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Abstract

The enrichment of tabular datasets using ex-
ternal sources has gained significant attention
in recent years. Existing solutions, however,
either ignore external unstructured data com-
pletely or devise dataset-specific solutions. In
this study, we proposed Few-Shot Transformer
based Enrichment (FeSTE), a generic and ro-
bust framework for the enrichment of tabular
datasets using unstructured data. By training
over multiple datasets, our approach is able to
develop generic models that can be applied to
additional datasets with minimal training (i.e.,
few-shot). Our approach is based on an adapta-
tion of BERT, for which we present a novel fine-
tuning approach that reformulates the tuples
of the datasets as sentences. Our evaluation,
conducted on 17 datasets, shows that FeSTE
is able to generate high quality features and
significantly outperform existing fine-tuning
solutions.

1 Introduction

Tabular data is the most diverse format of data rep-
resentation, spanning domains from nutrition to
banking. It does, however, suffer from a lack of
contextual information that could make its analysis
more effective. Data scientists seek to overcome
this limitation by using feature engineering (FE),
which involves applying transformations on exist-
ing features to create additional representations
of the data. When the available data is not suffi-
ciently diverse (or when additional improvement
is sought), one may attempt to use external infor-
mation sources to enrich the data. We refer to this
process as external enrichment of datasets (EED).

The use of external sources for feature engineer-
ing is both computationally-heavy and time con-
suming. The process first involves matching en-
tities in the data to those in the external source,
a process known as Entity Linking (Shen et al.,
2014). Once entities in the external source have

been matched, candidate features need to be gener-
ated, evaluated, and finally integrated into the tabu-
lar dataset. While multiple studies in recent years
(Paulheim and Fümkranz, 2012; Ristoski et al.,
2015; Friedman and Markovitch, 2018; Mountan-
tonakis and Tzitzikas, 2017; Galhotra et al., 2019;
Harari and Katz, 2022) have sought to automate
the EED process, a large majority focuses solely
on structured external sources, e.g., DBpedia ta-
bles, and do not attempt to use the large amounts
of available unstructured data (i.e., free text).

In this study, we present Few-Shot Transformer
based Enrichment (FeSTE) a generic and robust
framework for the enrichment of tabular datasets
using unstructured data. Our approach utilizes
transformer-based, pre-trained Language Models
(LM) (Devlin et al., 2018) to identify and prioritize
promising candidate features in the external data
source. FeSTE then applies a novel process of ana-
lyzing the relationships between the unstructured
features and the dataset’s target class values, and
automatically generating new tabular features.

To overcome the difficulty imposed by datasets
of limited size, we train FeSTE on multiple datasets
in order to create a generic model that can later be
applied to additional datasets. Additionally, we pro-
pose a novel fine-tuning (FT) process that enables
pre-trained LM to quickly adapt to new datasets
(i.e., perform few-shot learning). The result of this
process is a more robust model that is also more
effective on small datasets.

While previous studies—TAPAS (Herzig et al.,
2020), TaBERT (Yin et al., 2020), TURL (Deng
et al., 2020), and TPN (Wang et al., 2021)—have
attempted to use Transformers for analyzing tabular
data, FeSTE focuses on analyzing the connection
between external texts and the dataset’s entities.
We are therefore able to leverage the Transformer
architecture to generate additional features and fine-
tune the generation process in a novel way.

We evaluate FeSTE on 17 tabular datasets with
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diverse characteristics (number of samples, fea-
ture composition, etc.). For our evaluation, we
use BERT as the Transformer architecture and
Wikipedia as the external source, with its page
abstracts as our unstructured texts. Our results
show that FeSTE outperforms existing BERT fine-
tuning strategies and that FeSTE is highly effective,
achieving an average improvement of 9.2% when
combined with the datasets’ original features. Fi-
nally, we show FeSTE performs well even when
it is applied on its own (without any original fea-
tures), achieving an average AUC of 0.664. To
summarize, our contributions in this study are as
follows:

• Our work is the first to propose a generic and
fully-automated approach for tabular data en-
richment using unstructured external sources.

• We propose a novel “few-shot” fine-tuning ap-
proach for transformer-based pre-trained LM,
which performs well even for training sets
consisting of as little as tens of samples.

• We make our code publicly available.

2 Related Work

2.1 Features Generation from External
Sources

The large majority of work in the field of auto-
mated features generation from external informa-
tion sources mainly focuses on leveraging struc-
tured data. For example, (Paulheim and Fümkranz,
2012) uses structured data from knowledge bases
(KB) such as DBpedia to generate new features,
which are then used to augment tabular datasets.
RapidMiner (Ristoski et al., 2015) processes KB of
structured tabular and graphical data by modeling
the relations among their entities.

Friedman et al. (Friedman and Markovitch,
2018) focus on features generation for text clas-
sification problems. They leverage structured data
from two KBs: FreeBase (Bollacker et al., 2008)
and YAGO2 (Hoffart et al., 2013). The authors
first identify each entity in the text, and then recur-
sively explore the KB to extract new features. The
LodsyndesisML framework (Mountantonakis and
Tzitzikas, 2017) leverages KB’s (e.g DBpedia) to
create thousands of new features for classification
tasks using nine operators. Each operator creates
different types of features, which are then used to
enrich the original data. Galhotra et el. (Galhotra

et al., 2019) use structured web data to generate
new features for classification and regression tasks.
Their approach generates thousands of candidate
features, then selects the final set using information
theory-based measures such as Information Gain
and Pearson correlation.

To the best of our knowledge, the only study to
utilize both structured and unstructured sources is
the recently proposed FGSES framework (Harari
and Katz, 2022). FGSES extracts features from
both structured and unstructured DBpedia content,
generates thousands of candidate features, and then
uses a meta learning-based approach to rank them
and return a small final set. While this approach is
the most similar to the one proposed in this study,
there are significant differences: FeSTE focuses on
the analysis of the texts, performs fine-tuning rather
than relying on a general model, and takes into
account the context of analyzed datasets. Moreover,
our approach generates a small set of features and
is, therefore, more computationally efficient.

2.2 Wikipedia as an External Information
Source

Wikipedia is widely used as an external source of
information due to its availability, richness, and di-
versity (Lehmann et al., 2015). An important addi-
tion to Wikipedia from an entity linking standpoint
is DBpedia, a project that extracts Wikipedia data
and makes it accessible in a more structured form.
DBpedia is used as an external data source for fea-
ture engineering by multiple studies (Paulheim and
Fümkranz, 2012; Ristoski et al., 2015; Galhotra
et al., 2019; Mountantonakis and Tzitzikas, 2017)
because of its accessible format.

To utilize DBpedia for feature engineering in
tabular data, one should first link the entities in
the analyzed dataset to unique DBpedia entities.
DBpedia Spotlight (Mendes et al., 2011) is a tool
for automatically identifying and linking textual
entities to ones on DBpedia. Unfortunately, DBpe-
dia Spotlight tends to capture entities whose name
consists only of one or two words, while ignoring
entities composed of longer sequences.

In recent years, Transformers (Vaswani et al.,
2017) and other deep learning-based approaches
are being applied in the field of semantic related-
ness, in order to link free texts to DBpedia. Blink
(Wu et al., 2020) is a BERT-based (Devlin et al.,
2018) approach which receives a mention and its
surrounding text, and links the mention to its corre-
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sponding DBpedia entity. It should be noted, how-
ever, that the names of DBpedia entities tend to be
shorter than in free text, which hampers Blink’s
performance. Recently, (Harari and Katz, 2022)
developed an entity linking algorithm whose aim is
to link entities in tabular datasets with Wikipedia
pages. We analyze the performance of this ap-
proach in Section 5.3.

2.3 Pre-trained Language Models

One of the most influential developments in the
field of NLP in recent years is the emergence
of Transformer-based LM (Vaswani et al., 2017).
BERT (Devlin et al., 2018) and its various exten-
sions, GPT (Radford et al., 2018) and XLnet (Yang
et al., 2019) achieve state-of-the-art (SOTA) perfor-
mance on a variety of tasks, including text classifi-
cation, question answering, next word prediction,
and more. Unfortunately, training these models re-
quires expensive hardware and very large amounts
of data. For this reasons, the large majority of
studies and applications use pre-trained versions
of these models. However, fine tuning (FT) these
models, i.e., additional limited training on data
from the task at hand, has been shown to improve
performance (Gururangan et al., 2020).

Studies such as (Sun et al., 2019) and (Gururan-
gan et al., 2020) propose three FT strategies: (1)
Task-specific, in which one trains the pre-trained
LM on similar ML task (e.g text classification);
(2) Domain-specific, where the pre-trained LM is
trained on a similar domain (e.g biology), and;
(3) Target task-specific, where the final training
step is performed on the targeted dataset directly.
The aforementioned studies report a significant
improvement in BERT’s performance, especially
where multi-phase FT was performed.

Another fine-tuning strategy called Multi-Task
Deep Neural Network (MT-DNN) training was
proposed by (Liu et al., 2019): for each task in
each training step, the approach modifies the output
layer but keeps the lower layers unchanged. This
approach can also be applied in cases where the
training and target datasets have different character-
istics, e.g., different number of classes. One signif-
icant drawback of MT-DNN is the need to replace
and train the final layer (e.g., the softmax layer)
whenever it is applied to a new problem. This ap-
proach has two potential shortcomings: first, given
that FT mainly affect BERT’s final layers (Gururan-
gan et al., 2020), some loss of earlier knowledge

may occur. Secondly, MT-DNN needs to maintain
separate final layers for each task during training
(three different heads in the original study). In
cases where MT-DNN is training on a large num-
ber of datasets, this could pose problems in terms
of memory consumption.

A different FT approach that does not require
task-specific layers was proposed by (Wei et al.,
2021), who used an "instruction FT" phase. The
authors added instructions (i.e., statements) to the
text, and required the model to determine whether
the statements are correct. While effective, analysis
shows that the approach is only applicable to very
large datasets, and the addition of over 8B parame-
ters to the already large architecture of 137B.

In contrast to all the aforementioned studies,
FeSTE uses a single architecture for its training
process, regardless of the number of datasets used.
Moreover, we propose a novel dataset reformu-
lation process that enables us to apply the same
architecture on all datasets, regardless of their num-
ber of classes. This approach enables a much more
efficient FT process, as shown in Section 5.3.

3 Problem Definition

For our task of feature generation from the free
text of external sources, we assume a target tabular
dataset Dt with a classification tasks. Additionally,
we assume a set of pre-analyzed tabular datasets
with different classification tasks (i.e. different
number of classes) D = {D1...Dn}. For each
dataset, let there be target class values tci and orig-
inal features Fi. Of Fi, let there be at least one
feature representing entities ei = {ei,1...ei,m}. For
the purpose of generating new features, we assume
an external data source EX which consists of enti-
ties eex and text related to these entities. We denote
this set of texts as T . For the purpose of linking
ei and eex, we assume an entity linking function
Γ. We generate a set of new features fnew

t from T
using a Language Model LM .

4 The Proposed Method

Overview. Our proposed approach is presented in
Figure 1 and Algorithm 1. FeSTE consists of three
main phases: a) entity linking; b) fine-tuning, and;
c) features generation. In the entity linking phase,
FeSTE automatically matches entity names in the
tabular dataset to their corresponding entries in the
external data source. In the fine-tuning phase, we
fine-tune a pre-trained LM for the task of feature
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generation. This phase consists of two stages: a
preliminary stage where we fine-tune the model
“offline” on multiple datasets, and an “online” stage
where we fine-tune the model on the training sam-
ples of the analyzed dataset. Finally, in the features
generation phase, we add the newly-generated fea-
tures to the original features of the tabular dataset.

4.1 The Entity Linking Phase

The goal of this phase is to link entities from our
analyzed dataset Dt to entries/entities in the ex-
ternal data source EX (Figure 1 step #1). The
identification of relevant entities is a necessary first
step, since the entities selected in this phase will be
processed in the following phases.

In this study we use Wikipedia as our external
source of information, and Google Search as our
linking and disambiguation tool. Obviously, other
external sources of information (e.g., Reuters news
or Yago (Hoffart et al., 2013)) will require a differ-
ent linking strategy, but our approach can easily be
adapted to support them.

Our chosen entity linking process is straightfor-
ward: for each dataset entity in ei in Di we query
Google Search, focusing on Wikipedia and taking
into account the domain of the entity:

<lookup> is a <domain> site:en.wikipedia.org

where <lookup> is the entity ei,j mention and
<domain> is the entities domain (entities column
name). for example:

USA is a country site:en.wikipedia.org .

Each of our queries returns a list of Wikipedia
pages which are most likely to represent the entity.
FeSTE then extracts the Wikipedia page referenced
in the first entry. This step also serves as a form
of automatic disambiguation, because we pair ei,j
with its most popular interpretation. At the end of
this phase, each dataset Di entity ei,j has a linked
Wikipedia entity eexi,j . FeSTE then extracts the ab-
stracts of those entities using DBpedia.

4.2 The Fine-Tuning Phase

The goal of this phase is to adapt current state-of-
the-art NLP architectures, (e.g., GPT, BERT, and
their extensions) to the task of selecting the most
relevant features from each of our linked external
source entities eex. As explained in Section 2.3,

two common FT approaches are task-specific fine-
tuning, which is performed on the target dataset,
and preliminary fine-tuning, which is applied on
other datasets. While the former is more common,
recent studies (Sun et al., 2019; Gururangan et al.,
2020) have shown that applying both—the latter
and then the former—yields better results.

The main difficulty in applying preliminary
FT to tabular datasets stems from their diversity:
tabular datasets differ greatly in their domains,
number of classes, feature composition, etc. These
differences make the training of a generic features
engineering tool very difficult. To overcome
this challenge, we propose a novel FT approach
(Figure 1 step #2), which consists of two stages:
first, we perform preliminary FT with dataset task
reformulation. Then, we perform Target Dataset
Fine-Tuning using only the target dataset’s training
set, i.e., task-specific FT.

Preliminary FT with dataset task reformulation.
The main challenge in learning from multiple tab-
ular datasets, aside from their highly diverse con-
tent and characteristics, is their different number of
classes. Such a setup makes using a single output
layer with a fixed number of entries impossible.
We overcome this challenge as follows:

For each dataset Di let there be a set of free texts
Ti, each associated with an entity ei,j in Di. For
each Ti,j , we create a Cartesian product Ti,jXTCi,
where TCi consists of all the target classes of the
dataset Di. Namely, we pair the text Ti,j with all
possible target class values. We can now treat the
problem as one of Sentence-pairs classification. In
this setting, we are presented with a set consisting
of three elements {T r

i , tc
r
i , l

r
i }, where T r

i is the text
(first sentence),tcri is a possible target class value
(second sentence) and lri the label. lri set to True if
{T r

i , tc
r
i } ∈ {Ti, tci}.

This setting, which is presented in full in Al-
gorithm 2, creates a unified representation for all
tabular datasets regardless of their original number
of classes. Simply put, we reformulated the orig-
inal task of each dataset into a NLP downstream
task whose goal is to classify whether a given text
T r
i is related to a given class value tcri .
Once we have reformulated our problem, we

can use it to perform a preliminary-FT of BERT.
The input we provide consists of two sentences, a
classification token and a separation token:
[CLS] < T r

i,j > [SEP ] < tcri,j > [SEP ]
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University  
 

Original 
Features      

Class

Alaska 
Pacific 

University
x1, .. , xm low

University of 
Montevallo

x1, .. , xm high

... ... ...

Task Reformulation
Create tuples

(Text         ,Possible class        ,label        )

University Abstract  Class Label

Alaska 
Pacific 

University

Alaska Pacific 
University (APU) is a 
private university in 

Anchorage, Alaska....

low 1

Alaska 
Pacific 

University

Alaska Pacific 
University (APU) is a 
private university in 

Anchorage, Alaska.....

high 0

University 
of 

Montevallo

The University of 
Montevallo is a public 

university in Montevallo, 
Alabama. Founded in 

1896...

low 0

University 
of 

Montevallo

The University of 
Montevallo is a public 

university in Montevallo, 
Alabama. Founded in 

1896...

high 1

.... .... ... ...

1. Entity Linking
Link each record to Wikipedia page, add 

the abstract to the dataset
Target Dataset

University 
 

Original 
Features 

 

Abstract Class

Alaska 
Pacific 

University
x1, .. , xn

Alaska Pacific 
University (APU) is a 
private university in 

Anchorage, Alaska....

low

University 
of 

Montevallo
x1, .. , xn

The University of 
Montevallo is a public 

university in 
Montevallo, Alabama. 

Founded in 1896...

high

... ... ... ...

Target Dataset Fine-Tuning
Fine-tune LM using half 

train-set, predict labels for 
second half and test-set 

Label 
pred

0.93

0.22

0.43

0.85

...

University Original 
Features 

Class Prob for 
low

Prob for 
high

Alaska 
Pacific 

University
x1, .. , xn low 0.67 0.33

University 
of 

Montevallo
x1, .. , xn high 0.4 0.6

... ... ... .... ....

3. Features Generation
Insert into the original dataset as new set of 

features

Features Evaluation
Train classifier        on 

train-set second half, predict 
classes for test-set, and 

compute metcrics 

Class
Final pred

low 0.31

high 0.95

... ...

2. Fine Tuning

Pre-trained 
tranformer-
based LM

Transform into num-of-classes features and apply Softmax

Figure 1: FeSTE’s phases entity linking, Fine-Tuning, and features generation, an example based on AAUP dataset.

where T r
i,j is the free text, tcri,j is the assigned target

class value, and [CLS] and [SEP ] are BERT’s spe-
cial tokens. An example from the dataset “AAUP”,
whose task is to predict whether a university is
ranked as “high” or “low”, is presented below:

[CLS] Alaska Pacific University (APU) is a pri-
vate university in Anchorage, Alaska ... [SEP] Low
[SEP]

This phase of our FT process is similar to
BERT’s standard auxiliary training task, where the
architecture is tasked with determining whether the
class assigned to a sentence is correct (i.e., is it the
one that appeared in the dataset?). For our fine-
tuning, we use the same loss function that is used
by the original BERT architecture’s auxiliary task.

Our data formulation enables us to fine-tune
BERT simultaneously over a large set of datasets,
thus creating a generic model that can then be effec-
tively applied to additional datasets. It should be
noted that a similar process of including the class
value as part of the input was previously used in the
domain of zero-shot Text Classification (Yin et al.,
2019), to address the possibility of new classes
appearing in mid-training.
Target dataset fine-tuning. The goal of the pre-
liminary FT was to adapt the pre-trained LM for
the general task of feature generation for tabular
datasets. Now we perform additional FT, designed
to optimize the LM for the currently analyzed
dataset. To this end, we now repeat the process
described above for the target dataset. The process

repeats all the steps of the preliminary FT, includ-
ing the reformulation into a classification task.

The deep architecture used for the two fine-
tuning phases is presented in Figure 2. We par-
tition the training set of the target dataset Dt,train

into two equal parts. One half is used for the target
dataset FT, while the second is used for the features
generation process, which we describe next.

4.3 The Features Generation Phase

The goal of this phase is to produce the generated
features that will augment the target dataset. The
features generation process is as follows: for each
sample (i.e., dataset tuple), we provide the pre-
trained LM with an input consisting of: a) all the
free text associated with the tuple’s entity T r

t,j , and;
b) the possible target class values we generated
tcrt,j . Simply put, we task the LM with predicting
the likelihood of the text belonging to each of the
target dataset’s classes. The output of this process
is a set of values, equal in length to the number of
classes in the target dataset. Each of these values
is added as a new feature to the target dataset.

An example of this process is presented in Fig-
ure 1, step #3. The dataset presented in the exam-
ple has only two class values—high and low—so
FeSTE creates only two additional features that
are added to the original features set. It should be
noted that because of the varying number of target
class values in our analyzed datasets, we use the
Sigmoid function and evaluate each class individ-
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ually (which is why our values for a given entity
don’t add up to 1, as shown in Figure 1). Once
the new features Fnew

t have been generated, we
apply the Softmax function row-wise to receive a
distribution over each target class value.

The process described above is first applied to
the target dataset’s training set (i.e., the half that
is retained for this purpose). We then train our
classifier and apply it to the test set. Before each
tuple in the test set is classified, we use the LM to
generate the same set of features as the training set.
In addition to the efficacy of our proposed approach,
on which we elaborate in the following section,
another advantage of FeSTE is the small number of
features it generates. Unlike previously-proposed
approaches such as (Harari and Katz, 2022), which
generate thousands of features, the small number
of features generated by FeSTE does not result in
a large computational overhead.

Softmax/Sigmoid

Classification Head

X: <Text> 

FeSTE
Common 
Approach

Output layer
(Num-of-Classes)

y:  Classes values

X: <Text> , <Possible class>

Sigmoid

Output layer
(1)

y:  True / False

Pre-trained LM

Embeddings  

Pre-trained LM

Embeddings  

Figure 2: The fine-tuning architectures employed by
our approach (right) and current SOTA (left). While
previous studies receive the text and solve a standard
multi-class classification problem, FeSTE’s reformula-
tion process transforms the process into a Sentence-pairs
classification problem.

5 Evaluation

5.1 The Evaluated Algorithms

We compare FeSTE to the two leading fine-tuning
methods: target dataset FT and MT-DNN FT:
Target dataset FT. For this baseline, we fine-tune a
BERT-based architecture (Figure 2, left side) on the
target dataset and the texts without reformulation
nor preliminary FT (Algorithem 1, lines 1,9-11).
This approach is the commonly used FT strategy.

Algorithm 1: FeSTE
input :Target dataset Dt, datasets D, external

source EX , pre-trained LM
1 T ← EntityLinking(D,EX)
2 for di ∈ D do
3 {T r

i , tc
r
i , l

r
i } ← Reformulation(Di, Ti)

4 end
5 Xr ← ConcatTuples(T r, tcr, lr)
6 LM ← PreliminaryFT(LM,Xr)
7 {T r

t , tc
r
t , l

r
t } ← Reformulation(Dt, Tt)

8 Xr
t ← {T r

t , tc
r
t , l

r
t }

9 LM ← TargetDatasetFT(LM,Xr
t,train)

10 LabelsPred← LM(Xr
t,test)

11 Fnew
t ← TranSoftmax(LabelsPred)

return : Set of new features Fnew
t

Algorithm 2: Dataset task reformulation
input :Dataset di, linked texts Ti

1 tci ← ExtractUniqueClasses(Dt)

2 tcri , T
r
i ← tci × Ti \\Cartesian product

3 Initialize empty labels vector lri
4 j = 0
5 for tuple in tcri , T

r
i do

6 if tuple is in {tci, Ti} then
7 lri,j = True
8 else
9 lri,j = False

10 end
11 j++
12 end

return :Reformulated {tcri , T r
i , l

r
i }

MT-DNN FT. For this baseline, we first execute
MT-DNN (Liu et al., 2019) as a preliminary FT
step for the BERT-based architecture (Figure 2,
left side). Then, we fine-tune BERT again using
Target Dataset FT (Algorithm 1, lines 1,6,9-11).
No reformulation is performed.

It is important to note that all baselines, as well
as FeSTE, are evaluated using the same experi-
mental settings. The only difference between the
approaches is their fine-tuning methods. For full
details on our baselines, see Section 2.

5.2 Experimental Setup

Datasets and evaluated classifiers. We evaluate
our approach on 17 classification datasets with a
large variance in their characteristics. The datasets
were obtained from public repositories such as Kag-
gle, UCI (Dua and Graff, 2017), OpenML (Van-
schoren et al., 2013), and relevant studies (Ristoski
et al., 2016). The datasets and their characteris-
tics are presented in the Appendix. When applying
the classifiers on each dataset (after its features
have already been augmented), we used four-fold
cross-validation, where we train on three folds and
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evaluate the fourth. We repeat the evaluation four
times and report the average results.

We use the following five classifiers to evaluate
the performance of FeSTE and the baselines: Ran-
domForest, MLP, SVC, KNeighbors, and Gradient-
Boosting. We used the implementations available
in Scikit-learn, with the default hyper-parameter
settings. The only preprocessing we perform is
feature normalization. Since results are consistent
for all algorithms, we present the average results.
Individual results are presented in the Appendix.
Architectures and parameter tuning. All eval-
uated models (FeSTE and baselines) use a pre-
trained BERT architecture with 12 transformer
blocks, 12 attention heads, and 110 million param-
eters (Hugging Face Tensorflow implementation).
Additionally, the loss functions used by all fine-
tuning approaches were either binary cross-entropy
or multi-class cross-entropy, depending on the num-
ber of target classes. Finally, only the embedding
[CLS] vector was passed to the output layer.

When evaluating the performance of our ap-
proach on dataset Dt = Di, we trained the BERT-
based architecture on the remaining datasets, i.e.,
di ∈ D where i ̸= t. Since we evaluate FeSTE
on 17 datasets, our architecture was fine-tuned on
16 datasets and tested on the 17th. This form of
training was also performed for MT-DNN.

FeSTE’s preliminary and target-dataset fine-
tuning settings were as follows: 20 training epochs
with early stopping, mini-batches of 8 samples, a
warm-up period of one epoch, no dropout, and the
Adam optimizer. We used a learning rate of 1e-5
and 2e-5 for preliminary and target-dataset FTs,
respectively. We also used a linear learning rate
decay. For all experiments we used an Intel Xeon
Gold 6140 2.3GHz Processor and 192GB RAM.

5.3 Evaluation Results

We conducted two sets of experiments. The goal of
the first is to evaluate the efficacy of our novel FT
approach compared to the two leading baselines:
target-dataset FT, and MT-DNN. The second set
of experiments is designed to determine whether
FeSTE is generic by evaluating its performance
when using a different entity linking approach.
Evaluating the efficacy of our FT method. In
this experiment we focus on the efficacy of the
features generated from the external data source
(i.e., DBpedia unstructured text). We, therefore,
train our classifiers only on the generated features

Table 1: The AUC results obtained by our full pro-
posed approach (‘Reformulated‘), and by versions of
our approach that utilize the baseline FT methods for
the fine-tuning phase.

Dataset/FT Target MT-DNN Reformulated.
Aaup 0.612 0.663 0.651
Reviewer 0.502 0.486 0.518
Anime Rating 0.6 0.603 0.621
Books 0.579 0.592 0.596
Cities 0.535 0.668 0.698
Country Codes 0.822 0.812 0.913
Conference 0.5 0.5 0.498
WDI 0.493 0.498 0.501
Anime Content 0.536 0.535 0.529
Baseball 0.813 0.869 0.878
Metacritic 0.674 0.675 0.673
Movies 0.777 0.774 0.768
Netflix 0.585 0.59 0.596
S&P 500 0.797 0.775 0.799
Shanghai 0.549 0.569 0.633
Tmdb 0.622 0.606 0.65
Zoo 0.662 0.641 0.772
Average 0.627 0.639 0.664
Median 0.600 0.606 0.65
P value 0.00 0.00 -

and ignore the original features of the dataset. This
evaluation enables us to more accurately quantify
the performance of each FT approach. The setup of
this evaluation is as follows: the FeSTE algorithm
is used in all experiments, but the FT phases of
our approach is either the Reformulation method
presented in Section 4.2 (Algorithm 1, lines 2-8) ,
or one of the two baselines.

The results of this experiment are presented in
Table 1. While it is clear that FeSTE performs well
with all FT approaches, our proposed reformulation
approach outperforms the baselines, achieving the
highest results in 10 out of 17 datasets. In terms
of AUC, Reformulated FT improves upon the base-
lines by 4.7%-6.8%. Using the paired t-test, we
were able to determine that Reformulated FT out-
performs both baselines with p < 0.001.

While Reformulated FT outperforms the base-
lines across all dataset sizes, it is noteworthy our
approach achieves a larger relative improvement
for smaller datasets. Improving the performance
of such datasets is more difficult because of the
limited amount of data available for the FT of
the model. For example, the "Zoo" and "Country
Codes" datasets contain only 35 and 75 records in
their training set, respectively. Nonetheless, Refor-
mulated FT outperforms the other baselines by 37%
and 8.9% in terms of AUC—well above the overall
average. These results demonstrate the effective-
ness of our novel tuning approach, which leverages
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Table 2: An evaluation of FeSTE when it uses our
Google-based entity linking approach, and when it im-
plements the entity linking approach proposed by the re-
cent FGSES framework. We present the results obtained
on the joint set of features (original and generated). We
include the performance achieved by the original set of
dataset features as a point of reference.

Original Features FeSTE
Dataset \Linking - Google FGSES
Aaup 0.757 0.746 0.725
Reviewer 0.622 0.596 0.572
Anime Rating 0.675 0.708 0.683
Books 0.5 0.596 0.63
Cities 0.5 0.698 0.509
Country Codes 0.704 0.757 0.74
Conference 0.499 0.512 0.51
WDI 0.692 0.65 0.655
Anime Content 0.632 0.598 0.589
Baseball 0.709 0.788 0.761
Metacritic 0.5 0.673 0.566
Movies 0.5 0.768 0.75
Netflix 0.52 0.614 0.573
S&P 500 0.631 0.805 0.82
Shanghai 0.941 0.934 0.917
Tmdb 0.675 0.71 0.694
Zoo 0.937 0.86 0.877
Average 0.647 0.707 0.681
Median 0.632 0.708 0.683
P value - 0.00 0.00

multiple tabular datasets in its FT process.
Evaluating the efficacy of our FT method with
the original features. We now evaluate all ap-
proaches on the joint set of original and generated
features. The only preprocessing we apply is fea-
ture normalization (no feature selection or engi-
neering). We consider this setup the most realistic.

The results of this experiment are presented in
Table 3. Again, FeSTE performs well with all FT
approaches and our reformulation approach outper-
forms the baselines, achieving the highest results
in 9 out of 17 datasets. In terms of AUC, Refor-
mulated FT improves upon the baselines by 1.4%,
2.3%, and 9.2%. Using the paired t-test, we were
able to determine that Reformulated FT outper-
forms the three baselines with p < 0.001.
Evaluating FeSTE using additional entity link-
ing approaches. In the previous experiment we
demonstrated the efficacy of the features gener-
ated by FeSTE. Our goal now is to determine
whether our approach is sufficiently generic to be
applied with additional forms of entity linking. We,
therefore, evaluate FeSTE’s performance when our
Google-based entity linking approach is replaced
by the recently proposed FGSES approaches pre-
sented in (Harari and Katz, 2022).

The results of this experiment are presented in

Table 3: The AUC results obtained by our full pro-
posed approach (‘Reformulated‘), and by versions of
our approach that utilize the baseline FT methods for
the fine-tuning phase. We present the results obtained
on the joint set of features (original and generated). We
include the performance achieved by the original set of
dataset features as a point of reference.

Original FeSTE
Fine-Tuning - Target MT-DNN Reformul
Aaup 0.757 0.733 0.74 0.746
Reviewer 0.622 0.594 0.591 0.596
Anime R. 0.675 0.7 0.704 0.708
Books 0.5 0.579 0.592 0.596
Cities 0.5 0.535 0.668 0.698
Country 0.704 0.754 0.714 0.757
Conference 0.499 0.507 0.503 0.512
WDI 0.692 0.646 0.657 0.65
Anime C. 0.632 0.601 0.6 0.598
Baseball 0.709 0.749 0.757 0.788
Metacritic 0.5 0.674 0.675 0.673
Movies 0.5 0.777 0.774 0.768
Netflix 0.52 0.602 0.603 0.614
S&P 500 0.631 0.804 0.792 0.805
Shanghai 0.941 0.934 0.933 0.934
Tmdb 0.675 0.695 0.691 0.71
Zoo 0.937 0.867 0.848 0.86
Average 0.647 0.691 0.697 0.707
Median 0.632 0.695 0.691 0.708
P value 0.00 0.00 0.00 -

Table 2. We present the results for the two FeSTE
versions—Google and FGSES-based—where the
generated features are added to the original features
set. To provide a meaningful point of reference, we
also include the results obtained by using only the
original features set for each dataset. It is clear
that both versions of FeSTE outperform the origi-
nal set of features. Our approach achieved better
performances in 10 out of 17 datasets, with the
original features achieving top performance in only
6 datasets. On average, FeSTE outperforms the re-
sults obtained by the original features by 9.2% and
5.2% for the Google-based and FGSES-based en-
tity linking, respectively. Using the paired-t statisti-
cal tests, we were once again shown that FeSTE su-
perior performance is statistically significant, with
p < 0.001, compare to the original set of features.

6 Discussion

Cases where the original features outperformed
the augmented features set. The results in Section
5.3 clearly show that FeSTE significantly outper-
forms the baselines in a large majority of the evalu-
ated datasets. In this section, however, we focus on
datasets where our approach did not perform well
compared to the original set of features.
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As shown in Table 2, there are six datasets
in which the original features set outperformed
FeSTE. We analyzed these datasets in an attempt
to determine the causes of our approach’s lower
performance. Our conclusion is that FeSTE is in
greater danger of underperforming in cases of “spe-
cialized” datasets, i.e., datasets that are dedicated
to highly specific topics that are not of general in-
terest. In such use-cases, information extracted
from a “general” data source like DBPedia might
not be adequate. An example of such a use case
is the WDI dataset, whose goal is to determine the
income groups of various countries. Our analy-
sis shows that the abstracts of the linked entities
simply do not elaborate on the topic of income.

Finally, we compare the performance achieved
using only FeSTE’s generated features (Table 1)
to the performance of the original features (Table
2). Note that our generated features outperform
the original features in 10 out of 17 datasets—an
impressive accomplishment given that the original
features are often highly informative. On average
for all datasets, features generated by our approach
outperform the original features by 2%. Moreover,
in some datasets our approach significantly outper-
forms the original features by as much as 192%.
Analyzing FeSTE’s Generalization Capabilities.
In all our previous experiments, FeSTE was fine-
tuned on 16 datasets. We now analyze our ap-
proach’s ability to generalize as a function of
the number of its fine-tuning datasets. Figure 3
presents FeSTE’s relative improvement compared
to preliminary FT. The results show that even four
FT datasets yields an improvement (1.8%) com-
pared to this baseline, with the gap rapidly ex-
panding as new datasets are added. This analysis
highlights FeSTE’s generic nature and its ability to
leverage knowledge from multiple sources.
Analyzing FeSTE Relative Efficiency.
In this analysis we compare FeSTE both to target
dataset FT and to MT-DNN (see Section 2). Tar-
get dataset FT is clearly the most efficient of the
three approaches, as it constitutes a part of the other
approaches. While FeSTE and MT-DNN were im-
plemented using identical architectures (with one
minor difference, described below), their compar-
ison requires us to consider two aspects of their
respective implementations:
(1) While FeSTE employs the same architecture
for all datasets, MT-DNN must train a new output
layer for each new task, as well as for datasets with

 

Figure 3: FeSTE’s relative performance to preliminary
FT, as a function of the number of datasets on which
our approach performs its fine-tuning.

the same task but with a different number of classes.
In our experiments, for example, we trained seven
output layers for MT-DNN. In addition to the need
to constantly re-train the model, MT-DNN incurs
significant storage costs because of the need to
maintain multiple architectures.
(2) FeSTE incurs an additional computational cost
due to its reformulation phase. The cost of re-
formulation consists of two parts: the first is the
reformulation process itself, and the other is the
additional FT as a results of the larger number of
samples. The computational cost of both tasks is
O(|C|∗|UniqueEntities|). Please note, however,
that in tabular dataset both number of classes and
the number of unique entities is relatively small.

To summarize, MT-DNN will likely be more ef-
ficient for a small number of tasks/datasets, each
consisting of a large number of training samples.
FeSTE, on the other hand, will be more effective
on a diverse set of datasets and tasks, possibly con-
taining a relatively smaller number of samples.

7 Conclusions

We present FeSTE, a framework for generating
new features for tabular datasets from unstructured
sources. Our approach uses a novel two-step fine-
tuning process that enables it to effectively apply
transformer based LM for the extraction of useful
features even when the target dataset is limited in
size. Our FT approach significantly outperforms
the existing SOTA.
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A Appendix

In this chapter, we present additional tables with
information that can assist the reader to further
explore our evaluation results. The list of tables is
as follows:

1. The detailed characteristics of the evaluated
datasets are presented in Section A.1 and Ta-
ble 4.

2. The full results for each of the five evaluated
classifiers which were used in the evaluation
of the FT method are presented in Section A.2
and Table 5.

3. The results for FeSTE’s evaluation when us-
ing an additional entity linking approach is
presented in Section A.3 and Table 6.

A.1 Full Details of the Evaluated Datasets
We evaluate our approach on 17 classification
datasets with a large variance in their characteris-
tics. The datasets were obtained from public repos-
itories such as Kaggle, UCI (Dua and Graff, 2017),
OpenML (Vanschoren et al., 2013), and relevant
studies (Ristoski et al., 2016). The datasets and
their characteristics are presented in Table 4.

A.2 Evaluation results for each evaluation
classifier

In Section 5.3 we present the average AUC of five
classifiers for our two experiments (Tables 1 & 2).
We now present the full results of (both AUC and
F-score) for each of our classifiers: RandomForest-
Classifier, MLPClassifier, SVC, KNeighborsClas-
sifier, and GradientBoostingClassifier. The results
for each classifier are presented in Table 5.

A.3 FeSTE’s Performance Using an
Additional Entity Linking Approach

The results in Table 6 present the performance of
each of our five classifiers when FeSTE is evalu-
ated using the entity linking approach proposed in
(Harari and Katz, 2022). The results also include
the performance obtained using only the original
dataset features.
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Table 4: The characteristics of the datasets used in our experiments.

Name lookup Entities Records Features Classes Numeric
Features Ratio Class Balance

189 Baseball Baseball Player 1340 17 3 0.82 [91. 5. 4.]
Aaup University 1161 9 3 0.67 [33. 33. 33.]
Anime Movie \TV series 1554 12 4 0.33 [67. 20. 9. 4.]
Anime Rating Movie \TV series 2958 4 2 0.5 [52. 48.]
Books Book 1600 1 2 0 [50. 50.]
Conference Attendance City 246 6 2 0.5 [87. 13.]
WDI Country 214 6 5 0 [25. 24. 22. 15...]
Country Codes Country 244 27 2 0.15 [74. 26.]
Metacritic Albums Album name 1600 1 2 0 [50. 50.]
Movies Movie 1600 1 2 0 [50. 50.]
Netflix Titles Movie 1564 3 7 0.33 [31. 16. 16. 15...]
Reviewer Movie 379 8 4 0 [37. 33. 16. 14.]
Rmftsa Ctoarrivals Month 264 2 2 0.5 [62. 38.]
S&P 500 Companies Company 502 6 10 0.83 [17. 14. 14. 13...]
Shanghai University 497 8 2 0.75 [80. 20.]
Tmdb 5000 Movies \TV series 4215 7 2 0.57 [56. 44.]
Zoo Animal 101 17 7 0.94 [41. 20. 13. 10...]
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Table 5: The F-Score and AUC results obtained by
our full proposed approach (‘Reformulated‘) and by
versions of our approach that utilize the baseline FT
methods for the fine-tuning phase. Results for each
classifier are presented individually.

RandomForestClassifier
dataset Target FT MT-DNN Reformulated
Aaup 0.436 (0.58) 0.519 (0.642) 0.494 (0.625)
Reviewer 0.416 (0.524) 0.41 (0.516) 0.388 (0.507)
Anime R. 0.598 (0.598) 0.597 (0.597) 0.599 (0.6)
Books 0.527 (0.528) 0.532 (0.532) 0.551 (0.551)
Cities 0.396 (0.521) 0.525 (0.627) 0.618 (0.685)
Country 0.831 (0.805) 0.841 (0.808) 0.926 (0.907)
Conference 0.815 (0.5) 0.815 (0.5) 0.815 (0.5)
WDI 0.159 (0.491) 0.157 (0.493) 0.181 (0.499)
Anime C. 0.576 (0.537) 0.579 (0.545) 0.573 (0.538)
189 Baseball 0.931 (0.793) 0.942 (0.835) 0.939 (0.822)
Metacritic 0.627 (0.628) 0.628 (0.628) 0.624 (0.624)
Movies 0.731 (0.731) 0.718 (0.718) 0.715 (0.716)
Netflix 0.348 (0.59) 0.351 (0.594) 0.358 (0.601)
S&P 500 0.672 (0.805) 0.621 (0.772) 0.675 (0.8)
Shanghai 0.728 (0.572) 0.724 (0.587) 0.757 (0.637)
Tmdb 0.592 (0.585) 0.574 (0.565) 0.592 (0.584)
Zoo 0.514 (0.676) 0.533 (0.669) 0.732 (0.789)
Average 0.582 (0.616) 0.592 (0.625) 0.62 (0.646)
Median 0.592 (0.585) 0.579 (0.597) 0.618 (0.624)

MLPClassifier
dataset Target FT MT-DNN Reformulated
Aaup 0.496 (0.642) 0.577 (0.683) 0.568 (0.676)
Reviewer 0.35 (0.486) 0.36 (0.488) 0.429 (0.533)
Anime R. 0.618 (0.619) 0.613 (0.617) 0.64 (0.641)
Books 0.615 (0.617) 0.636 (0.636) 0.627 (0.628)
Cities 0.462 (0.561) 0.614 (0.682) 0.64 (0.693)
Country 0.901 (0.862) 0.86 (0.793) 0.949 (0.923)
Conference 0.815 (0.5) 0.815 (0.5) 0.815 (0.5)
WDI 0.145 (0.486) 0.176 (0.502) 0.199 (0.495)
Anime C. 0.561 (0.529) 0.565 (0.529) 0.564 (0.526)
189 Baseball 0.942 (0.816) 0.964 (0.895) 0.959 (0.926)
Metacritic 0.699 (0.699) 0.702 (0.703) 0.699 (0.699)
Movies 0.795 (0.796) 0.796 (0.796) 0.797 (0.798)
Netflix 0.339 (0.589) 0.349 (0.596) 0.347 (0.601)
S&P 500 0.68 (0.808) 0.641 (0.788) 0.666 (0.803)
Shanghai 0.741 (0.54) 0.747 (0.544) 0.794 (0.63)
Tmdb 0.65 (0.644) 0.638 (0.631) 0.686 (0.682)
Zoo 0.527 (0.682) 0.591 (0.674) 0.704 (0.778)
Average 0.608 (0.64) 0.626 (0.65) 0.652 (0.678)
Median 0.618 (0.619) 0.636 (0.636) 0.666 (0.676)

KNeighborsClassifier
dataset Target FT MT-DNN Reformulated
Aaup 0.456 (0.604) 0.515 (0.644) 0.505 (0.636)
Reviewer 0.366 (0.485) 0.298 (0.439) 0.425 (0.529)
Anime R. 0.564 (0.564) 0.579 (0.579) 0.598 (0.599)
Books 0.557 (0.557) 0.571 (0.571) 0.581 (0.581)
Cities 0.417 (0.539) 0.623 (0.713) 0.637 (0.703)
Country 0.863 (0.812) 0.884 (0.839) 0.94 (0.912)
Conference 0.815 (0.5) 0.815 (0.5) 0.761 (0.489)
WDI 0.197 (0.505) 0.203 (0.501) 0.234 (0.515)
Anime C. 0.572 (0.547) 0.493 (0.523) 0.498 (0.528)
189 Baseball 0.948 (0.836) 0.959 (0.877) 0.958 (0.9)
Metacritic 0.668 (0.668) 0.663 (0.664) 0.675 (0.676)
Movies 0.785 (0.786) 0.782 (0.782) 0.771 (0.771)
Netflix Titles 0.326 (0.587) 0.304 (0.574) 0.325 (0.593)
S&P 500 0.639 (0.786) 0.601 (0.768) 0.645 (0.796)
Shanghai 0.737 (0.544) 0.764 (0.589) 0.785 (0.63)
Tmdb 0.612 (0.607) 0.597 (0.589) 0.643 (0.636)
Zoo 0.509 (0.649) 0.475 (0.613) 0.714 (0.779)
Average 0.59 (0.622) 0.596 (0.633) 0.629 (0.663)
Median 0.572 (0.587) 0.597 (0.589) 0.643 (0.636)

GradientBoostingClassifier
dataset Target FT MT-DNN Reformulated
Aaup 0.46 (0.598) 0.537 (0.654) 0.511 (0.634)
Reviewer 0.404 (0.514) 0.38 (0.49) 0.366 (0.482)
Anime R. 0.602 (0.603) 0.604 (0.607) 0.629 (0.63)
Books 0.569 (0.57) 0.584 (0.585) 0.583 (0.584)
Cities 0.391 (0.513) 0.56 (0.645) 0.654 (0.714)
Country 0.831 (0.805) 0.841 (0.808) 0.926 (0.907)
Conference 0.815 (0.5) 0.815 (0.5) 0.815 (0.5)
WDI 0.167 (0.482) 0.158 (0.494) 0.197 (0.493)
Anime C. 0.579 (0.542) 0.581 (0.553) 0.569 (0.534)
189 Baseball 0.933 (0.794) 0.942 (0.835) 0.938 (0.821)
Metacritic 0.67 (0.67) 0.677 (0.678) 0.667 (0.669)
Movies 0.775 (0.775) 0.778 (0.778) 0.755 (0.756)
Netflix 0.327 (0.573) 0.349 (0.593) 0.346 (0.59)
S&P 500 0.644 (0.792) 0.613 (0.772) 0.651 (0.795)
Shanghai 0.739 (0.569) 0.735 (0.584) 0.782 (0.654)
Tmdb 0.643 (0.634) 0.622 (0.614) 0.673 (0.664)
Zoo 0.477 (0.647) 0.506 (0.653) 0.638 (0.753)
Average 0.59 (0.622) 0.605 (0.638) 0.63 (0.658)
Median 0.602 (0.598) 0.604 (0.614) 0.651 (0.654)

SVM
dataset Target FT MT-DNN Reformulated
Aaup 0.487 (0.639) 0.586 (0.691) 0.573 (0.684)
Reviewer 0.364 (0.502) 0.355 (0.498) 0.423 (0.54)
Anime R. 0.615 (0.616) 0.608 (0.614) 0.637 (0.638)
Books 0.623 (0.624) 0.631 (0.634) 0.632 (0.633)
Cities 0.435 (0.541) 0.613 (0.672) 0.648 (0.697)
Country 0.879 (0.828) 0.872 (0.812) 0.944 (0.915)
Conference 0.815 (0.5) 0.815 (0.5) 0.815 (0.5)
WDI 0.174 (0.5) 0.193 (0.5) 0.191 (0.5)
Anime C. 0.56 (0.524) 0.566 (0.526) 0.554 (0.52)
189 Baseball 0.947 (0.826) 0.964 (0.905) 0.962 (0.921)
Metacritic 0.703 (0.703) 0.701 (0.702) 0.697 (0.698)
Movies 0.796 (0.796) 0.794 (0.794) 0.8 (0.801)
Netflix 0.318 (0.586) 0.334 (0.594) 0.327 (0.593)
S&P 500 0.659 (0.794) 0.624 (0.774) 0.664 (0.802)
Shanghai 0.729 (0.52) 0.748 (0.543) 0.792 (0.616)
Tmdb 0.649 (0.642) 0.636 (0.629) 0.685 (0.681)
Zoo 0.52 (0.657) 0.436 (0.596) 0.694 (0.758)
Average 0.604 (0.635) 0.616 (0.646) 0.649 (0.676)
Median 0.623 (0.624) 0.624 (0.629) 0.664 (0.681)
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Table 6: AUC and F-score obtained by FeSTE when
using entity linking based on Google search and FGSES.
We present the individual resutls for each classifier.

RandomForestClassifier
Original Feat. FeSTE

Dataset - Google FGSES
Aaup 0.702 (0.777) 0.705 (0.779) 0.682 (0.764)
Reviewer 0.525 (0.603) 0.535 (0.606) 0.472 (0.561)
Anime R. 0.649 (0.649) 0.699 (0.701) 0.678 (0.68)
Books 0.5 (0.5) 0.551 (0.551) 0.589 (0.589)
Cities 0.5 (0.5) 0.617 (0.684) 0.373 (0.51)
Country 0.944 (0.9) 0.965 (0.934) 0.943 (0.895)
Conference 0.811 (0.519) 0.803 (0.516) 0.802 (0.503)
WDI 0.515 (0.692) 0.486 (0.664) 0.481 (0.665)
Anime C. 0.688 (0.636) 0.643 (0.583) 0.636 (0.572)
Baseball 0.949 (0.795) 0.964 (0.852) 0.959 (0.836)
Metacritic 0.5 (0.5) 0.623 (0.624) 0.535 (0.546)
Movies 0.5 (0.5) 0.715 (0.716) 0.696 (0.696)
Netflix 0.227 (0.52) 0.397 (0.62) 0.323 (0.572)
S&P 500 0.408 (0.67) 0.678 (0.807) 0.713 (0.824)
Shanghai 0.969 (0.935) 0.965 (0.925) 0.961 (0.915)
Tmdb 0.665 (0.659) 0.726 (0.721) 0.702 (0.697)
Zoo 0.938 (0.925) 0.899 (0.886) 0.923 (0.923)
Average 0.646 (0.663) 0.704 (0.716) 0.675 (0.691)
Median 0.649 (0.649) 0.699 (0.701) 0.682 (0.68)

MLPClassifier
Original Feat. FeSTE

Dataset - Google FGSES
Aaup 0.699 (0.775) 0.673 (0.756) 0.644 (0.733)
Reviewer 0.545 (0.627) 0.523 (0.603) 0.488 (0.575)
Anime R. 0.698 (0.699) 0.721 (0.722) 0.696 (0.7)
Books 0.5 (0.5) 0.629 (0.63) 0.657 (0.658)
Cities 0.5 (0.5) 0.647 (0.699) 0.373 (0.51)
Country 0.777 (0.651) 0.887 (0.812) 0.906 (0.844)
Conference 0.811 (0.495) 0.831 (0.537) 0.812 (0.502)
WDI 0.489 (0.684) 0.443 (0.621) 0.448 (0.647)
Anime C. 0.709 (0.682) 0.694 (0.665) 0.674 (0.644)
Baseball 0.916 (0.793) 0.944 (0.858) 0.938 (0.84)
Metacritic 0.5 (0.5) 0.697 (0.698) 0.569 (0.578)
Movies 0.5 (0.5) 0.8 (0.801) 0.771 (0.772)
Netflix 0.214 (0.521) 0.381 (0.613) 0.335 (0.582)
S&P 500 0.328 (0.625) 0.677 (0.813) 0.703 (0.829)
Shanghai 0.982 (0.974) 0.978 (0.967) 0.984 (0.975)
Tmdb 0.691 (0.687) 0.721 (0.718) 0.714 (0.711)
Zoo 0.964 (0.962) 0.93 (0.92) 0.909 (0.908)
Average 0.637 (0.657) 0.716 (0.731) 0.684 (0.706)
Median 0.691 (0.651) 0.697 (0.718) 0.696 (0.7)

KNeighborsClassifier
Original Feat. FeSTE

Dataset - Google FGSES
Aaup 0.62 (0.72) 0.565 (0.679) 0.548 (0.666)
Reviewer 0.556 (0.637) 0.528 (0.612) 0.482 (0.576)
Anime R. 0.653 (0.654) 0.688 (0.689) 0.655 (0.658)
Books 0.5 (0.5) 0.581 (0.581) 0.615 (0.616)
Cities 0.5 (0.5) 0.637 (0.703) 0.152 (0.5)
Country 0.632 (0.5) 0.641 (0.508) 0.641 (0.508)
Conference 0.792 (0.474) 0.807 (0.491) 0.81 (0.517)
WDI 0.511 (0.692) 0.474 (0.669) 0.445 (0.658)
Anime C. 0.656 (0.621) 0.62 (0.582) 0.618 (0.58)
Baseball 0.862 (0.5) 0.869 (0.516) 0.867 (0.512)
Metacritic 0.5 (0.5) 0.675 (0.676) 0.542 (0.552)
Movies 0.5 (0.5) 0.771 (0.771) 0.762 (0.762)
Netflix 0.23 (0.528) 0.362 (0.619) 0.323 (0.575)
S&P 500 0.298 (0.602) 0.641 (0.788) 0.685 (0.819)
Shanghai 0.971 (0.933) 0.965 (0.929) 0.949 (0.886)
Tmdb 0.66 (0.654) 0.684 (0.68) 0.668 (0.663)
Zoo 0.914 (0.92) 0.844 (0.843) 0.856 (0.861)
Average 0.609 (0.614) 0.668 (0.667) 0.625 (0.642)
Median 0.62 (0.602) 0.641 (0.676) 0.641 (0.616)

GradientBoostingClassifier
Original Feat. FeSTE

Dataset - Google FGSES
Aaup 0.702 (0.777) 0.715 (0.787) 0.671 (0.754)
Reviewer 0.573 (0.648) 0.511 (0.594) 0.523 (0.599)
Anime R. 0.688 (0.69) 0.722 (0.723) 0.691 (0.693)
Books 0.5 (0.5) 0.583 (0.584) 0.631 (0.633)
Cities 0.5 (0.5) 0.654 (0.714) 0.373 (0.51)
Country 0.979 (0.97) 0.971 (0.959) 0.971 (0.954)
Conference 0.808 (0.506) 0.773 (0.517) 0.803 (0.532)
WDI 0.503 (0.693) 0.463 (0.655) 0.483 (0.668)
Anime C. 0.685 (0.632) 0.659 (0.608) 0.653 (0.6)
Baseball 0.943 (0.791) 0.974 (0.925) 0.963 (0.877)
Metacritic 0.5 (0.5) 0.672 (0.674) 0.541 (0.559)
Movies 0.5 (0.5) 0.756 (0.757) 0.746 (0.747)
Netflix 0.23 (0.522) 0.389 (0.614) 0.313 (0.565)
S&P 500 0.384 (0.651) 0.677 (0.815) 0.684 (0.814)
Shanghai 0.957 (0.924) 0.951 (0.909) 0.934 (0.88)
Tmdb 0.691 (0.686) 0.724 (0.719) 0.704 (0.699)
Zoo 0.952 (0.943) 0.82 (0.836) 0.842 (0.859)
Average 0.653 (0.673) 0.707 (0.729) 0.678 (0.702)
Median 0.685 (0.651) 0.715 (0.719) 0.684 (0.693)

SVM
Original Feat. FeSTE

Dataset - Google FGSES
Aaup 0.649 (0.734) 0.637 (0.727) 0.613 (0.708)
Reviewer 0.523 (0.594) 0.477 (0.564) 0.455 (0.549)
Anime R. 0.682 (0.686) 0.706 (0.707) 0.674 (0.682)
Books 0.5 (0.5) 0.632 (0.633) 0.655 (0.656)
Cities 0.5 (0.5) 0.648 (0.697) 0.381 (0.514)
Country 0.632 (0.5) 0.694 (0.57) 0.632 (0.5)
Conference 0.815 (0.5) 0.813 (0.498) 0.813 (0.498)
WDI 0.523 (0.698) 0.468 (0.642) 0.448 (0.639)
Anime 0.649 (0.59) 0.61 (0.551) 0.607 (0.547)
Baseball 0.915 (0.666) 0.943 (0.788) 0.932 (0.74)
Metacritic 0.5 (0.5) 0.697 (0.698) 0.561 (0.586)
Movies 0.5 (0.5) 0.8 (0.801) 0.771 (0.772)
Netflix 0.183 (0.511) 0.36 (0.606) 0.304 (0.57)
S&P 500 0.303 (0.605) 0.662 (0.804) 0.68 (0.816)
Shanghai 0.971 (0.941) 0.969 (0.94) 0.965 (0.929)
Tmdb 0.689 (0.687) 0.718 (0.714) 0.702 (0.698)
Zoo 0.945 (0.937) 0.816 (0.814) 0.829 (0.832)
Average 0.616 (0.626) 0.685 (0.691) 0.648 (0.661)
Median 0.632 (0.594) 0.694 (0.698) 0.655 (0.656)
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