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Abstract

Local models for Entity Disambiguation (ED)
have today become extremely powerful, in
most part thanks to the advent of large pre-
trained language models. However, despite
their significant performance achievements,
most of these approaches frame ED through
classification formulations that have intrinsic
limitations, both computationally and from a
modeling perspective. In contrast with this
trend, here we propose EXTEND, a novel lo-
cal formulation for ED where we frame this
task as a text extraction problem, and present
two Transformer-based architectures that im-
plement it. Based on experiments in and out
of domain, and training over two different data
regimes, we find our approach surpasses all its
competitors in terms of both data efficiency and
raw performance. EXTEND outperforms its al-
ternatives by as few as 6 F1 points on the more
constrained of the two data regimes and, when
moving to the other higher-resourced regime,
sets a new state of the art on 4 out of 6 bench-
marks under consideration, with average im-
provements of 0.7 F1 points overall and 1.1 F1

points out of domain. In addition, to gain better
insights from our results, we also perform a
fine-grained evaluation of our performances on
different classes of label frequency, along with
an ablation study of our architectural choices
and an error analysis. We release our code and
models for research purposes at https://
github.com/SapienzaNLP/extend.

1 Introduction

Being able to associate entity mentions in a given
text with the correct entity they refer to is a crucial
task in Natural Language Processing (NLP). For-
mally referred to as Entity Disambiguation (ED),
this task entails, given a mention m occurring in a
text cm, identifying the correct entity e∗ out of a set
of candidates e1, . . . , en, coming from a reference
knowledge base (KB). First introduced by Bunescu

∗ Equal contribution.

and Paşca (2006), ED aims to identify the actors in-
volved in human language and, as such, has shown
potential in downstream applications like Question
Answering (Yin et al., 2016), Information Extrac-
tion (Ji and Grishman, 2011; Guo et al., 2013), Text
Generation (Puduppully et al., 2019) and Semantic
Parsing (Bevilacqua et al., 2021; Procopio et al.,
2021).

Since the advent of Deep Learning within the
NLP community, this task has mostly been framed
as a multi-label classification problem (Shahbazi
et al., 2019; Broscheit, 2019), especially lever-
aging the bi-encoder paradigm (Humeau et al.,
2020; Wu et al., 2020). However, although sim-
ple and yet powerful enough to push scores past
90% inKB Micro F1 on standard benchmarks, this
formulation suffers from a number of downsides.
First, the actual disambiguation is only modeled
through a dot product between independent men-
tion and entity vectors, which may not capture com-
plex mention-entity interactions. Second, from a
computational perspective, entities are represented
through high-dimensional vectors that are cached
in a pre-computed index. Thus, classifying against
a large KB has a significant memory cost that, in
fact, scales linearly with respect to the number of
entities. Besides this, adding a new entity also re-
quires modifying the index itself. To address these
issues, De Cao et al. (2021b) have recently pro-
posed an auto-regressive formulation where, given
mentions in their context, models are trained to
generate, token-by-token, the correct entity identi-
fiers.1

While this approach has addressed the afore-
mentioned issues effectively, it requires an auto-
regressive decoding process, which has speed im-
plications, and, what is more, does not let the
model see its possible output choices, something

1i.e. a textual description of the entity; in De Cao et al.
(2021b), they use the titles of Wikipedia articles, since their
reference KB is Wikipedia.
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that has shown significant potential in other se-
mantic tasks (Barba et al., 2021a). In this work,
we focus on these shortcomings and, inspired by
this latter research trend, propose Extractive Entity
Disambiguation (EXTEND), the first entity disam-
biguator that frames ED as a text extraction task.
Given as input a context cm in which a mention m
occurs, along with a text representation for each of
the possible candidates e1, . . . , en, a model has to
extract the span associated with the text representa-
tion of the entity that best suits m. We implement
this formulation through 2 architectures: i) a Trans-
former system (Vaswani et al., 2017; Devlin et al.,
2019) that features an almost identical modeling
power to that of previous works, and ii) a variant
that relaxes the computational requirements of our
approach when using common Transformer-based
architectures. Evaluating our two systems over
standard benchmarks, we find our formulation to
be particularly suited to ED. In particular, when
restricting training resources to the AIDA-CoNLL
dataset (Hoffart et al., 2011) only, EXTEND ap-
pears to be significantly more data-efficient than
its alternatives, surpassing them by more than 6
inKB Micro F1 points on average across in-domain
and out-of-domain datasets. Furthermore, when
pre-training on external ED data as in De Cao et al.
(2021b), our system sets a new state of the art on
4 out of 6 benchmarks under consideration, with
average improvements of 0.7 overall and 1.1 when
moving out of domain. Finally, we also perform a
thorough investigation of our system performances,
providing insights and pinpointing the reasons be-
hind our improvements via a fine-grained evalua-
tion on different label-frequency classes.

Our contributions are therefore as follows:

• We propose a new framing of ED as a text
extraction task;

• We put forward two architectures that imple-
ment our formulation, whose average score
across different benchmarks surpasses all pre-
vious works in both data regimes we consider;

• We perform a thorough analysis of our sys-
tems’ performances, evaluating their behavior
over different label-frequency classes.

We release our code and models for re-
search purposes at https://github.com/
SapienzaNLP/extend.

2 Related Work

Entity Disambiguation (ED) is the task of identi-
fying, given a mention in context, the most suit-
able entity among a set of candidates stored in a
knowledge base (KB). Generally the last step in an
Entity Linking system (Broscheit, 2019), coming
immediately after mention detection and candidate
generation, this task has been the object of a vast
and diverse literature, with approaches typically
clustered into two groups, depending on how they
model co-occurring mentions in the same docu-
ment. On the one hand, global models strive to
enforce a global coherence across the disambigua-
tions within the same document, leveraging differ-
ent techniques and heuristics to approximate this
objective2 (Hoffart et al., 2011; Moro et al., 2014;
Yamada et al., 2016; Ganea and Hofmann, 2017;
Le and Titov, 2018; Yang et al., 2018).

On the other hand, local models disambiguate
each mention independently of the others, con-
ditioning the entity choice only on the mention
and its context. Thanks to the advent of large pre-
trained language models, this group has recently
witnessed a significant improvement in perfor-
mances, which are nowadays on par with, or even
above, those achieved by state-of-the-art global
systems (Shahbazi et al., 2019). These approaches
usually frame ED as a multi-label classification
problem (Broscheit, 2019) and a diverse set of
formulations have been proposed. Among these,
the bi-encoder paradigm (Bromley et al., 1994;
Humeau et al., 2020) has been particularly suc-
cessful (Gillick et al., 2019; Tedeschi et al., 2021;
Botha et al., 2020): here, two encoders are trained
to learn vector representations in a shared space for
mentions in context and entities, respectively. Clas-
sification of a given mention is then performed by
retrieving the entity whose representation is closest
according to some metric (e.g. cosine similarity).

Although remarkably powerful, these formula-
tions present a number of disadvantages, such as
their large memory footprint (each entity in the
KB needs to be represented by a high-dimensional
vector) and the fact that the actual disambiguation
process is only expressed via a dot product of inde-
pendently computed vectors, potentially neglecting
mention-entity interactions. While a number of
works (Logeswaran et al., 2019; Wu et al., 2020)
attempt to address the latter issue via multi-stage

2Approximation is necessary as the exact computation of
coherence objectives is NP-hard (Le and Titov, 2018).
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After a long fight Superman saved Metropolis [SEP]   Metropolis (1927 film)  Metropolis-Hasting algorithm  Metropolis (comics)

Input Sentence Candidate Set

span extraction
ExtEnD

Figure 1: Illustration of EXTEND on the example sentence After a long fight Superman saved Metropolis. The
model takes as input a sentence with the target mention to disambiguate, Metropolis, explicitly marked (for better
visualization, we resort here to highlighting with a different color rather than surrounding it with special tokens)
along with the text representation of each candidate. As in our experiments, the knowledge base here is Wikipedia
and the candidate text representations are Wikipedia page titles. Then, the model performs the disambiguation by
indicating the start and end token of the span containing the predicted entity representation.

approaches where a cross-encoder is stacked after
an initial bi-encoder3 or other retrieval functions,
an interesting alternative direction that tackles both
problems was recently presented by De Cao et al.
(2021b): the authors frame ED as a generation
problem and, leveraging an auto-regressive formu-
lation, train a sequence-to-sequence model to gener-
ate the correct entity identifier for a given mention
and its context.

Nevertheless, while this approach can model
more complex interactions, some of these can only
occur indirectly inside the backtracking of their
beam search. Furthermore, the disambiguation in-
volves an auto-regressive decoding that, although
mitigated by later efforts (De Cao et al., 2021a),
has intrinsic speed limitations. In contrast, here we
propose an extractive formulation, where a model
receives as input the mention, its context and the
text representation of each candidate, and has to
extract the span corresponding to the representation
of the entity that best matches the (mention, con-
text) pair under consideration. Note that this differs
from the aforementioned cross-encoder formula-
tions (Logeswaran et al., 2019; Wu et al., 2020)
where, instead, each entity was encoded together
with the (mention, context) pair, but independently
from all the other entities. With our schema, com-
plex mention-entity and entity-entity interactions
can be explicitly modeled by the neural system, as
all the information is provided in input.

Glancing over other related tasks in the area of
semantics, arguably closest to our work is ESC

3This bi-encoder, rather than performing the actual classi-
fication, is tasked to generate a filtered set of candidates.

(Barba et al., 2021a), where the authors propose
a new framing of Word Sense Disambiguation
(WSD) as an extractive sense comprehension task.
Yet, differently from their work, we propose here a
new framing for ED, i.e. focus on entity descrip-
tions rather than word sense definitions, present a
baseline system that implements it and devise an
additional architecture that deals with the computa-
tional challenges that arise from such implementa-
tion.

3 Model

We now introduce EXTEND, our proposed ap-
proach for ED. We first present the formulation
we adopt (Section 3.1) and, then, describe the two
architectures that implement it (Section 3.2).

3.1 Formulation

Inspired by recent trends in other semantic tasks
(Barba et al., 2021a), we formulate Entity Disam-
biguation as a text extraction problem: given a
query xq and a context xc, a model has to learn
to extract the text span of xc that best answers xq.
Formally, let m be a mention occurring in a context
cm and denote by Cnd(m) = {cnd1, . . . , cndn}
the set of n text representations associated with
each candidate of m. Then, we formulate ED as
follows: we treat the tuple (m, cm) and the con-
catenation of cnd1, . . . , cndn as the query xq and
the context xc, respectively, and train a model to
extract the text span from xc associated with the
correct cnd∗ ∈ Cnd(m); the overall process is
illustrated in Figure 1. This formulation helps to
better model the input provided, with the possible
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candidates of m included in the contextualization
process, while also disposing of large output vo-
cabularies as in De Cao et al. (2021b) and, yet, not
resorting to auto-regressive decoding strategies.

3.2 Architectures
To implement our formulation, we consider two
Transformer-based architectures. For both of these,
the input is composed of the concatenation of the
query xq and the context xc, subword-tokenized
and separated by a [SEP] special symbol. Since xq
is a tuple in our formulation, whereas Transformer
models only support text sequences as input, we
convert xq into a string x̂q by taking only cm and
surrounding the text span where m occurs with
the special tokens <t> and </t>. Additionally, to
better separate entity candidate representations and
ease their full span identification, we add a trailing
special symbol </ec> to each of them; henceforth,
we denote this resulting modified context by x̂c.

As our first architecture, we use two independent
classification heads on top of BART (Lewis et al.,
2020) computing, respectively, for each word w
in x̂c, whether w is the start or end of the correct
entity representation cnd∗. We train the model
with a cross-entropy criterion over the start and end
of cnd∗. At inference time, we select the entity
candidate representation cnd

′ ∈ Cnd(m) whose
joint probability over the 2 heads is highest.

However, framing ED as we propose here im-
plies that the length of the input to the model scales
linearly with the number of output choices m. Tak-
ing into account that the attention mechanism of
Transformer architectures has quadratic complexity
and that several pre-trained models actually support
inputs only up to a fixed maximum length,4 this
might pose significant computational limitations de-
pending on the dataset and knowledge base under
consideration. To cope with these technical chal-
lenges, we consider a second system, similar to the
previous one but for two main differences. First, we
change the underlying Transformer model, replac-
ing BART with a pre-trained Longformer model
(Beltagy et al., 2020), a Transformer architecture
with an attention mechanism that is linear with re-
spect to the input length and that can handle longer
sequences. This linear complexity is achieved by
essentially applying a sliding attention window
over each token but for a few pre-selected ones (e.g.

4For instance, the implementation of BART available in
HuggingFace Transformers (Wolf et al., 2020) supports inputs
only up to 1024 subwords.

[CLS]), which instead feature a symmetric global
attention: they attend upon and are attended by all
the other tokens in the input sequence. This global
mechanism is intended to be task-specific and en-
ables the model to learn representations potentially
close to those standard fully-attentive Transform-
ers would learn, while still maintaining the overall
attention complexity linear with respect to the in-
put size. Therefore, as our second modification,
we adapt this global pattern to our setting, activat-
ing it on the [CLS] special token and on the first
token of each cndi ∈ Cnd(m); this allows to bet-
ter mimic the original quadratic mechanism where
different entity candidate representations can also
attend upon each other. Furthermore, differently
from Beltagy et al. (2020), we disable the global
attention mechanism on the tokens in the query
x̂q. In Section 5, we report and discuss the impact
of these modifications. We illustrate the proposed
architecture in Figure 2.

4 Entity Disambiguation Evaluation

We now assess the effectiveness of EXTEND on
Entity Disambiguation. We first introduce the ex-
perimental setup we consider (Section 4.1). Then,
we present the results achieved by EXTEND both
in terms of raw performances (Section 4.2) and via
a breakdown of its behavior on different classes of
label frequency (Section 4.3). For ease of readabil-
ity, we focus here only on the Longformer-based
architecture, which we consider as our main model.
We defer the comparison with the BART-based sys-
tem to Section 5.

4.1 Experimental Setup

Data To evaluate EXTEND on Entity Disam-
biguation, we reproduce the same setting used by
De Cao et al. (2021b). Specifically, we adopt their
same candidate sets, which were originally pro-
posed by Le and Titov (2018),5 use Wikipedia
titles (e.g. Metropolis (comics)) as the text rep-
resentation for entities and perform training, along
with in-domain evaluation, on the AIDA-CoNLL
dataset (Hoffart et al., 2011, AIDA); similarly, we
use their cleaned version of MSNBC, AQUAINT,
ACE2004, WNED-CWEB (CWEB) and WNED-
WIKI (WIKI) (Guo and Barbosa, 2018; Evgeniy
et al., 2013) for out-of-domain evaluation.

5These candidate sets were generated relying upon count
statistics from Wikipedia, a large Web corpus and the YAGO
dictionary.
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Figure 2: Longformer-based architecture for EXTEND. The input context and the candidate textual representations
are fed to the model in the same sequence separated by a [SEP] special token. The mention is surrounded by two
special tokens <t> and </t> and, for the sake of readability, we omit the trailing special tokens </ec>. We highlight
in red the tokens with global attention. Best seen in colors.

While we use this AIDA-only training scenario,
which we refer to as AIDA, to test the data effi-
ciency of EXTEND, most ED systems actually
make use of additional data and information origi-
nating from Wikipedia at training time. We denote
this additional training scenario where Wikipedia is
part of the training resources as Wikipedia+AIDA.
Specifically, as our system is a supervised neural
classifier, we follow De Cao et al. (2021b) and
utilize BLINK data (Wu et al., 2020) for ED pre-
training in this setting. A brief description of each
dataset follows:

i) AIDA: one of the largest manually annotated
corpora for Entity Linking and Disambigua-
tion. It contains 388 articles from the Reuters
Corpus with 27,724 labeled mentions. The
training set contains 18,448 instances, while
the validation and test sets feature 4791 and
4485 samples, respectively.

ii) MSNBC: a small news corpus with 20 arti-
cles from MSNBC on 10 different topics. It
contains 656 annotated instances.

iii) AQUAINT: a news corpus composed of
50 documents with news coming from the

Xhinua News Service, the New York Times
and the Associated Press. It contains 727 an-
notated instances.

iv) ACE2004: a manually annotated subset of the
ACE co-reference data set (Doddington et al.,
2004). It contains 257 annotated instances.

v) CWEB: a dataset automatically extracted
from the ClueWeb corpus6 by Guo and Bar-
bosa (2018) containing English Websites, con-
sisting of 11,154 annotated instances.

vi) WIKI: an automatically extracted corpus
comprised of Wikipedia pages released by
Evgeniy et al. (2013), with 6821 annotated
instances.

vii) BLINK: a dataset made up of 9 million (doc-
ument, entity, mention) triples automatically
extracted from Wikipedia.

For each of these resources,7 we use the prepro-
cessed datasets, along with the mention candidate
sets, made available by De Cao et al. (2021b) in
the authors’ official repository.8

6https://lemurproject.org/clueweb12
7Which are all freely available for research purposes.
8https://github.com/facebookresearch/
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In-domain Out-of-domain Avgs

Model AIDA MSNBC AQUAINT ACE2004 CWEB WIKI Avg AvgOOD

W
ik

ip
ed

ia
+

A
ID

A

Ganea and Hofmann (2017) 92.2 93.7 88.5 88.5 77.9 77.5 86.4 85.2
Guo and Barbosa (2018) 89.0 92.0 87.0 88.0 77.0 84.5 86.2 85.7
Yang et al. (2018) 95.9 92.6 89.9 88.5 81.8 79.2 88.0 86.4
Shahbazi et al. (2019) 93.5 92.3 90.1 88.7 78.4 79.8 87.1 85.9
Yang et al. (2019) 93.7 93.8 88.2 90.1 75.6 78.8 86.7 85.3
Le and Titov (2019) 89.6 92.2 90.7 88.1 78.2 81.7 86.8 86.2
Fang et al. (2019) 94.3 92.8 87.5 91.2 78.5 82.8 87.9 86.6
De Cao et al. (2021b) 93.3 94.3 89.9 90.1 77.3 87.4 88.8 87.8
EXTENDLarge + BLINK 92.6 94.7 91.6 91.8 77.7 88.8 89.5 88.9

A
ID

A

De Cao et al. (2021b) 88.6 88.1 77.1 82.3 71.9 71.7 79.5 78.2
Tedeschi et al. (2021) 92.5 89.2 69.5 91.3 68.5 64.0 79.2 76.5
EXTENDBase 87.9 92.6 84.5 89.8 74.8 74.9 84.1 83.3
EXTENDLarge 90.0 94.5 87.9 88.9 76.6 76.7 85.8 84.9

Table 1: Results (inKB Micro F1) on the in-domain and out-of-domain settings when training on the AIDA training
split only (bottom) and when using additional resources coming from Wikipedia (top). We mark in bold the best
scores and underline the second best.

Evaluation Following common practice in ED
literature, results over the evaluation datasets are
expressed in terms of inKB Micro F1. Furthermore,
to better highlight the performance on the out-of-
domain datasets, we report both the average score
over those and AIDA (Avg) and over those alone
(AvgOOD), that is, when the result on AIDA is
excluded from the average.

Comparison Systems In order to contextualize
EXTEND performances within the current land-
scape of Entity Disambiguation, we evaluate our
approach against recent state-of-the-art systems in
the literature. Specifically, we consider:

• Global Models: Ganea and Hofmann (2017);
Guo and Barbosa (2018); Yang et al. (2018,
2019); Le and Titov (2019); Fang et al. (2019);

• Local Models: Shahbazi et al. (2019) and
Tedeschi et al. (2021);

• The auto-regressive approach proposed by
De Cao et al. (2021b).

EXTEND Setup As previously mentioned, we
use the Longformer model (Beltagy et al., 2020)
as our reference architecture and retrieve the
pre-trained weights, for both its base and large
variants, from the HuggingFace Transformers li-
brary (Wolf et al., 2020); we refer to these vari-
ants as EXTENDBase (139M parameters) and
EXTENDLarge (435M parameters). Following

GENRE

standard practice, we use the last encoder output
for the representation of each token and a simple
linear layer on top of it to compute the start and
end tokens probability distributions. We use a 64-
token attention window and fine-tune the whole
architecture using the Rectified Adam (Liu et al.,
2020) optimizer with 10−5 learning rate for at most
100,000 steps. We use 8 steps of gradient accumu-
lation and batches made of a maximum of 1024
tokens. We evaluate the model on the validation
dataset every 2000 steps, enforcing a patience of
15 evaluation rounds. We train every model for a
single run on a GeForce RTX 3090 graphic card
with 24 gigabytes of VRAM. Due to computational
constraints, we do not perform any hyperparameter
tuning, except for the attention window where we
try [32, 64, 128], and select the other hyperparam-
eters following previous literature. We implement
our work in PyTorch (Paszke et al., 2019), using
classy9 as the underlying framework.

4.2 Results

We report in Table 1 (top) the inKB Micro F1 score
EXTEND and its comparison systems attain on the
evaluation datasets in the Wikipedia+AIDA setting.

Arguably the most interesting finding we re-
port is the improvement EXTEND achieves over
its comparison systems. EXTENDLarge + BLINK,
that is, EXTENDLarge pre-trained on BLINK10 and

9https://github.com/sunglasses-ai/
classy

10We note that, due to computational and hardware con-
straints, we were unable to match the training configuration
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then fine-tuned on AIDA, sets a new state of the
art on 4 out of 6 datasets, with the only excep-
tions being in-domain AIDA and CWEB, where
we fall short compared to the global model of Yang
et al. (2018). On the Avg score, EXTEND pushes
performances up by 0.7 points, and this improve-
ment becomes even more marked when consider-
ing AvgOOD (+1.1). These results suggest that our
approach is indeed well-suited for ED and, further-
more, is particularly effective when scaling out of
domain.

Additionally, we also evaluate EXTEND on the
AIDA-only training setting and compare against
De Cao et al. (2021b) and Tedeschi et al. (2021),
the only systems available in this setting. As shown
in Table 1 (bottom), EXTEND behaves better, with
both EXTENDBase and EXTENDLarge achieving
higher Avg scores. In particular, EXTENDBase,
which features only 149M parameters, fares better
(by almost 5 points) than De Cao et al. (2021b),
whose model parameters amount to 406M (2.7×).
Moreover, the AvgOOD results, which are also
higher, further confirm our previous hypothesis
as regards the benefits of our approach in out-of-
domain scalability. Paired together, these results
highlight the higher data efficiency that our formu-
lation achieves, in comparison to its alternatives.

4.3 Fine-grained Results

Inspired by standard practices in the evaluation
of Word Sense Disambiguation systems (Blevins
and Zettlemoyer, 2020; Barba et al., 2021a), we
perform a fine-grained analysis where we break
down the performances of our model into different
classes of label frequency. To this end, we partition
both the AIDA test set and the concatenation of
all the out-of-domain datasets in three different
subsets: i) MFC, containing all the instances in
the test set where the target mention is associated
with its most frequent candidate in the training
corpus (i.e. the AIDA training split).; ii) LFC,
containing all the instances in the test set annotated
with a least frequent candidate of the target mention
that appeared at least once in the training corpus;
iii) Unseen, containing all the instances in the test
set whose mention was never seen in the training
corpus.

We then evaluate all the systems of the AIDA
setting, except for De Cao et al. (2021b) for which

of De Cao et al. (2021b) and our pre-training performed a
significantly smaller number of updates. The scores reported
here are therefore likely to be higher.

In-domain Out-of-domain

Model MFC LFC UNS MFC LFC UNS

PEM-MFC 79.2 12.6 74.0 82.2 37.1 66.1
Tedeschi et al. (2021) 95.8 60.9 89.0 91.1 43.0 61.7
EXTEND Base 94.2 53.2 87.1 94.0 43.9 75.0
EXTEND Large 94.8 62.4 89.1 94.3 48.1 77.0

Table 2: Results (inKB Micro F1) when training on
the AIDA training split only, on the MFC, LFC and
UNS (Unseen) partitions for both in-domain and out-of-
domain settings. We mark in Bold the best scores.

the original model is unavailable, on these six test
sets. To put the results in perspective, we introduce
a simple baseline (PEM-MFC) that consists in al-
ways predicting the most frequent candidate for
each mention, taking mention-candidate frequen-
cies from Le and Titov (2018).

As we can see from Table 2, PEM-MFC is a
rather strong baseline, confirming the skewness
of the distribution with which each mention is
annotated with one of its possible candidates to-
wards the most frequent ones. Indeed, the gap
between the performances of all the models on
the MFC split and the LFC split is rather large,
with a difference of almost 50 points in the out-
of-domain setting. While future works should in-
vestigate the performances on these splits more
in depth, here we can see that EXTENDBase and
especially EXTENDLarge outperform their com-
petitors in the LFC and Unseen splits, in both the
in-domain and out-of-domain settings. This high-
lights the strong generalization capabilities of our
proposed approach, which is able to better handle
rare or unseen instances at the cost of only 1 point
in F1 score on the MFC of the in-domain setting.

5 Model Ablation

While the above-mentioned experiments showed
our approach to be rather effective, we only focused
on the Longformer-based architecture, to which
we resorted owing to the computational challenges
we mentioned in Section 3.2. We now investigate
this model choice, evaluating first how the BART-
based system fares. Then, we ablate the attention
pattern we propose for the Longformer and, finally,
discuss the trade-off between our two proposed
architectures.

BART Strictly speaking, the results we reported
in the previous Section are not exactly conclusive as
to whether or not our formulation is beneficial. In-
deed, while it is true that we use a new formulation,

2484



we also rely upon a Transformer model that none
of our comparison systems considered. Therefore,
to better pinpoint the origin of the improvements,
we train our BART-based architecture in the AIDA
setting; we refer to this model as BART. Note that
the underlying Transformer is identical to that of
De Cao et al. (2021b), except for the final classifi-
cation heads.11 As shown in Table 3, BART with
our extractive formulation attains significantly bet-
ter performances. This finding suggests that the
overall improvement does indeed originate from
our extractive formulation. Furthermore, as the two
systems are entirely identical except for the fram-
ing adopted, this finding further underlines the data
efficiency of our approach.

Longformer Ablations We now compare our
chosen global attention strategy with two standard
alternatives. First, we consider the schema origi-
nally proposed by Beltagy et al. (2020) for question-
answering tasks, where all the tokens in the input
query (i.e. the text containing the mention) have a
global attention (Longformerquery). Then, we com-
pare against an EXTEND variant where the only
token with global attention enabled is the start of
sequence token (i.e. [CLS]). Table 3 shows how
the three systems behave, reporting both their in-
domain and out-of-domain scores, along with the
average percentage of tokens in the input sequence
with global attention enabled (GA%). From these
results, we can see that i) our approach fares the
best and that ii) LongformerCLS achieves perfor-
mances almost in the same ballpark, making it a
viable option for more computationally limited sce-
narios.

BART and Longformer Finally, we compare
our two architectures. As we can see from Table 3,
BART performs better in the in-domain dataset,
whereas the Longformer outperforms it in the out-
of-domain setting. Nevertheless, neither of these
differences is very significant and, thus, this result
confirms our initial hypothesis that using our sec-
ond architecture is a valid approximation of the
standard quadratic attention strategy for the extrac-
tive Entity Disambiguation task.

11The model of De Cao et al. (2021b) has a single head on
the whole output vocabulary, whereas we have two (start and
end).

Model In-domain Out-of-domain GA%

De Cao et al. (2021b) 88.6 78.2 100.0
EXTEND 90.0 84.9 21.1

Longformerquery 89.2 84.1 43.3
LongformerCLS 88.8 84.3 0.8
BART 90.4 84.5 100.0

Table 3: Results (inKB Micro F1) of the ablation study
for the in-domain and out-of-domain settings along with
the percentage of global tokens (GA%). We mark in
Bold the best scores.

6 Error Analysis

To further investigate the generalization capabili-
ties of EXTEND, we performed a black-box testing
(Ribeiro et al., 2020) of our system leveraging the
available test sets. Apart from the problem of label
frequencies (e.g. unseen entities), we discovered
two additional main classes of errors, namely i) in-
sufficient context, and ii) titles alone might not be
enough.

Insufficient Context Since the average number
of candidates for each mention is roughly 50, the
probability of having multiple valid candidates
given the input context is far from negligible. For
instance, let us consider the following example:

“In the last game Ronaldo scored two goals de-
spite coming from a bad injury.”. In this sentence,
the mention Ronaldo can refer both to Cristiano
Ronaldo, the Portuguese player, and to Ronaldo
de Lima, the Brazilian player. While this particu-
lar problem holds for several instances in the test
sets, the performance drop is, in fact, mitigated
by the labels skewness towards the most frequent
candidates. Indeed, the model appears always to
predict the most frequent candidate for this kind
of instance, therefore being right in the majority of
cases.

Titles might not be enough For both comparabil-
ity and performance purposes, the text representa-
tion we use for a given entity in this work is simply
its Wikipedia title. While article titles in Wikipedia
are rather informative, in several circumstances
they do not contain enough information to make
them sufficiently distinguishable from other candi-
dates. For example, several pages describing “Per-
sons” are entitled just with their respective names
and surnames. This kind of identifier is especially
ineffective if the mentions taken into consideration
were not present in the training dataset, or were rare
or unseen during the underlying Transformer pre-
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training. To this end, we strongly believe that future
research might benefit from focusing on enriching
entities’ identifiers by adding a small description
of the articles (summary) or at least some keyword
representing the domain the entity belongs to.

7 Conclusion

In this work we presented EXTEND, a novel local
formulation for ED that frames this task as a text
extraction problem: given as input a string con-
taining a marked mention in context and the text
representation of each entity in its candidate set, a
model has to extract the span corresponding to the
text representation of the correct entity. Together
with this formulation, we also presented two Trans-
former models that implement it and, by evaluating
them across several experiments, we found our ap-
proach to be particularly suited to ED. First, it
is extremely data efficient, surpassing its alterna-
tives by more than 6 F1 points when considering an
AIDA-only training setting. Second, pre-training
on BLINK data enables the model to set a new
state of the art on 4 out of 6 benchmarks under con-
sideration and yield average improvements of 0.7
F1 points overall and 1.1 F1 points when focusing
only on out-of-domain evaluation datasets.

As future work, we plan to relax the require-
ments towards the candidate set and explore adapt-
ing this local formulation to a global one, so as to
enforce coherence across predictions. For instance,
we believe integrating the feedback loop strategy
we proposed in Barba et al. (2021b) would be an
interesting direction to pursue.
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