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Abstract

Structured pruning has been extensively stud-
ied on monolingual pre-trained language mod-
els and is yet to be fully evaluated on their mul-
tilingual counterparts. This work investigates
three aspects of structured pruning on multi-
lingual pre-trained language models: settings,
algorithms, and efficiency. Experiments on
nine downstream tasks show several counter-
intuitive phenomena: for settings, individu-
ally pruning for each language does not in-
duce a better result; for algorithms, the sim-
plest method performs the best; for efficiency,
a fast model does not imply that it is also small.
To facilitate the comparison on all sparsity lev-
els, we present Dynamic Sparsification, a sim-
ple approach that allows training the model
once and adapting to different model sizes at
inference. We hope this work fills the gap in
the study of structured pruning on multilingual
pre-trained models and sheds light on future re-
search.

1 Introduction

Large-scale pre-trained monolingual language mod-
els like BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) have shown promising results in
various NLP tasks while suffering from their large
model size and high latency. Structured pruning has
proven to be an effective approach to compressing
and accelerating these large monolingual language
models (Michel et al., 2019; Wang et al., 2020c;
Prasanna et al., 2020; Liang et al., 2021), making
them practical for real-world applications.

Similarly, multilingual pre-trained models (Con-
neau and Lample, 2019; Conneau et al., 2020; Xue
et al., 2021; Luo et al., 2021) are also powerful and
even have more parameters. However, little atten-
tion has been paid to evaluating the effectiveness
of structured pruning on these multilingual mod-
els. Applying pruning to multilingual pre-trained
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models is non-trivial, as it typically involves many
languages and needs to carefully design the roles of
modules within the network. For example, most at-
tention heads have little impact on the performance
of monolingual pre-trained models (Michel et al.,
2019; Voita et al., 2019), while it is the opposite for
multilingual pre-trained models (See Section 5.3
and also Budhraja et al. (2021)).

This work intends to examine how structured
pruning reacts to multilingual pre-trained mod-
els. We take the most representative multilingual
pre-trained model family, XLM-R (Conneau et al.,
2020; Goyal et al., 2021) for our case study and
evaluate the pruning performance on nine cross-
lingual understanding tasks in XTREME (Hu et al.,
2020). We investigate three aspects of structured
pruning: settings, algorithms, and efficiency.
Settings Traditional pruning produces a single
small model, which is shared across languages
(shared setting). Recent work on multilingual
translation (Li et al., 2020; Lin et al., 2021; Xie
et al., 2021; Gong et al., 2021) suggests that tai-
loring pruning to one language could achieve bet-
ter results (non-shared setting). However, our
comprehensive experiments show that neither of
the two settings can consistently outperform the
other one (See Section 5.2).
Algorithms There exists a broad spectrum of prun-
ing algorithms (Hoefler et al., 2021), and it is im-
possible to test all of them considering the cost of
pre-training. We focus on two pruning algorithms
that have been studied the most in monolingual pre-
trained models: the regularization-based pruning
(Louizos et al., 2018; Wang et al., 2020c) (and our
improved version) and the gradient-based pruning
(Michel et al., 2019; Prasanna et al., 2020; Liang
et al., 2021) (See Section 4). We experimentally
find that the simplest gradient-based pruning is
more effective for XLM-R (See Section 5.2).
Efficiency One meaningful way to measure prun-
ing algorithms is to study how the performance and
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speed of the pruned model vary with the sparsity
(Hoefler et al., 2021). However, most pruning al-
gorithms, including those we study in this work,
require training the model for each specific sparsity.
This limitation makes comparisons against a range
of sparsity levels infeasible due to the prohibitive
training cost. To solve this issue, we propose the
Dynamic Sparsification (DS for short), a simple
method that parameterizes subnetworks at any spar-
sity level and shares their weights afterward (See
Section 6.1). DS only trains the model once but can
obtain models at any sparsity level during inference.
Experiments on XNLI (Conneau et al., 2018) show
that DS does not degrade the performance much
while dramatically reducing the training cost. Inter-
estingly, we observe that the model size and infer-
ence speed are not strongly correlated in XLM-R.
This observation suggests that one could not obtain
a fast model by simply making the model small by
using vanilla pruning algorithms (See Section 6.2).

2 Related Work

Settings Recent multilingual translation research
suggests that adapting subnetworks for each lan-
guage or language pair rather than for all of them
gives better results. Among them, Li et al. (2020)
train a shared multilingual model, then select layers
for each language pair. Lin et al. (2021) also prune
a shared multilingual model for each language pair,
though on the level of entries in weight matrices.
Instead, Gong et al. (2021) prune attention heads
and feedforward networks for each language. Xie
et al. (2021) first identify general and language-
specific neurons in a shared multilingual network,
then tune those neurons using the data of their cor-
responding language only. These findings inspire
us to extend from multilingual translation to see
how non-shared pruning settings work on mul-
tilingual pre-training.

Algorithms There are many structured pruning
techniques proposed for monolingual pre-trained
language models recently. Michel et al. (2019) pro-
pose a simple gradient-based importance score to
prune attention heads. Prasanna et al. (2020); Liang
et al. (2021) extend to prune other components
like the feedforward network of the Transformer
(Vaswani et al., 2017). Wang et al. (2020c) decom-
pose the pre-trained model weights and apply L0

regularization (Louizos et al., 2018) to regulate the
ranks of decomposed weights. Sajjad et al. (2020)
study layer pruning and show that directly dropping
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Figure 1: The left is the Transformer encoder, the right
is the components that will be pruned at each layer.

the top layers performs the best in fine-tuning. Peer
et al. (2021) further show that by carefully choos-
ing layers to drop, structured pruning can achieve
a performance close to those trained by knowledge
distillation (Hinton et al., 2015).

Efficiency The pruning algorithms mentioned
above need to train one network for each spar-
sity level used at inference. Hou et al. (2020) pro-
pose a dynamic structured pruning method based
on Michel et al. (2019), which allows training the
model once and making the inference with any size
of the model. Compared with our Dynamic Spar-
sification, Hou et al. (2020)’s method cannot be
applied to the non-shared setting as it needs to
rearrange the network, i.e., producing a new model,
for each language. Cascading methods (Schwartz
et al., 2020; Xin et al., 2020) can even adapt the
network size for each instance. Since cascading
methods cannot perform batch inference and are
only available for sentence classification tasks, we
do not consider them in this work.

3 Background

In this section, we briefly review the structure of
XLM-R (Conneau et al., 2020), a Transformer en-
coder (Vaswani et al., 2017) pre-trained by masked
language modeling task (Devlin et al., 2019). We
also revisit how conventional structured pruning
algorithms are applied to Transformers by intro-
ducing additional gating variables and setting ap-
propriate values to them (See Figure 1 and also
Prasanna et al. (2020); Liang et al. (2021)). The
XLM-R model consists of N layers. Each layer is
made of the multihead attention and feedforward
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networks, followed by the residual connection and
layer normalization.

Attention Following Michel et al. (2019)’s for-
mula, the multihead attention is written as:

MHA(X) =

H∑
i=1

Gh,iheadi (1)

where H is the number of heads, headi is the out-
put of i-th head and Gh,i is the i-th entry of the
gating variables Gh ∈ RH . Gh,i indicates whether
the head i will be pruned. Gh,i is set to 1 to retain
that head and 0 if to drop it. Different pruning algo-
rithms will have their own ways to determine the
values of Gh.

Feedforward Network The feedforward net-
work contains two linear projections with GeLU
activation (Hendrycks and Gimpel, 2016) in be-
tween:

FFN(X) = (GeLU(XW1 + b1)�Gf )W2 + b2
(2)

where W1 ∈ Rd×df , b1 ∈ Rdf , W2 ∈ Rdf×d and
b2 ∈ Rd are weights of the feedforward network
and df is the hidden size. � denotes the Hadamard
product and Gf ∈ Rdf is a gating vector with a
value in the range of [0, 1]. Gf functions similar to
Gh in multihead attention, except that Gf controls
the activation of hidden units.

Embedding To prune the large embedding ma-
trix E (occupying 69% of all parameters), we de-
compose it via low-rank approximation as in Lan
et al. (2020):

E = Ê diag(Ge)P (3)

where Ê ∈ Rv×d and P ∈ Rd×d are the decom-
posed matrices of E. v is the vocabulary size.
Ge ∈ Rd, governing the rank of E, is a gating
vector similar to Gh and Gf . diag(Ge) converts
Ge to a diagonal matrix. The right part of Figure 1
is an illustration of the components (such as hidden
units, attention heads, and embeddings) that will
be pruned.

4 Extending Pruning Algorithms to
Pruning Settings

This section will first introduce pruning algorithms
that we study and then describe how to adapt them
to two pruning settings. The first is the shared

setting that shares the pruned network across lan-
guages (default setting that all pruning algorithms
could run on), and the second is the non-shared
setting that prunes one subnetwork for each lan-
guage (Xie et al., 2021; Gong et al., 2021).

4.1 Gradient-based Pruning

Gradient-based pruning (Michel et al., 2019) com-
putes the importance score of each component, e.g.,
heads in Eq. 1. Then it sets the gating variable of
a component, e.g., Gh,i in Eq. 1, to 1 if its impor-
tance score is larger than a threshold and 0 other-
wise. Taking an attention head i as an example, its
importance score is defined as:

Iheadi
= EX∼X

∣∣∣∣headT
i

∂LMLM(X)

∂headi

∣∣∣∣ (4)

where X is the data distribution and we choose the
validation set as X in practice, LMLM is the masked
language modeling loss (Devlin et al., 2019). The
values of gating variables are set and frozen after
pre-training. An additional phase of pre-training is
further employed to update network parameters to
recover performance loss brought by pruning.

Extending gradient-based pruning to the
non-shared setting is straightforward: to prune
for one language, we use data of that language
to compute a unique set of gating variables G =
{Gh, Gf , Ge} for it.

4.2 Regularization-based Pruning

The L0 norm has been widely used in many ar-
eas, including signal processing (Zhang, 2010; Xu
et al., 2011) to induce sparsity. In neural networks,
regularization-based pruning, also referred to as
L0 regularization (Louizos et al., 2018), defines
a differentiable L0 norm on the gating variables
G = {Gh, Gf , Ge}. It controls the network spar-
sity by learning the values of G during pre-training.
Taking a gating variable g ∈ G as an example, it is
modeled as:

u ∼ U(0, 1) (5)

s = sigmoid((log u/(1− u) + α)/β) (6)

ŝ = s× (r − l) + l (7)

g = min(1,max(0, ŝ)) (8)

where U is the uniform distribution, l < 0 and
r > 1 are two fixed constants, β is the temperature
and α is a learnable parameter of g. During training,
u is sampled for each g separately. At inference,
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Eq. 6 becomes s = sigmoid(α). Compared with
gradient-based pruning, the importance score in L0

regularization is the learnt α and the threshold is
fixed to sigmoid−1

(
− l

r−l

)
.

The L0 regularization term of g is:

||g||0 = sigmoid (α− log(−l/r)) (9)

and the overall L0 regularization term is1:

LL0 = ||G||0 =
∑
g∈G
||g||0 (10)

LL0 will be multiplied by a hyper-parameter λ1

and added to the pre-training loss LMLM.

4.2.1 Improved L0 Regularization
Two issues of the previous native L0 regulariza-
tion emerge in practice: 1) The hyper-parameter
λ1 does not relate to the model sparsity. It requires
several expensive try-outs training runs to find an
appropriate setup that can reach desired sparsity
(Wang et al., 2020c). 2) If we extend L0 regulariza-
tion to non-shared setting as done in gradient-
based pruning, it easily converges to an optimum
where every language shares the network (Gong
et al., 2021). This falls back to the shared setting.
Thus, we propose two corresponding solutions as
below:

1) Sparsity Constraint To address the first issue,
we add a sparsity constraint to Eq. 10:

LL0 =
l∑

i=1

∣∣||Gi||0 − t
∣∣ (11)

where l is the number of languages and Gi denotes
the set of gating variables for language i. This
loss term will keep the subnetwork size of each
language close to the targeted size t.2

2) Diverse Subnetwork To address the second
issue, we introduce a diversity loss term to encour-
age the model to find a distinct subnetwork for each
language. It is achieved by diagonalizing the gram
matrix of gating variables Ḡ = [G1; · · · ;Gl]:

Ldiag = ||P � ḠḠT � (1− I)||1 (12)

1In practice we weigh the L0 regularization term of gating
variables (See Appendix B).

2Adding a Lagrange multiplier (Wang et al., 2020c) is
also doable, but we find this simple L1-like loss is similarly
effective and easy to implement.

where 1 is a matrix of ones and I is the identity
matrix. P ∈ Rl×l is used to introduce linguistic
prior and is a matrix of ones by default.

Eq. 12 will penalize each language pair equally.
Intuitively, the subnetworks of two languages that
are close, e.g., English and Spanish, should not be
penalized. Thus we add linguistic prior Pij = 0
when the i-th and j-th languages belong to the same
language family (See Appendix C) and 1 otherwise.

To the end, the loss L we used in pre-training is:

L = LMLM + λ1LL0 + λ2Ldiag (13)

Note that the parameter of the gating variable α
is randomly initialized. We find that tuning only
α in the first few epochs is crucial to obtain better
performance. If no further notice, we will use this
improved L0 regularization for experiments with
non-shared setting and the native L0 regular-
ization for shared setting.

5 Empirical Study of Algorithms and
Settings for Multilingual Pruning

5.1 Experimental Setup

Pre-training Our pruned models are trained on
the CC-100 corpus (Wenzek et al., 2020). We
choose 100 languages with a total size of 2.2TB
for training, which is consistent with those used
in XLM-R (Conneau et al., 2020). The develop-
ment set we used to induce the importance score
for pruning is 3K randomly selected samples from
the CC-100 corpus per language.

Our model is a 12-layer Transformer with a 768
embedding size and a 3072 hidden size. It is pruned
and continually trained based on the publicly avail-
able XLM-R model for 150K steps with a batch
size of 2048 and a learning rate of 0.0002. Other
hyper-parameters remain the same as in the orig-
inal paper (Conneau et al., 2020). We train our
model on 32 Nvidia Tesla V100 32GB GPUs with
mixed-precision training. It takes roughly 7-10
days to pre-train one model. For inference, we
use 1 Nvidia Tesla V100 32GB GPU and Intel(R)
Xeon(R) Platinum 8269CY CPU @ 2.50GHz to es-
timate the GPU and CPU throughput (with a batch
size of 128 for GPU and 1 for CPU).

Fine-tuning We evaluate the pruned models on
9 downstream tasks from XTREME (Hu et al.,
2020). These tasks can be classified into four
different categories: (1) sentence-pair classifica-
tion: XNLI (Conneau et al., 2018), PAWS-X (Yang
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Task
Sparsity

XNLI PAWS-X POS NER XQuAD MLQA TyDiQA BUCC Tatoeba
AvgMetrics Acc. Acc. F1 F1 F1/EM F1/EM F1/EM F1 Acc.

#Languages 15 7 33 40 11 7 9 5 33

Cross-lingual Transfer: Fine-tune model on English training set and test on all languages.
XLM-R 0% 74.8 85.4 74.0 61.9 69.2/53.0 59.9/44.3 51.3/32.4 63.3 53.4 60.2
DistilBERT 50% 70.3 82.9 72.1 56.1 60.5/44.3 52.4/37.4 39.4/23.0 44.2 45.3 52.3
L0 (non-shared) 50% 68.6 83.3 68.3 53.4 59.8/43.2 49.6/34.6 35.2/19.8 52.5 43.8 51.0
L0 (shared) 20% 65.3 80.9 68.4 52.0 54.8/38.7 45.7/30.7 26.8/13.5 34.2 41.1 46.0
Grad (non-shared) 50% 68.6 83.9 68.3 53.9 60.6/44.2 52.3/36.7 40.5/22.6 57.5 48.6 53.1
Grad (shared) 50% 70.4 84.7 72.4 57.4 64.2/48.3 56.1/40.5 45.2/28.0 46.6 40.5 54.5

Translate-Train-All: Fine-tune model on English training data and translated data of other languages.
XLM-R 0% 79.1 89.2 89.5 88.0 72.7/58.2 58.2/42.8 72.1/57.5 - - 70.7
DistilBERT 50% 75.8 87.3 88.9 87.1 69.0/54.3 55.0/39.6 68.6/53.7 - - 67.9
L0 (non-shared) 50% 76.3 87.8 87.9 86.8 69.3/54.2 54.7/39.2 67.8/52.5 - - 67.7
L0 (shared) 20% 73.4 86.0 87.5 85.1 65.1/50.1 51.2/35.6 61.2/45.9 - - 64.1
Grad (non-shared) 50% 76.6 88.2 87.3 86.6 68.9/53.6 55.2/39.5 68.6/53.7 - - 67.8
Grad (shared) 50% 76.8 88.4 88.4 88.0 70.1/55.0 56.7/40.7 69.5/54.6 - - 68.8

Table 1: XTREME results (Sparsity is the portion of dropped parameters in the Transformer encoder, and
thus higher sparsity denotes smaller size.). We compare one representative distillation method (denoted as
DistilBERT, Sanh et al. (2019)) and two representative structured pruning methods: gradient-based pruning
(denoted as Grad) and regularization-based pruning (denoted as L0), under two settings (described in Section
4: shared and non-shared). Bold denotes the best results among 50% sparsity. Note that since BUCC and
Tatoeba do not have the translated training data, we do not report their translate-train-all results.

et al., 2019); (2) structured prediction: POS (Nivre
et al., 2018), Wikiann NER (Pan et al., 2017);
(3) question answering: XQuAD (Artetxe et al.,
2020), MLQA (Lewis et al., 2020), TyDiQA (Clark
et al., 2020); (4) sentence retrieval: BUCC2018
(Zweigenbaum et al., 2017), Tatoeba (Artetxe and
Schwenk, 2019). The hyper-parameter setup of
fine-tuning could be found in Appendix A.

Following previous work (Hu et al., 2020), we
study the pruned models in two fine-tuning set-
tings: Cross-lingual Transfer (a.k.a., zero-shot)
and Translate-Train-All (a.k.a., multi-task). Note
that for the two sequence labelling tasks POS and
NER, translation cannot give us the correct train-
ing labels. We thus use human-annotated data for
translate-train-all training on them.

5.2 Results

Table 1 shows the fine-tuning results of using differ-
ent methods to prune XLM-R to 50% sparsity (also
the value of t in Eq. 11). We follow the convention
of Prasanna et al. (2020) to compute the sparsity of
the encoder, which excludes the embeddings in the
calculation. For DistilBERT, we remove half
of the original layers of XLM-R as done in Sanh
et al. (2019). Note that in Table 1 (the rows of
“L0 (shared)”), regularization-based pruning with
shared setting has a lower sparsity (20%).3

3We have tried various hyper-parameters settings to pre-
train models toward 50% sparsity (for a fair comparison with

Methods Sparsity XNLI POS NER TyDiQA Avg

L0 20% 73.4 87.5 85.1 61.2/45.9 74.9
Impv. L0 50% 76.3 87.9 86.8 67.8/52.5 77.8
Impv. L0 + Distil 50% 76.4 87.5 86.7 69.5/54.6 78.2

Table 2: The results of the improved L0 (Impv. L0)
regularization-based pruning (See Section 4.2.1).

Gradient-based pruning performs better than
regularization-based pruning. Table 1 shows
that vanilla L0 in shared setting has more pa-
rameters (20% sparsity) but performs worse than
gradient-based pruning with fewer parameters
(50% sparsity). Despite that our proposed im-
proved L0 works better (non-shared setting),
it still underperforms the gradient-based pruning
counterpart. This is because regularization-based
pruning keeps modifying the subnetwork structure
when weights are updating, which might introduce
too much noise during training. Gradient-based
pruning, on the other hand, keeps the pruned net-
work unchanged and adapts weights only. Despite
that some works (Hoefler et al., 2021) suggest that
regularization-based pruning should be preferred,
it might not be the same conclusion for XLM-R.

Neither of the pruning settings performs con-
sistently better. Previous work on multilingual

DistilBERT) using vanilla L0, but the resulting sparsity is
either too high (≥70%) or too low (≤20%). This is in line
with the trainability issue of L0 as indicated in Section 4.2.
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Figure 2: Accuracy loss on each language of XNLI vs.
the logarithm of their pre-training corpus sizes.

translation has suggested that non-shared set-
ting provides consistent gains, as this way allows
the pruned model to adapt for each language (Li
et al., 2020; Lin et al., 2021; Xie et al., 2021; Gong
et al., 2021). However, this is not the case for XLM-
R. As shown in Table 1, regularization-based prun-
ing (L0) works the best with the non-shared
settings4, but for gradient-based pruning it is the
shared setting. We analyze that this is because
XLM-R covers more low-resource languages (100
languages in XLM-R vs. 24 in most multilingual
translation research), which makes sharing the sub-
network for a universal representation more prefer-
able (Aharoni et al., 2019).

Simple distillation performs less effective than
pruning. For most tasks, distillation is not as ef-
fective as pruning.5 This might be that distillation
prunes a whole layer, while more fine-grained com-
ponents are pruned in structured pruning. But com-
bining distillation with pruning could provide some
gain, as shown in Table 2.

Our improved L0 regularization-based prun-
ing can further boost the performance. In Sec-
tion 4.2.1, we propose an improved L0 regulariza-
tion to solve the drawbacks of standard L0. Table 2
shows the results. Through the sparsity constraint,
we can control the model sparsity to be the de-
sired value t = 50% instead of 20% (the closest
we could have using vanilla L0). And along with
diverse subnetwork, the improved L0 can even con-
sistently improve the fine-tuning results. Appendix
E visualizes how subnetworks differ between two
languages after applying the diversity loss term.

4Non-shared model with more parameters dropped (50%
sparsity) is better than shared model with fewer parameters
dropped (20% sparsity).

5Although adopting advanced distillation techniques might
improve the result, the pruning algorithm is also simple here.
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Figure 3: Sparsity of each layer pruned by two pruning
algorithms.

Moreover, integrating with distillation (the last row
of Table 2) can further improve the results.

5.3 Analysis

Why does regularization-based pruning per-
form poorly? Since regularization-based prun-
ing learns the subnetwork from scratch, we believe
its poor performance results from the low-resource
languages. We choose XNLI with the translate-
train-all setting for empirical verification. On the
one hand, the translate-train-all setting ensures that
each language has the same dataset for fine-tuning
(except for NER and POS). This way eliminates the
difference in fine-tuning. On the other hand, among
all tasks except NER and POS, XNLI covers more
languages.

Figure 2 supports our hypothesis. It shows the
accuracy loss and corpus size of each language in
regularization-based and gradient-based pruning.
We observe that for regularization-based pruning
accuracy loss strongly correlates with pre-training
dataset size (a value of 0.83 for Pearson’s τ ), while
it is not for gradient-based pruning.

Where does pruning methods behave differ-
ently? In Figure 3, we compare in which aspect
different pruning algorithms behave differently.
Figure 3 shows the sparsity of each component
(attention heads and hidden units) at each layer.
Interestingly, we see that gradient-based pruning
preserves all attention heads and only a tiny number
of hidden units, while regularization-based prun-
ing prunes heads and hidden units more evenly.
Though previous works (Michel et al., 2019; Voita
et al., 2019) have suggested that most attention
heads have little impact on the final performance
of monolingual models, our results show that this
is not the case for XLM-R. Besides, both pruning
methods tend to drop more in the middle layers.
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Figure 4: Accuracy on XNLI with translate-train-all setting and dynamic sparsification, the number of parameters
(#Params), CPU and GPU throughput (the number of sentences per second) vs. the sparsity.

6 Toward Efficient Pruning

6.1 Dynamic Sparsification
In practice, we may need models with different
sparsities to fit various resource constraints or com-
pare a set of methods. Nevertheless, existing prun-
ing techniques must train the model independently
for each sparsity level, which is prohibitive for
large models. Here we propose Dynamic Sparsi-
fication (DS for short), a method that trains the
model once but allows inference with any level of
sparsity.

Section 4 shows that both gradient-based and
regularization-based pruning follow the same pro-
cedure: we first determine a threshold, then get the
importance score for each component, and set the
gating variable to 1 if its score is larger than that
threshold and 0 otherwise. By adjusting the thresh-
old, one can obtain networks with any sparsity.

Based on this, we model a gating variable g as:

g = f(α+ tθ) (14)

where α is a trainable importance score as in
regularization-based pruning, t is the targeted net-
work size (which is one minus the sparsity), tθ is
the threshold with a learnable θ, f is a function
with output ranging between 0 and 1. We choose f
to be Eqs. 6 - 8 because it enables us to optimize α
and θ via L0 regularization. If α and θ are set prop-
erly, Eq. 14 will automatically determine whether
its corresponding component should be activated
under the targeted network size t.

Then is how to find α and θ using pruning algo-
rithms. We know that pruning algorithms could
rank different components by their importance
scores. Based on this ranking, we identify the
boundary network size that a specific component
will be activated (denoted as t̂) and will not. These

Methods XNLI POS NER TyDiQA Avg

Grad (shared) 76.8 88.4 88.0 69.5/54.6 78.8
+ DS 74.6 87.6 87.1 64.0/48.3 76.4

L0 (non-shared) 76.3 87.9 86.8 67.8/52.5 77.8
+ DS 76.2 87.9 86.7 67.9/52.4 77.7

Table 3: The results of gradient-based and
regularization-based pruning with or without dy-
namic sparsification (Sparsity=50%).

two conditions form a system of linear equations
in two unknowns α and θ:{

f
(
α+ t̂θ

)
= 1

f
(
α+

(
t̂− δ

)
θ
)

= 0
(15)

where δ is the network size that one component
contributes to, t̂ is the boundary network size where
the corresponding gating variable g should be 1 if
t > t̂ and 0 if t < t̂ − δ. t̂ equals the ranking
divided by the total number of components. Eq. 15
has a closed-form solution for α and θ:6{

α =
(
1− t̂/δ

)
f−1(1) + (t̂/δ)f−1(0)

θ =
(
f−1(1)− f−1(0)

)
/δ

(16)

Before training, we use gradient-based pruning
to initialize α and θ via Eq. 16. If only gradient-
based pruning is adopted, α and θ are then clamped
and only the retained network parameters will be
updated, otherwise they can be jointly optimized
via regularization-based pruning. During training,
we sample different ts to train different sized sub-
networks. At inference, t is set to the targeted
network size to prune the model. If one wants to
extend DS to non-shared setting, he can prune
for each language once and compute a unique set
of α and θ for each language.

6Eq. 16 has the numerical stability issue and weighs dif-
ferent components equally (See Appendix D for the solution).
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Figure 5: Sparsity of different components pruned by
two pruning algorithms vs. the sparsity.

6.2 Main Results

Table 3 (+ DS rows) shows the 50% sparsity re-
sults after applying DS to the two pruning algo-
rithms under their best performing pruning settings
(according to Table 1). Surprisingly, we observe
that gradient-based pruning with shared setting
suffers from a significant loss, while regularization-
based pruning with non-shared setting has al-
most no loss. This is because DS shares the weights
between subnetworks of different sparsities hurts
the model capacity, and non-shared setting en-
larges the subnetwork capacity by untying weights
of different languages. Due to the expensive cost
of training models without DS, we only test the im-
pact of DS on 50% sparsity, but we compare it with
other systems with a smaller size (See Appendix
F). The leftmost part of Figure 4 shows more on
how the two pruning methods trade accuracy for
efficiency under various sparsities.

The second sub-figure from the left of Figure 4
shows a non-linear relationship between the num-
ber of parameters and sparsity, as embeddings are
not included in sparsity calculation (Prasanna et al.,
2020). Since embeddings are more important than
most parts of the model and are very large (69% of
the overall parameters), the number of parameters
remains high even when the encoder is quite sparse
(Sparsity ≤ 50%). Pruning algorithms only start
to prune these large embeddings when the encoder
is very sparse (Sparsity > 50%) and results in a
great drop in the number of parameters, as shown
in Figure 5.

The two rightmost panels of Figure 4 describe
how the CPU and GPU throughput vary as the
sparsity changes. We observe a strong correlation
between the CPU throughput and sparsity when the
sparsity ≥ 50%. However, there is no such trend
observed when the sparsity < 50%. This might be
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Figure 6: Sparsity of different layers pruned by
regularization-based pruning vs. the sparsity.

due to the time consumption of irregular memory
access out-weights the speed-up brought by the
small tensor computation.

Interestingly, we see that sparse models show
no acceleration on GPU even when the sparsity
is high (e.g., 90%). Although pruning algorithms
here optimize the model size instead of inference
efficiency, it is expected that the resulting sparse
models still have speedup as shown in CPU and in
other work (Wang et al., 2020c). In Figure 6, we
find that the highest sparsity of all layers is close
to but not exactly 100%. This implies that prun-
ing tends to produce a deep and narrow model.
Previous studies (Sanh et al., 2019; Wang et al.,
2020a; Li et al., 2021) show that GPU throughput
is more sensitive to the model height instead of
its width. This explains why we did not observe
any acceleration even for a model with 1/10 of the
original size.

Though not shown in Table 1 and Figure 4, it
is still possible to obtain actual speedup in GPU
for sparse models. Previous observations on
GPU throughput only hold for inference with
the same batch size. In practice, the sparse mod-
els have a smaller memory footprint and we can
use a larger batch size for higher parallelism. For
pruned models in Table 1, a nearly 2× speedup is
observed when we double the inference batch size.

In summary, Figure 4 suggests that the correla-
tion between the model size and throughput is
very week for XLM-R: for model size, reducing
the embedding size is important, but it has almost
no impact on throughput (anO(1) complexity table
lookup); for throughput, compressing parts other
than embeddings is more effective as shown in Fig-
ure 4, but they have much fewer parameters than
the embeddings (193M parameters for embeddings
vs. 86M for the others). This advocates special
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care needed to be taken if one wants to compress
and accelerate XLM-R simultaneously.

6.3 Analysis
Here we study what DS will prune under various
sparsities. Figure 5 shows which component (em-
beddings, attention heads and hidden units) will
be preferred during pruning. In general, gradient-
based pruning behaves similar to regularization-
based pruning: they first prune hidden units, and
only prune attention heads and embeddings when
the sparsity is high. The main difference be-
tween them is that gradient-based pruning starts
to prune embeddings earlier (at 70% sparsity) than
regularization-based pruning. This explains why
we observe a significant drop in performance for
gradient-based pruning with 70% sparsity (See the
left of Figure 4): the model already lost much in-
formation at the beginning and there is no way to
recover.

Figure 6 shows how regularization-based prun-
ing prunes each layer with DS. Though we do not
plot the curves of gradient-based pruning, its phe-
nomenon is similar to regularization-basd pruning.
We find that regularization-based pruning behaves
differently at low and high sparsity. It first prunes
bottom layers when the sparsity is low, then gradu-
ally shift to higher layers as the sparsity increases.
In the end, it retains more parameters in the bot-
tom layers instead of the top layers. This provides
insight for future model design: a pyramid struc-
ture is better when the model size is very small.

7 Conclusion

In this work, we study three aspects of structured
pruning on multilingual pre-trained models: set-
tings, algorithms and efficiency. Experiments show
interesting phenomena: The best pruning setting
depends on the choice of algorithms; The simplest
pruning algorithm performs the best; A fast model
does not mean it should be small. We hope this
work will give insight to future research.
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A Hyper-parameters

Pre-training We set λ1 to 8 and λ2 to 1 for L0

regularization in 50% sparsity. If Dynamic Spar-
sification is applied, we set λ1 to 128 and others
remain the same. The number of pre-training steps
that tunes α only is 150K.

Fine-tuning We perform a grid search to find the
best hyper-parameter setting for each task (except
for BUCC and Tatoeba, they do not need training).
We list the names of hyper-parameters as well as
their search ranges below:

• Learning rate: [1e-6, 2e-6, · · · , 5e-5].

• Epoch: [5, 10] for cross-lingual transfer and 3
for translate-train-all.

We use a batch size of 32 for all experiments.

B Weighting L0 Regularization

In practice, gating variables g from different com-
ponents should contribute differently to the overall
L0 regularization term ||G||0 in Eq. 10, as they
govern different weight matrices. For example, dis-
abling the head i will removeW i

q ,W
i
k,W

i
v andW i

o ,
but disabling a hidden unit only eliminate a column
of W1 and a row of W2. So we weigh the regular-
ization terms from attention heads by 64× 4, 2 for
those from hidden units and 1 for those from the
embedding matrix.

C Language Family

Table 4 is the language family information we used
in Section 4. There are 15 different language fami-
lies and one special Missing family in Table 4.

D Implementation of Dynamic
Sparsification

Dynamic Sparsification described in Section 6 has
two issues:

• It assumes all components in the network con-
tribute equally to the network size. But ac-
cording to the discussion in Appendix B, dif-
ferent components relate to different numbers
of weight matrices and each weight matrix has
a different size.

• The solution of α and β provided by Eq. 16
requires high precision in order to precisely
activate just a single hidden unit by giving

an appropriate sparsity. This fact brings diffi-
culties in mixed-precision training as it easily
causes the overflow issue.

Here we describe an improved version of Dy-
namic Sparsification for practical implementation.
The key difference between this improved version
and the original one is the way it computes δ (the
network size that a component should contribute to)
and t̂ (the network size where a component should
be activated).

For δ, we have:

1. We associate a weight w to each component,
as done in Appendix B.

2. Then δ = w/
(∑

w′∈W̄ w′
)
, where W̄ is the

set of all w.

For t̂, we have:

1. We define a set of sparsities {s0, s2, · · · , sn}
(in sorted order) to be used at inference where
n is the number of all possible sparsities and
s0 = 0 and sn = 1, e.g., {0%, 10%, · · · ,
100%}.

2. A set of sparsity ranges can then be natu-
rally derived from these sparsities, i.e., {s0 ∼
s1, · · · , si−1 ∼ si, · · · , sn−1 ∼ sn}. For
example, given the set of sparsities {0%,
10%, · · · , 100%}, the set of ranges will be
{0%∼10%, 10%∼20%, · · · , 90%∼100%}.

3. For each sparsity range si−1 ∼ si, we find out
all components that should be activated in that
range, i.e., their original t̂ must satisfy si−1 <
t̂ ≤ si (considering their actual contributions
to the total network size under the weighting
scheme in Appendix B), and we denote these
set of components as Ci.

4. For all components c ∈ Ci, we assign their
t̂ = si.

The way we compute δ resolves the first issue by
weighting the contribution to network size for each
component. And the way how t̂ defined resolves
the second issue by constraining the precision of
sparsity and thus the precision of α and β. Given t̂
and δ, we can use Eq. 16 to induce a solution that
is numerical stable.

1863



Language Family Language Family Language Family

af Indo-European am Afro-Asiatic ar Afro-Asiatic
as Indo-European az Turkic be Indo-European
bg Indo-European bn Indo-European bn-rom Indo-European
br Indo-European bs Indo-European ca Indo-European
cs Indo-European cy Indo-European da Indo-European
de Indo-European el Indo-European en Indo-European
eo Constructed language es Indo-European et Uralic
eu Language isolate fa Missing fi Uralic
fr Indo-European fy Indo-European ga Indo-European
gd Indo-European gl Indo-European gu Indo-European
ha Afro-Asiatic he Afro-Asiatic hi Indo-European
hi-rom Indo-European hr Indo-European hu Uralic
hy Indo-European id Austronesian is Indo-European
it Indo-European ja Japonic jv Austronesian
ka Kartvelian kk Turkic km Austro-Asiatic
kn Dravidian ko Koreanic ku Indo-European
ky Turkic la Indo-European lo Kra-Dai
lt Indo-European lv Missing mg Missing
mk Indo-European ml Dravidian mn Missing
mr Indo-European ms Missing my-zaw Sino-Tibetan
my Sino-Tibetan ne Indo-European nl Indo-European
no Indo-European om Missing or Indo-European
pa Indo-European pl Indo-European ps Missing
pt Indo-European ro Indo-European ru Indo-European
sa Indo-European sd Indo-European si Indo-European
sk Indo-European sl Indo-European so Afro-Asiatic
sq Missing sr Indo-European su Austronesian
sv Indo-European sw Niger-Congo ta Dravidian
ta-rom Dravidian te Dravidian te-rom Dravidian
th Kra-Dai tl Austronesian tr Turkic
ug Turkic uk Indo-European ur Indo-European
ur-rom Indo-European uz Missing vi Austro-Asiatic
xh Niger-Congo yi Indo-European zh-Hans Sino-Tibetan
zh-Hant Sino-Tibetan

Table 4: The language family from https://www.ethnologue.com/. Missing means that there is no
language family information of that language found in the website.

System Sparsity en fr es de el bg ru tr ar vi th zh hi sw ur Avg

mMiniLMv1 70% 81.5 74.8 75.7 72.9 73.0 74.5 71.3 69.7 68.8 72.1 67.8 70.0 66.2 63.3 64.2 71.1
Grad (shared) + DS 70% 69.0 76.0 71.9 73.0 70.8 70.3 70.8 70.0 68.4 66.7 71.0 66.7 68.1 65.4 64.1 62.4
L0 (non-shared) + DS 70% 80.0 75.3 75.8 74.3 74.1 74.7 74.2 71.6 70.8 74.2 70.0 73.1 68.7 65.0 65.6 73.1

Table 5: XNLI results of mMiniLMv1, gradient-based (Grad) and regularization-based pruning (L0) with Dynamic
Sparsification (DS).

E Language Subnetwork Diversity

Section 4 states that introducing a diversity loss
term in Eq. 12 helps to diversify the subnetworks
of each language. To measure the distance between
these subnetworks, we first choose the gating vari-
ables G to represent a subnetwork. We then cal-
culate the Hamming distance between Gs for each
language pair. Figure 7 visualizes the results from
the model pruned by our improved L0 regulariza-
tion. We can see that subnetworks of different
languages are indeed different. Some languages
are similar like gu and bn, but some are different
like bs and om. We also see that even for the most

distant language pairs, they are still significantly
overlapped (a Hamming distance around 0.3). This
indicates that sharing weights between languages
is important.

F Comparison with Other Systems

Due to the expensive cost of pre-training models
with different sparsities, we only compare the re-
sults with and without Dynamic Sparsification at
50% sparsity, as shown in Table 3. Here in Table 5,
we compare our models trained by Dynamic Sparsi-
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Figure 7: Hamming distance between language subnetworks from regularization-based pruning with
non-shared setting (Sparsity=50%).

fication with mMiniLMv17 (Wang et al., 2020b), a
system trained by advanced knowledge distillation
techniques. This mMiniLMv1 system has almost
the same number of parameters as our 70% spar-
sity models, and is also evaluated on XNLI. Thus
the comparison in Tables 5 and 1 helps to justify
that Dynamic Sparsification does not degrade the
performance much on different sparsity levels, es-
pecially for L0 regularization with non-shared
pruning setting.

7https://github.com/microsoft/unilm/
tree/master/minilm
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