 2016. The LAMBADA dataset:
Word prediction requiring a broad discourse context.
In ACL 2016.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A Method for Automatic
Evaluation of Machine Translation. In ACL 2002,
pages 311–318.

Gabriel Pereyra, George Tucker, Jan Chorowski,
Lukasz Kaiser, and Geoffrey E. Hinton. 2017. Regu-
larizing neural networks by penalizing confident out-
put distributions. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Workshop Track Proceed-
ings.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018a. Improving Language Under-
standing by Generative Pre-Training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018b. Lan-
guage models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-
Text Transformer. J. Mach. Learn. Res., 21:140:1–
140:67.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know What You Don’t Know: Unanswerable Ques-
tions for SQuAD. In ACL 2018, pages 784–789.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions for
machine comprehension of text. In EMNLP 2016,
pages 2383–2392.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase,
and Yuxiong He. 2020. Deepspeed: System opti-
mizations enable training deep learning models with
over 100 billion parameters. In KDD 2020, pages
3505–3506.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In EMNLP 2015, pages 379–
389.

Timo Schick and Hinrich Schütze. 2020a. Exploiting
Cloze Questions for Few Shot Text Classification
and Natural Language Inference. pages 255–269.

Timo Schick and Hinrich Schütze. 2020b. It’s Not
Just Size That Matters: Small Language Models Are
Also Few-Shot Learners. pages 2339–2352.

Abigail See, Peter J. Liu, and Christopher D. Man-
ning. 2017. Get To The Point: Summarization with
Pointer-Generator Networks. In ACL 2017, pages
1073–1083.

329

https://doi.org/10.18653/v1/P17-1123
https://doi.org/10.18653/v1/P17-1123
https://doi.org/10.18653/v1/P17-1123
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
https://transacl.org/ojs/index.php/tacl/article/view/1853
https://transacl.org/ojs/index.php/tacl/article/view/1853
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/D19-1387
https://www.aclweb.org/anthology/D19-1387
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://dl.acm.org/doi/10.1145/3340531.3412762
https://dl.acm.org/doi/10.1145/3340531.3412762
https://aclanthology.org/D18-1206
https://aclanthology.org/D18-1206
https://aclanthology.org/D18-1206
https://openreview.net/forum?id=US-TP-xnXI
https://openreview.net/forum?id=US-TP-xnXI
https://doi.org/10.18653/v1/p16-1144
https://doi.org/10.18653/v1/p16-1144
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040
https://openreview.net/forum?id=HyhbYrGYe
https://openreview.net/forum?id=HyhbYrGYe
https://openreview.net/forum?id=HyhbYrGYe
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://aclanthology.org/P18-2124
https://aclanthology.org/P18-2124
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://aclanthology.org/D15-1044
https://aclanthology.org/D15-1044
https://aclanthology.org/2021.eacl-main.20/
https://aclanthology.org/2021.eacl-main.20/
https://aclanthology.org/2021.eacl-main.20/
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099

Tianxiao Shen, Victor Quach, Regina Barzilay, and
Tommi S. Jaakkola. 2020. Blank language models.
pages 5186–5198.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion pa-
rameter language models using model parallelism.
CoRR, abs/1909.08053.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive Deep Models for
Semantic Compositionality Over a Sentiment Tree-
bank. In EMNLP 2013, pages 1631–1642.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: Masked Sequence to Se-
quence Pre-training for Language Generation. In
ICML 2019, volume 97, pages 5926–5936.

Trieu H. Trinh and Quoc V. Le. 2019. A
Simple Method for Commonsense Reasoning.
arXiv:1806.02847 [cs].

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2019. SuperGLUE:
A Stickier Benchmark for General-Purpose Lan-
guage Understanding Systems. In NeurIPS 2019,
pages 3261–3275.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A Multi-Task Benchmark and Analysis Plat-
form for Natural Language Understanding. In ICLR
2019, pages 353–355.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A Broad-Coverage Challenge Corpus for Sen-
tence Understanding through Inference. In NAACL
2018, pages 1112–1122.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
XLNet: Generalized Autoregressive Pretraining for
Language Understanding. In NeurIPS 2019, pages
5754–5764.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017. Improved varia-
tional autoencoders for text modeling using dilated
convolutions. In ICML 2017, volume 70, pages
3881–3890.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020. PEGASUS: Pre-training with Ex-
tracted Gap-sentences for Abstractive Summariza-
tion. In ICML 2020, pages 11328–11339.

Wanrong Zhu, Zhiting Hu, and Eric Xing. 2019. Text
infilling. arXiv preprint arXiv:1901.00158.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:

Towards story-like visual explanations by watching
movies and reading books. In ICCV 2015, pages 19–
27.

A Pretraining Setting

A.1 Datasets
To train GLMBase and GLMLarge, we use Book-
Corpus (Zhu et al., 2015) and Wikipedia used by
BERT (Devlin et al., 2019).

To train GLMRoBERTa, we follow the pretraining
datasets of RoBERTa (Liu et al., 2019), which con-
sist of BookCorups (Zhu et al., 2015),Wikipedia
(16GB), CC-News (the English portion of the Com-
monCrawl News dataset3 76GB), OpenWebText
(web content extracted from URLs shared on Red-
dit with at least three upvotes(Gokaslan and Co-
hen, 2019), 38GB) and Stories (subset of Common-
Crawl data filtered to match the story-like style of
Winograd schemas (Trinh and Le, 2019), 31GB).
The Stories dataset is no longer publicly available4.
Therefore, we remove the Stories dataset and re-
place OpenWebText with OpenWebText25 (66GB).
The CC-News dataset is not publicly available and
we use the CC-News-en published by (Mackenzie
et al., 2020). All the datasets used total 158GB of
uncompressed texts, close in size to RoBERTa’s
160GB datasets.

A.2 Hyperparameters
The hyperparameters for GLMBase and GLMLarge
are similar to those used by BERT. For trade-off
of training speed and fair comparison with BERT
(batch size 256 and 1,000,000 training steps), we
use batch size of 1024 and 200,000 training steps
for GLMLarge. Since GLMBase is smaller, we re-
duce the number of training steps to 120,000 to
speed up pre-training. The hyperparameters for
GLMDoc and GLMSent are the same as those of
GLMLarge. The hyperparameters except Trans-
former architecture for GLM410M and GLM515M
are the same as those of GLMLarge. The models
are trained on 64 V100 GPUs for 200K steps with
batch size of 1024 and maximum sequence length
of 512, which takes about 2.5 days for GLMLarge.

To train GLMRoBERTa, we follow most of the hy-
perparameters of RoBERTa. The main difference

3https://commoncrawl.org/2016/10/
news-dataset-available

4https://github.com/tensorflow/models/
tree/archive/research/lm_commonsense#
1-download-data-files

5https://openwebtext2.readthedocs.io/
en/latest

330

https://doi.org/10.18653/v1/2020.emnlp-main.420
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/1909.08053
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
http://proceedings.mlr.press/v97/song19d.html
http://proceedings.mlr.press/v97/song19d.html
http://arxiv.org/abs/1806.02847
http://arxiv.org/abs/1806.02847
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101
https://papers.nips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://papers.nips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
http://proceedings.mlr.press/v70/yang17d.html
http://proceedings.mlr.press/v70/yang17d.html
http://proceedings.mlr.press/v70/yang17d.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://arxiv.org/abs/1901.00158
http://arxiv.org/abs/1901.00158
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://commoncrawl.org/2016/10/news-dataset-available
https://commoncrawl.org/2016/10/news-dataset-available
https://github.com/tensorflow/models/tree/archive/research/lm_commonsense#1-download-data-files
https://github.com/tensorflow/models/tree/archive/research/lm_commonsense#1-download-data-files
https://github.com/tensorflow/models/tree/archive/research/lm_commonsense#1-download-data-files
https://openwebtext2.readthedocs.io/en/latest
https://openwebtext2.readthedocs.io/en/latest

Table 7: Hyperparameters for pretraining

Hyperparameters GLM Base GLM Large GLM RoBERTa

Number of Layers 12 24 24
Hidden size 768 1024 1024
FFN inner hidden size 3072 4096 4096
Attention heads 12 16 16
Attention head size 64 64 64
Dropout 0.1 0.1 0.1
Attention Dropout 0.1 0.1 0.1
Warmup Steps 6k 8k 30K
Peak Learning Rate 4e-4 2e-4 4e-4
Batch Size 1024 1024 8192
Weight Decay 0.1 0.1 0.01
Max Steps 120k 200k 250k
Learning Rate Decay Cosine Cosine Cosine
Adam ε 1e-6 1e-6 1e-6
Adam β1 0.9 0.9 0.9
Adam β2 0.98 0.98 0.98
Gradient Clipping 1.0 1.0 1.0

includes: (1) Due to resource limit, we only pre-
train GLM RoBERTa for 250,000 steps, which are
half of RoBERTa and BART’s training steps, and
close to T5 in number of trained tokens. (2) We use
cosine decay instead of linear decay for learning
rate scheduling (3) We additionally apply gradient
clipping with value 1.0.

The hyperparameters for all the pre-training set-
tings are summarized in Table 7.

A.3 Implementation

Our pretraining implementation is based on
Megatron-LM (Shoeybi et al., 2019) and Deep-
Speed (Rasley et al., 2020). We include our code in
the supplementary material. Due to the size limit of
supplementary material, we cannot include the pre-
trained models, but will make them public available
in the future.

B Downstream Tasks

B.1 SuperGLUE

The SuperGLUE benchmark consists of 8 NLU
tasks. We formulate them as blank infilling tasks,
following (Schick and Schütze, 2020b). Table 8
shows the cloze questions and verbalizers we used
in our experiments. For 3 tasks (ReCoRD, COPA,
and WSC), the answer may consist of multiple
tokens, and for the other 5 tasks, the answer is
always a single token.

When finetuning GLM on the SuperGLUE tasks,
we construct the input using the cloze questions
in Table 8 and replace the blank with a [MASK]
token. Then we compute the score of generating
each answer candidate. For the 5 single-token tasks,
the score is defined to be the logit of the verbal-
izer token. For the 3 multi-token tasks, we use
the sum of the log-probabilities of the verbalizer
tokens. Thanks to the autoregressive blank infill-
ing mechanism we proposed, we can obtain all the
log-probabilities in one pass. Then we compute the
cross entropy loss using the groundtruth label and
update the model parameters.

For the baseline classifiers, we follow the stan-
dard practice to concatenate the input parts of each
task (such as the premise and hypothesis for textual
entailment, or the passage, question and answer
for ReCORD and MultiRC) and add a classifica-
tion layer on top of the [CLS] token representa-
tion. We also implemented cloze-style finetuning
for the other pre-trained models, but the perfor-
mance was usually similar to the standard classifier,
as we shown in the ablation study. Models with
blank-infilling objectives, such as T5 and our GLM,
benefits more from converting the NLU tasks into
cloze questions. Thus for T5 and GLM, we report
the performance after such conversion in our main
results.

331

Table 8: Cloze questions and verbalizers for the 8 SuperGLUE tasks used in our experiments. ∗ denotes the answer
contains multiple tokens.

Dataset Task Cloze Question Verbalizers

ReCoRD∗ Question answering [passage p] [cloze question q] Answer candidates
COPA∗ Causal reasoning “[choice c1]” or “[choice c2]”? [premise p], so

.
c1 / c2

WSC∗ Coreference resolution [sentence s] The pronoun ‘∗p∗’ refers to . Noun n
RTE Textual entailment “[hypothesis h]”? | , “[premise p]” “yes” (entail-

ment), “no” (not
entailment)

BoolQ Question answering [passage p]. Question: q? Answer: . “yes” / “no”
WiC Word sense disambiguation “[sentence s1]” / “[sentence s2]” Similar sense

of [word w]? .
“yes” / “no”

CB Textual entailment “[hypothesis h]”? | , “[premise p]” “yes” (entailment),
“no” (contradiction),
“maybe” (neutral)

MultiRC Question answering [passage p]. Question: q? Is it [answer a]? . “yes” / “no”

B.2 Sequence-to-Sequence

Fot the text summarization task, we use the dataset
Gigaword (Rush et al., 2015) for model fine-tuning
and evaluation. We finetune GLMLARGE on the
training set for 4 epochs with AdamW optimizer.
The learning rate has a peak value of 3e-5, warm-
up over the 6% training steps and a linear decay.
We also use label smoothing with rate 0.1 (Pereyra
et al., 2017). The maximum document length is 192
and the maximum summary length is 32. During
decoding, we use beam search with beam size of 5
and remove repeated trigrams. We tweak the value
of length penalty on the development set. The
evaluation metrics are the F1 scores of Rouge-1,
Rouge-2, and Rouge-L (Lin, 2004) on the test set.

For the question generation task, we use the
SQuAD 1.1 dataset (Rajpurkar et al., 2016) and
follow the dataset split of (Du et al., 2017). The
optimizer hyperparameters are the same as those of
abstractive summarization. The maximum passage
length is 464 and the maximum question length
is 48. During decoding, we use beam search with
beam size 5 and tweak the value of length penalty
on the development set. The evaluation metrics are
the scores of BLEU-1, BLEU-2, BLEU-3, BLEU-
4 (Papineni et al., 2002), METEOR (Denkowski
and Lavie, 2014) and Rouge-L (Lin, 2004).

Results of T5Large on XSum are obtained by run-
ning the summarization script provided by Hug-
gingface transformers6. All the other results of

6https://github.com/huggingface/
transformers/tree/master/examples/
pytorch/summarization

baselines on seq2seq tasks are obtained from the
corresponding papers.

B.3 Text Infilling

We follow (Shen et al., 2020) and evaluate text in-
filling performance on the Yahoo Answers dataset
(Yang et al., 2017), which contains 100K/10K/10K
documents for train/valid/test respectively. The av-
erage document length is 78 words. To construct
the text infilling task, we randomly mask a given ra-
tio r ∈ {10% · · · 50%} of each document’s tokens
and the contiguous masked tokens are collapsed
into a single blank. We finetune GLMLarge on the
training set for 5 epochs with dynamic masking, i.e.
the blanks are randomly generated at training time.
Similar to the sequence-to-sequence experiments,
we use an AdamW optimizer with a peak learning
rate 1e-5 and 6% warm-up linear scheduler.

For comparison with previous work, we use the
same test set constructed by (Shen et al., 2020).
The evaluation metric is the BLEU score of the in-
filled text against the original document. We com-
pare with two baselines: (1) BERT, which learns a
left-to-right language model to generate the masked
tokens on top of the blank representation, and (2)
BLM proposed by (Shen et al., 2020), which can
fill in the blank with arbitrary trajectories.

B.4 Language Modeling

We evaluate the model’s ability of language model-
ing with perplexity on BookWiki and accuracy on
the LAMBDA dataset (Paperno et al., 2016).

Perplexity is an evaluation criterion that has been

332

https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization
https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization
https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization

well studied for language modeling. Perplexity is
the exponentiation of the average cross entropy of
a corpus.

PPL = exp(− 1

T

T∑
t=1

p(xt|x<t)) (4)

where x<t = [x0, · · · , xt−1]. Since transformers
can only operate on a window of fixed input size
w, we cannot fully calculate p(xt|x<t) and can
only calculate p(xt|xt−w:t−1). Even calculating
this value for each token is prohibitively expensive,
since we need to conduct T evaluations of w-size
contexts. To improve evaluation efficiency, we
adopt overlapping evaluation, where we advance
the sliding windows by some overlap o each time
and only compute the cross entropy loss for the last
o tokens of the window. In our experiments we set
o = 256 for all the models.

LAMBDA is a cloze-style dataset to test the abil-
ity of long-range dependency modeling. Each ex-
ample is a passage consisting of 4-5 sentences with
the last word missing and the model is required to
predict the last word of the passage. Since we use
WordPiece tokenization, a word can be split into
several subword units. We use teacher forcing and
consider the prediction correct only when all the
predicted tokens are correct.

C Results on Other NLU Benchmarks

GLUE (Wang et al., 2018) is another widely-used
NLU benchmark, including single sentence tasks
(e.g. sentiment analysis (Socher et al., 2013)) and
sentence pair tasks (e.g. text similarity (Cer et al.,
2017) and natural language inference (Williams
et al., 2018; Dagan et al., 2005)). The benchmark is
usually considered as less challenging than Super-
GLUE. SQuAD (Rajpurkar et al., 2016, 2018) is an
extractive question answering benchmark. We fur-
ther compare GLM with BERT on the two bench-
marks.

The results on GLUE and SQuAD are shown in
Tables 9 and 10. On the two benchmarks, GLM
can still outperform BERT with the same amount
of parameters, but with a smaller margin.

D Text Generation Samples

We show texts generated by GLMDoc given unseen
contexts randomly sampled from the test set. We
use top-k random sampling with k = 40 for gen-
eration and set maximum sequence length to 512.
Some of the texts are cut short.

Example D.1. The Wyoming State Legislature is
the legislative branch of the U.S. State of Wyoming.

GLM: It consists of a state senate and a house
of representatives. As of 2019, state senators are
Steve Kish, Joe L. Williams, and Linda S. Bollens.
Members of the Wyoming State Legislature are
elected from single-member districts representing
the majority of the state. The current state senate
members are: In recent years, there have been four
changes to the senate. The most recent is the cre-
ation of a six-seat district that includes all or part of
the following: In the 2009 elections, the state sen-
ate members were elected to six-year terms. The
current state house members are: The Wyoming
Constitution assigns certain powers to the governor.
Most notably, the governor is president of the sen-
ate and governor. However, if the governor desires
to appoint a member to the Wyoming state senate, a
law authorizes the governor to do so. The governor
of Wyoming holds no legislative power but has the
power to veto lawmakers, which is not limited to
the veto of laws. Under the wyoming state con-
stitution, the governor can veto the actions of the
other members of the wyoming house of represen-
tatives. The governor can also appoint members of
the wyoming senate. In addition, the governor can
appoint members of the Wyoming house of repre-
sentatives. Wyoming’s constitution provides that
the governor can appoint a member of the wyoming
state senate to the wyoming supreme court, and the
chairman of the wyoming senate.

Example D.2. Jonathan Terry is a television and
film actor.

GLM: He was a voice actor for the “X-Men"
cartoon series. He was also a voice actor for “the
Simpsons" as well as “the marvelous misadven-
tures of superman. He also has voiced characters
in “the legend of korra" He has appeared on several
television series, including “the simpsons", “the
x-files", “heroes" and “the simpsons movie" as the
character captain billy higgledy-pig, and the web
series “krusty mysteries" as the character Colonel
Trungus. He wrote for “the Guardian" newspaper.
Jonathan Terry was born in London. Terry grew
up in Surrey, England and attended the University
of Sussex in the United Kingdom, graduating with
a degree in english literature. He was a guest lec-
turer at King’s College London, and then took two
years of acting courses at the brit school of acting
to prepare for his future career in the entertainment
industry. Terry first appeared in the TV series “the

333

Table 9: Results on the GLUE dev set.

Model MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg

BERTLarge 86.6 92.3 91.3 73.6 93.2 88.0 60.6 90.0 84.4
GLMLarge 86.7 92.8 91.5 74.0 93.5 90.0 61.4 90.7 85.1

Table 10: Results on the SQuAD v1.1/v2.0 dev sets.

Model
SQuAD v1.1

EM/F1
SQuAD v2.0

EM/F1

BERTBase 80.8 / 88.5 73.7 / 76.3
GLMBase 81.5 / 88.6 74.7 / 77.8

BERTLarge 84.1 / 90.9 79.0 / 81.8
GLMLarge 85.4 / 91.6 80.3 / 83.3

Simpsons" as the character captain Billy Higgledy-
pig, but his character was only a one-time recurring
character in the series’ first six seasons. He later ap-
peared as a regular for the show’s final six seasons,
and has been a frequent guest in the show since.
He appeared in the first few episodes of “" as the
character major Jack Ryan. He has also appeared
as part of the supporting cast of several episodes of
“the secret life of pets". He has also worked on “the
simpsons" TV show since “the simpsons movie",
most notably playing the roles of Captain Skeletor
and the ghost of the same name. He plays char-
acters in several films, including “", “", “" and “".
He has appeared in music videos for the killers in
1993, the pretenders in 1995, and in the TV shows
“the royal" and “the bill".

Example D.3. Corona was a station along the port
Washington branch of the long island rail road in
the Corona section of queens, New York City. It
was one of two stations built by the flushing rail-
road in Corona, this one having been at Grand Av-
enue (later called National Avenue, now National
Street) and 45th Avenue.

GLM: It had a brick entrance building next to
the tracks, and one platform with 2 side platforms.
The station burned down and was rebuilt in 1908.
The station closed on september 15, 1927, with
the train service transferred from Grand Avenue to
45th Avenue. There were plans to build a subway
extension to Corona, but it was never built. In the
1980s, two stations were constructed on the line,
Corona Road and Corona Park. The new Corona
station opened in 1988, and the original Corona
station was demolished.

Example D.4. Robert Lee Smith (born July 5,
1938) is a former American football cornerback
in the national football league. He played for the
Los Angeles Rams (1962–1965) and the Detroit
Lions (1965–1966). He was also a kick and punt
returner.

GLM: In his four-year NFL career, he played
in 33 games and started 14, registering 62 career
interceptions. He completed his NFL career with
five interceptions. Smith was born in La Canada
Flintridge, Michigan, in 1938. He attended Bishop
O’ Dowd high school in Flintridge. Smith’ s fa-
ther was a pharmacist. He graduated from Michi-
gan State University in 1958 with a degree in busi-
ness administration. Smith played for the Michi-
gan Wolverines football team from 1959 to 1963.
In his two years as a reserve cornerback, he led
the conference in interceptions with five. In 1962,
he set the Wolverines’ all-time interception record
with 13, and was second overall in the 1962 sea-
son’s Heisman Trophy voting. Smith also won
the Dick Butkus award as the nation’s outstand-
ing linebacker. In 1961, the “Los Angeles Times"
wrote that Smith “is an outstanding pass rusher,
with an average of almost 100 yards per punt re-
turn." Smith was inducted into the university of
Michigan athletic hall of honor in 1989 and the
national football foundation hall of fame in 1991.
He was elected to the Michigan sports hall of fame
in 1995. Smith earned the honor because of his ac-
complishments prior to his NFL career. He was one
of four Michigan players honored as first-overall
selections in the 1964 NFL draft. The others were
Joe Namath, Bill Nelsen, and Jerry Kramer. In
1966, the NFL gave players $300,000 a season to
play football. After his rookie season, he was not
selected to play in the 1966 pro bowl. On January
13, 1966, the Rams traded smith to the Detroit Li-
ons for Paul Hornung, and later that year he was
traded to the Lions for Ray “the Lion" Jones in
exchange for Linebacker Jim “the Hawk" Johnson.
On September 10, 1968, he was traded back to Los
Angeles for a second round pick in the 1970 draft.
He was also traded to the St. Louis Cardinals for

334

a second round pick in the 1970 draft. On June 2,
1970 he was cut by the Cardinals. On November
15, 1970, the Los Angeles Rams acquired Smith
from the Lions in exchange for Linebacker Tony
Harris. The Rams waived Smith during the Septem-
ber 1, 1972 offseason. Smith’s number at Michigan
State was # 7 in 1969.

335

