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Abstract

Fine-tuning the entire set of parameters of a
large pretrained model has become the main-
stream approach for transfer learning. To in-
crease its efficiency and prevent catastrophic
forgetting and interference, techniques like
adapters and sparse fine-tuning have been de-
veloped. Adapters are modular, as they can
be combined to adapt a model towards dif-
ferent facets of knowledge (e.g., dedicated
language and/or task adapters). Sparse fine-
tuning is expressive, as it controls the behav-
ior of all model components. In this work, we
introduce a new fine-tuning method with both
these desirable properties. In particular, we
learn sparse, real-valued masks based on a sim-
ple variant of the Lottery Ticket Hypothesis.
Task-specific masks are obtained from anno-
tated data in a source language, and language-
specific masks from masked language model-
ing in a target language. Both these masks
can then be composed with the pretrained
model. Unlike adapter-based fine-tuning, this
method neither increases the number of param-
eters at inference time nor alters the original
model architecture. Most importantly, it out-
performs adapters in zero-shot cross-lingual
transfer by a large margin in a series of mul-
tilingual benchmarks, including Universal De-
pendencies, MasakhaNER, and AmericasNLI.
Based on an in-depth analysis, we addition-
ally find that sparsity is crucial to prevent both
1) interference between the fine-tunings to be
composed and 2) overfitting. We release the
code and models at https://github.com/
cambridgeltl/composable-sft.

1 Introduction

Fine-tuning of pretrained models (Howard and
Ruder, 2018; Devlin et al., 2019, inter alia) is ar-
guably the dominant paradigm in NLP at present.
Originally, “fine-tuning” involved supervised learn-
ing of all the parameters of a model pretrained
on unlabeled texts. However, given the size of

Transformer-based architectures, this approach is
often time- and resource- inefficient, and may result
in catastrophic forgetting and interference (Wang
et al., 2020) during multiple adaptations. To over-
come these limitations, two main alternatives have
emerged: 1) through adapters, new parameters can
be added to a pretrained model in the form of extra
intermediate layers (Rebuffi et al., 2017; Houlsby
et al., 2019) and fine-tuned while keeping all the
pretrained parameters fixed; 2) sparse fine-tuning
(SFT) of a small subset of pretrained model param-
eters (Guo et al., 2021; Zaken et al., 2021; Xu et al.,
2021b, inter alia).

Adapters have proven especially useful in multi-
lingual NLP (Bapna and Firat, 2019; Üstün et al.,
2020; Pfeiffer et al., 2020b; Vidoni et al., 2020;
Pfeiffer et al., 2021b; Ansell et al., 2021) because
they exhibit a surprising degree of modularity. This
ability to disentangle and recombine orthogonal
facets of knowledge in original ways (Ponti et al.,
2021; Ponti, 2021) allows for separately learning a
task adapter from labeled data in a source language
and dedicated language adapters from unlabeled
data in the source language and target languages.
By stacking these components, it is possible to per-
form zero-shot cross-lingual transfer. Compared
to sequentially fine-tuning the full model on both
the task and target language, this yields superior
performance and efficiency (Pfeiffer et al., 2020b).
Notably, achieving coverage over NT tasks in NL

target languages with the sequential approach re-
quires NTNL models to be trained, whereas the
modularity of adapters reduces this to NT +NL.

Meanwhile, the advantage of SFTs over adapters
is their expressivity: rather than a non-linear trans-
formation of the output of Transformer layers (e.g.,
using a shallow MLP as with adapters), they can
operate directly on a pretrained model’s embedding
and attention layers. It therefore seems natural to
search for a parameter-efficient fine-tuning method
that is both modular and expressive.
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Figure 1: A graphical representation of Lottery Ticket Sparse Fine-Tuning: from the parameters of a pretrained
model (gray, left), we generate sparse fine-tunings for task and language knowledge (blue and red, center). Finally,
we sum these three components (right) to obtain the adapted/fine-tuned model. Best viewed in color.

To this end, we propose Lottery Ticket Sparse
Fine-Tuning (LT-SFT), a simple and general-
purpose adaptation technique inspired by the Lot-
tery Ticket Hypothesis (LTH; Frankle and Carbin,
2019; Malach et al., 2020), which was originally
conceived for pruning large neural networks. In
particular, after fine-tuning a pretrained model for a
specific task or language, we select the subset of pa-
rameters that change the most. Then, we rewind the
model to its pretrained initialization (without set-
ting any value to zero, contrary to the original LTH
algorithm). By re-tuning again only the selected
subset of parameters, we obtain a sparse fine-tuning
in the form of a vector of differences with respect
to the pretrained model. Multiple SFTs can be com-
posed by simply summing them with the pretrained
model. We provide a graphical representation of
our method in Figure 1.

We benchmark LT-SFT on a series of multilin-
gual datasets, including Universal Dependencies
(Zeman et al., 2020) for part-of-speech tagging and
dependency parsing, MasakhaNER (Adelani et al.,
2021) for named entity recognition, and Americas-
NLI (Ebrahimi et al., 2021) for natural language in-
ference. We evaluate it in a zero-shot cross-lingual
transfer setting on 35 typologically and geographi-
cally diverse languages that include both languages
seen and unseen during masked language modeling
of the pretrained model. The results in all transfer
tasks indicate that LT-SFT consistently achieves
substantial gains over the current state-of-the-art
adapter-based method for cross-lingual transfer,
MAD-X (Pfeiffer et al., 2020b).

In addition to its superior performance, modu-
larity, and expressivity, LT-SFT offers a series of
additional advantages over adapters: 1) the number
of parameters remains constant, which prevents the
decrease in inference speed observed when adapter
layers are added; 2) the neural architecture remains
identical to the pretrained model, which makes
code development model-independent rather than
requiring special modifications for each possible ar-
chitecture (Pfeiffer et al., 2020a). Finally, 3) we em-
pirically demonstrate that the peak in performance
for LT-SFT is consistently found with the same per-
centage of tunable parameters, whereas the best re-
duction factor for MAD-X is task-dependent. This
makes our method more robust to the choice of
hyper-parameters.

In addition, we find that a high level of spar-
sity in language and task fine-tunings is beneficial
to performance, as this makes overlaps less likely
and poses a lower risk of creating interference be-
tween the knowledge they contain. Moreover, it
makes fine-tunings less prone to overfitting due to
their constrained capacity. Thus, sparsity is a fun-
damental ingredient for achieving modularity and
composability. These properties in turn allow for
systematic generalization to new combinations of
tasks and languages in a zero-shot fashion.

2 Background

To establish a broader context for our research, we
first provide a succinct overview of current methods
for efficient fine-tuning, such as adapters and SFT.
We then recapitulate the Lottery Ticket Hypothesis,
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upon which our newly proposed method is built.

Adapters and Composition. An adapter is a com-
ponent inserted into a Transformer model with the
purpose of specializing it for a particular language,
task, domain, or modality (Houlsby et al., 2019).
Previous work in multilingual NLP has mainly
adopted the lightweight yet effective adapter vari-
ant of Pfeiffer et al. (2021a). In this setup, only one
adapter module, consisting of a successive down-
projection and up-projection, is injected per Trans-
former layer, after the feed-forward sub-layer. The
adapter Ab at the b-th Transformer layer performs
the following operation:

Ab(hb, rb) = Ub a(Dbhb) + rb. (1)

hb and rb are the Transformer hidden state and the
residual at layer b, respectively. Db ∈ Rm×h and
Ub ∈ Rh×m are the down- and up-projections, re-
spectively (h being the Transformer’s hidden layer
size, and m the adapter’s dimension), and a(·) is
a non-linear activation function. The residual con-
nection rb is the output of the Transformer’s feed-
forward layer whereas hb is the output of the sub-
sequent layer normalization. During fine-tuning of
a pretrained model with adapters, only the adapter
parameters U and D are modified while the pre-
trained model’s parameters are kept fixed.

In the MAD-X adapter composition framework
for cross-lingual transfer (Pfeiffer et al., 2020b),
a language adapter (LA) for a massively multi-
lingual Transformer (MMT) is learned for each
source and target language through masked lan-
guage modeling (MLM), and a task adapter (TA)
is learned for each target task, where the LA for the
source language is inserted during TA training. At
inference time, the task adapter and target language
adapter are composed by stacking one on top of
the other. This adapter composition approach has
been shown to be highly effective for cross-lingual
transfer (Pfeiffer et al., 2020b, 2021b; Ansell et al.,
2021), especially for low-resource languages and
target languages unseen during MMT pretraining.

Sparse Fine-Tuning. We call F ′ = F (·;θ + φ)
a sparse fine-tuning (SFT) of a pretrained neural
model F (·;θ) if φ is sparse. We sometimes refer
to φ itself as an SFT, or as the SFT’s difference
vector. Previously proposed SFT methods include
DiffPruning (Guo et al., 2021), BitFit (Zaken et al.,
2021) and ChildTuning (Xu et al., 2021b). Diff-
Pruning simulates sparsity of the difference vector
during training by applying a continuous relaxation

of a binary mask to it. BitFit on the other hand
allows non-zero differences only for bias parame-
ters. ChildTuning selects a subset of fine-tunable
parameters by using Fisher information to mea-
sure the relevance of each parameter to the task.
These methods have been shown to be competitive
with full fine-tuning on GLUE (Wang et al., 2019),
despite the difference vector φ having fewer than
0.5% non-zero values.

Lottery Ticket Hypothesis. (LTH; Frankle and
Carbin, 2019; Malach et al., 2020) states that each
neural model contains a sub-network (a “winning
ticket”) that, if trained again in isolation, can match
or even exceed the performance of the original
model. To achieve this, after a pruning stage where
some parameters are zero-masked and frozen ac-
cording to some criterion (e.g., weight magnitude),
the remaining parameters are restored to their orig-
inal values and then re-tuned. This process of prun-
ing and re-training can be iterated multiple times.

The LTH has so far been used mostly for model
compression through network pruning; to our
knowledge, we are the first to use it for pretrained
model adaptation.

Multi-Source Task Training. Ansell et al. (2021)
showed that training task adapters using data from
multiple source languages can result in sizable im-
provements in downstream zero-shot transfer per-
formance even when the total number of training
examples is held constant. In their training setup,
each batch consisted of examples from a single,
randomly selected source language, the language
adapter for which is activated for the duration of
the training step.

3 Methodology

3.1 Lottery Ticket Sparse Fine-Tuning
Training. In this work, we propose Lottery Ticket
Sparse Fine-Tuning (LT-SFT). Similar to the Lot-
tery Ticket algorithm of Frankle and Carbin (2019),
our LT-SFT method consists of two phases:

(Phase 1) Pretrained model parameters θ(0) are
fully fine-tuned on the target language or task data
D, yielding θ(1). Parameters are ranked according
to some criterion, in our case greatest absolute dif-
ference |θ(1)i − θ

(0)
i |, and the top K are selected

for tuning in the next phase: a binary mask µ is
set to have 1 in positions corresponding to these
parameters, and 0 elsewhere.

(Phase 2) After resetting the parameters to their
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original values θ(0), the model is again fine-tuned,
but this time only the K selected parameters are
trainable whereas the others are kept frozen. In
practice, we implement this by passing the masked
gradient µ �∇θL(F (·;θ),D) (where � denotes
element-wise multiplication and L a loss function)
to the optimizer at each step. From the resulting
fine-tuned parameters θ(2) we can obtain the sparse
vector of differences φ = θ(2) − θ(0).

In addition, we experiment with applying a
regularization term which discourages parameters
from deviating from their pretrained values θ(0).
Specifically, we use L1 regularization of the form
J(θ) = λ

N

∑
i |θi − θ

(0)
i |.

Composition. Although we often use the term
“sparse fine-tuning” to refer to the difference vector
φ itself, an SFT is most accurately conceptualized
as a functional which takes as its argument a param-
eterized function and returns a new function, where
some sparse difference vector φ has been added to
the original parameter vector. Suppose we have a
language SFT SL and a task SFT ST defined by

SL(F (·;θ)) = F (·;θ + φL)

ST (F (·;θ)) = F (·;θ + φT ).

Then we have

SL ◦ ST (F (·;θ)) = F (·;θ + φT + φL).

3.2 Zero-Shot Transfer with LT-SFT
We adopt a similar cross-lingual transfer setup to
MAD-X (Pfeiffer et al., 2020b, see also §2). We
start with an MMT F with pretrained parameters
θ learned through masked language modeling on
many languages, such as mBERT (Devlin et al.,
2019) or XLM-R (Conneau et al., 2020).

For each language of interest l, we learn a lan-
guage SFT φ

(l)
L through LT-SFT (also with an

MLM objective) on text from language l.
For each task of interest t, we learn a task SFT

φ
(t)
T through LT-SFT on annotated data from some

source language s. When learning the task SFT,
we first adapt to the source language by applying
the language SFT for s.1 The language SFT is
removed again after training. That is, we perform

1Adapting to the source language yields substantial im-
provements in cross-lingual transfer performance with both
MAD-X and LT-SFT, with gains of 2-3 points in our prelimi-
nary experiments. Paradoxically, our results (see Table 7) and
results from previous work (Pfeiffer et al., 2020b; Ansell et al.,
2021) suggest that adapting to high-resource target languages
at inference time does not give similarly large benefits. We
think this phenomenon warrants further investigation.

LT-SFT on F (· ;θ + φ
(s)
L ) to obtain fine-tuned

parameter vector θ′. We then calculate φ(t)
T =

θ′ − (θ + φ
(s)
L ). Note that during task training,

we also learn a classifier head, which is fully fine-
tuned during both phases of LT-SFT adaptation,
with the same random initialization applied at the
beginning of each phase.

We perform zero-shot adaptation of F to target
language l for task t by composing language and
task SFTs to obtain Ft,l = F (· ;θ + φ

(t)
T + φ

(l)
L ).

On top of this, we stack the classifier head learned
for t. For a formal algorithm of LT-SFT and the
transfer procedure, we refer to Appendix A.

4 Experimental Setup

To evaluate our new method extensively, we bench-
mark its zero-shot cross-lingual performance on
four distinct tasks: part-of-speech tagging (POS),
dependency parsing (DP), named entity recogni-
tion (NER), and natural language inference (NLI).
Table 1 summarizes our experimental setup, includ-
ing the datasets and languages considered in our
experiments. We put emphasis on low-resource
languages and languages unseen during MMT pre-
training, although we also evaluate on a few high-
resource languages. In total, we cover a set of 35
typologically and geographically diverse languages,
which makes them representative of cross-lingual
variation (Ponti et al., 2019, 2020).

4.1 Baselines and Model Variants
The main baseline is MAD-X, the state-of-the-art
adapter-based framework for cross-lingual trans-
fer (Pfeiffer et al., 2020b). We use the “MAD-
X 2.0” variant, where the last adapter layers are
dropped. Pfeiffer et al. (2021b) found that this im-
proved performance, which we could confirm in
our preliminary experiments. Since adapters with
the configuration used by Pfeiffer et al. (2020b) are
unavailable for many languages in our evaluation,
we train our own for all languages. In Appendix
D we also provide an evaluation with comparable
language adapters from AdapterHub (Pfeiffer et al.,
2020a) where available.

We also perform experiments with BITFIT (Za-
ken et al., 2021) to establish a baseline for an exist-
ing SFT technique. In addition to the main LT-SFT
model variant, on POS and DP we test a RAND-
SFT variant as an ablation, where the K parame-
ters to be fine-tuned are selected at random rather
than based on an informed criterion.
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Task Target Dataset Source Dataset MMT Target Languages

Part-of-Speech
Tagging (POS), De-
pendency Parsing
(DP)

Universal Depen-
dencies 2.7 (Ze-
man et al., 2020)

Universal Depen-
dencies 2.7 (Ze-
man et al., 2020)

mBERT

Arabic†, Bambara, Buryat, Cantonese,
Chinese†, Erzya, Faroese, Japanese†,
Livvi, Maltese, Manx, North Sami, Komi
Zyrian, Sanskrit, Upper Sorbian, Uyghur

Named Entity
Recognition
(NER)

MasakhaNER
(Adelani et al.,
2021)

CoNLL 2003
(Tjong Kim Sang
and De Meulder,
2003)

mBERT
Hausa, Igbo, Kinyarwanda, Luganda,
Luo, Nigerian-Pidgin, Swahili∗, Wolof,
Yorùbá∗

Natural Language
Inference (NLI)

AmericasNLI
(Ebrahimi et al.,
2021)

MultiNLI
(Williams et al.,
2018)

XLM-R
Aymara, Asháninka, Bribri, Guarani,
Náhuatl, Otomí, Quechua, Rarámuri,
Shipibo-Konibo, Wixarika

Table 1: Details of the tasks, datasets, MMTs and languages involved in our zero-shot cross-lingual transfer eval-
uation. ∗ denotes low-resource languages seen during MMT pretraining; † denotes high-resource languages seen
during MMT pretraining; all other languages are low-resource and unseen. The source language is always English.
Further details of all the language and data sources used are provided in Appendix B.

For both LT-SFT and MAD-X, we also evaluate
a task adaptation (TA)-ONLY configuration, where
only the task SFT/adapter is applied, without the
target language SFT/adapter.

4.2 Language SFT/Adapter Training Setup

MLM Training Data. For all languages in our
POS and DP evaluation, we perform MLM lan-
guage SFT/adapter training on Wikipedia corpora.
We also use Wikipedia for all languages in our NER
evaluation if available. Where this is not the case,
we use the Luo News Dataset (Adelani et al., 2021)
for Luo and the JW300 corpus (Agić and Vulić,
2019) for Nigerian Pidgin. The main corpora for
the languages in our NLI evaluation are those used
by the dataset creators to train their baseline models
(Ebrahimi et al., 2021); however, since the sizes of
these corpora are restricted due to containing only
parallel data, we augment them with data from
Wikipedia and the corpora of indigenous Peruvian
languages of Bustamante et al. (2020) where avail-
able. More details on data sources are provided in
Appendix B.

Training Setup and Hyper-parameters. For
both SFTs and adapters, we train for the lesser
of 100 epochs or 100,000 steps of batch size 8 and
maximum sequence length 256, subject to an ab-
solute minimum of 30,000 steps since 100 epochs
seemed insufficient for some languages with very
small corpora. Model checkpoints are evaluated ev-
ery 1,000 steps (5,000 for high-resource languages)
on a held-out set of 5% of the corpus (1% for high-
resource languages), and the one with the smallest
loss is selected at the end of training. We use the
AdamW optimizer (Loshchilov and Hutter, 2019)

with an initial learning rate of 5e-5 which is linearly
reduced to 0 over the course of training.

Following Pfeiffer et al. (2020b), the reduction
factor (i.e., the ratio between model hidden size
and adapter size) for the adapter baseline was set
to 2 for a total of ∼7.6M trainable parameters. For
comparability, we set the same number of trainable
parameters K for our language LT-SFTs. This
results in language SFTs with a sparsity of 4.3%
for mBERT and 2.8% for XLM-R. Since BITFIT

tunes exclusively the bias parameters, its language
SFTs have a fixed sparsity of 0.047% for mBERT
and 0.030% for XLM-R.

Importantly, during language sparse fine-tuning,
we decouple the input and output embedding ma-
trices and fix the parameters of the output matrix;
otherwise, we find that the vast majority of the K
most changed parameters during full fine-tuning
belong to the embedding matrix, seemingly due to
its proximity to the model output, which damages
downstream performance. We also fix the layer
normalization parameters; all other parameters are
trainable. For language adaptation, we apply L1
regularization as described in §3.1 with λ = 0.1.
Note that the specified training regime is applied in
the same way during both phases of LT-SFT.

For language adapter training in the MAD-X
baseline, we use the Pfeiffer configuration (Pfeiffer
et al., 2021a) with invertible adapters, special ad-
ditional sub-components designed for adapting to
the vocabulary of the target language, which yields
consistent gains.
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4.3 Task SFT/Adapter Training Setup
For POS tagging, DP, and NER,2 we train task
SFTs/adapters on the datasets indicated in Table 1
for 10 epochs with batch size 8, except during the
first phase of LT-SFT training where we train for
only 3 epochs.3 Model checkpoints are evaluated
on the validation set every 250 steps, and the best
checkpoint is taken at the end of training, with the
selection metric being accuracy for POS, labeled
attachment score for DP, and F1-score for NER.
Similarly to language fine-tuning, we use an initial
learning rate of 5e-5 which is linearly reduced to
0 over the course of training. For POS and NER
we use the standard token-level single-layer multi-
class model head. For DP, we use the shallow
variant (Glavaš and Vulić, 2021) of the biaffine
dependency parser of Dozat and Manning (2017).

For NLI, we employ the same fine-tuning hyper-
parameters as Ebrahimi et al. (2021): 5 epochs with
batch size 32, with checkpoint evaluation on the val-
idation set every 625 steps, and an initial learning
rate of 2e-5. We apply a two-layer multi-class clas-
sification head atop the MMT output corresponding
to the [CLS] token.

We found that the number of trainable param-
eters during task adaptation (governed by K for
SFTs and reduction factor for adapters) has a large
effect on performance: we thus experiment with a
range of values. Specifically, we test adapter reduc-
tion factors of 32, 16, 8, 4, 2, and 1, and equivalent
values of K 4 for SFT.

During task adaptation, we always apply the
source language adapter following Pfeiffer et al.
(2020b), or source language SFT (see §3.2).

4.4 Multi-Source Training
To validate that task LT-SFT training, like task
adapter training in prior work (Ansell et al., 2021),
benefits from the presence of multiple source lan-
guages in the training data, and to push the bound-
aries of zero-shot cross lingual transfer, we perform
multi-source training experiments on DP and NLI.

2MasakhaNER and CoNLL 2003 datasets respectively use
the DATE and MISC tags which are not used by the other; we
replace these with the O tag at both train and test time.

3This is because full fine-tuning is more prone to overfit-
ting than sparse/adapter fine-tuning. Early stopping somewhat
addresses overfitting, but it is insufficient in a cross-lingual set-
ting because the target language performance generally starts
to deteriorate faster than the source language performance.

4Approximately 442K, 884K, 1.7M, 3.5M, 7.1M, and
14.2M respectively, amounting to sparsity levels of 0.25%,
0.50%, 1.0%, 2.0%, 4.0% and 8.0% for mBERT and 0.16%,
0.32%, 0.63%, 1.3%, 2.6% and 5.1% for XLM-R.

We adopt a similar setup to Ansell et al. (2021):
we obtain the training set by concatenating the train-
ing data for all source languages. We randomly
shuffle the training set and train as in the single-
source case, except that each batch is composed
of examples from a single source language, whose
language SFT is applied during the training step.

We prioritize maximizing performance rather
than providing a fair comparison against the single-
source case, so unlike Ansell et al. (2021), we use
the entirety of the training sets. In derogation of
this principle, we set a maximum of 15K examples
per language for DP to better balance our sample.

For DP, we train our models on the UD treebanks
of 11 diverse high-resource languages. For NLI,
we train on MultiNLI (Williams et al., 2018) plus
the data for all 14 non-English languages in the
XNLI dataset (Conneau et al., 2018).

We also evaluate multi-source task SFT training
on extractive question answering (QA), as a com-
paratively generous amount of multilingual data
is available for this task. Specifically, we train on
English data from SQuAD version 1 (Rajpurkar
et al., 2016), all languages from MLQA (Lewis
et al., 2020), and those languages from XQuAD
(Artetxe et al., 2020) which also appear in MLQA.
We evaluate on the languages present in XQuAD
but not in MLQA. For QA, we train for 5 epochs
with batch size 12 and initial learning rate 3e-5.
Full details of the source languages can be found
in Appendix B.

We use an equivalent reduction factor of 1 for
all tasks, following the strongest setting from our
single-source experiments. Except as stated above,
the training configuration and hyper-parameters are
the same as for single-source training.

5 Results and Discussion

We report the average test performance of zero-
shot cross-lingual transfer for the best reduction
factor (or equivalent K) in Table 2. Some pat-
terns emerge across all four tasks: first, LT-SFT
consistently outperforms all the baselines. In par-
ticular, it surpasses the state-of-the-art MAD-X
across all tasks, with gains of 2.5 accuracy in part-
of-speech tagging, 2.5 UAS and 3.7 LAS in de-
pendency parsing, 1.8 F1 score in named entity
recognition, and 1.9 accuracy in natural language
inference. Compared to RAND-SFT, its superior
performance demonstrates the importance of select-
ing “winning tickets” rather than a random subset
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POS DP NER NLI
Accuracy UAS LAS F1 score Accuracy

LT-SFT 71.1 (1) 57.1 (1) 37.8 (1) 71.7 (1) 51.4 (1)
RAND-SFT 69.2 (1) 54.3 (1) 33.9 (1) - -
MAD-X 68.6 (16) 54.6 (2) 34.1 (1) 69.9 (8) 49.5 (2)
BITFIT 58.1 45.7 23.9 54.9 38.3
LT-SFT TA-ONLY 51.3 (32) 39.1 (1) 19.9 (1) 55.3 (8) 39.9 (4)
MAD-X TA-ONLY 52.1 (32) 38.9 (1) 19.5 (1) 52.4 (32) 41.7 (4)

Table 2: Results of zero-shot cross-lingual transfer evaluation averaged over all languages when best equivalent
reduction factor (shown in parentheses after each result) is chosen.
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Figure 2: Zero-shot cross-lingual transfer evaluation of Lottery-Ticket Sparse Fine-Tuning (LT-SFT), Random
Sparse Fine-Tuning (RAND-SFT), and adapter-based MAD-X over four tasks with varying numbers of trainable
parameters during task adaptation. Results are averages over all target languages.

of parameters. Secondly, the results demonstrate
the importance of language SFTs/adapters for spe-
cializing pretrained models to unseen languages,
as they bring about a large increase in performance
across the 4 tasks compared to the corresponding
settings with task adaptation only (TA-ONLY).

We remark that LT-SFT’s zero-shot performance
also exceeds translation-based baselines on the
AmericasNLI task, achieving an average accu-
racy of 51.4%, compared with the 48.7% of the
‘translate-train’ baseline of Ebrahimi et al. (2021).

In Figure 2, we provide a more detailed overview
of average cross-lingual model performance across
a range of different reduction factors. The results
for the LT-SFT and RAND-SFT methods gener-

ally improve or stay steady as the number of train-
able task parameters increases. On the contrary,
there is not such a trend for MAD-X, as lower
reduction factors may degrade its results. This
makes it easier to choose a good setting for this
hyper-parameter when using SFT. Moreover, it is
worth stressing again that, contrary to MAD-X,
this hyper-parameter does not affect inference time.

BITFIT performs much worse than the other
methods which perform language adaptation across
all tasks. Bearing in mind the strong trend towards
increasing performance with increasing K for the
other SFT methods, it seems likely that BITFIT,
with two orders of magnitude fewer trainable pa-
rameters, lacks the capacity to learn effective task
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el ro ru th tr

XLM-R Base, full FT 71.1/54.3 78.3/63.7 74.1/57.8 67.1/55.7 67.5/51.1
XLM-R Large, full FT (Artetxe et al., 2020) 79.8/61.7 83.6/69.7 80.1/64.3 74.2/62.8 75.9/59.3
XLM-R Base MS, LT-SFT 81.9/65.5 86.3/73.3 81.4/64.6 82.4/75.2 75.2/58.6

Table 3: Results of zero-shot cross-lingual transfer evaluation on XQuAD (Artetxe et al., 2020), restricted to
languages which do not appear in MLQA (Lewis et al., 2020) (see §4.4) in the format F1/exact match score. “Full
FT” denotes full fine-tuning, MS denotes multi-source training, where additional data from MLQA and XQuAD
is utilized, LT-SFT denotes Lottery-Ticket Sparse Fine-Tuning.
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Figure 3: Performance of LT-SFT on DP and NER controlling for the sparsity of task and language fine-tuning.
Results are averaged over several selected languages. Denser fine-tunings may interfere with each other and
consequently degrade the model performance.

DP UAS DP LAS NLI Accuracy

SINGLE SOURCE 57.1 37.8 51.4
MULTI-SOURCE 64.3 47.6 53.1

Table 4: Results of zero-shot cross-lingual transfer eval-
uation of single- vs. multi-source LT-SFT task training
averaged over all target languages.

and language SFTs.
For additional results at the level of individual

languages and an analysis of the efficacy of lan-
guage adaptation for high- versus low- resource tar-
get languages, we refer the reader to Appendix C.

5.1 Multi-Source Training

As shown in Table 4, multi-source LT-SFT train-
ing brings about a large improvement in zero-shot
cross-lingual transfer performance on DP, and a
modest improvement for NLI. This may be a result
of the fact that the training set for NLI contains a
relatively small number of non-English examples
compared to the DP training set. Also, the Amer-
icasNLI target languages generally have a lower
degree of genealogical relatedness to the source
languages compared to the DP target languages.

Table 3 demonstrates that multi-source training
is also beneficial to zero-shot cross-lingual trans-
fer for QA on a series of relatively high-resource

languages. In particular, LT-SFT multi-source train-
ing of XLM-R Base outperforms single-source
full fine-tuning of XLM-R Large (a larger model)
comfortably, and outperforms XLM-R Base single-
source full fine-tuning by a significant margin. The
fact that such an improvement occurs despite each
of the 6 non-English source languages having more
than an order of magnitude less training data than
the English data from SQuAD illustrates the dispro-
portionate advantage of multilingual source data.

5.2 Benefits of Sparsity

Finally, we address the following question: is spar-
sity responsible for preventing the interference of
separate fine-tunings when they are composed? To
support this hypothesis with empirical evidence,
we use LT-SFT to train language5 and task fine-
tunings with different levels of density, i.e. the
percentage of non-zero values (from 5% to 100%).
We then evaluate all possible combinations of den-
sity levels. The results are visualized in the form of
a contour plot in Figure 3 for selected combinations
of tasks and languages: Buryat, Cantonese, Erzya,
Maltese, and Upper Sorbian for DP, and Hausa,
Igbo, Luganda, Swahili and Wolof for NER.

5To reduce computational cost, we train language fine-
tunings for a maximum of 30K steps rather than the 100K of
our main experiments.
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From Figure 3, it emerges that the performance
decreases markedly for SFTs with a density level
greater than ~30% of fine-tuned parameters.6 We
speculate that this is due to the fact that sparser
fine-tunings have a lower risk of overlapping with
each other, thus creating interference between the
different facets of knowledge they encapsulate. It
must be noted, however, that alternative hypothe-
ses could explain the performance degradation in
addition to parameter overlap, such as overfitting
as a result of excessive capacity. While we leave
the search for conclusive evidence to future work,
both of these hypotheses illustrate why enforcing
sparsity in adaptation, as we propose in our method,
is crucial to achieving modularity.

6 Related Work

Within the framework of the Lottery Ticket Hypoth-
esis, a series of improvements have been suggested
to make the original algorithm to find winning tick-
ets (Frankle and Carbin, 2019) more stable: after
fine-tuning, Frankle et al. (2019) rewind the param-
eters to their values after a few iterations rather than
their values before training, whereas Renda et al.
(2020) also rewind the learning rate. In addition,
Zhou et al. (2019) found that 1) different criteria
can be used to select weights as an alternative to the
magnitude of their change; 2) different rewinding
methods are also effective, such as restoring the
original sign, but not the value. In future work, we
will investigate whether these variants also benefit
our method for cross-lingual transfer, where the
LTH is used for adaptation rather than pruning.

Whereas the LTH was originally conceived in
the vision domain for convolutional architectures,
it is also effective for pruning models trained on
NLP tasks (Yu et al., 2020), such as neural machine
translation, and based on Transformer architectures
(Prasanna et al., 2020). Recently, Xu et al. (2021a)
adapted the LTH specifically to prune pretrained
models after fine-tuning.

To the best of our knowledge, Wortsman et al.
(2020) is the only instance where winning tickets
were composed in previous work. In their exper-
iment, a set of task-specific masks were linearly
combined at inference time, in order to generalize
to new tasks in a continuous learning setting.

6Note, furthermore, that levels of task fine-tuning density
greater than ~60% do not vary in performance. This is because
their subsets of parameters include embeddings of tokens
never encountered during task training, which are therefore
never updated even if trainable.

7 Conclusion and Future Work

We have presented a new method to fine-tune pre-
trained models that is both modular (like adapters)
and expressive (like sparse fine-tuning). This
method is based on a variant of the algorithm to find
winning tickets under the framework of the Lottery
Ticket Hypothesis. We infer a sparse vector of dif-
ferences with respect to the original model for each
individual language (by modeling unlabeled text)
and each individual task (with supervised learning).
The adaptations for a language and a task can then
be composed with the pretrained model to enable
zero-shot cross-lingual transfer. Comparing our
method with the state-of-the-art baseline in several
multilingual tasks, the results have indicated sub-
stantial gains across the board in both languages
seen and unseen during pretraining (which includes
many truly low-resource languages).

In future work, our method offers several po-
tential extensions. In addition to the variants to
the Lottery Ticket algorithm surveyed in §6, given
the importance of sparsity for modularity (§5.2),
we plan to experiment with additional algorithms
previously applied to pruning that can identify and
fine-tune a subset of the model parameters, such
as DiffPruning (Guo et al., 2021) and ChildTun-
ing (Xu et al., 2021b). Finally, given its sim-
plicity and generality, our method is suited for
many other applications of transfer learning in ad-
dition to cross-lingual transfer, such as multimodal
learning, debiasing, and domain adaptation. The
code and models are available online at https:

//github.com/cambridgeltl/composable-sft.
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Ethan Chi, Yongseok Cho, Jinho Choi, Jayeol
Chun, Alessandra T. Cignarella, Silvie Cinková, Au-
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Bruno Guillaume, Céline Guillot-Barbance, Tunga
Güngör, Nizar Habash, Hinrik Hafsteinsson, Jan
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valevskaitė, Simon Krek, Parameswari Krishna-
murthy, Sookyoung Kwak, Veronika Laippala, Lu-
cia Lam, Lorenzo Lambertino, Tatiana Lando,

Septina Dian Larasati, Alexei Lavrentiev, John Lee,
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A Algorithm of Cross-Lingual Transfer with LT-SFT

Algorithm 1 Cross-Lingual Transfer with Lottery-Ticket Sparse Fine-Tuning

function LTSFT(D, L, θ(0), η, K)
θ(1) ← θ(0)

while not converged do
θ(1) ← θ(1) − η∇L(θ(1),D)

µi ←

{
1 if θ

(1)
i ∈ argmaxθ1,...,θK |θ

(1) − θ(0)|
0 otherwise

θ(2) ← θ(0)

while not converged do
θ(2) ← θ(2) − µ� η∇L(θ(2),D)

φ← θ(2) − θ(0)
return φ

end function

function CROSSLINGUALTRANSFER(Dsrc, Dtar, Dtask, Ltask, θ(0), η, K)
φsrc ← LTSFT(Dsrc,LMLM,θ

(0), η,K)
φtask ← LTSFT(Dtask,Ltask,θ

(0) + φsrc, η,K)
φtar ← LTSFT(Dtar,LMLM,θ

(0), η,K)
return θ(0) + φtask + φtar

end function
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B Languages

Task Language ISO Code Family UD Treebank Corpus source(s)

Source

Arabic†,‡ ar Afro-Asiatic, Semitic

Wikipedia

Basque∗ eu Basque BDT
Bulgarian† bg Indo-European, Slavic
Chinese†,‡ zh Sino-Tibetan
Czech∗ cs Indo-European, Slavic PDT
English∗,†,‡, en Indo-European, Germanic EWT
Estonian∗ et Uralic, Finnic EDT
French∗,† fr Indo-European, Romance GSD
German†,‡ de Indo-European, Germanic
Greek∗,† el Indo-European, Greek GDT
Hindi∗,†,‡ hi Indo-European, Indic HDTB
Korean∗ ko Korean GSD
Persian∗ fa Indo-European, Iranian PerDT
Russian† ru Indo-European, Slavic
Spanish†,‡ es Indo-European, Romance
Swahili† swa Niger-Congo, Bantoid
Thai† th Tai-Kadai, Kam-Thai
Turkish∗,† tr Turkic, Southwestern BOUN
Urdu† ur Indo-European, Indic
Vietnamese∗,‡ vi Austro-Asiatic, Viet-Muong VTB

POS/DP

Arabic ar Afro-Asiatic, Semitic PUD

Wikipedia

Bambara bm Mande CRB
Buryat bxr Mongolic BDT
Cantonese yue Sino-Tibetan HK
Chinese zh Sino-Tibetan GSD
Erzya myv Uralic, Mordvin JR
Faroese fo Indo-European, Germanic FarPaHC
Japanese ja Japanese GSD
Livvi olo Uralic, Finnic KKPP
Maltese mt Afro-Asiatic, Semitic MUDT
Manx gv Indo-European, Celtic Cadhan
North Sami sme Uralic, Sami Giella
Komi Zyrian kpv Uralic, Permic Lattice
Sanskrit sa Indo-European, Indic UFAL
Upper Sorbian hsb Indo-European, Slavic UFAL
Uyghur ug Turkic, Southeastern UDT

NER

Hausa hau Afro-Asiatic, Chadic

N/A

Wikipedia
Igbo ibo Niger-Congo, Volta-Niger Wikipedia
Kinyarwanda kin Niger-Congo, Bantu Wikipedia
Luganda lug Niger-Congo, Bantu Wikipedia
Luo luo Nilo-Saharan Luo News Dataset (Adelani et al., 2021)
Nigerian-Pidgin pcm English Creole JW300 (Agić and Vulić, 2019)
Swahili swa Niger-Congo, Bantu Wikipedia
Wolof wol Niger-Congo, Senegambian Wikipedia
Yorùbá yor Niger-Congo, Volta-Niger Wikipedia

NLI

Aymara aym Aymaran

N/A

Tiedemann (2012); Wikipedia

Asháninka cni Arawakan
Ortega et al. (2020); Cushimariano Romano and
Sebastián Q. (2008); Mihas (2011); Bustamante
et al. (2020)

Bribri bzd Chibchan, Talamanca Feldman and Coto-Solano (2020)
Guarani gn Tupian, Tupi-Guarani Chiruzzo et al. (2020); Wikipedia
Náhuatl nah Uto-Aztecan, Aztecan Gutierrez-Vasques et al. (2016); Wikipedia
Otomí oto Oto-Manguean, Otomian Hñähñu Online Corpus
Quechua quy Quechuan Agić and Vulić (2019); Wikipedia
Rarámuri tar Uto-Aztecan, Tarahumaran Brambila (1976)
Shipibo-Konibo shp Panoan Galarreta et al. (2017); Bustamante et al. (2020)
Wixarika hch Uto-Aztecan, Corachol Mager et al. (2018)

QA

Greek el Indo-European, Greek

N/A Wikipedia
Romanian ro Indo-European, Romance
Russian ru Indo-European, Slavic
Thai th Tai-Kadai, Kam-Tai
Turkish tr Turkic, Southwestern

Table 5: Details of the languages and data used for training and evaluation of SFTs and adapters. The corpora
of Bustamante et al. (2020) are available at https://github.com/iapucp/multilingual-data-peru; all
other NLI corpora mentioned are available at https://github.com/AmericasNLP/americasnlp2021. ∗

denotes source languages for multi-source DP training; † denotes source languages for multi-source NLI training;
‡ denotes source languages for multi-source QA training. English is the source language in all single-source task
training experiments.
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C Results by Language

LT-SFT RAND-SFT MAD-X BITFIT LT-SFT TA MAD-X TA

ar 68.7 69.3 70.1 69.8 70.6 70.8
bm 57.0 55.6 51.0 41.7 34.2 37.2
bxr 73.2 71.4 71.9 64.2 59.5 62.0
fo 87.9 86.5 85.7 77.3 72.9 74.1
gv 72.0 68.4 66.9 44.3 35.4 37.5
hsb 83.1 82.4 81.8 77.2 69.2 69.6
ja 53.9 54.3 51.1 53.9 54.1 51.2
kpv 61.8 56.0 58.5 39.6 37.1 35.8
mt 80.6 77.6 73.7 53.6 32.6 30.9
myv 80.3 71.5 75.6 54.7 45.7 48.5
olo 82.3 81.7 79.7 73.1 62.2 63.4
sa 65.3 63.2 60.9 50.3 39.8 45.0
sme 78.0 70.4 72.0 50.6 43.3 39.4
ug 59.1 64.7 63.7 43.2 34.0 36.8
yue 66.8 65.6 66.8 66.2 64.5 64.1
zh 67.5 68.0 67.6 69.2 65.9 67.6

avg 71.1 69.2 68.6 58.1 51.3 52.1

(a) POS accuracy (%)

LT-SFT RAND-SFT MAD-X BITFIT LT-SFT TA MAD-X TA LT-SFT MS

ar 70.8/53.6 68.7/51.6 69.5/51.5 64.0/48.6 68.7/53.0 68.6/52.3 81.5/69.8
bm 43.1/16.5 39.3/14.8 39.1/13.6 33.3/8.1 30.0/7.8 29.9/6.8 46.4/20.6
bxr 49.2/25.9 48.3/24.1 48.3/24.0 44.9/19.7 40.7/17.3 41.0/18.0 60.2/35.4
fo 68.2/55.5 65.7/53.1 66.3/52.5 57.7/43.4 54.3/39.8 53.6/38.5 67.2/55.6
gv 60.0/42.4 59.0/39.1 61.2/37.0 43.3/14.7 28.1/5.0 26.4/5.4 66.1/52.0
hsb 73.7/60.5 72.1/58.7 72.1/61.1 61.7/47.7 55.4/42.1 53.5/40.9 87.0/79.5
ja 36.9/19.7 34.8/18.9 33.0/18.9 34.4/18.8 36.0/19.3 33.8/18.3 44.0/26.9
kpv 50.5/27.2 45.1/20.7 47.3/22.6 35.8/11.3 24.7/7.5 25.4/7.1 57.1/35.9
mt 74.6/55.4 68.9/48.8 69.4/50.8 51.0/25.0 29.2/5.7 28.9/5.0 81.0/67.9
myv 65.9/45.3 59.8/36.3 59.6/35.7 42.2/17.2 32.1/11.7 30.3/10.4 73.8/57.4
olo 66.4/47.8 64.5/43.1 60.9/42.0 52.4/29.3 42.2/20.0 42.5/18.3 74.9/62.4
sa 49.5/25.2 48.9/20.8 46.8/19.5 42.8/13.9 32.5/8.7 36.0/9.9 62.1/39.5
sme 58.0/42.1 49.9/29.6 50.6/29.0 31.7/10.7 23.2/7.0 22.3/6.6 63.4/50.7
ug 36.4/16.7 37.3/15.8 42.1/19.2 35.3/13.5 21.9/7.7 23.5/8.4 56.3/35.9
yue 51.1/34.0 48.7/31.2 48.8/31.8 44.5/27.0 47.4/30.0 47.0/29.4 52.1/36.3
zh 59.8/37.0 58.2/35.6 58.5/37.2 55.9/33.7 58.4/36.3 59.1/36.9 55.3/35.9

avg 57.1/37.8 54.3/33.9 54.6/34.1 45.7/23.9 39.1/19.9 38.9/19.5 64.3/47.6

(b) DP UAS/LAS

LT-SFT MAD-X BITFIT LT-SFT TA MAD-X TA

hau 83.5 83.4 50.2 46.5 44.0
ibo 76.7 71.7 57.2 56.8 54.5
kin 67.4 65.3 56.0 52.9 50.2
lug 67.9 67.0 50.9 53.8 53.3
luo 54.7 52.2 35.6 37.7 33.0
pcm 74.6 72.1 66.8 74.4 71.0
swa 79.4 77.6 67.4 69.5 69.6
wol 66.3 65.6 45.0 37.1 29.8
yor 74.8 74.0 64.7 69.3 66.6

avg 71.7 69.9 54.9 55.3 52.4

(c) NER F1-score

LT-SFT MAD-X BITFIT LT-SFT TA MAD-X TA LT-SFT MS

aym 57.9 51.6 40.8 38.3 40.7 59.9
bzd 44.4 44.0 36.7 37.1 38.3 46.3
cni 47.9 47.6 34.5 40.9 44.1 50.3
gn 63.5 58.8 46.4 44.8 43.3 69.1
hch 42.9 41.5 36.3 38.4 40.7 44.4
nah 52.7 53.7 38.8 41.6 44.2 53.8
oto 48.5 46.8 39.8 39.7 40.8 43.3
quy 62.0 58.3 34.5 38.3 41.5 68.4
shp 50.3 48.9 38.8 42.1 44.4 53.2
tar 43.5 43.9 36.7 37.6 38.8 42.5

avg 51.4 49.5 38.3 39.9 41.7 53.1

(d) NLI accuracy (%)

Table 6: Results achieved by various zero-shot cross-lingual transfer methods across all tasks for each language.
For each (method, task) pair, the (equivalent) reduction factor with the best mean score is selected as shown in
Table 2. LT-SFT MS denotes LT-SFT with multi-source training. Bold denotes best-performing method per
language, excluding LT-SFT MS as its larger, more diverse dataset gives it an unfair advantage.

POS (accuracy) DP (UAS) NER (F1)
ar ja zh avg. ar ja zh avg. swa yor avg.

LT-SFT 68.7 53.9 67.5 63.4 70.8 36.9 59.8 55.9 79.4 74.8 77.1
RAND-SFT 69.3 54.3 68.0 63.9 68.7 34.8 58.2 53.9 - - -
MAD-X 70.1 51.1 67.6 62.9 69.5 33.0 58.5 53.7 77.6 74.0 75.8
BITFIT 69.8 53.9 69.2 64.3 64.0 34.3 55.9 51.4 67.4 64.7 66.0
LT-SFT TA-ONLY 70.6 54.1 65.9 63.5 68.7 36.0 58.4 54.4 69.5 69.3 69.4
MAD-X TA-ONLY 70.8 51.2 67.6 63.2 68.6 33.8 59.1 53.8 69.6 66.6 68.1

Table 7: Results for zero-shot cross-lingual transfer evaluation of the seen languages included in the POS, DP and
NER evaluations. For each method/metric pair, the best equivalent reduction factor from Table 2 is used.
Arabic, Japanese and Chinese, which were included in the POS/DP evaluation, can be considered high-resource
languages; Swahili and Yorùbá, on the other hand, were included in the NER evaluation and are arguably resource-
poor. In keeping with previous work, we find that language adaptation benefits seen languages less than unseen
languages and—among the former—resource-rich languages less than resource-poor languages. This agrees with
the intuition that lower-resource languages have greater scope for improvement through language adaptation due
to the fact that they receive less signal during MMT pretraining. Interestingly, BITFIT performs much more
competitively on the high-resource languages than low-resource and unseen languages, suggesting that its lack of
capacity is more problematic for language adaptation rather than for task fine-tuning.
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D MAD-X Results with AdapterHub Adapters
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(a) Part-of-Speech Tagging
(ar, bxr, ja, kpv, mt, myv, sme, ug, yue, zh)
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(b) Dependency Parsing (DP)
(ar, bxr, ja, kpv, mt, myv, sme, ug, yue, zh)
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(c) Named Entity Recognition (NER) (swa, wol)
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(d) Natural Language Inference (NLI) (gn, quy)

Figure 4: Zero-shot cross-lingual transfer evaluation of Lottery-Ticket Sparse Fine-Tuning (LT-SFT) and MAD-
X when pretrained language adapters from AdapterHub (Pfeiffer et al., 2020a) are used during task training and
evaluation. These adapters are trained for 250,000 steps with a batch size of 64, as opposed to the 100,000 steps
of batch size 8 used in our experiments. LT-SFT nevertheless maintains an edge in performance across all tasks.
Since AdapterHub adapters are only available for some of the languages in our evaluation, the results shown are
averaged over only the languages for which they are available, indicated in the subfigure captions.

E Parameter Overlap between Languages
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Figure 5: Percentage of parameters selected for the sparse fine-tuning of both languages in a pair.
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In order to understand whether similar languages
also share similar sub-networks, we plot the pair-
wise overlap (in percentage) between parameter
subsets of language SFTs in Figure 5. Except for a
single instance (Mandarin Chinese and Cantonese)
where the high overlap reflects the fact that both
languages are genealogically related, we find that
the overlap is small for most language pairs. The
explanation, we believe, is two-fold. Firstly, most
of the languages in the multilingual datasets con-
sidered in our experiments belong to separate gen-
era and families. Therefore, a lack of correlation
in parameter subsets is expected. Secondly, for
a pretrained model, there exist multiple parame-
ter subsets (“winning tickets”) with comparable
performance (Prasanna et al., 2020). The Lottery
Ticket algorithm selects randomly among these
equally valid subsets. Hence, a lack of overlap
does not necessarily imply the reliance on disjoint
sub-networks.
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