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Introduction

Welcome to the proceedings of the system demonstration track of the Joint Conference of the 60th Annual
Meeting of the Association for Computational Linguistics (ACL 2022) on May 22nd – May 27th, 2022.
For the ACL 2022 system demonstration track, we received 75 submissions, of which 27 were selected
for inclusion in the program (acceptance rate of 36%) after being reviewed by at least three members of
the program committee. We would like to thank the members of the program committee for their timely
help in reviewing the submissions. Lastly, we thank the many authors that submitted their work to the
demonstrations track. This year, the ACL conference is a hybrid event. The demonstration paper will be
presented through pre-recorded talks and in presence during the poster sessions.

Valerio Basile, Zornitsa Kozareva, Sanja Štajner
ACL 2022 System Demonstration Chairs
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Jeff Jacobs, Columbia University
Youngsoo Jang, KAIST
Feng Ji, Tencent Technology Ltd.
Zhuoxuan Jiang, Tencent
Ridong Jiang, Institute for Infocomm Research
Zhanming Jie, ByteDance AI Lab
Sudipta Kar, Amazon Alexa AI
Eugene Kharitonov, Facebook AI
Joo-kyung Kim, Amazon Alexa AI
Philipp Koehn, Johns Hopkins University
Mamoru Komachi, Tokyo Metropolitan University
Valia Kordoni, Humboldt-Universität zu Berlin
Harshit Kumar, IBM Research
Varun Kumar, Amazon Alexa

iv



Philippe Laban, UC Berkeley
Tuan Lai, University of Illinois at Urbana-Champaign
Mark Last, Ben-Gurion University of the Negev
Dong-ho Lee, University of Southern California
John Lee, City University of Hong Kong
Sha Li, University of Illinois at Urbana-Champaign
Yanran Li, The Hong Kong Polytechnic University
Xintong Li, The Ohio State University
Manling Li, UIUC
Lizi Liao, National University of Singapore
Constantine Lignos, Brandeis University
Marina Litvak, Shamoon College of Engineering
Qian Liu, Beihang University
Xiaodong Liu, Microsoft Research
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Abstract
We propose DoTAT, a domain-oriented
text annotation tool. The tool designs and
implements functions heavily in need in
domain-oriented information extraction.
Firstly, the tool supports a multi-person
collaborative process with automatically
merging and review, which can greatly
improve the annotation accuracy. Secondly,
the tool provides annotation of events, nested
event and nested entity, which are frequently
required in domain-related text structuring
tasks. Finally, DoTAT provides visual an-
notation specification definition, automatic
batch annotation and iterative annotation to
improve annotation efficiency. Experiments
on the ACE2005 dataset show that DoTAT
can reduce the event annotation time by
19.7% compared with existing annotation
tools. The accuracy without review is 84.09%,
1.35% higher than Brat and 2.59% higher
than Webanno. The accuracy of DoTAT even
reaches 93.76% with review. The demonstra-
tion video can be accessed from https://

ecust-nlp-docker.oss-cn-shanghai.

aliyuncs.com/dotat_demo.mp4.
A live demo website is available at
https://github.com/FXLP/MarkTool.

1 Introduction

A high-quality corpus is a prerequisite in super-
vised machine learning, especially for most neu-
ral Natural Language Processing (NLP) systems.
However, annotation is also one of the most time-
consuming and costly components of many NLP
research work, and the quality of the annotation re-
sults greatly affects the effect of the trained model.

Currently more and more domain-oriented infor-
mation extraction tasks (Pyysalo et al., 2011, 2012;
Miwa and Ananiadou, 2013; Huang et al., 2020)
are proposed, therefore annotation tools should be
redesigned to meet the new requirements:

1) Multiple specifications support. There are
many document types in each domain, and the spec-

ifications of the target structured data are different.
Therefore, different annotation specifications need
to be defined for each document type.

2) Nested event. (Espinosa et al., 2019; Trieu
et al., 2020) An event is called nested event when
it has other events in its arguments, while an event
is called flat event when there are only entities in
its arguments. Domain-oriented information ex-
traction tasks often require event and nested event
annotation.

3) Multi-person support with merging and re-
viewing. Single-person annotation often leads to
missing and wrong annotation due to human er-
rors, the ambiguity of the words, or particular lan-
guage phenomenon not covered by the specifica-
tions. When there are multiple annotation specifica-
tions in domain-oriented annotation tasks, more er-
rors may appear since specifications vary and more
annotators are required. Therefore, multi-person
collaborative annotation is required to improve the
annotation quality. Furthermore the divergence be-
tween multiple annotators should be detected and
the improved result can be achieved by automatic
merging and human reviewing.

However, the existing annotation tools only sup-
port one or two of the above requirements. Only
Brat (Stenetorp et al., 2012), Webanno (Yimam
et al., 2013; Eckart de Castilho et al., 2016) and
INCEpTION (Klie et al., 2018; Boullosa et al.,
2018) support event annotation, but they do not
design event annotation as a core function and do
not contain enough features for specification man-
agement and quality improvement. To address the
challenges above, we propose DoTAT, a domain-
oriented text annotation tool for complex event an-
notation tasks. Specifically, it satisfies the above-
mentioned new requirements through the following
methods which even support iterative annotation
and automatic batch annotation:

• Visual annotation specifications definition
The annotation specifications are defined by
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Figure 1: Typical workflow using DoTAT.

a visual interface instead of manual configu-
ration so that administrators can easily define
multiple specifications and annotators can dy-
namically select the specification to match
their documents.

• Nested event and nested entity The tool not
only supports nested event (Figure 2) but also
supports nested entity (Figure 4). Nested En-
tity means that one entity is inside another
entity. Besides complex event annotation,
DoTAT also supports entity normalization an-
notation (Figure 5) that is useful when anno-
tating domain-specific corpora, especially in
medical domain.

• Merge and review It provides pairwise con-
sistency checking and automatic merging of
content annotated by pairwise people. The
reviewer can also manually edit the merged
content.

• Iterative annotation Annotators can re-load
previous exported result file for further anno-
tation. The function is frequently used in the
situation that new version of a domain specifi-
cation is designed and existing annotation file
should be reused and revised. The above three
features forms the basis of DoTAT annotation
process and help to improve the quality of the
annotation.

• Automatic batch annotation The tool pro-
vides automatic batch annotation by text
matching based on regular expressions (Fig-
ure 6) and dictionaries (Figure 7).

In the following section, we summarize annota-
tion tools. Section 3 describes the overall workflow

of DoTAT and its functions. Section 4 introduces
the implementation of DoTAT. Section 5 illustrates
the comparative experiment. Section 6 shows the
case study in the medical and public security do-
mains. Section 7 concludes this paper and gives
further directions.

2 Related Work

There are various text annotation tools for dif-
ferent scenarios, but most of them do not sup-
port event annotation, including Knowtator (Ogren,
2006), WordFreak (Morton and LaCivita, 2003),
Anafora (Chen and Styler, 2013), Atomic (Druskat
et al., 2014), GATE Teamware (Bontcheva et al.,
2013), Doccano and YEDDA (Yang et al., 2018).
Each tool has their own special features, e.g., Word-
Freak supports constituent parse structure and de-
pendent annotations as well as ACE named-entity
and coreference annotation. Doccano and YEDDA
support the use of shortcut keys for entity annota-
tion, and YEDDA can perform batch annotation
through the command line.

Currently only Brat (Stenetorp et al., 2012), We-
banno (Yimam et al., 2013; Eckart de Castilho et al.,
2016) and INCEpTION (Klie et al., 2018; Boullosa
et al., 2018) support event annotation. However, it
is difficult for them to annotate nested event. The
method used by them for event annotation is to
connect multiple entities through directed arcs. If
the number of entities is numerous or the distance
between entities is far, abundant arcs and intersec-
tions will appear on the whole page, resulting in an
inferior visualization effect. Except for WordFreak,
Anafora and Atomic, most tools declare to sup-
port multi-person collaborative annotation. GATE
Teamware provides the adjudication interfaces to

2



Figure 2: The event annotation of MLEE (Pyysalo et al., 2012). Top: event list panel, bottom: annotation panel.

compare annotations. However, only Webanno and
INCEpTION provide the curation with automatic
merging function. INCEpTION is partially based
on WebAnno (Eckart de Castilho et al., 2016).

Compared to these tools, event annotation in
DoTAT is much easier to perform. Furthermore
DoTAT designs an iterative process from specifica-
tion definition to merging and review, which can
help the annotation team gradually increase the
quality of annotated corpus.

3 DoTAT

DoTAT is a web-based multilingual text annotation
tool. The raw texts that need to be annotated can
be in Chinese or in any other language. There are
three types of user roles: administrator, annotator,
and reviewer. The fundamental annotation types
include entity annotation, relation annotation, event
annotation, and text classification. As shown in
Figure 1, a typical annotation process using DoTAT
may include the following five steps:

• Define annotation specifications: The ad-
ministrator selects the annotation type and
visually defines event types, entity types, re-
lation types or text categories in annotation
specifications.

• Create and assign tasks: Administrator cre-

ates and assigns tasks. Each task contains an
annotation specification and several raw texts.
It is recommended that two annotators and
one reviewer are assigned to each task.

• Annotate: Before the annotators interactively
annotate events or entities, they can use auto-
matic batch annotation to accelerate the speed.
The detailed annotation process can be seen
in section 3.1.

• Merge and Review: The reviewer starts con-
sistency checking and automatic merging of
the annotated content by multiple annotators
(See section 3.2 for details). The reviewer
can visually analyze the errors according to
the merged events list. When there are many
similar errors, the reviewer can give feedback
for administrator to redefine the annotation
specification. With iterative annotation func-
tion, all existing annotations can be reused.

• Export results:After the review process, the
annotated content can be exported by admin-
istrator to a result file (JSON format).

3.1 Annotate
The event annotation interface of DoTAT contains
annotation panel and event list panel, as shown in
Figure 2. Users can interactively annotate in the
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former panel, and the results are summarized in the
latter one. Users can select an event in the event
list panel and view this event in another panel.

When beginning annotation, the user first selects
the event type. Then he can use dictionary match-
ing or regular expression matching to automatically
annotate text span which reduces manual efforts.
On this basis, the user manually annotates the trig-
ger or other parameters in the event. Specifically,
he uses the mouse to pick a text span in the annota-
tion panel, and then all arguments of this event type
will appear immediately, then the user can select
an argument to annotate. As shown in Figure 2, the
annotator selects the argument “Cell proliferation
(Theme)” to annotate the text span “endothelial
cell”. The user repeatedly selects each span and
corresponding argument to finish the event anno-
tation. For the nested events, where the trigger of
one event becomes an argument of another event,
as shown in Figure 2, the trigger “interaction” of
the Binding event (7473) is nested in the negative
regulation event (7478) as an argument.

3.2 Merge and Review

The review procedure supports consistency check-
ing, automatic merging, and manual revision. Be-
fore the review, the system will check the consis-
tency of the annotated content of the two annotators.
The problem is to find matched events between two
annotated text, the detail is shown in Algorithm 1.

1) We calculate the event similarity between pair-
wise annotators. The event similarity is calculated
as the number of matched entities divided by the
number of all entities. The result is recorded as
matrix Sn,m. 2) Then the problem is defined as the
maximum weight matching of weighted bipartite
graphs. We apply the Kuhn-Munkres Algorithm
to find optimized matching pairs. The consistency
checking score is the sum of similarity values of
matched pairs divided by the maximum number of
events. When consistency checking score reaches
the threshold, the system can start the merging pro-
cess. 3) The merge criteria depends on the state,
and there are four states for each event, “Consis-
tent”, “Only A”, “Only B” and “Inconsistent”. The
system automatically merges all the arguments for
events in “Inconsistent” state. For the other three
states, the system will only keep the larger event.

In the review procedure, the reviewer can view
the merged annotations, as shown in Figure 8. If the
reviewer doubts on the merged event, he can trace

Algorithm 1 Automatically merge event annota-
tions by using the Kuhn-Munkres Algorithm.

Input: An: the n events of annotator-A; Bm: the
m events of annotator-B

Output: C: the set of merged events; K: the con-
sistency checking score

1: Sn,m = similarity(An, Bm), where Si,j =
similarity(ai, bj), ai ∈ An and bj ∈ Bm.

2: Wn = Kuhn −Munkres(Sn,m) denote the
optimal event merging strategy.

3: for ∀ai ∈ An do
4: if ai ∈Wn then
5: Ci = ai ∪ bk, where bk = Wi(ai)
6: if ai = bk then
7: stateCi = Consistent
8: else stateCi = Inconsistent
9: end if

10: else Ci = ai and stateCi = OnlyA
11: end if
12: end for
13: for ∀bj ∈ Bm do
14: if bj /∈Wn then
15: Ci+j = bj and stateCi+j = OnlyB
16: end if
17: end for
18: K =

∑
Si,j/n, where ai ∈Wn ∧ bj ∈Wn

19: return C,K;

the source to view the original annotated event by
clicking role switching bar to change current view.
The reviewer can also perform manual modifica-
tion. He should modify the events in “Inconsistent”
state. The whole annotation process finishes after
the reviewer submits the refined result.

4 Implementation

DoTAT is a web-based text annotation tool with the
software license Apache-2.0. We used the Vue.js
and Element UI to build the user interface. The core
of Vue.js is a responsive data binding framework,
which makes it pretty easy to synchronize data with
the DOM (Document Object Model). Therefore,
Vue.js is particularly suitable for real-time visual-
ization of text annotations. The server side utilizes
the Python-based open-source Django framework
to build RESTful web services. MySQL database
is adopted to organize, store and manage data. The
code is available at the GitHub repository https:

//github.com/FXLP/MarkTool, which also con-
tains a live demo website.
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Group Tool
Annotation Time (seconds)

20% 40% 60% 80% 100% Timeavg

Group-1
WebAnno 1703 3493 5123 6704 8359 418
Brat 1870 3113 4303 5456 6374 319
DoTAT 1340 2497 3937 5007 5887 295

Group-2
WebAnno 1518 3138 4589 6055 7516 386
Brat 1767 3239 4755 6077 7513 375
DoTAT 1210 2385 3845 4956 5645 282

Group-3
WebAnno 1321 2771 4119 5314 6704 335
Brat 1503 3055 4218 5293 7174 358
DoTAT 1156 2167 3446 4592 5387 269

Table 1: Annotation time comparison of annotation tools in ACE2005 Dataset. The average annotation time of
annotation tool is arithmetic mean value of Timeavg in three group. The average annotation time of Webanno is
380s. The average annotation time of Brat is 351s. The average annotation time of DoTAT is 282s.

5 Experiments

We compared DoTAT with the other two text an-
notation tools (Brat and WebAnno) for annotation
time (see section 5.1) and annotation result (see
section 5.2) on the event annotation task.

5.1 Annotation time

We randomly selected 20 news texts from the
ACE2005 dataset (Consortium, 2005), and each
text contained at least four sentences. Six students
randomly divided into three groups were invited
to annotate those texts. For each user, if a tool
was used first, more time might be spent since the
user was not familiar with the texts. To eliminate
the influences, each student was given extra time
to view the text before the annotation, and each
was assigned a different tool using sequences. We
separately recorded the time (in seconds) spent by
each group using the three tools when completing
20%, 40%, 60%, 80%, and 100% of the texts. As
we could calculate from Table 1, the average anno-
tation time (Timeavg) of DoTAT was reduced by
19.7% compared with Brat and 25.8% compared
with WebAnno. DoTAT spent less time, since it
was time consuming for Brat and Webanno to con-
nect arcs between the trigger and multiple argu-
ments. The mouse movements in the process might
be forward and backward. However, DoTAT only
needed to select the arguments from a pop up menu
on a text span, and the mouse typically moved from
left to right.

5.2 Annotation result

We also evaluated the accuracy by comparing with
the gold standard results from ACE20005 data set.

The accuracy is computed as:

acc =

∑n
i=1(Trig

correct
i +

∑mi
j=1Argcorrecti,j )∑n

i=1(1 +mi)
(1)

where n is the total number of gold standard events,
and mi is total number of arguments in event i. In
event i, Trigcorrecti = 1 when trigger is correct,
and if argument j is correct then Argcorrecti,j = 1,
otherwise the value is 0. Since annotation qual-
ity was too low in real projects with new anno-
tation specifications or new annotators, we often
added a particular training process in real applica-
tion scenarios. Therefore, we designed two rounds
of experiments, the first round (Round-1) was for
training and the second round (Round-2) was a for-
mal annotation. After Round-1, we have a meeting
to discuss with annotators about the error-prone
events and entities. In Round-2, we selected five
other most error-prone texts from ACE 2005. As
we could see from Table 2, the average accuracy
of unreviewed annotations was less than 60% in
experiment Round-1. The main reason was that
annotators often missed a whole event or missed
particular arguments. The accuracy of DoTAT was
better since it was less possible for DoTAT to miss
arguments. When a text span was picked, DoTAT
would show all arguments, the pop menu reminded
the annotator about the arguments. DoTAT also per-
formed better than Brat and Webanno in Round-2.
Besides, the overall accuracy increased in Round-2,
which showed that the training process had effects.

In Round-1, the average accuracy of DoTAT’s
reviewed annotations reached 76.2%, which was
an increase of 20.9% compared to the average ac-
curacy of DoTAT’s unreviewed annotations. In
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Round Tool
Accuracy

Group-1 Group-2 Group-3 Average

Round-1

WebAnno 44.5% 49.0% 51.7% 48.4%
Brat 34.5% 44.9% 47.8% 42.4%
DoTAT-U 45.4% 55.7% 64.8% 55.3%
DoTAT-R 67.7% 72.6% 88.3% 76.2%

Round-2

WebAnno 75.48% 82.58% 86.45% 81.5%
Brat 79.19% 83.87% 85.16% 82.74%
DoTAT-U 78.71% 86.45% 87.1% 84.09%
DoTAT-R 93.54% 92.9% 94.84% 93.76%

Table 2: Accuracy comparison of annotation tools in ACE2005 Dataset. DoTAT-U denotes the unreviewed anno-
tation content of DoTAT. DoTAT-R denotes the reviewed annotation content of DoTAT.

Domain Task Annotated
Public security 10 types 6 types

10,000 texts 6,000 texts
20,000 events
80,000 entities

Medical 4 types 4 types
300 long texts 300 long texts

6,000 events
18,000 entities

Table 3: Application of DoTAT.

Round-2, the average accuracy of DoTAT’s re-
viewed annotations had also increased by 9.67%.
It indicated that the review procedure could effec-
tively improve the accuracy.

6 Case Study

DoTAT has been used in the annotation projects of
three different domains. The details in the public
security and medical domains are shown in Table 3.
For the criminal case type “fraud” which contains
5 event types and altogether 23 arguments in public
security domain, the training process before formal
annotation involves four original files and eight an-
notators. Each file contains 20 texts. Consistency
checking is performed to inspect the specification
understanding of each annotator, and part of the
results are shown in Figure 3. We found that the ar-
gument “fraud method” scored less than 50% in the
four files, because the text span of this argument is
not fixed. For the example in Figure 3, some anno-
tator annotated “claim settlement(理赔)” and some
annotated “on the ground of claim settlement(以理
赔为由)”. Besides, we also found that some sim-
ple arguments (such as “name” and “phone”) did
not reach a consistency score of 100%. There are

Figure 3: The fraud case annotation example.

two reasons for this: one is binding an argument to
the wrong event, e.g. take the “name” of the vic-
tim as suspect; the other is missing annotation, e.g.
“name” of victim appears more than once, but only
one place is annotated. Therefore, further train-
ing is required to solve the disagreement between
annotators.

7 Conclusions

The demands for annotation corpus in different
domains are rapidly increasing with the develop-
ment of deep learning. We propose a web-based
text annotation tool, DoTAT, which is suitable for
domain-oriented complex event annotation. We
demonstrate the powerfulness of our tool with ex-
periments and real-world scenarios. We find that
the pre-annotation and reviewing are critical steps
to improve the quality of corpus. In the future, we
plan to integrate the active learning algorithm into
DoTAT to reduce the manual annotation work.
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A Nested entity annotation

For the nested entity annotation, theoretically, the
internal entity overlaps the outer entity. In order
to make both entities displayed well, we make the
shadow of the internal entity a little smaller and put
it in the top layer, the example is shown in Figure 4.

Figure 4: The example of nested entity annotation
in DoTAT. The entity “bFGF” is nested in the entity
“bFGF receptor”.

B Entity normalization

Figure 5: The example of entity normalization in
DoTAT. The entity “TnI” has been normalized as “Tro-
ponin I”.

C Automatic batch annotation

The example of automatic batch annotation based
on regular expressions is shown in Figure 6. Specif-
ically, the user chooses the created regular expres-
sion "(angiogenesis|angiogenic){1}" to automati-
cally annotate the trigger of "Blood vessel develop-
ment" event. And the example of automatic batch
annotation based on dictionaries is shown in Fig-
ure 7. Specifically, the user chooses the created
dictionary to automatically annotate "TnI" as the
argument "Gene or gene product(Cause)" of "Neg-
ative regulation" event.

D Review of event annotation

The review interface of event annotation in DoTAT
is shown in Figure 8.

Figure 6: Automatic batch annotation based on regu-
lar expressions. Top: regular expression panel, middle:
event list panel, bottom: annotation panel.

Figure 7: Automatic batch annotation based on dictio-
naries. Top: dictionary panel, middle: event list panel,
bottom: annotation panel.

Figure 8: Review of event annotation in DoTAT. Top:
role switching bar, middle: event list panel, bottom: an-
notation panel. Each merged event in the event list has
a status and a merged annotation result.
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Abstract

Recent advances in NLP and information re-
trieval have given rise to a diverse set of ques-
tion answering tasks that are of different for-
mats (e.g., extractive, abstractive), require dif-
ferent model architectures (e.g., generative, dis-
criminative), and setups (e.g., with or without
retrieval). Despite having a large number of
powerful, specialized QA pipelines (which we
refer to as Skills) that consider a single do-
main, model or setup, there exists no frame-
work where users can easily explore and com-
pare such pipelines and can extend them ac-
cording to their needs. To address this issue,
we present UKP-SQUARE, an extensible on-
line QA platform for researchers which allows
users to query and analyze a large collection
of modern Skills via a user-friendly web in-
terface and integrated behavioural tests. In
addition, QA researchers can develop, man-
age, and share their custom Skills using our
microservices that support a wide range of
models (Transformers, Adapters, ONNX), data-
stores and retrieval techniques (e.g., sparse
and dense). UKP-SQUARE is available on
https://square.ukp-lab.de.1

1 Introduction

Researchers in NLP have devoted significant re-
sources to creating more powerful machine learn-
ing models for Question Answering (QA), and col-
lecting high-quality QA datasets. Combined with
the recent breakthroughs by large pretrained lan-
guage models, we have witnessed rapid progress
in the field across many different kinds of QA
tasks (Rogers et al., 2021).

The great variety in QA tasks has led to spe-
cialized, domain-specific models trained on a sin-
gle QA format such as multiple choice (Lai et al.,
2017) (i.e., selecting the best answer out of mul-
tiple options), extractive (Rajpurkar et al., 2016)

1The code is available on https://github.com/
UKP-SQuARE/square-core

Figure 1: QA page of UKP-SQUARE. The user se-
lects a Skill (in this case, two open-domain Skills are
selected), enters a question and then receives an answer.

(i.e., finding the answer span in a context) and ab-
stractive (Kocisky et al., 2018) (i.e., generating an
answer that is not a contiguous span in the con-
text). The format may influence the model archi-
tecture (e.g., discriminative objective for multiple
choice, generative objective for abstractive). Ad-
ditionally, systems vary with how the context is
provided. It can be given by the user, or retrieved
from a Datastore which is commonly referred to as
open-domain or retriever-reader setup (Chen et al.,
2017). The retrieval mechanism can also be chosen
from a set of sparse (e.g., BM25, Robertson et al.,
1994) or dense (e.g., DPR, Karpukhin et al., 2020)
techniques.

The speed of progress in the field makes it es-
sential for researchers to explore, compare, and
combine these different QA components as quickly
as possible to identify the strengths and weaknesses

9



User Interface Explainability
CheckList

Datastores
Wikipedia

BM25 Dense

Bing Web Docs.
BM25 Dense

PubMed
BM25 Dense

Wikipedia

BM25 DenseDense

Models

Span Extraction
Adapter / HF / ONNX

Query Embedder
SBERT / Adapter / HF / ONNX

Text Generation
Adapter / HF / ONNX

Text Classification
Adapter / HF / ONNX

Skills
Open-Domain 
Extractive QA

Machine Reading 
Comprehension

…

👉 user query🔍 : 
When was TU Darmstadt 
established?

...…
… It was 
founded 
in 1877 …

3) query embedding [ 0.211 0.116, …, 0.202, 0.141 ] 

2) document retrieval 4) answer extraction

...…
… It was 
founded 
in 1877 …

6) explanations

5) return results:
… It was founded in 1877 …

1) input query

Figure 2: Overall architecture of UKP-SQUARE, illustrating an open-domain, extractive QA Skill. (1) First a
user selects a Skill and issues a query via the User Interface. (2) The selected QA Skill forwards the query to the
respective Datastore for document retrieval. (3) The Datastore gets the query embedding from the Models, uses
it for semantic document retrieval and returns the top documents to the Skill. (4) The Skill sends the query and
retrieved documents to the reader model for answer extraction. (5) Finally, the answers are shown to the user. (6)
Optionally, the user can view the results of the predefined behavioural tests for the Skill.

of the current state of the art. Even though there
exists a number of powerful QA systems (Dibia,
2020; Khashabi et al., 2020) and frameworks such
as Haystack,2 those approaches focus only on one
component (e.g., retrieval, QA format, domain),
hence do not allow plug-and-play of different Data-
stores, domains, model architectures or retrieval
techniques. This considerably limits their applica-
bility and reusability across the diverse, rapidly pro-
gressing area of QA research, making it infeasible
for researchers to quickly integrate novel models
and QA pipelines.

To address this gap, we introduce UKP-
SQUARE, a flexible and extensible QA platform to
enable users to easily implement, manage and share
their custom QA pipelines, which we call Skills,
using our microservices. As shown in Fig. 1, UKP-
SQUARE also allows users to query and com-
pare different Skills via an easy-to-use user inter-
face and systematically analyze their strengths and
weaknesses through integrated behavioural tests.3

2 UKP-SQUARE

The system is implemented as a modern microser-
vice architecture using Docker containers.4 The

2https://deepset.ai/haystack
3Screenshots for adding Skills, the outputs of different QA

formats and behavioural tests are shown in Appendix D.
4https://docker.com

major components are Skills, Datastores, Mod-
els, Explainability and the User Interface. The
process flow across the components is illustrated
in Fig. 2 on an open-domain, extractive QA Skill.
The central component of the system is the Skill
that specifies how a user query is processed (e.g.,
which QA type, retrieval mechanism, model or
adapter to be used in which order). The Skill
leverages the other services for query execution.
Datastores hold multiple collections of documents
with sparse indices, e.g., BM25 (Robertson et al.,
1994) and dense indices, e.g., DPR (Karpukhin
et al., 2020), allowing fast and efficient retrieval
of background knowledge in an extensible way.
The Model service hosts numerous models, com-
bined with Adapters (Houlsby et al., 2019; Pfeif-
fer et al., 2020), to support a wide range of
tasks such as text embedding (for queries in open-
domain QA), sequence and token classification (for
multiple-choice and extractive QA) and sequence-
to-sequence generation (for abstractive QA). The
Explainability component performs behavioural
tests on the deployed Skills for better understanding
of the models. Details of each service are provided
in the following sections.

Furthermore, while we host UKP-SQUARE on
our infrastructure and make it available for the com-
munity, we also provide the option to set up the
system locally. Additionally, the Datastores and
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Models services are exposed via an API5.

2.1 Skills

Skills define how the user query should be pro-
cessed by the Datastores and Models components
and how the respective answers are obtained. For
question answering, this might involve retrieving
background knowledge, extracting spans from con-
text or selecting an answer from multiple choices.

Skills are not necessarily equivalent to a model
trained on a dataset. Instead a Skill is more gen-
eral and can use multiple models to arrive at an
output. A Skill might work on a specialized do-
main (e.g. biomedical, movies, etc.) or a specific
format (e.g. extractive, abstractive, etc.), but also
combinations are possible. For example, a Skill
could combine Wikipedia and a news based ex-
tractive reader model to answer factoid and news
questions. The degree of specialization or gener-
alization of a Skill is up to its developer. In UKP-
SQUARE the Skill only defines the pipeline, i.e.,
pre-processing, information retrieval or answer ex-
traction/generation/classification. These steps are
facilitated and executed by the usage of the other
components: Models (§2.2) and Datastores (§2.3).

Importantly, Skills can be added to the system
by the community. They can be added privately,
thereby only giving a specific user access to it, or
made public, allowing everyone to use it (§3.1).
This allows great flexibility in the design of ques-
tion answering pipelines, keeping implementation
effort and required compute low, thereby democra-
tizing the usage of question answering models.

2.2 Models

The Models component is responsible for host-
ing NLP models required for document retrieval
and answer extraction/generation tasks. Our plat-
form supports a wide variety of models compris-
ing HuggingFace (HF) Transformers (Wolf et al.,
2020), Adapters, Sentence-Transformers (Reimers
and Gurevych, 2019), and a limited selection of
ONNX (Open Neural Network Exchange) (Bai
et al., 2019) models. Specifically, the inclusion
of memory-efficient adapters in our platform al-
lows having a variety of task-specific models while
maintaining storage efficiency. Moreover, for faster
inference, the high performance inference engine,
ONNX Runtime6 can be used for the ONNX mod-

5https://square.ukp-lab.de/docs/
6https://github.com/microsoft/

onnxruntime

els provided on our platform.
The Models component comprises of two main

services: inference and management. The in-
ference service is responsible for loading mod-
els and getting predictions for the input queries.
The management service allows the user to list,
deploy, update and remove models (available on
HF, Adapterhub and Sentence-Transformers) on
the UKP-SQUARE platform. This allows to de-
ploy and query models beyond the ones we al-
ready provide, for example multilingual models.
To maintain a scalable architecture, we host every
deployed model in its separate Docker container
and use Traefik7 to route the user query to the spe-
cific model instance for inference. The inference
service of the model API can be queried using the
Skills (§2.1) as per the end-user’s requirements.

2.3 Datastores

The Datastores are responsible for storing docu-
ment collections as knowledge bases of QA Skills,
supporting retrieval on these collections. Each
Datastore contains a collection of documents and
several indices of them for retrieval. The document
collections are stored by an Elasticsearch8 instance.
Within one Datastore, the document collection is
indexed by sparse or dense retrieval models.

For sparse retrieval, we use BM25 provided
by the Elasticsearch instance; for dense retrieval,
we use dual-encoder neural networks (Karpukhin
et al., 2020; Xiong et al., 2021) with Approximate
Nearest Neighbor (ANN) indexing provided by
Faiss (Johnson et al., 2021). The Datastores are ag-
nostic to the ANN methods. Among them, we use
IndexIVFScalarQuantizer (Jégou et al., 2011) from
Faiss as the default choice. For scalability, we main-
tain each dense-retrieval index within one Docker
container and use Traefik to route the queries to the
specific index. For each query using dense retrieval,
the Datastores forward the query to the Models to
get the query embedding (e.g., via the Query Em-
bedder in Fig. 2 and Table 2) and then input this
embedding to the ANN search for retrieving rele-
vant documents.

As the built-in Datastores, Wikipedia9 with the
DPR encoder (Karpukhin et al., 2020), PubMed10

7https://traefik.io
8https://elastic.co
9The English Wikipedia dump preprocessed by Karpukhin

et al. (2020).
10From the BioASQ8 edition (Nentidis et al., 2020).
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Minimum Functionality Test (MFT)-Taxonomy

C: There is a tiny purple box in the room.
Q: What size is the box?
Test: Check if the prediction is tiny

INVariance-Robustness

C: ...Newcomen designs had a duty of about 7 million, but
most were closer to 5 million....
Q: What was the ideal [duty->udty] of a Newcomen engine?
Test: Check whether the prediction changes or not.

Table 1: Examples for two most common test types.
Top: Minimum Functionality Test (MFT), Bottom: In-
variance Test (INV). C: refers to context and Q: is the
question.

and Bing web documents11 with the TAS-B en-
coder (Hofstätter et al., 2021) are supported. We
plan to add more Datastores in the future.

2.4 Explainability

Recently, many interpretability techniques to un-
derstand black-box neural models such as influ-
ence functions and input/token attribution meth-
ods (Madsen et al., 2021) have been introduced.
Most of these techniques provide only local expla-
nations and require access to the back-propagation
function. One exception is CheckList (Ribeiro et al.,
2020), which is a type of behavioural testing that
treats models—in our case Skills—as black-boxes
and compares their behaviour against the expected
one. This is achieved by unit tests designed by
the end-users or the system experts. Two most
common test types are Minimum Functionality
Test (MFT) and INVariance (INV) as shown in
Table 1. MFTs are designed to measure a capability
(e.g., Taxonomy capacity of matching object prop-
erties to categories) via specifying the expected
behaviour (e.g., “tiny” in Table 1). INVs tests are
similarly refined for capabilities (e.g., robustness
under spelling errors in question), however the ex-
pected behaviour is already known, i.e., the answer
should remain the same. We adapt the machine
comprehension tests from Ribeiro et al. (2020) for
behavioural testing of our Skills. In our current
setup, the tests for all the deployed Skills are cu-
rated manually, saved in as JSON file and made
available via the UI. The test results are shown on
demand via a separate tab (§3.3).

2.5 User Interface

We host UKP-SQUARE as a web application built
with VueJS12 to make it easily accessible to re-

11From the MS MARCO dataset (Nguyen et al., 2016).
12https://vuejs.org

Training Dataset for Models Domain

Text Generation (Abstractive QA)
NarrativeQA (Kocisky et al., 2018) Stories

Span Extraction (Extractive QA)
BioASQ (Tsatsaronis et al., 2015) Biomedical
DROP (Dua et al., 2019) Wikipedia
DuoRC (Saha et al., 2018) Movies
Natural Questions (Kwiatkowski et al., 2019) Wikipedia
NewsQA (Trischler et al., 2017) News
Quoref (Dasigi et al., 2019) Wikipedia
SQuAD 1.1 (Rajpurkar et al., 2016) Wikipedia
SQuAD 2.0 (Rajpurkar et al., 2018) Wikipedia
TriviaQA (Joshi et al., 2017) Wikipedia, Web

Text Classification (Multiple-Choice QA)
BioASQ (Tsatsaronis et al., 2015) Biomedical
BoolQ (Clark et al., 2019) Wikipedia
CommonsenseQA (Talmor et al., 2019) -
CosmosQA (Huang et al., 2019) Personal Narratives
MultiRC (Khashabi et al., 2018) Fiction, Textbook,

Wikipedia, News,
etc.

Quail (Rogers et al., 2020) Fiction, News, Blogs,
User Stories

Quartz (Tafjord et al., 2019) Relationships
RACE (Lai et al., 2017) News, Stories, Ads,

Biography, Philoso-
phy

SocialIQA (Sap et al., 2019) Social Interactions

Query Embedder (Retrieval)
Natural Questions (Kwiatkowski et al., 2019) Wikipedia
MS MARCO (Nguyen et al., 2016) Bing Web Docs.

Table 2: Available Models fine-tuned on various datasets
upon the release of UKP-SQUARE.

searchers. Once a Skill has been created by a user
(§3.1) it can be added, edited, and deleted in the
Skill management section of the application in the
“My Skills” menu. For each Skill, its URL, meta-
data, requirements for context, and visibility can be
adjusted (see Appendix Fig. 3). The functionality
of the user interface is split into QA and explain-
ability.

QA Interface. The QA section of the user in-
terface provides access to the Skill by allowing
the user to enter their question and optionally a
context. Public Skills are accessible to everyone
while private Skills require the user to be signed in.
The UI provides distinct visualizations depending
on the selected Skill type. For extractive Skills,
e.g., SQuAD (Rajpurkar et al., 2016), a document
and multiple spans are returned and ranked by the
model’s confidence. In this setup, we also provide
the option to show the span highlighted in its po-
sition in the document (see Fig. 1). Categorical
Skills, e.g., BoolQ (Clark et al., 2019), show an
interface with boolean output scores (see Appendix
Fig. 5). A multiple-choice Skill requires multi-
ple options separated by newlines in the context
field. These are then ranked and returned with their
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respective scores (see Appendix Fig. 6). When
multiple Skills are selected, the user can see and
compare their outputs side-by-side and better un-
derstand their behavioural differences.

Explainability Interface. A Skill selector is pro-
vided at the top which allows users to visualize
and compare the results of the CheckList machine
reading tests for the selected Skills. A list of tests
with their name, type, capability, and failure rate
is shown. The list can be expanded for a detailed
description along with a small number of failed
examples with their questions, context, and predic-
tions.

3 Use Cases

3.1 Skill Publishing

A major contribution of our platform is to sup-
port developers creating their own Skills. This
allows practitioners to easily make their research
publicly available, without having to take care of
engineering heavy topics such as infrastructure,
web development and security. To publish a new
Skill, developers need to implement a single func-
tion that defines the question answering pipeline.
They are provided with utility functions that fa-
cilitate interacting with other components such as
the Datastores, Models and the UI. A code snippet
implementing a Skill is given in Appendix A.

Allowing developers to implement their own
Skills enables us to greatly extend the system
to have stronger models. For instance, multi-
ple Datastores with potentially different retrieval
methods can be combined to find complementary
background knowledge, e.g., from Wikipedia and
biomedical articles. Similarly, different models
could be used to precisely answer a diverse set of
questions that might require different capabilities,
such as answerability (Rajpurkar et al., 2018), nu-
merical (Dua et al., 2019) or multi-hop (Yang et al.,
2018) reasoning. Once a developer creates their
Skill, it can be added to UKP-SQUARE via the
UI. The Skill developer can further make the Skill
publicly available.

Allowing the community to implement Skills
comes with a technical challenge such as deploying
unreliable code on our servers. We therefore allow
three different ways of hosting Skills. (1) First,
Skills can be hosted directly on UKP-SQUARE.
For this, a pull request for the new Skill should
be submitted to our public repository, which can

then be added to the system upon a code review.
While processing the submitted Skill requires a hu-
man in the loop, this option simplifies the hosting
process for the Skill developer. (2) Second, in or-
der to provide an option to make Skills instantly
and independently available, we also allow Skills
to be hosted on third party cloud platforms such
as Amazon Web Services, Google Cloud and Mi-
crosoft Azure. All these cloud providers allow to
easily host a lightweight function that can be used
by UKP-SQUARE. (3) Lastly, we allow develop-
ers to host Skills on their own hardware. The only
requirement is that the Skill needs to be publicly
accessible. In the latter two cases, developers will
still have access to UKP-SQUARE’s components
(e.g., Datastores and Models), but the Skill itself
will run on the cloud or on other hardware. For
quick development of Skills we recommend using
options (2) and (3). For long-term availability and
usage of a Skill, adding it via the public github
repository is recommended. We provide extensive
documentation for all possibilities to host Skills.13

3.2 Skill Querying

Once a developer makes their Skill public in UKP-
SQUARE, other users can obtain answers from it.
Upon release of the system, we make a wide range
of question answering Skills available. These span
over different QA formats (extractive, multiple-
choice, abstractive), setups (open-domain, machine
reading comprehension) and to different domains
(wikipedia, web, biomedical, etc.). The list of avail-
able models for different formats is given in Table 2.
This allows the public to test current state-of-the-art
question answering models. Moreover, researchers
can use it for qualitative analysis, for example to
discover potentials biases, strengths or weaknesses
in models by behavioural testing. Furthermore,
we support querying multiple Skills at the same
time. This is particularly useful to compare capa-
bilities of different models. For example see Fig. 1,
where two open domain, extractive Skills can be
compared.

3.3 Behavioural Testing of Skills

The users can choose the Skill they want to in-
vestigate from the drop-down menu. The selected
Skill can be analyzed standalone or alongside two
different compatible Skills.

The tests are displayed showing the Skill fail-

13https://square.ukp-lab.de/docs/
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Supported Models Retrieval QA Types Expl. Ext.

Haystack HF Transformers sparse, dense EX, AB × ×
Dibia (2020) HF Transformers sparse EX ×
Karpukhin et al. (2020) DPR dense EX × ×
Khashabi et al. (2020) T5 × EX, AB, MC, YN × ×
UKP-SQUARE HF Transformers, ONNX, adapters sparse, dense EX, AB, MC, YN

Table 3: Qualitative comparison of UKP-SQUARE to previous works. HF: HuggingFace, Expl.: Explainability
component, Ext.: Extensible by the end-user , EX: Extractive, AB: Abstractive, MC: Multiple-choice, YN: Yes/No

ure rate and the failed examples can be viewed by
clicking on the ‘Expand‘ button. An examplary
visualization for negation and coreference testing
of SQuAD Skills is given in Appendix Fig. 4. For
replacement tests, e.g., where names are perturbed,
colored markers are used to highlight how the input
was modified for the test. This allows the user to
quickly identify changes the Skill could not handle.
To analyze or process a Skill’s test performance in
more detail, a full JSON report of all test examples
can be downloaded.

4 User Study

We evaluate the usability of our system by conduct-
ing a pilot attitudinal user study with five partic-
ipants. We recruited graduate students, our main
target user group, and instructed them to compare
and analyze several Skills. We provided them with
a list of predefined questions to input into the sys-
tem to help them use it. After the students used the
system we asked them several questions to discover
whether they understood every element of the in-
terface effortlessly (i.e., the input and the output of
the Skills, the list of behavioral cards of the Skills,
and their specific contents). All users understood
the input and output of the Skills and stated that the
interface allows them to compare the Skills effort-
lessly. They also stated that the behavioral cards of
the explainability component are useful to analyze
the strong and weak points of the models and could
help develop new Skills. However, most of them
could not understand them in a glimpse. Hence,
we will improve the presentation of these cards in
a future update. Appendix C provides the list of
questions and responses. To finish the study, we
employed the System Usability Scale (SUS) ques-
tionnaire (Brooke, 1996) to quantitatively assess
the global usability of the system. The average
score is 70 out of 100, which refers to a “good
usability" (UIUX-Trend, 2021).

5 Related Work

A qualitative comparison with similar frameworks
is given in Table 3. The closest work to ours is
Haystack, which is an open-source and scalable
framework for building search systems over large
document collections. Although it supports both
sparse and dense retrieval techniques, models from
the Huggingface (HF), and different QA types (ab-
stractive and extractive) it lacks support for faster
ONNX or memory efficient adapter models. Fur-
thermore, it has to be set up by the users on their
own infrastructure which requires technical exper-
tise and sufficient hardware resources. Dibia (2020)
introduce NeuralQA, an interactive tool for QA that
leverages the benefits of sparse retrieval along with
the HF reader models. However, NeuralQA is lim-
ited to extractive QA. Karpukhin et al. (2020) pro-
vide a simple user interface that employs efficient
dense retrieval but only support models for open-
domain QA. Finally, UnifiedQA (Khashabi et al.,
2020) provides a demo page14 that employs a cus-
tom T5 based model trained on a wide range of QA
datasets, hence supports a variety of QA formats.
However, (1) it lacks the retrieval component, (2)
is not scalable (to include different model formats),
and (3) is not flexible (not possible to use models
with different retrieval techniques). Unlike other
previous systems, UKP-SQUARE is dynamically
extendable allowing users to easily contribute with
new Skills. Finally, except from gradient-based
explanations in Dibia (2020), none of the systems
have an explainability component.

6 Conclusion and Future Work

We introduce the UKP-SQUARE platform that
enables researchers and developers to study and
compare QA pipelines, i.e., Skills, that comprises
a selection of Datastores, retrieval mechanisms and
reader models. The platform enables querying ex-

14https://unifiedqa.apps.allenai.org/
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isting public Skills, as well as implementing cus-
tom ones using UKP-SQUARE’s microservices
and utility functions that support a large collection
of model types and Datastores. Furthermore, users
can simultaneously query multiple Skills, and ana-
lyze them through integrated behavioural tests.

Our architecture is scalable and flexible to incor-
porate most of the latest developments in the QA
domain. Future versions will include automated
deployment of custom models and Datastores, au-
tomated Skill selection by incorporating previous
works (Puerto et al., 2021; Geigle et al., 2021)
and increasing the number of supported Datastores
(e.g., wikidata, Vrandečić and Krötzsch, 2014). We
also plan to incorporate specialized models (e.g.,
using graph encoders, Ribeiro et al., 2021), struc-
tured reasoning approaches (Yasunaga et al., 2021)
and interpretability techniques such as saliency
maps (Li et al., 2016).

Ethics and Broader Impact Statement

Data This work does not generate new data. All
datasets employed in used to construct Skills as
described in §2.2, §2.3, and Table 2. The datasets
are well-known to be safe for research purposes
and do not contain any personal information or
offensive content. We comply with the licenses
and intended uses of each dataset. The licenses of
each dataset can be seen in Appendix B.

Intended Use. The intended use of UKP-
SQUARE is i) bringing different QA components
together to share them as a skill with the rest of the
world and ii) the analysis of these Skills. Our plat-
form allows NLP practitioners to share their Skills
with the community removing technical barriers
such as configuration and infrastructure so that any
person can reuse these models. In addition, users
can analyze the available Skills through behavioral
tests and compare them thanks to a user-friendly
UI. This has a straightforward benefit for the re-
search community (i.e., reproducible research and
analysis of prior works), but also to the general
public because UKP-SQUARE allows them to run
state-of-the-art models without requiring them any
special hardware and hiding complex settings such
as virtual environments and package management.

Potential Misuse. Our platform makes use of
Skills uploaded by the community. However, this
current version does not incorporate any mecha-
nism to ensure that these models are fair and with-

out bias. Nonetheless, UKP-SQUARE includes
a module for explainability that uses CheckLists
(Ribeiro et al., 2020) to analyze the strong and
weak points of the Skills and to detect their biases
and unfair content. Thus, we currently delegate the
fairness checks to the authors of the models. We
are not held responsible for errors, false, or offen-
sive content generated by the Skills. Users should
use them at their discretion.

Environmental Impact. Since UKP-SQUARE
empowers the community to run publicly available
Skills on the cloud, it has the potential to reduce
CO2 emissions from retraining previous models
to make the comparisons needed when developing
new models.

User Study. The participants are junior graduate
students recruited on a voluntary basis. They are
not part of this work, and never saw the user in-
terface before the study. Before starting the study,
they were given detailed instructions on the goals
and scope of the study, and how the data was going
to be used. Only non-personal data was recorded.
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A Skill Implementation

The code below implements an open-domain, ex-
tractive QA Skill. First, a set of utility classes
are loaded and initialized for facilitating interac-
tion with UKP-SQUARE’s Models and Datastore
components (lines 1-5). Next, in the predict
function, the Datastores are queried for retrieval.
The Datastores component takes the user query, the
datastore (Wikipeida snapshot from Natural Ques-
tions) and what index to use (dense, based on DPR)
as input and returns the top documents. From these
results, the document text and respective scores are
extracted (lines 11-17). Subsequently, the query
and the top documents are passed to an to the
Models component for span extraction. In this im-
plementation, a BERT base model with a adapter
trained on SQuAD V2.0 is used (lines 21-30). Fi-
nally, the top answers are returned (lines 32-36).

1 from square_skill_api.models import QueryOutput, QueryRequest
2 from square_skill_helpers import ModelAPI, DataAPI
3

4 model_api = ModelAPI()
5 data_api = DataAPI()
6

7 async def predict(request: QueryRequest) -> QueryOutput:
8

9 # Dense document retrieval using the Datastores
10 # on a Wikipedia snapshot with DPR embeddings
11 data_api_output = await data_api(
12 datastore="nq",
13 index_name="dpr",
14 query=request.query,
15 )
16 context = [d["document"]["text"] for d in data_api_output]
17 context_score = [d["score"] for d in data_api_output]
18

19 # Answer extraction from the top document using the Model API
20 # using bert-base-uncased base model with SQuAD2.0 adapter
21 model_api_request = {
22 "input": [[request.query, c] for c in context],
23 "task_kwargs": {"topk": 1},
24 "adapter_name": "qa/squad2@ukp",
25 }
26 model_api_output = await model_api(
27 model_name="bert-base-uncased",
28 pipeline="question-answering",
29 model_request=model_api_request,
30 )
31

32 return QueryOutput.from_question_answering(
33 model_api_output=model_api_output,
34 context=context,
35 context_score=context_score
36 )

Listing 1: Example Implementation of an open-domain, span extraction Skill.
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B Dataset Licences

Table 4 shows the license of each dataset. In the
case of RACE, the authors did not provide any
license but specified that it can only be used for
non-commercial research purposes. In the case of
the other datasets without any specified license, the
authors did not provide any license, but the datasets
are freely available to download and use in a re-
search context. BioASQ is available by Courtesy
of the U.S. National Library of Medicine.

Dataset License

NarrativeQA Apache 2.0
BioASQ National Library of

Medicine Terms and
Conditions

DROP CC BY-SA 4.0
DuoRC MIT
Natural Questions MIT
NewsQA MIT
Quoref CC BY 4.0
SQuAD 1.1 CC BY-SA 4.0
SQuAD 2.0 CC BY-SA 4.0
TriviaQA Apache 2.0
BoolQ CC BY-SA 3.0
CommonSenseQA NA
CosmosQA NA
MultiRC NA
Quail NA
Quartz NA
RACE NA
SocialIQA NA
MS MARCO CC BY 4.0

Table 4: License of each dataset.

C Questions of the User Study

Table 5 contains the answers of the participants of
the user study (§4) to each question we asked to
evaluate their understanding of the interface.

Question Avg. Ans.

SQuARE provides a user inter-
face that allows me to tell the dif-
ference between both Skills

4.4

I understand in a glimpse each
card.

2.6

I can get a quick overall view of
the weak points of the skill.

3.8

The examples of each CheckList
item are useful.

4.4

Table 5: List of questions to understand the usefulness
of the system. 1 represents "strongly disagree" and 5
represents "strongly agree."

D User Interface

UI screenshots for visualizing categorical and mul-
tiple choice Skill results are given in Fig. 5 and 6
respectively. In Fig. 3 the UI for managing a Skill is
shown. Navigating through behavioural test results
is given in Fig. 4.
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Figure 3: User interface for managing a Skill.

Figure 4: User interface for behavioural tests from CheckList.
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Figure 5: User interface for visualizing categorical Skill results.

Figure 6: User interface for visualizing multiple choice Skill results.
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Abstract

There is a growing need to model interactions
between data modalities (e.g., vision, language)
— both to improve AI predictions on existing
tasks and to enable new applications. In the
recent field of multimodal medical AI, integrat-
ing multiple modalities has gained widespread
popularity as multimodal models have proven
to improve performance, robustness, require
less training samples and add complementary
information. To improve technical reproducibil-
ity and transparency for multimodal medical
tasks as well as speed up progress across med-
ical AI, we present ViLMedic, a Vision-and-
Language medical library. As of 2022, the
library contains a dozen reference implemen-
tations replicating the state-of-the-art results
for problems that range from medical visual
question answering and radiology report gen-
eration to multimodal representation learning
on widely adopted medical datasets. In addi-
tion, ViLMedic hosts a model-zoo with more
than twenty pretrained models for the above
tasks designed to be extensible by researchers
but also simple for practitioners. Ultimately,
we hope our reproducible pipelines can en-
able clinical translation and create real impact.
The library is available at https://github.
com/jbdel/vilmedic.

1 Introduction

In the past few years, there has been a surge
of interest in multimodal problems, especially
involving visio-linguistic data that occurs "in the
wild", from image captioning (Chen et al., 2015;
Krishna et al., 2017; You et al., 2016) to visual
question answering (Antol et al., 2015; Goyal et al.,
2017; Yu et al., 2019) and beyond. Multimodal
tasks are interesting because many real-world
problems are multimodal in nature. This is also
the case in medical AI where many repetitive
tasks lie at the intersection of vision and language.
For example, radiologists must generate and
summarize reports from x-ray images, or answer

medical questions from patients. As a response,
tasks such as radiology report generation (Zhang
et al., 2020b; Miura et al., 2021), where assistive
systems that take X-ray images of a patient
and generate a textual report describing clinical
observations or medical visual question answering
have been proposed. Recent multimodal training
techniques, such as contrastive learning, have
also enabled powerful multimodal embeddings
that contribute to higher quality in-domain image
representations that capture the subtlety of visual
features required for medical image understanding
tasks and annotation-efficient learning (Zhang
et al., 2020a; Huang et al., 2021).

These recent advances have identified new
challenges. First, it is not always clear to what
extent truly visio-linguistic reasoning and un-
derstanding is required for solving tasks where
images and text are available. Language can
inadvertently impose strong priors that result in
seemingly impressive performance without any
understanding (or active use) of the visual content.
This challenge has been pointed out for tasks
involving natural images, such as visual question
answering (Jabri et al., 2016; Goyal et al., 2017)
or multimodal machine translation (Delbrouck
and Dupont, 2017; Caglayan et al., 2019), but
also involving medical images, such as slice
discovery (Eyuboglu et al., 2022) or multimodal
radiology report summarization (Delbrouck et al.,
2021). Secondly, multimodal training has been
identified as a challenging learning task by nature:
multimodal networks are prone to overfitting due
to their increased capacity and modalities overfit
and generalize at different rates (Wang et al., 2020).

Another challenge in medical AI is transparency.
Despite much promising research currently being
undertaken, particularly in imaging, the literature
as a whole lacks clear reporting to facilitate
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replicability, exploration for potential ethical
concerns, and clear demonstrations of effective-
ness (Vollmer et al., 2020). Recently, McDermott
et al. (2021) evaluated 511 scientific papers across
several machine learning subfields and found that
machine learning for health compared poorly
to other areas regarding reproducibility metrics,
such as dataset and code accessibility. As an
example, McKinney et al. (2020) demonstrated
a system that improves the speed and robustness
of breast cancer screening, while highlighting the
challenges of making such work reproducible. This
absence of sufficiently documented methods and
computer code underlying the study has effectively
undermined its scientific value (Haibe-Kains et al.,
2020).

To address the aforementioned shortcomings
related to multimodal training and medical AI,
we propose ViLMedic (§3), an open-source
Vision-and-Language medical library. ViLMedic
emphasizes technical reproducibility by packaging
common operations (e.g., linguistic or visual
encoding) as "blocks" (3.1), and by defining
"solutions" (3.2), the full pipeline of a certain
multimodal technique published in the literature,
as an assembly of blocks. With the abstraction of
blocks and example configurations of these blocks
to form solutions, ViLMedic gives the user an
easy to use interface to (i) reproduce the results
reported in the literature, and (ii) investigate novel
multimodal techniques quickly. In addition to
blocks and solutions, ViLMedic hosts a model-zoo
(3.3) containing trained solutions usable in one
line of code.

As of 2022, ViLMedic contains dozen of solutions
replicating the state-of-the-art results for problems
that range from medical visual question answer-
ing and radiology report generation to multimodal
representation learning on widely adopted medical
datasets, and more than twenty pretrained models
for the above tasks.

2 Related work

Recent progress in natural language processing
and computer vision has been driven by advances
in both model architecture and model pretraining.
Namely, Transformer architectures have facilitated
building higher-capacity models and pretraining
has made it possible to effectively utilize this

capacity for a wide variety of medical tasks. The
library HuggingFace Transformers (Wolf et al.,
2020) provides thousands of pretrained models
to perform tasks on different modalities such as
text, vision, and audio. ViLMedic takes advantage
of the available medical language representation
models hosted on the HuggingFace model hub,
such as clinicalBERT (Alsentzer et al., 2019) and
BioMed-RoBERTa (Gururangan et al., 2020), to
fine-tune their representations on downstream
medical multimodal tasks.

Another related work is the MultiModal Frame-
work (MMF, Singh et al. (2018)), a deep learning
library for vision and language multimodal
research for natural images. MMF has the same
philosophy as ViLMedic: the library replicates
the architectures and results from the literature
and provides baseline implementations for ma-
chine learning challenges. However, the MMF
framework is oriented towards handling data that
occurs "in the wild" (VQA, TextVQA) or on the
Internet (Hateful Memes detection). As of today,
no medical tasks are addressed. Nevertheless,
MMF contains state-of-the-art visio-linguistic
architectures, such as VisualBERT (Li et al., 2019)
and ViLT (Kim et al., 2021) whose efficiency
does not straightforwardly translate in the medical
domain but that could be useful for ViLMedic in
the future.

In the medical field, TorchXRayVision (Cohen
et al., 2020) is an open-source software library for
working with chest X-ray datasets and deep learn-
ing models. It also provides a common interface
and common pre-processing chain for a wide set
of publicly available chest X-ray datasets. It dif-
fers from ViLMedic in two ways: first, it offers
very limited tools and details to re-train the models
and second, it primarily focuses on releasing pre-
trained visual encoder (namely, DenseNet (Huang
et al., 2017)). ViLMedic focuses on training and
releasing pretrained models that are multimodal
across four major medical tasks and also empha-
sizes technical reproducibility. Nonetheless, we
have integrated TorchXRayVision as a component
of our library.

3 ViLMedic

ViLMedic consists of blocks, solutions and
a model-zoo. A block (§3.1) is a common
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operations defined as a snippet of code. Blocks
can be a piece of a neural network architecture
(e.g., a ResNet (He et al., 2016) encoding the
image in a multimodal solution), a loss function,
or an evaluation metric. Therefore, a block can be
suitable for several solutions. Solutions (§3.2) are
defined as the full pipeline of a certain multimodal
technique published in the literature. That is,
a solution contains pre-processed data (or the
pre-processing scripts), open-source architecture
implementations, proper training parameters, and
evaluation scoring. A solution is composed of
independent blocks and defined in a configuration
file. Finally, most of our solutions are trained and
stored in a model-zoo (§3.3), saving researchers
and practitioners time and effort (Appendix F).

Our blocks, solutions and model-zoo are
supported by a documentation available at
https://vilmedic.readthedocs.io/
en/latest/.

3.1 Blocks

A block is a snippet of code, usually written in
PyTorch, that contains a sub-part of a solution. It
can be a piece of a neural network architecture, a
loss function, or an evaluation metric. Therefore, a
block can be suitable for several solutions. In a con-
figuration file of a solution, a CNN (Convolutional
Neural Network) block would look like this:

---
my_cnn:

p r o t o : CNN
backbone: d e n s e n e t 1 6 9
o u t p u t _ l a y e r : f e a t u r e s
d r o p o u t _ o u t : 0 . 0
permute : b a t c h _ f i r s t
v i sua l_e mbe dd i ng_ d im : 1664
f r e e z e : F a l s e

---

Code Listing 1: Declaring a CNN block in ViLMedic

This would result in the creation of a CNN block
that consists of a Densenet169 network (Huang
et al., 2017) whose output is the "features" layer1.
This block will be referred as the my_cnn variable
in the solution.

Block instantiation must respect rules, but
users can feed the blocks any type of modality.
For example, you can feed the Transformer

1https://github.com/pytorch/vision/
blob/main/torchvision/models/densenet.
py#L215

architecture (Vaswani et al., 2017) sequences of
words (Vaswani et al., 2017), sequences of image
patches (Dosovitskiy et al., 2021), sequences of
speech pieces (Pham et al., 2019) or sequences
of state, action and reward in reinforcement
learning (Parisotto et al., 2020) and still get a
strong baseline for your task.

We believe this consolidation in architecture tends
to focus and concentrate software and infrastruc-
ture, further speeding up progress across AI. This
concept of blocks in ViLMedic enables a user to
quickly build a solution that acts as a strong base-
line for their multimodal task. In the following
sections, we provide details on the three primary
types of blocks: language (§3.1.1), vision (§3.1.2),
and metrics (§3.1.3).

3.1.1 Language blocks
In ViLMedic, all language blocks are based
on the HuggingFace Transformer library (Wolf
et al., 2020). This offers the possibility to load
any available pretrained encoder and decoder
model2 in ViLMedic. This also allows the users
to benefit from all the implemented HuggingFace
functionalities such as beam-search, length penalty,
or token exclusion and configurations such as the
layer-size, the number of layers, the dropout per
layer, etc.

For decoders (i.e., Transformers generating lan-
guage), ViLMedic creates a block to support model-
ensembling. That is, one can train several Natural
Language Generation (NLG) models (say, for the
Radiology Report Generation task) and ensemble
those to further improve generation.

3.1.2 Vision blocks
ViLMedic supports all CNN architectures proposed
by PyTorch and TorchXRayVision, and offers a
block wrapping these models that allows to select
sub-parts of a network, add dropout, and change
the train-mode (as shown in listing 1).

Some vision blocks, such as the Vision Transform-
ers (Dosovitskiy et al., 2021) or VisualBERT (Li
et al., 2019), are implemented in ViLMedic but still
unexploited by solutions. We believe they may be
important for future research in our field3.

2https://huggingface.co/models
3https://openreview.net/forum?id=

3Wybo29gGlx
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3.1.3 Metric blocks
Besides widely used metrics in classification
(accuracy, F1-score, etc.) and NLG (BLEU,
ROUGE, METEOR), ViLMedic implements
metrics specific to radiology report generation that
evaluate the factual correctness, completeness, and
consistency of the output. To be consistent with
the literature, we propose the F1-CheXbert (Smit
et al., 2020) metric that consists of scoring the
CheXbert classification output of the ground-truth
(GT) report and the generated report, a Named
Entity Recognition accuracy based on the medical
NER model of Stanza (Qi et al., 2020) and the
RadGraph (Jain, Saahil et al., 2021) reward that
scores the similarities between the generated
semantic graphs of two reports.

ViLMedic also supports two metric optimization
blocks that use Reinforcement Learning (RL) set-
tings to directly optimize metrics scores as de-
scribed in previous works (Rennie et al., 2017;
Zhang et al., 2020b; Miura et al., 2021). These
two methods, Self-critical sequence training (Ren-
nie et al., 2017) and Proximal Policy Optimiza-
tion (Schulman et al., 2017), require the language
decoder to sample words. Because our language
blocks are compliant with the HuggingFace Trans-
former library, we can use their generate()4

method and benefit from all the related features
during RL training (such as the arguments top_k,
top_p, repetition_penalty, min_length, etc.)

3.2 Solutions
We define solutions as implementations of
multimodal learning methods published in
the literature. That is, a solution contains the
corresponding pre-processed data or scripts, the
architecture implementations, the proper training
parameters, and the evaluation scoring. We present
a non-exhaustive list of our solutions and how
they compare to previous work in Table 1 in the
Appendix.

Technically, a solution is described in a con-
figuration file that lists the pre-processing and
the hyper-parameters of the blocks, training,
and evaluation. The configuration of a generic
multimodal solution would look like this:

4https://github.com/huggingface/
transformers/blob/v4.15.0/src/
transformers/generation_utils.py#L742

---
name: my_exper iment
d a t a s e t :

p r o t o : ImSeq
image:

f i l e : image . t o k
r e s i z e : 256
c rop : 224
[ . . . ]

seq :
f i l e : r e p o r t . t o k
t o k e n i z e r : a l l e n a i / b i o m e d _ r o b e r t a _ b a s e
t o k e n i z e r _ m a x _ l e n : 128
p r o c e s s i n g : r 2 g e n _ c l e a n _ r e p o r t
[ . . . ]

model:
p r o t o : m u l t i m o d a l _ e n c o d i n g
e n c o d e r :

p r o t o : a l l e n a i / b i o m e d _ r o b e r t a _ b a s e
cnn:

p r o t o : CNN
backbone: d e n s e n e t 1 6 9
[ . . . ]

p r o j e c t i o n :
i n _ f e a t u r e s : 1664
o u t _ f e a t u r e s : 768

t r a i n e r :
o p t i m i z e r : Adam
l e a r n i n g _ r a t e : 5e −5
[ . . . ]

v a l i d a t o r :
m e t r i c s : [ accu racy , F1− s c o r e ]
[ . . . ]

---

Code Listing 2: Generic configuration describing a so-
lution in ViLMedic. A solution can be run for training
and then evaluation.

In the next sections, we detail the solutions existing
in ViLMedic. They consist of results we repli-
cated from the literature but also of new, original
results available for future research. We divide our
solutions in four medical tasks: Medical Visual
Question Answering (§3.2.1), Radiology report
generation (§3.2.2) and summarization (§3.2.3),
and finally Vision-Language self-supervised learn-
ing (§3.2.4).

3.2.1 Medical Visual Question Answering
VQA in the medical domain consists of building
systems that answer open-ended questions about
medical images ranging from x-rays, MRI to
CT scans. Hosted by the ImageCLEF5 initiative,
the goal of the task is twofold: provide help to
patients that can access structured and unstructured
data related to their health and helping them
better understand their conditions and enhance

5https://www.imageclef.org/
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the clinicians’ confidence in interpreting complex
medical images by a "second opinion".

ViLMedic replicates and even surpasses in terms of
accuracy the winning solution6 (Gong et al., 2021)
on the VQA-Med 2021 dataset (Ben Abacha et al.,
2021).

3.2.2 Radiology report generation (RRG)

An important new application of NLG is to build
support systems that take x-ray images of a patient
and generate a textual report describing clinical
observations in the images. This task has evolved
quickly over the last year in term of evaluation as
most NLG metrics (such as BLEU (Papineni et al.,
2002) or METEOR (Banerjee and Lavie, 2005))
were unsuitable to score a generated report. Rather,
metrics evaluating factual correctness (Zhang
et al., 2020b) or factual completeness and consis-
tency (Miura et al., 2021) were introduced.

ViLMedic replicates the state-of-the-art solutions
in terms of these newly introduced metrics. We re-
lease these results for the two chest x-rays datasets
evaluated in the literature: MIMIC-CXR (Johnson
et al., 2019) and Indiana University (IU) - Chest
X-Rays (Demner-Fushman et al., 2016). Finally,
we provide a third system trained on Spanish radi-
ology reports from the PadChest dataset (Bustos
et al., 2020). As far as we know, this is the first
attempt at radiology report generation in Spanish.

3.2.3 Radiology report summarization (RRS)

Given the Findings and/or Background sections of
a radiology report, the goal is to generate a sum-
mary (called an Impression section in radiology
reports) that highlights the key observations and
conclusions of the radiology study. Automating
this summarization task is critical because the
Impression section is the most important part of a
radiology report, and manual summarization can
be time-consuming and error prone.

The evaluation methods are the same as for Ra-
diology Report Generation (the generated impres-
sion is treated as the generated report). Neverthe-
less, major previous works (Zhang et al., 2020b;
Ben Abacha et al., 2021) evaluated their contri-
butions on closed test-sets (either for privacy or

6https://www.aicrowd.com/challenges/
imageclef-2021-vqa-med-vqa/leaderboards

challenge-related reasons). Our decision was there-
fore to implement the best and most straightforward
solution (Mahajan et al., 2021) of the MEDIQA
challenge (Ben Abacha et al., 2021) and to train
it on the official splits of the MIMIC-CXR and
IU datasets, providing a strong baseline for future
research in this direction. Finally, ViLMedic repli-
cates the first attempt in Multimodal Radiology
Report Summarization (Delbrouck et al., 2021).

3.2.4 Vision-Language self-supervised
learning

Vision-Language self-supervised learning aims
to improve visual representations of medical
images or text by combining the benefits of both
learning from abundant data and unsupervised
statistical approaches. Such representations can be
learned modality-wise by using autoencoders or
improved by maximizing the agreement between
true image-text pairs versus random pairs via a
bidirectional objective as in contrastive learning.
Successful training leads to higher-quality in-
domain representations that capture the subtlety of
visual and textual features required for multimodal
understanding tasks.

The ViLMedic library has replicated the main
framework for learning visual representations by
exploiting the naturally occurring pairing of im-
ages and textual data. In the medical domain, the
newly introduced ConVIRT (Zhang et al., 2020a)
and GLoRIA (Huang et al., 2021) architectures are
available and can be trained to replicate the same
validation losses communicated in the author’s pa-
per. We also make available the widely adopted
CLIP (Radford et al., 2021) network and its com-
ponents the VAE (Kingma and Welling, 2014) and
DALLE (Ramesh et al., 2021) model. These mod-
els are available in our model-zoo for one or more
of these datasets: CheXpert (Irvin et al., 2019),
MIMIC-CXR (Johnson et al., 2019) and IU - Chest
X-Rays (Demner-Fushman et al., 2016) and Pad-
Chest dataset (Bustos et al., 2020).

3.3 Model-zoo

ViLMedic hosts a model-zoo of trained solutions.
That is, a trained solution can be downloaded
and instantiated in Python using one line of code
(§3.3.1). The user can run the model of the solu-
tion on custom data as well as access the blocks
separately for further investigation (§3.3.2). Our
documentation also provides dedicated code ex-
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hibiting the advanced features of our pretrained
models, such as personalized language generation
or zero shot classification (see example in appendix
E).

3.3.1 Basic usage
ViLMedic hosts a model-zoo similar to Hugging-
Face. Each pretrained model is referenced by a
model name. The list of available models and their
respective name is available in the documentation7.
For example, say we would like to instantiate a
pretrained ConVIRT model on MIMIC-CXR. Here
is the corresponding Python code:

from vilmedic import AutoModel
model, processor = AutoModel.
from_pretrained("selfsup/convirt-mimic")

The model variable references the "model" part
of the solution, as shown in listing 2. Technically,
it is a PyTorch module with all its declared blocks.
The processor variable is a custom ViLMedic
object that contains the pre-processing code used
during training and evaluation.

3.3.2 Inference
To run the model with a custom example, one can
use the inference function of processor, that
will trigger the required processing on the user
input. The object return is a correctly formatted
object to be input into the model:

batch = processor.inference(
seq=["acute cardiopulmonary process."],
image=["my_x_ray.jpg"])

out = model(**batch)

print(out.keys())
>>> dict_keys([’loss’, ’loss_l’,
’loss_v’, ’linguistic’, ’visual’])

The images are processed using the transform
package of PyTorch and the inference text
is processed in two steps: preprocessing and
tokenization. Preprocessing consists of cleaning
the special characters and punctuation while
tokenization splits words into word-pieces. The
tokenizers supported in ViLMedic are Hugging-
Face tokenizers (more information is available in
Appendix C).

If a user wants more details on the processing per-
formed, they can directly access the said objects:

7https://vilmedic.readthedocs.io/en/
latest/vilmedic/model_zoo/overview.html

print(processor.seq.processing)
>>> <function r2gen_clean_report at ...>
print(processor.seq.tokenizer)
>>> PreTrainedTokenizerFast(
name_or_path=’allenai/biomed_..’,
vocab_size=50265, model_max_len=512,
...)

print(processor.image.transform)
>>> Compose(

Resize(size=(224, 224),
interpolation=bilinear),
ToTensor()
Normalize(mean=(...),

std=(...)))

In our example, the model returns the global loss,
the linguistic and visual loss, and the linguistic and
visual embedding. The outputs of each model are
detailed in our documentation.

Finally, a user can investigate the block of a so-
lution by directly accessing the model attributes.
Our documentation states that a ConVIRT model
is composed of a CNN (visual) and a Trans-
former encoder (linguistic) and a loss func-
tion (loss_fn). The user can access the CNN
and the loss as such:

print(model.visual)
>>> resnet50(output_layer=avgpool,
dropout_out=0.0, freeze=False,
pretrained=True)

print(model.loss_fn)
>>> ConVIRTLoss(

(cos_loss): CosineSimilarity()
(tau): 0.1
(lambda_): 0.75

)

Because the CNN block is a PyTorch module,
a user can simply use torch.save(model.
visual.state_dict(), "cnn_weights.
pth") for their own project.

4 Conclusion and Future Work

We presented ViLMedic, a framework for research
at the intersection of vision and language in med-
ical AI. We have reproduced and make publicly
available state-of-the-art medical AI models, as
well as implemented custom solutions that exceed
their performance. Our goal is to maintain the li-
brary up-to-date with new blocks and solutions that
can serve as a standard for benchmarking results
across vision and language medical AI tasks. We
also hope our library will be used to generate new
ideas and publications.
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A Ethical considerations

ViLMedic is a framework to train AI models
on medical data. ViLMedic does not offer the
possibility to download data requiring the signing
of a data use agreement (such as MIMIC-CXR,
PadChest and cheXpert). ViLMedic does provide
download links for open access and sharable
medical data (license CC BY-NC-ND 4.0), such as
the Indiana University - Chest X-Rays dataset.

Though extracting training data from large lan-
guage models have been revealed possible by using
adversarial techniques (Carlini et al., 2021), our
released pretrained models have been trained on de-
identified datataset that are stripped of any personal
information.

B ViLMedic

Figure 1: Overview of ViLMedic

C Formatting, preprocessing and
tokenization

In ViLMedic, datasets undergo three stages of pro-
cessing, namely formatting, preprocessing and
tokenization. This pipeline ensures a dataset is
correctly process to replicate a solution. Format-
ting concerns the encoding of the dataset content
into right file format (ViLMedic uses plain text files
for language data and any digital images filetype
such as jpg, png or dicom) and the division into the
correct training, validation and test splits dictated
by the dataset or a paper. The preprocessing phase
consists of a Python script that takes care of re-
moving stop-words, digits or punctuation from the

text. Finally, tokenization divides the words into
word-pieces. In ViLMedic, tokenization is handled
by HuggingFace tokenizers.

D Results visualization

ViLMedic offer tools to visualize the output of the
pretrained models of the model zoo.

Figure 2: Plot of the linguistic representation learned
by ViLMedic ConVIRT (c.f. Table 1). Top: all training
data-points. Bottom: sampled data-points from the vali-
dation set

Figure 3: Reconstruction of our VAE for MIMIC-CXR
(c.f. ViLMedic VAE Table 1), PadChest and Indiana
dataset respectively
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Loss BS Accuracy BLEU ROUGE-L F1-CheXbert FCE

RRG
MIMIC-CXR test
R2Gen (Chen et al., 2020) 8.6 34.60
M2 Trans (Miura et al., 2021) 10.5 44.70 27.3
ViLMedic biobert 8.20 22.45 48.20 28.2
Indiana test
ViLMedic biobert 8.78 29.19 32.20
PadChest test
ViLMedic biobert 4.02 16.32

RRS
MIMIC-CXR test
QIAI (Delbrouck et al., 2021) 41.12 69.05
ViLMedic biobert 45.98 74.64
Indiana test
ViLMedic biobert 77.42 70.68

Medical VQA
VQA-Med 2021 out-of-domain
Yunnan biobert (Xiao et al., 2021) 36.2 40.2
SYSU-HCP ensemble (Gong et al., 2021) 38.2 41.6
ViLMedic VQA ensemble 37.8 41.0
VQA-Med 2021 in-domain
SYSU-HCP ensemble (Gong et al., 2021) 69.2
ViLMedic VQA 69.0
ViLMedic VQA ensemble 72.0

Self-supervised learning
ConVIRT

MIMIC-CXR validation
ConVIRT (Zhang et al., 2020a) 2.20 32
ViLMedic ConVIRT 2.09 32
Indiana validation
ViLMedic ConVIRT 1.97 32
PadChest validation
ViLMedic ConVIRT 2.91 32

GLoRIA
CheXpert validation
GLoRIA (Huang et al., 2021) 9.67 48
ViLMedic GLoRIA 9.67 48
MIMIC-CXR validation
ViLMedic GLoRIA 9.27 48

simCLR
MIMIC-CXR validation
ViLMedic simCLR 3.06 128

DALLE
MIMIC-CXR validation
ViLMedic VAE 1e-3
ViLMedic DALLE 2.66 32

Table 1: Non exhaustive list of solutions and pretrained models. Rows highlighted in grey are available in the
model-zoo. F1-CheXbert is the micro-avg over atelectasis, cardiomegaly, consolidation, edema, and pleural effusion
to stay consistent with the literature. BS means batch-size, which is important to compare contrastive-based loss.
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E Case by case feature

When suitable, we also release code snippets on
how to use our solutions to output predictions. For
example, a RRG pretrained model can be used to
generate reports using HuggingFace Transformers:

model, processor = AutoModel.
from_pretrained("rrg/roberta-mimic")
batch = processor.inference(image=[

"my_x_ray_1.jpg",
"my_x_ray_2.jpg",

])

# Using huggingface generate method
hyps = model.dec.generate(

input_ids=torch.ones(...)
encoder_hidden_states=model.encode(
**batch),
num_return_sequences=1,
max_length=75,
num_beams=8,

)
hyps = [processor.tokenizer.decode(h...
print(hyps)
>> [’no acute cardiopulmonary process.’,
’in comparison with study of ...’]

Code Listing 3: Sample code available in ViLMedic
documentation to generate reports using a pretrained
model.

F Usecase: Replicating a RRG result
using ViLMedic

RRG is a difficult task. Not only does it requires
complex architecture to generate language (beam-
search, sampling, model ensembling) but also the
evaluation methodologies differ from natural image
captioning. Say a user would like to replicate the
latest results (Miura et al., 2021) on the Indiana Uni-
versity - chest xray dataset with the F1-CheXbert
score8, they must:

1. Download the dataset on kaggle

2. Divide the dataset according to the official
splits

3. Make sure to process the reports (the three
steps of Appendix C) as detailed in the refer-
ence paper

4. Bridge the gap between the data and an
open-implementation of the Meshed-Memory
Transformer (Cornia et al., 2020) as used in
Miura et al. (2021)

8Recall that this metric is the accuracy between the
CheXbert classification output of the ground-truth report and
the generated report

5. Copy the code of ChexBert9, download the
pretrained weights, and write an interface
between the output of the Meshed-Memory
Transformer and the input of ChexBert.

6. They must make sure that the Meshed-
Memory Transformer supports beam-search,
model-ensembling, and SCST training (Ren-
nie et al., 2017) to optimize the F1-ChexBert
score using Reinforcement Learning

7. Finally, they must make sure there is no con-
flict between the Python, HuggingFace Trans-
formers and pyTorch version of the process-
ing scripts (tokenizers), the Meshed-Memory
Transformer and ChexBert (exclusively work-
ing with HuggingFace transformers 3.0.2)

Using ViLMedic, the said user can download the
data using:
vilmedic-download RRG,indiana-
images-512
and train 6 models as such:
f o r i in { 1 . . 6 }
do

py thon b i n / t r a i n . py \
c o n f i g /RRG/ biomed − r o b e r t a − b a s e l i n e −

i n d i a n a . yml \
v a l i d a t o r . m e t r i c s =[ROUGEL,METEOR,

c h e x b e r t ] \
v a l i d a t o r . beam_s ize =8 \
name= m y _ r r g _ i n d i a n a

done

And then ensemble the 3 best trained models:
py thon b i n / ensemble . py
c o n f i g /RRG/ biomed − r o b e r t a − b a s e l i n e −

i n d i a n a . yml \
ensemblo r . m e t r i c s =[ c h e x b e r t ] \
ensemblo r . beam_s ize =8 \
ensemblo r . mode= b e s t −3 \
name= m y _ r r g _ i n d i a n a

Moreover, all language components are base on
HuggingFace, so that the user can refer to their
documentation for further exploration.

We provide further information for each solution
in our documentation10.

9https://github.com/stanfordmlgroup/
CheXbert

10https://vilmedic.readthedocs.io/en/
latest/vilmedic/solutions/rrg.html
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Abstract

Pre-trained language models have been pre-
vailed in natural language processing and be-
come the backbones of many NLP tasks, but
the demands for computational resources have
limited their applications. In this paper, we
introduce TextPruner, an open-source model
pruning toolkit designed for pre-trained lan-
guage models, targeting fast and easy model
compression. TextPruner offers structured post-
training pruning methods, including vocabulary
pruning and transformer pruning, and can be
applied to various models and tasks. We also
propose a self-supervised pruning method that
can be applied without the labeled data. Our ex-
periments with several NLP tasks demonstrate
the ability of TextPruner to reduce the model
size without re-training the model. 1

1 Introduction

Large pre-trained language models (PLMs) (De-
vlin et al., 2019; Liu et al., 2019) have achieved
great success in a variety of NLP tasks. However,
it is difficult to deploy them for real-world applica-
tions where computation and memory resources are
limited. Reducing the pre-trained model size and
speeding up the inference have become a critical
issue.

Pruning is a common technique for model com-
pression. It identifies and removes redundant or
less important neurons from the networks. From
the view of the model structure, pruning methods
can be categorized into unstructured pruning and
structured pruning. In the unstructured pruning,
each model parameter is individually removed if
it reaches some criteria based on the magnitude
or importance score (Han et al., 2015; Zhu and
Gupta, 2018; Sanh et al., 2020). The unstructured
pruning results in sparse matrices and allows for
significant model compression, but the inference

1The source code and the documentation are available at
http://textpruner.hfl-rc.com

speed can hardly be improved without specialized
devices. While in the structured pruning, rows or
columns of the parameters are removed from the
weight matrices (McCarley, 2019; Michel et al.,
2019; Voita et al., 2019; Lagunas et al., 2021; Hou
et al., 2020). Thus, the resulting model speeds up
on the common CPU and GPU devices.

Pruning methods can also be classified into
optimization-free methods (Michel et al., 2019)
and the ones that involve optimization (Frankle and
Carbin, 2019; Lagunas et al., 2021). The latter usu-
ally achieves higher performance, but the former
runs faster and is more convenient to use.

Pruning PLMs has been of growing interest.
Most of the works focus on reducing transformer
size while ignoring the vocabulary (Abdaoui et al.,
2020). Pruning vocabulary can greatly reduce the
model size for multilingual PLMs.

In this paper, we present TextPruner, a model
pruning toolkit for PLMs. It combines both trans-
former pruning and vocabulary pruning. The pur-
pose of TextPruner is to offer a universal, fast, and
easy-to-use tool for model compression. We ex-
pect it can be accessible to users with little model
training experience. Therefore, we implement the
structured optimization-free pruning methods for
its convenient use and fast computation. Pruning
a base-sized model only requires several minutes
with TextPruner. TextPruner can also be a useful
analysis tool for inspecting the importance of the
neurons in the model.

TextPruner has the following highlights:
• TextPruner is designed to be easy to use. It

provides both Python API and Command Line
Interface (CLI). Working with either of them
requires only a couple of lines of simple code.
Besides, TextPruner is non-intrusive and com-
patible with Transformers (Wolf et al., 2020),
which means users do not have to change their
models that are built on the Transformers li-
brary.

35



• TextPruner works with different models and
tasks. It has been tested on tasks like text
classification, machine reading comprehen-
sion (MRC), named entity recognition (NER).
TextPruner is also designed to be extensible
for other models.

• TextPruner is flexible. Users can control the
pruning process and explore pruning strate-
gies via tuning the configurations to find the
optimal configurations for the specific tasks.

2 Pruning Methodology

We briefly recall the multi-head attention (MHA)
and the feed-forward network (FFN) in the trans-
formers (Vaswani et al., 2017). Then we describe
how we prune the attention heads and the FFN
based on the importance scores.

2.1 MHA and FFN

Suppose the input to a transformer is X ∈ Rn×d

where n is the sequence length and d is the hidden
size. the MHA layer with Nh heads is parameter-
ized by WQ

i ,WK
i ,W V

i ,WO
i ∈ Rdh×d
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where dh = d/Nh is the hidden size of each
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Each transformer contains a fully connected
feed-forward network (FFN) following MHA. It
consists of two linear transformations with a GeLU
activation in between

FFNW1,b1,W2,b2(X) =

GeLU(XW1 + b1)W2 + b2 (3)

where W1 ∈ Rd×dff , W2 ∈ Rdff×d, b1 ∈ Rdff ,
b2 ∈ Rd. dff is the FFN hidden size. The
adding operations are broadcasted along the se-
quence length dimension n.

2.2 Pruning with Importance Scores
With the hidden size fixed, The size of a trans-
former can be reduced by removing the attention
heads or removing the intermediate neurons in the
FFN layer (decreasing dff , which is mathemat-
ically equal to removing columns from W1 and
rows from W2). Following Michel et al. (2019),
we sort all the attention heads and FFN neurons ac-
cording to their proxy importance scores and then
remove them iteratively.

A commonly used importance score is the sen-
sitivity of the loss with respect to the values of the
neurons. We denote a set of neurons or their out-
puts as Θ. Its importance score is computed by

IS(Θ) = Ex∼X

∣∣∣∣
∂L(x)

∂Θ
Θ

∣∣∣∣ (4)

The expression in the absolute sign is the first-order
Taylor approximation of the loss L around Θ = 0.
Taking Θ to be the output of an attention head hi,
IS(Θ) gives the importance score of the head i;
Taking Θ to be the set of the i-th column of W1,
i-the row of W2 and the i-th element of b1, IS(Θ)
gives the importance score of the i-th intermeidate
neuron in the FFN layer.

A lower importance score means the loss is less
sensitive to the neurons. Therefore, the neurons
are pruned in the order of increasing scores. In
practice, we use the development set or a subset of
the training set to compute the importance score.

2.3 Self-Supervied Pruning
In equation (4), the loss L usually is the training
loss. However, there can be other choices of L. We
propose to use the Kullback–Leibler divergence to
measure the varitaion of the model outputs:

LKL(x) = KL(stopgrad(q(x))||p(x)) (5)

where q(x) is the original model prediction distribu-
tion and p(x) is the to-be-pruned model prediction
distribution. The stopgrad operation is used to
stop back-propagating gradients. An increase in
LKL indicates an increase in the diviation of p(x)
from the original prediction q(x). Thus the gradient
of LKL reflects the sensitivity of the model to the
value of the neurons. Evaluation of LKL does not
require label information. Therefore the pruning
process can be performed in a self-supervised way
where the unpruned model provides the soft-labels
q(x). We call the method self-supervised prun-
ing. TextPruner supports both supervised pruning
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Figure 1: Three pruning modes in TextPruner.

(where L is the training loss) and self-supervised
pruning. We will compare them in the experiments.

3 Overview of TextPruner

3.1 Pruning Mode

As illustrated in Figure 1, there are three pruning
modes In TextPruner.

Vocabulary Pruning The pre-trained models
have a large vocabulary, but some tokens in the
vocabulary rarely appear in the downstream tasks.
These tokens can be removed to reduce the model
size and accelerate the training speed of the tasks
that require predicting probabilities over the whole
vocabulary. In this mode, TextPruner reads and to-
kenizes an input corpus. TextPruner goes through
the vocabulary and checks if the token in the vocab-
ulary has appeared in the text file. If not, the token
will be removed from both the model’s embedding
matrix and the tokenizer’s vocabulary.

Transformer Pruning Previous studies (Michel
et al., 2019; Voita et al., 2019) have shown that
not all attention heads are equally important in the
transformers, and some of the attention heads can
be pruned without performance loss (Cui et al.,
2022). Thus, Identifying and removing the least
important attention heads can reduce the model
size and have a small impact on performance.

In this mode, TextPruner reads the examples and
computes the importance scores of attention heads
and the feed-forward networks’ neurons. The heads
and the neurons with the lowest scores are removed
first. This process is repeated until the model has
been reduced to the target size. TextPruner also
supports custom pruning from user-provided masks
without computing the importance scores.

Pipeline Pruning In this mode, TextPruner per-
forms transformer pruning and vocabulary pruning
automatically to fully reduce the model size.

3.2 Pruners

The pruners are the cores of TextPruner,
and they perform the actual pruning process.
There are three pruner classes, corresponding
to the three aforementioned pruning modes:
VocabularyPruner, TransformerPruner and
PipelinePruner. Once the pruner is intialized, call
the pruner.prune(. . .) to start pruning.

3.3 Configurations

The following configuration objects set the pruning
strategies and the experiment settings.

GeneralConfig It sets the device to use (CPU or
CUDA) and the output directory for model saving.

VocabularyPruningConfig It sets the token
pruning threshold min_count and whether prun-
ing the LM head prune_lm_head. The token
is to be removed from the vocabulary if it ap-
pears less than min_count times in the corpus; if
prune_lm_head is true, TextPruner prunes the
linear transformation in the LM head too.

TransformerPruningConfig The transformer
pruning parameters include but not are limited to:

• pruning_method can be mask or iterative.
If it is iterative, the pruner prunes the model
based on the importance scores; if it is mask,
the pruner prunes the model with the masks
given by the users.

• target_ffn_size denotes the average
FFN hidden size dff per layer.

• target_num_of_heads denotes the aver-
age number of attention heads per layer.

• n_iters is number of pruning iterations.
For example, if the original model has Nh

heads per layer, the target model has N ′h
heads per layer, the pruner will prune (Nh −
N ′h)/n_iters heads on average per layer per
iteration. It also applies to the FFN neurons.

• If ffn_even_masking is true, all the FFN
layers are pruned to the same size dff ; other-
wise, the FFN sizes vary from layer to layer
and their average size is dff .

• If head_even_masking is true, all the
MHAs are pruned to the same number of
heads; otherwise, the number of attention
heads varies from layer to layer.
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Figure 2: The workflow of TextPruner. The yellow blocks are the general arguments for any pruners. The green
blocks should be provided for the TransformerPruner and PipelinePruner. The blue blocks should be provided for
the VocabularyPruner and PipelinePruner.

Figure 3: A typical TextPruner workflow for trans-
former pruning and vocabulary pruning.

• If ffn_even_masking is false, the FFN
hidden size of each layer is restricted to be
a multiple of multiple_of. It make the
model structure friendly to the device that
works most efficiently when the matrix shapes
are multiple of a specific size.

• If use_logits is true, self-supervised prun-
ing is enabled.

All the configurations can be initialized manu-
ally in python scripts or from JSON files (for the
CLI, the configurations can only be initialized from
the JSON files). An example of the configuration
in a Python script is shown in Figure 3.

3.4 Other utilities
TextPruner contains diagnostic tools such as sum-
mary which inspects and counts the model pa-
rameters, and inference_time which measures the
model inference speed. Readers may refer to the

examples in the repository to see their usages.

3.5 Usage and Workflow

TextPruner provides both Python API and CLI. The
typical workflow is shown in Figure 2. Before call-
ing or Initializing TextPruner, users should prepare:

1. A trained a model that needs to be pruned.
2. For vocabulary pruning, a text file that defines

the new vocabulary.
3. For transformer pruning, a python script file

that defines a dataloader and an adaptor.
4. For pipeline pruning, both the text file and the

python script file.

Adaptor It is a user-defined function that takes
the model outputs as the argument and returns the
loss or logits. It is responsible for interpreting the
model outputs for the pruner. If the adaptor is
None, the pruner will try to infer the loss from the
model outputs.

Pruning with Python API First, initialize
the configurations and the pruner, then call
pruner.prune with the required arguments, as
shown in Figure 2. Figure 3 shows an example.
Note that we have not constructed the GeneralCon-
fig and VocabularyPruningConfig. The pruners will
use the default configurations if they are not speci-
fied, which simplifies the coding.

Pruning with CLI First create the configura-
tion JSON files, then run the textpruner-cli.
Pipeline pruning example:

textpruner-cli \
--pruning_mode pipeline \
--configurations vocab.json trm.json \
--model_class BertForClassification \
--tokenizer_class BertTokenizer \
--model_path models/ \
--vocabulary texts.txt \
--dataloader_and_adaptor dataloader.py
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Model Vocabulary size Model size Dev (en) Dev (zh) Test (en) Test (zh)

XLM-R 250002 1060 MB (100%) 84.8 75.1 85.7 75.0

+ Vocabulary Pruning on en 26653 406 MB (38.3%) 84.6 - 85.9 -
+ Vocabulary Pruning on zh 23553 397 MB (37.5%) - 74.7 - 74.5
+ Vocabulary Pruning on en and zh 37503 438 MB (41.3%) 84.8 74.3 85.8 74.5

Table 1: The accuracy scores (×100%) of models with the pruned vocabulary on XNLI dev set and test set.

Structure 12 10 8 6

3072 100%
(1.00x)

89%
(1.08x)

78%
(1.19x)

67%
(1.30x)

2560 94%
(1.08x)

83%
(1.18x)

72%
(1.29x)

61%
(1.44x)

2048 89%
(1.17x)

78%
(1.28x)

67%
(1.43x)

56%
(1.63x)

1536 83%
(1.29x)

72%
(1.42x)

61%
(1.63x)

50%
(1.90x)

Table 2: Transformer sizes (listed as percentages) and
speedups (listed in the parentheses) of different struc-
tures relative to the base model (12, 3072).

3.6 Computational Cost

Vocabulary Pruning The main computational
cost in vocabulary pruning is tokenization. This
process will take from a few minutes to tens of
minutes, depending on the corpus size. How-
ever, the computational cost is negligible if the
pre-tokenized text is provided.

Transformer Pruning The main computational
cost in transformer pruning is the calculation of im-
portance scores. It involves forward and backward
propagation of the dataset. This cost is proportional
to n_iters and dataset size. As will be shown
in Section 4.2, in a typical classification task, a
dataset with a few thousand examples and setting
n_iters around 10 can lead to a decent perfor-
mance. This process usually takes several minutes
on a modern GPU (e.g., Nvidia V100).

3.7 Extensibility

TextPruner supports different pre-trained models
and the tokenizers via the model structure defi-
nitions and the tokenizer helper functions regis-
tered in the MODEL_MAP dictionary. Updating
TextPruner for supporting more pre-trained models
is easy. Users need to write a model structure def-
inition and register it to the MODEL_MAP, so that
the pruners can recognize the new model.

4 Experiments

In this section, we conduct several experiments to
show TextPruner’s ability to prune different pre-
trained models on different NLP tasks. We mainly
focus on the text classification task. We list the re-
sults on the MRC task and NER task with different
pre-trained models in the Appendix.

4.1 Dataset and Model
We use the Cross-lingual Natural Language Infer-
ence (XNLI) corpus (Conneau et al., 2018) as the
text classification dataset and build the classifica-
tion model based on XLM-RoBERTa (Conneau
et al., 2020). The model is base-sized with 12
transformer layers with FFN size 3072, hidden size
768, and 12 attention heads per layer. Since XNLI
is a multilingual dataset, we fine-tune the XLM-R
model on the English training set and test it on the
English and Chinese test sets to evaluate both the
in-language and zero-shot performance.

4.2 Results on Text Classification
Effects of Vocabulary Pruning As XLM-R is a
multilingual model, We conduct vocabulary prun-
ing on XLM-R with different languages, as shown
in Table 1. We prune XLM-R on the training set
of each language, i.e., we only keep the tokens that
appear in the training set.

When pruning on the English and Chinese train-
ing sets separately, the performance drops slightly .
After pruning on both training sets, the model size
still can be greatly reduced by about 60% while
keeping a decent performance.

Vocabulary pruning is an effective method for
reducing multilingual pre-trained model size, and it
is especially suitable for tailoring the multilingual
model for specific languages.

Effects of Transformer Pruning For simplicity,
we use the notation (H,F ) to denote the model
structure, where H is the average number of atten-
tion heads per layer, F is the average FFN hidden
size per layer. With this notation, the original (un-
pruned) model is (12, 3072). Before we show the
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Figure 4: The Performance of the pruned models with
different structures on the test sets. The x-axis repre-
sents different average numbers of attention heads; the
y-axis represents different average FFN sizes. Left col-
umn: the accuracy scores on the English test set; Right
column: the accuracy scores on the Chinese test set.
Models in the first row have homogenous structures,
while models in the second row do not. UHF stands for
uneven heads and FFN neurons.

results on the specific task, we list the transformer
sizes and their speedups of different target struc-
tures relative to the unpruned model (12, 3072) in
the Table 2.

We compute the importance scores on the En-
glish development set. The number of iterations
niters is set to 16. We report the mean accuracy of
five runs. The performance on English and Chinese
test sets are shown in Figure 7. The top-left corner
of each heatmap represents the performance of the
original model. The bottom right corner represents
the model (6, 1536), which contains half attention
heads and half FFN neurons.

The models in heatmaps from the first row have
homogenous structures: each transformer in the
model has the same number of attention heads and
same FFN size, while the models in the bottom
heatmaps have uneven numbers of attention heads
and FFN sizes in transformers. We use the abbre-
viation UHF (Uneven Heads and FFN neurons) to
distinguish them from homogenous structures. We
see that by allowing each transformer to have dif-
ferent sizes, the pruner has more freedom to choose
the neurons to prune, thus the UHF models perform
better than the homogenous ones.

Note that the model is fine-tuned on the English
dataset. The performance on Chinese is zero-shot.
After pruning on the English development set, the

Figure 5: Model Performance on the English test set
with different number of iterations.

drops in the performance on Chinese are not larger
than the drops in the performance on English. It
means the important neurons for the Chinese task
remain in the pruned model. In the multilingual
model, the neurons that deal with semantic under-
standing do not specialize in specific languages but
provide cross-lingual understanding abilities.

Figure 5 shows how niters affects the perfor-
mance. We inspect both the non-UHF model
(6, 1536) and the UHF model (6, 1536)UHF. The
solid lines denote the average performance over
the five runs. The shadowed area denotes the stan-
dard deviation. In all cases, the performance grows
with the niters. Pruning with only one iteration
is a bad choice and leads to very low scores. We
suggest setting niters to at least 8 for good enough
performance.

In Figure 5 we also compare the supervised
pruning (with L being the cross-entropy loss
with the ground-truth labels) and the proposed
self-supervised pruning (with L being the KL-
divergence Eq (5)) . Although no label information
is available, the self-supervised method achieves
comparable and sometimes even higher results.

How much data are needed for model pruning?
To answer this question, we randomly sample 10%,
20%, . . ., 90%, 100% examples from the English
development set for computing importance scores.
We inspect the (6, 1536)UHF model. Each experi-
ment has been run five times. The results are shown
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Figure 6: Model Performance on the test set with dif-
ferent number of examples for computing importance
scores. Left y-axis: accuracy on Enligh. Right y-axis:
accuracy on Chinese.

in Figure 6. With about 70% examples (about 1.7K
examples) from the development set, the pruned
model achieves a performance that is nearly com-
parable with the model pruned with the full devel-
opment set (2490 examples).

5 Conclusion and Future Work

This paper presents TextPruner, a model prun-
ing toolkit for pre-trained models. It leverages
optimization-free pruning methods, including vo-
cabulary pruning and transformer pruning to re-
duce the model size. It provides rich configuration
options for users to explore and experiment with.
TextPruner is suitable for users who want to prune
their model quickly and easily, and it can also be
used for analyzing pre-trained models by pruning,
as we did in the experiments.

For future work, we will update TextPruner to
support more pre-trained models, such as the gen-
eration model T5 (Raffel et al., 2020). We also
plan to combine TextPruner with our previously
released knowledge distillation toolkit TextBrewer
(Yang et al., 2020) into a single framework to pro-
vide more effective model compression methods
and a uniform interface for knowledge distillation
and model pruning.
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A Datasets and Models

We experiment with different pre-trained models
to test TextPruner’s ability to prune different mod-
els. For the MRC task, we use SQuAD (Rajpurkar
et al., 2016) dataset and RoBERTa (Liu et al.,
2019) model; For the NER task, we use CoNLL
2003 (Tjong Kim Sang and De Meulder, 2003) and
BERT (Devlin et al., 2019) model. All the models
are base-sized, i.e., 12 transformer layers with a
hidden size of 768, an FFN size of 3072, and 12
attention heads per layer.

B Transformer Pruning on MRC

We compute the importance scores on a subset of
the training set (5120 examples). The F1 score
on the SQuAD development set is listed in Table
3. (12, 3072) is the unpruned model. The per-
formance grows with the niters. The number of
iterations also plays an important role on model
performance in the SQuAD task. We also see that
pruning with only one iteration is a bad choice and
leads to low scores. Setting niters to at least 8
achieves good enough performance.

C Transformer Pruning on NER

We compute the importance scores on the CoNLL
2003 development set. The F1 score on the test
is listed in Table 4. We also see large gaps in
performance between niters = 4 and niters = 8.

The performance of the pruned models with dif-
ferent structures is shown in Figure 7. We only con-
sider the UHF case for it can achieve the best over-
all performance. The number of iterations niters is
set to 16.
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Model 1 2 4 8 16

(12, 3072) 91.4

(8, 2048) 76.4 80.3 81.9 82.9 82.5
(8, 2048)UHF 87.5 86.4 87.6 88.3 88.4
(6, 1536) 12.8 42.6 49.5 51.5 56.5
(6, 1536)UHF 47.2 55.6 66.1 74.1 75.2

Table 3: The F1 score on SQuAD. Each score is aver-
aged over five runs. Different columns represent results
under different number of iterations. We bold the best
F1 in each row.

Model 1 2 4 8 16 32

(12, 3072) 91.3

(8, 2048) 88.5 88.4 88.7 89.2 89.2 89.4
(8, 2048)UHF 81.8 90.0 90.6 90.7 90.8 90.8
(6, 1536) 33.6 56.2 62.4 80.5 83.4 84.1
(6, 1536)UHF 9.8 67.6 80.2 86.2 87.0 87.3

Table 4: The F1 score on CoNLL 2003. Each score is
averaged over five runs.

Figure 7: The Performance of the pruned models with
different structures on the CoNLL 2003 test set. Each
score is averaged over five runs.
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Abstract
Open Information Extraction (OIE) is the task
of extracting facts from sentences in the form
of relations and their corresponding arguments
in schema-free manner. Intrinsic performance
of OIE systems is difficult to measure due
to the incompleteness of existing OIE bench-
marks: ground truth extractions do not group
all acceptable surface realizations of the same
fact that can be extracted from a sentence. To
measure performance of OIE systems more re-
alistically, it is necessary to manually annotate
complete facts (i.e., clusters of all acceptable
surface realizations of the same fact) from in-
put sentences. We propose AnnIE: an inter-
active annotation platform that facilitates such
challenging annotation tasks and supports cre-
ation of complete fact-oriented OIE evaluation
benchmarks. AnnIE is modular and flexible
in order to support different use case scenar-
ios (i.e., benchmarks covering different types
of facts) and different languages. We use An-
nIE to build two complete OIE benchmarks:
one with verb-mediated facts and another with
facts encompassing named entities. We eval-
uate several OIE systems on our complete
benchmarks created with AnnIE. We publicly
release AnnIE under non-restrictive license.1

1 Introduction

Open Information Extraction (OIE) is the task of
extracting relations and their arguments from nat-
ural language text in schema-free manner (Banko
et al., 2007). Consider the input sentence "Edmund
Barton, who was born in Australia, was a judge".
Without the use of a pre-specified schema, an OIE
system should extract the triples ("Edmund Bar-
ton"; "was born in"; "Australia") and ("Edmund
Barton"; "was"; "judge"). The output of OIE sys-
tems is used in many downstream tasks, including
open link prediction (Broscheit et al., 2020), auto-
mated knowledge base construction (Gashteovski

1https://github.com/nfriedri/
annie-annotation-platform

et al., 2020), question answering (Khot et al., 2017)
and text summarization (Xu and Lapata, 2021).

Intrinsic evaluation of OIE systems is done either
manually (Mausam et al., 2012; Pal et al., 2016) or
with the use of evaluation benchmarks (Stanovsky
and Dagan, 2016; Bhardwaj et al., 2019). While
manual evaluations are usually of higher quality,
they are expensive and time consuming. Auto-
mated benchmark evaluations are faster and more
economic than manual OIE evaluations (Hohe-
necker et al., 2020), but are less reliable than hu-
man judgments of extraction correctness (Zhan
and Zhao, 2020), because they are based on ap-
proximate token-level matching of system extrac-
tions against ground truth extractions. The main
shortcoming of existing OIE benchmarks is their
incompleteness: they do not exhaustively list all
acceptable surface realizations of the same piece
of information (i.e., same fact) and, because of
this, resort to unreliable scoring functions based
on token-level matching between system and gold
extractions (Schneider et al., 2017).

Obtaining complete manual OIE annotations is,
however, very difficult and time-consuming. Anno-
tating a complete OIE benchmark requires human
annotators to write all possible combinations of
extractions expressing the same fact (i.e., exhaus-
tively list all acceptable surface realizations of the
same fact; see Section 3). To facilitate and speed up
this process, we introduce AnnIE, a dedicated anno-
tation tool for constructing complete fact-oriented
OIE benchmark. AnnIE facilitates the annotation
process by (1) highlighting the tokens of interest
(e.g., for verb-mediated extractions, it highlights
the verbs, which are candidates for head words
of predicates); (2) providing web-based interface
for annotating triples and grouping them into fact
synsets, i.e., groups of informationally equivalent
extractions (Section 3). To the best of our knowl-
edge, AnnIE is the first publicly-available annota-
tion platform for constructing OIE benchmarks.
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We showcase AnnIE2 by creating two complete
fact-based OIE benchmarks: (1) benchmark of
verb-mediated facts on English, German, Chinese,
Galician, Arabic and Japanese, making this gold
data the first such OIE resource on languages other
than English; (2) benchmark for facts associating
named entities (for English only). We then bench-
mark several state-of-the-art OIE systems on these
fact-based benchmarks and demonstrate that they
are significantly less effective than indicated by ex-
isting OIE benchmarks that use token-level scoring.
We hope that AnnIE motivates the creation of many
more fact-based (as opposed to token-level) OIE
evaluation benchmarks.

2 Related Work

2.1 Evaluation of OIE Systems
OIE systems are evaluated either manually
(Mausam et al., 2012; Pal et al., 2016; Gashteovski
et al., 2019), w.r.t. a downstream task (Mausam,
2016; Lin et al., 2020), or with the use of evaluation
benchmarks (Stanovsky and Dagan, 2016; Bhard-
waj et al., 2019). Manual evaluations are usually of
higher quality because they are performed by one
or more expert annotators (Del Corro and Gemulla,
2013). They are, however, expensive and time
consuming, which makes the development of OIE
systems very slow. On the other hand, downstream
evaluation of OIE systems is faster, but provides in-
sights only about their performance w.r.t. particular
tasks and does not provide insights on the intrinsic
(i.e., task-agnostic) correctness of the extractions.
Finally, using evaluation benchmarks is both task-
agnostic and fast, though current benchmarks might
contain noise (Zhan and Zhao, 2020). Moreover,
current benchmarks suffer from incompleteness;
i.e., they are not designed in a manner that aims to
contain all possible extractions from an input sen-
tence. Therefore, they rely on lenient token-overlap
based evaluation, which could result in misleading
results (Lechelle et al., 2019). To address this, we
move away from such token-based evaluations and
move towards fact-based evaluation (Section 3).

2.2 Annotation Tools
To facilitate the annotation process of NLP tasks,
many interactive annotation tools have been de-
signed. Such work covers tasks like sequence la-
belling (Lin et al., 2019; Lee et al., 2020), coref-
erence resolution (Bornstein et al., 2020) and

2Video demo: https://youtu.be/2wn75U8Lc5w

treebank projection across languages (Akbik and
Vollgraf, 2017). For annotating OIE extractions,
however, there are no publicly available tools.
The two commonly used benchmarks—OIE2016
(Stanovsky and Dagan, 2016) and CaRB (Bhard-
waj et al., 2019)—only provide annotated data and
no dedicated annotation tool. OIE2016 uses a
dataset from a similar task (QA-SRL), which is
then automatically ported to OIE. This approach
does not require an annotation tool, but the quality
of the benchmark (i.e., ground truth extractions)
decreases due to the automatic label projection
(Zhan and Zhao, 2020). CaRB addresses this is-
sue by sampling from the same input sentences
used by OIE2016, and then crowdsourcing man-
ual extractions. However, their annotation OIE
interface has four major limitations: (1) it cannot
be used to create complete fact-based OIE bench-
marks (Section 3), i.e., it does not allow for differ-
ent extractions (e.g., triples) that correspond to the
same fact; this leads to incomplete annotations and
unreliablly lenient token-overlap-based evaluation
measures; (2) it focuses only on one type of OIE
(verb-mediated extractions); (3) it is not publicly
available; (4) it does not support annotations for
languages other than English.

3 Fact-Based OIE Evaluation

Due to their incompleteness, previous benchmarks
lack clarity about whether an extraction indeed rep-
resents a correct fact or not. In particular, given
a system extraction, they do not assign a binary
score (correct/incorrect), but rather calculate per-
slot token overlap scores. Consider, for example,
the input sentence from Table 1 and the scores that
the recent OIE benchmark CaRB (Bhardwaj et al.,
2019) assigns to extractions t1 to t3. Because all
tokens for each slot for t1 − t3 are also present in
the gold extraction, CaRB credits these extractions
with a perfect precision score, even though the ex-
tractions clearly state incorrect facts. In similar
vein, the CaRB recall score of the extraction t4 is
lower than the recall score of t3, even though t4
captures the correct core fact and t3 does not.

To address these issues, we propose moving
away from such lenient token-overlap scoring and
going towards fact-level exact matching. To this
end, we propose an evaluation framework, dubbed
BenchIE (Gashteovski et al., 2022), for OIE evalua-
tion based on facts, not tokens. Here, the annotator
is instructed to exhaustively list all possible surface
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Input sentence: "Sen. Mitchell is confident he has sufficient votes to block such a measure with procedural actions."
CaRB gold extraction: ("Sen. Mitchell"; "is confident he has"; "sufficient votes to block ...procedural actions")

Input OIE extraction CaRB (P / R) Fact-based
t1 ("Sen. Mitchell"; "is confident he has"; "sufficient") 1.00 0.44 0
t2 ("Sen. Mitchell"; "is confident he has"; "sufficient actions") 1.00 0.50 0
t3 ("Sen. Mitchell"; "is confident he has"; "sufficient procedural actions") 1.00 0.56 0

t4 ("Sen. Mitchell"; "is confident he has"; "sufficient votes") 1.00 0.50 1

Table 1: Difference in scores between CaRB and fact-based evaluation. For the input sentence, CaRB provides
only one extraction which covers all the words in the sentence. Then, for each input OIE extraction (from t1 to
t4) it calculates token-wise precision and recall scores w.r.t. the golden annotation. Fact-based evaluation (with all
acceptable extractions of the fact exhaustively listed) allows for exact matching against OIE extractions.

realizations of the same fact, allowing for a binary
judgment (correct/incorrect) of correctness of each
extraction (it either exactly matches some of the
acceptable gold realizations of some fact or it does
not match any). The example in Table 2 illustrates
the concept of a fact synset: a collection of all ac-
ceptable extractions for the same fact (i.e., same
piece of knowledge).

Because benchmarks based on fact synsets are
supposed to be complete, a system OIE extrac-
tion is considered correct if and only if it exactly
matches any of the gold extractions from any of the
fact synsets. The number of true positives (TPs)
is the number of fact synsets (i.e., different facts)
“covered” by at least one system extraction. This
way, a system that extracts N different triples of the
same fact, will be rewarded only once for the cor-
rect extraction of the fact. False negatives (FNs) are
then fact synsets not covered by any of the system
extractions. Finally, each system extraction that
does not exactly match any gold triple (from any
synset) is counted as a false positive (FP). We then
compute Precision, Recall, and F1 score from TP,
FP, and FN in the standard fashion. For more de-
tails on the evaluation framework, see (Gashteovski
et al., 2022).

4 AnnIE: Platform Description

AnnIE is a web-based platform that facilitates man-
ual annotations of fact-based OIE benchmarks. In
this section, we discuss: (1) the functionality of
highlighting tokens of interest; (2) how AnnIE fa-
cilitates creation of complete fact-based OIE bench-
marks; (3) AnnIE’s software architecture; and (4)
AnnIE’s web interface and its multilingual support.

4.1 Tokens of Interest

One of the key functionalities of AnnIE is its ability
to highlight tokens of interest – tokens that com-

monly constitute parts of extractions of interest.
For example, most OIE systems focus on extract-
ing verb-mediated triples (Angeli et al., 2015; Kol-
luru et al., 2020b). In such case, verbs clearly
represent tokens of interest and are candidates for
head words of fact predicates. Other example of
tokens of interest may be named entities, which
could be useful for extracting information from
domain-specific text. There has been prior work on
extracting open information from specific domains,
including the biomedical (Wang et al., 2018), le-
gal (Siragusa et al., 2018) and scientific domain
(Lauscher et al., 2019). In this work, it is important
to extract open relations between named entities.
Accordingly, highlighting mentions of named enti-
ties then facilitates manual extraction of the type of
facts that the benchmark is supposed to cover (i.e.,
relations between named entities). AnnIE allows
the user to define a custom function that yields the
tokens of interest from the input sentence and then
highlights these tokens for the annotator with a
background color (Figure 2).

To further facilitate the manual annotations, fu-
ture versions of AnnIE could also include recom-
mendations for whole OIE triples (e.g., by recom-
mending high-confidence extractions from already
existing OIE systems) or for slots (e.g., given a
subject, recommend a potential relation; or given a
relation, recommend candidates for the arguments).
We leave such improvements for future work.

4.2 Annotating Fact Synsets

Given a sentence with highlighted tokens of inter-
est, the annotator can start constructing fact synsets.
Fact synsets are clusters of fact-equivalent extrac-
tions. AnnIE currently supports only the annotation
of triples: for each extraction/triple the user first
selects which slot she wants to annotate (subject,
predicate, or object) and then selects the tokens
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Input sentence: "Sen. Mitchell is confident he has sufficient votes to block such a measure with procedural actions."

f1 ("Sen. Mitchell" | "he"; "is"; "confident [he has sufficient ... actions]")

f2 ("Sen. Mitchell" | "he"; "is confident he has"; "sufficient votes")
("Sen. Mitchell" | "he"; "is confident he has"; "suff. votes to block [such] [a] measure")

f3 ("Sen. Mitchell" | "he"; "is conf. he has sufficient votes to block" "[such] [a] measure")
("Sen. Mitchell" | "he"; "is confident he has ... to block [such]"; "[a] measure")
("Sen. Mitchell" | "he"; "is confident he has ... to block [such] [a]"; "measure")

f4 ("Sen. Mitchell" | "he"; "is conf. he has ... [such] [a] measure with"; "procedural actions")
("Sen. Mitchell" | "he"; "is confident he has ... [such] [a] measure"; "with procedural actions")

Table 2: Example sentence with four fact synsets (f1–f4). We account for entity coreference and accept both
"Sen. Mitchell" and "he" as subjects: the delimiter “|” is a shorthand notation for different extractions. In the
same vein, square brackets ([]) are a shorthand notation for multiple extractions: triples both with and without the
expression(s) in the brackets are considered correct.

Figure 1: Software architecture of AnnIE.

that constitute that slot. Each token (part of one
of the three slots) can additionally be marked as
“optional”, which means that the tool will create
variants of that extraction both with and without
those tokens. Once a triple is fully denoted (i.e.,
tokens for all three slots selected), the annotator
chooses whether (1) the triple is a different variant
of an already existing fact (i.e., existing fact synset),
in which case the triple is added to an existing clus-
ter or (2) a first variant of a new fact, in which case
a new cluster (i.e., fact synset) is created and the
triple added to it. To facilitate this decision, the
annotator can at any time review the already exist-
ing fact synsets. Figure 3 shows the interface for
creating triples and adding them to fact synsets.

4.3 Platform Architecture

AnnIE is a simple local executable web application
(Figure 1) that consists of a backend layer and a
frontend layer. It starts a local server that provides
a user interface accessible from any browser that
supports JavaScript.

Backend. AnnIE’s backend server is based on

Flask3, a popular light-weight Python web frame-
work. We implemented HTTP endpoints for receiv-
ing requests and sending responses. Additionally,
Flask hosts the frontend (HTML and CSS) files
as a web server. The Flask server interacts with
(1) the NLP library SpaCy4 (which we employ for
POS-tagging and NER, in service of highlighting
tokens of interest); (2) a configuration file; (3) data
files on the local hard drive and (4) the frontend
(i.e., the web interface). AnnIE’s backend is highly
modularized, so that any component may easily
be further customized or replaced with a different
module. For example, the SpaCy-based NLP mod-
ule (for POS-tagging and NER) can easily be re-
placed with any other NLP toolkit, e.g., Stanza5

(Qi et al., 2020). AnnIE is also easily customiz-
able through a configuration file, where the user
may specify the types of tokens to be highlighted
or select colors for highlighting. The I/O module
expects the input (a collection of sentences for OIE
annotation) to be in JSON format and saves the
annotated fact synsets in JSON as well.

Frontend. The application frontend is im-
plemented in JavaScript and based on the
Bootstrap library and custom CSS stylesheets.
We adopt model-view-controller (MVC) architec-
ture for the frontend: it uses a data structure (i.e.,
model) capturing the entire annotation process (i.e.,
information about the annotation, loaded text file,
current triple in annotation, etc.; you can find more
details in the Appendix, Section A.2). Based on
the current state of the model, the frontend renders
the interface (i.e., view) by enabling and disabling
particular annotation functionality. The controller
connects the two: it renders the view based on
the current state of the model. We implemented

3https://github.com/pallets/flask
4https://spacy.io/
5https://stanfordnlp.github.io/stanza/
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Figure 2: Highlighting tokens of interest. In this exam-
ple, tokens of interest are verbs and named entities.

additional I/O scripts that complement the core
functionality of the main controller. These scripts
handle the formatting of the output file as well as
the loading of the data from the input files. Saving
or loading data is customizable: one merely needs
to overwrite the load() and save() methods of
the controller.

Data Flow. Upon selection of the input file, the
data is sent from the frontend to the backend via an
HTTP request. In the backend, the sentence is then
tokenized, POS-tagged, and processed for named
entities with the NLP module (we rely on SpaCy).
The tokenized and labeled sentence is then sent as
a JSON object to the frontend, where each token
is displayed as one button (Figure 2). The default
version of the tool allows the user to choose (in the
configuration file) between four coloring schemes
for highlighting token buttons.

4.4 Web Interface and Language Support

The user can start from scratch by uploading a
text file that contains unannotated sentences, or
load previously saved work (JSON file). For each
sentence, the user starts from a full set of sen-
tence tokens with highlighted tokens of interest
(Figure 2). The user then constructs triples and
places them into fact synsets (Figure 3). At any
point during the annotation, the user can generate
human-readable output of the annotated extractions
and download it as a text file in a tab-separated for-
mat (Figure 4). Alternatively, the user can save the
annotation progress as a JSON file that can later be
loaded in order to continue annotating.

AnnIE supports OIE annotations for sentences
in any language supported by its NLP module (i.e.,
available POS-tagging and NER models). By de-
fault, AnnIE relies on SpaCy and can therefore
support creation of OIE benchmarks for all lan-
guages for which SpaCy provides POS-tagging
and NER models. Section A.3 from the appendix
provides details about how this module can be ad-
justed to the user’s preference.

Figure 3: Manual labeling of OIE triples. The user
selects tokens from the tokenized input sentence and
places them into the correct slot: subject (green), pred-
icate (yellow) or object (blue). Then, the user adds the
extracted triple either to an active fact cluster (i.e., fact
synset) or to a new one. The user can also select which
tokens are optional by clicking the "Optional" button
on an active token selection. For larger version of the
same figure, see Figure 11 in Appendix A.6.

5 Demonstration Study

To showcase our tool’s suitability for different OIE
scenarios, we generated two complete fact-based
OIE benchmarks using AnnIE: (1) a benchmark for
verb-mediated facts; (2) a benchmark with facts
involving named entities (NEs). We then evaluated
several OIE systems and compared their fact-based
scores with the token-overlap lenient scores of the
existing CaRB benchmark (Bhardwaj et al., 2019).

5.1 Experimental Setup

OIE Systems. We comparatively evaluated sev-
eral state-of-the-art OIE systems against the gold
fact synsets annotated with AnnIE. For OIE on En-
glish, we used ClausIE (Del Corro and Gemulla,
2013), Stanford (Angeli et al., 2015), MinIE (Gash-
teovski et al., 2017), ROIE (Stanovsky et al., 2018)
and OpenIE6 (Kolluru et al., 2020a). For Chinese,
German, Galician, Japanese and Arabic, we used
the supervised M2OIE (Ro et al., 2020) model,
which is based on multilingual BERT (Devlin
et al., 2019), trained on large English dataset (Zhan
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EN ZH DE AR GL JA

ClausIE MinIE Stanford ROIE OpenIE6 M2OIE M2OIE M2OIE M2OIE M2OIE

P CaRB 0.58 0.45 0.17 0.44 0.48 / / / / /
Fact-based 0.50 0.43 0.11 0.20 0.31 0.18 0.09 0.16 0.15 0.00

∆ +0.08 +0.02 +0.06 +0.24 +0.17 / / / / /

R CaRB 0.53 0.44 0.29 0.60 0.67 / / / / /
Fact-based 0.26 0.28 0.16 0.09 0.21 0.10 0.03 0.03 0.06 0.00

∆ +0.27 +0.16 +0.13 +0.51 +0.46 / / / / /

F1
CaRB 0.56 0.44 0.22 0.51 0.56 / / / / /

Fact-based 0.34 0.34 0.13 0.13 0.25 0.13 0.04 0.05 0.09 0.00
∆ +0.22 +0.10 +0.09 +0.38 +0.31 / / / / /

Table 3: Comparison of performance of OIE systems on fact-based v.s. CaRB benchmarks for English (EN),
Chinese (ZH), German (DE), Arabic (AR), Galician (GL) and Japanese (JA). Metrics used: precision (P), recall
(R) and F1 score (F1). ∆ is the difference between the CaRB scores and the fact-based scores. Bold numbers
indicate highest score for English per row (i.e., highest score for P / R / F1 per benchmark) or highes score
difference per row (i.e., highest ∆ for P / R / F1 per benchmark). The fact-based benchmark on English reveals
that CaRB overestimates the performance of OIE systems, but with the help of AnnIE it is easily possible to create
benchmarks which provide more reliable performance estimates. Creating such fact-based benchmarks for a series
of other languages highlights the need for future OIE research to focus on langauges other than English.

Figure 4: Human-readable representation of the anno-
tated extractions. Annotations can be downloaded as
a human-readable file or as a JSON file (loadable for
further annotation with AnnIE).

and Zhao, 2020) and transferred to the target lan-
guage by means of its multilingual encoder. We
trained M2OIE using the implementation and rec-
ommended hyperparameter setup from the original
work (Ro et al., 2020).

Verb-Mediated Triples. We first evaluate the
OIE systems in the most common setup: for verb-
mediated facts. In this scenario, OIE system extrac-
tions are triples with verb-phrase predicates. We
randomly sampled 300 sentences from the CaRB
benchmark, and two experts independently anno-
tated them manually for fact synsets with AnnIE
(we provide the annotation guidelines in the Ap-
pendix, Section A.4). Then, the annotators merged
the annotations by resolving the disagreements
through a discussion. The annotation effort was
approximately two working weeks per annotator.
To show that AnnIE is in principle language agnos-
tic, native speakers of German, Chinese, Japanese
and Galician translated these 300 sentences to their
respective languages. For Arabic, a native speaker
managed to translate the first 100 sentences. only

due to limited resources. Then, the native speak-
ers annotated fact synsets in these languages with
AnnIE. Due to limited resources, the sentences for
these languages were translated and then annotated
with OIE extractions by one annotator per language.
Finally, we evaluated one OIE system for each lan-
guage on this benchmark.

NE-centric Triples. We used AnnIE to build a
benchmark consisting of facts connecting named
entities (NEs): triples in which both subjects and
objects are named entities. Since NEs are fre-
quently mentioned in news stories, we selected the
sentences for annotation from the NYT10k dataset
(Gashteovski et al., 2017), a random sample of 10k
sentences from the New York Times corpus (Sand-
haus, 2008). We split the NE-centric benchmark in
two parts: (1) NE-2: 150 sentences from NYT10k
with exactly 2 NEs (as detected by SpaCy); (2)
NE-3+: we sample 150 sentences from NYT10k
such that they have 3 or more NE mentions. The
annotation guidelines, while similar to those for
the verb-mediated triples, differ in two important
aspects: (1) the annotator should extract only the
facts in which both arguments are named entities;
(2) besides verb-mediated relations, the annotator
was allowed to extract noun-mediated relations too;
e.g., ("Sundar Pichai"; "CEO"; "Google").

5.2 Results and Discussion

English OIE. We score the OIE systems against
the gold fact synsets produced with AnnIE, using
the fact-based evaluation protocol (Section 3). For
the verb-mediated extractions, we compare our fact-
based evaluation scores against the token-overlap
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ClausIE MinIE Stanford ROIE OIE6
(4 / 10) (26 / 48) (12 / 22) (2 / 7) (8 / 20)

P NE-2 0.75 0.58 0.45 0.05 0.38
NE-3+ 0.78 0.54 0.63 0.05 0.32

R NE-2 0.05 0.23 0.08 0.02 0.05
NE-3+ 0.04 0.13 0.06 0.02 0.03

F1
NE-2 0.09 0.33 0.13 0.03 0.08
NE-3+ 0.07 0.21 0.11 0.02 0.06

Table 4: Performance of OIE systems on fact-based
evaluation on NE-centric triples. NE-2 / NE-3+: re-
sults on sentences that contain 2 / 3 or more NEs (la-
belled with SpaCy). Numbers in brackets below an
OIE system name indicate the number of OIE triples
on which the evaluation was done for NE-2 / NE-3+.
Bold numbers indicate highest score per row.

scores of CaRB (Bhardwaj et al., 2019): the results
are shown in Table 3. Comparison of Fact-based
and CaRB scores indicates that: (1) CaRB largely
overestimates the performance of OIE systems; (2)
current OIE systems predominantly fail to extract
correct facts, which strongly points to the need for
creating complete fact-oriented benchmarks, a task
that AnnIE facilitates. For more detailed discus-
sion, multi-faceted evaluation and error analysis,
see Gashteovski et al. (2022).

Multilingual OIE. Finally, Table 3 shows that the
results for OIE systems in languages other than
English are significantly worse, which shows that
more research is needed in this direction. The re-
sults for Chinese OIE seem to be particularly en-
couraging, as the difference of the F1 score be-
tween some OIE systems in English and M2OIE
in Chinese is not too large as it is between English
and the other languages. For example, M2OIE in
Chinese has the same F1 score as Stanford’s OIE
system and ROIE. We applied the same training
strategy for Japanese, but the F1 score of this OIE
system is 0. This indicates that more research is
needed for Japanese in defining the problem well
and proposing methods for solving it. Neverthe-
less, we release the gold datasets for OIE in all
investigated languages: English, German, Galician,
Chinese, Japanese and Arabic; which we believe
to be an important resource for research for sub-
sequent multilingual OIE. Figure 12 and Figure
13 from the Appendix show an example sentence
and its corresponding OIE annotations in different
languages. For a more detailed discussion on the
results of multilingual OIE evaluation, see Kotnis
et al. (2022).

NE-centric OIE. Table 4 shows the performance

of OIE systems on the NE-centric benchmark. In
both subsets of 150 sentences—NE-2 and NE-3+—
only a fraction of them contain actual knowledge
facts that connect a pair of NEs (59/150 and 97/150
respectively). Because the OIE systems used in the
evaluation are not specifically designed to extract
NE-centric facts, we make the evaluation fairer by
pruning the system extractions before fact-based
evaluation: we keep only the triples that contain in
both subject and object NEs found among subjects
and objects of gold extractions. In other words,
we primarily test whether the OIE systems extract
acceptable predicates between NEs between which
there is a predicate in the gold standard. The results
show that the current OIE systems extract very few
NE-centric triples (e.g., ClausIE extracts only 4
triples for the NE-2 dataset and 10 for the NE-3+

dataset, see Table 4). Because of this, one should
intepret the results in Table 4 with caution. This
evaluation, nonetheless shows that the current OIE
systems are not ill-suited for a NE-centric OIE task,
warranting more research efforts in this direction.

6 Conclusions

Exhaustively annotating all acceptable OIE triples
is a tedious task, but important for realistic intrinsic
evaluation of OIE systems. To support annotators,
we introduced AnnIE: annotation tool for construct-
ing comprehensive evaluation benchmarks for OIE.
AnnIE allows custom specification of tokens of
interests (e.g., verbs) and is designed for creat-
ing fact-oriented benchmarks in which the fact-
equivalent–yet superficially differing–extractions
are grouped into fact synset. AnnIE’s lightweight
architecture, easy installation and customizable
components make it a practical solution for future
OIE annotation.
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Figure 5: Add new class to css

A Appendix

A.1 Highlighting Functions

The tool is designed to make customizations rather
easily. For adjusting the color scheme, the color
“hex”-values inside the style.css files need to be set
to the desired color codes. This needs to be done
to the button itself with the desired color as well as
to the “hover” property of the button, where usu-
ally a darker version of the same color is used. If
complete new labels are introduced to the tool, the
css needs to include an approriate class to handle
these as shown in Figure 5.

In case any new coloring schemes are re-
quired, these can either be entered additionally
or exchanged against the standard functions
implementing the scheme above. The differ-
ent colorings are applied using the functions
fullColoring(), verbColoring(),
namedEntitiesColoring(),
and noneColoring() inside
GraphicalInterface.js. These func-
tions can be adjusted by changing the switch
statements handling which tokens need to be
colorized depending on their label. There, new
cases can simply be added or superfluous colored
labels can be removed.Another option is to add new
coloring functions. These can rely on the provided
ones. They simply need to be registered to the tool
by being added to the first switch statement inside
the function createTaggedContent(). An
example of such an function is given in Figure 6,
while the "register" procedure is shown in Figure 7.

In both cases, additionally, the function
downgrade() needs to be adjusted accordingly
to the above-mentioned changes to ensure that the
buttons can be selected and deselected properly.
This step is shown in Figure 8.

A.2 Data model structure used in the
frontend

The data model structure used in the frontend is
shown on Figure 9.

A.3 Multilinguality

By extending the definition of the function
read_config_file() inside the backend file
tokenizer.py, further languages can be in-
cluded. Therefore, SpaCy simply needs to be
forced to load the appropriate language model. For
details, see code snippet showing how to adapt the
tokenizer.py script to accept further language
models in Figure 10.

A.4 Annotation Guidelines (English)

A.4.1 General Principle
The annotator should manually extract verb-
mediated triples from a natural language sentence.
Each triple should represent two entities or con-
cepts, and the verb-mediated relation between them.
For example, from the input sentence "Michael Jor-
dan, who is a former basketball player, was born in
Brooklyn.", there are three entities and concepts—
Michael Jordan, former basketball player and
Brooklyn—which are related as follows: ("Michael
Jordan"; "is"; "former basketball player") and
("Michael Jordan"; "was born in"; "Brooklyn").

Once the triple is manually extracted, it should
be placed into the correct fact synset (see Sec-
tion A.4.2).

A.4.2 Fact Synsets
Once a triple is manually extracted, the annotator
should place the triple into its corresponding fact
synset (details about fact synsets in Section 3). In
case there is no existing fact synset for the manually
extracted triple, the annotator should create one and
place the triple in that synset.

Coreference. The annotator should place extrac-
tions that refer to the same entity or concept under
the same fact synset. Consider the following input
sentence: "His son , John Crozie, was an aviation
pioneer."; The following triples should be placed
in the same fact synset:

• ("His son"; "was"; "[an]6 aviation pioneer")

• ("J. Crozie"; "was"; "[an] aviation pioneer")

6words in square brackets indicate optional tokens (see
Section A.4.3)
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Figure 6: Example of a new coloring function

Figure 7: "Register" new coloring function

Figure 8: Necessary adjustments to downgrade()
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Figure 9: Data model structure used in the frontend

Figure 10: Code snippet showing how to add further
language support

because "His son" and "John Crozie" refer to the
same entity.

Token placements. The annotator should con-
sider placing certain tokens in different slots, with-
out damaging the meaning of each the fact. Con-
sider the input sentence "Michael Jordan was born
in Brooklyn.". There is one fact synset and its cor-
responding triples:

f1 ("M. J."; "was born in"; "Brooklyn")
("M. J."; "was born"; "in Brooklyn")

In the first triple, the preposition "in" is in the re-
lation, while in the second it is in the object. The
annotator should allow for such variations, because
OIE systems should not be penalized for placing
such words in different slots.

A.4.3 Optional Tokens
If possible, the annotator should label as optional
all tokens that can be omitted in an extraction
without damaging its semantics. Such tokens in-
clude determiners (e.g., a, the, an), honorifics (e.g.,
[Prof.] Michael Jordan) or certain quantities (e.g.,
[some] major projects. The optional tokens are
marked with square brackets [ ].

In what follows, we show examples of consid-
ered optional token(s).

Determiners. Unless a determiner is a part of a
named entity (e.g., "The Times"), it is considered
as optional. For instance, the following triples are
considered to be semantically equivalent:

• ("Michael Jordan"; "took"; "the ball")

• ("Michael Jordan"; "took"; "ball")

The annotator, therefore, should annotate
("Michael Jordan"; "took"; "[the] ball"), where
the optional token is in square brackets.

Titles. Titles of people are considered optional;
e.g., ("[Prof.] Michael Jordan"; "lives in"; "USA").

Adjectives. The annotator should label adjec-
tives as optional if possible. For example, in the
following triple, the adjective outstanding can be
considered optional: ("Albert Einstein"; "is"; "[an]
[outstanding] scientist"). Note that the annotator
should be careful not to label adjectives as optional
if they are essential to the meaning of the triple. For
instance, the adjective cold should not be labeled as
optional in the triple ("Berlin Wall"; "is infamous
symbol of"; "[the] cold war").

Quantities. Certain quantities that modify a
noun phrase can be considered as optional; e.g.,
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("Mitsubishi"; "has control of"; "[some] major
projects").

Words indicating some tenses. The annotator
can treat certain verbs that indicate tense as op-
tional. For instance, the word have in ("FDA";
"[has] approved"; "Proleukin") can be considered
as optional, since both VPs "have approved" and
"approved" contain the same core meaning.

Verb phrases. It is allowed for the annotator
to mark verb phrases as optional if possible; e.g.
("John"; "[continues to] reside in"; "Berlin").

Passive voice. When possible, if an extraction
is in passive voice, the annotator should place its
active voice equivalent into the appropriate fact
synset. For instance, suppose we have the sentence
"The ball was kicked by John.". Then, the fact
synset should contain the following triples:

• ("[The] ball"; "was kicked by"; "John")

• ("John"; "kicked"; "[The] ball")

Note that the opposite direction is not allowed. If
the sentence was "John kicked the ball.", then the
annotator is not allowed to manually extract the
triple ("[The] ball"; "was kicked by"; "John") be-
cause such extraction contains words that are not
originally found in the input sentence ("was" and
"by"). These are so-called implicit extractions and
we do not consider them (details in Sec. A.4.7)).

Attribution clauses. Extractions that indicate
attribution of information should be placed in the
same fact synset as the original information state-
ment. For example, the core information of the
sentence "Conspiracy theorists say that Barack
Obama was born in Kenya." is that Obama was
born in Kenya. As indicated by Mausam et al.
(2012), it is important not to penalize OIE sys-
tems that would also extract the context about the
attribution of such information. Therefore, the an-
notator should include the following triples into the
same fact synset: ("Barack Obama"; "was born
in"; "Kenya") and ("Conspiracy theorists"; "say
that"; "Barack Obama was born in Kenya").

A.4.4 Incomplete Clauses
The annotator should not manually extract incom-
plete clauses, i.e., triples such that they lack crucial
piece of information. Suppose there is the input sen-
tence "He was honored by the river being named
after him". The following triple should not be man-
ually extracted: ("He"; "was honored by"; "[the]
river"), but the following triples should be: ("He";

"was honored by [the] river being named after";
"him") and ("[the] river"; "being named after";
"him").

A.4.5 Overly Complex Extractions
The annotators should not manually extract overly
specific triples, such that their arguments are com-
plex clauses. For instance, for the input sentence
"Vaccinations against other viral diseases followed,
including the successful rabies vaccination by
Louis Pasteur in 1886.", the following triple should
not be extracted: ("Vaccinations against other viral
diseases"; "followed"; "including the successful
rabies vaccination by Louis Pasteur in 1886") be-
cause the object is a complex clause which does
not describe a single concept precisely, but rather
it is composed of several concepts.

A.4.6 Conjunctions
The annotator should not allow for conjunctive
phrases to form an argument (i.e., subject or object).
Such arguments should be placed into separate ex-
tractions (and in separate fact synsets). Consider
the sentence "Michael Jordan and Scottie Pippen
played for Chicago Bulls.". The annotator should
manually extract the following triples:

• ("M. Jordan"; "played for"; "Chicago Bulls")

• ("S. Pippen"; "played for"; "Chicago Bulls")

The annotator should not, however, manually
extract ("Michael Jordan and Scottie Pippen";
"played for"; "Chicago Bulls").

A.4.7 Implicit Extractions
We focus on explicit extractions, which means
that every word in the extracted triple must be
present in the original input sentence. Therefore,
implicit extractions—i.e., extractions that contain
inferred information which is not found in the sen-
tence explicitly—are not considered. One exam-
ple implicit extraction is ("Michael Jordan"; "be";
"Prof.") from the input sentence "Prof. Michael
Jordan lives in USA.", where the triple infers that
Michael Jordan is professor without being explic-
itly indicated in the sentence (i.e., the word "be" is
not present in the input sentence, it is inferred).

A.5 Annotation Guidelines (Chinese)
The annotator followed the same general principles
as with the English annotation guidelines (Sec. A.4.
Due to the difference of the languages, we slightly
adapted the annotation guidelines for the Chinese
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language. In what follows, we list those differ-
ences.

A.5.1 Articles
Chinese language does not contain articles (i.e., "a",
"an", "the"). Therefore, in the manual translation
of the sentences, there are no articles in the Chinese
counterparts, which also results in labeling such
words as optional (for English, see Sec. A.4.3).

A.5.2 Prepositional Phrases within a Noun
Phrase

Certain noun phrases with nested prepositional
phrase cannot be translated directly into Chinese
the same way as in English. For example, suppose
we have the phrase "Prime Minister of Australia".
In Chinese, the literal translation of this phrase
would be "Australia’s Prime Minister". For in-
stance, in the English annotations the sentence "He
was the Prime Minister of Australia" would have
two fact synsets:

f1 ("He"; "was [the] Pr. Min. of"; "Australia")

f2 ("He"; "was"; "[the] Pr. Min. [of Australia]")

This is because the the fact synset f1 relates the
concepts "he" and "Australia" with the relation
"was [the] Prime Minister of", while the second
fact synset relates the concepts "he" and "Prime
Minister [of Australia]" with the relation "was".

In Chinese language, however, the construction
of f1 would not be possible, because the phrase
"Prime Mininister of Australia" cannot be sepa-
rated into "Prime Minister" and "Australia". There-
fore, the golden annotation for this particular ex-
ample in Chinese would be only one fact synset:
("He"; "was"; "[Australia’s] Prime Minister"),
which is equivalent with f2.

A.6 Manual Labeling of OIE Triples
See Figure 11 for a screenshot from AnnIE’s GUI,
which shows the manual labeling process of OIE
triples given an input sentence.
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Figure 11: Manual labeling of OIE triples. The user selects tokens from the tokenized input sentence and places
them into the correct slot: subject (green), predicate (yellow) or object (blue). Then, the user adds the extracted
triple either to an active fact cluster (i.e., fact synset) or to a new one. The user can also select which tokens are
optional by clicking the "Optional" button on an active token selection.
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Input sentence (EN): He served as the first Prime Minister of Australia and became a founding justice of  
                                     the High Court of Australia . 

f1 (“He”; “served as”; “[the] [first] Prime Minister [of Australia]”) 
 (“He”; “served”; “as [the] [first] Prime Min. [of Australia]”) 

f2 (“He”; “served as [the] [first] Prime Min. of”; “Australia”) 
 (“He”; “served as [the] [first] Prime Min.”; “of Australia”) 

f3 (“He”; “became”; “[a] [founding] justice”) 
 (“He”; “became”; “[a] [found.] just. of [the] High Court [of 

Aus.])” 

f4 (“He”; “became [a] [founding] justice of”; “[the] High Court [of Australia]”) 
 (“He”; “became [a] [founding] justice”; “of [the] High Court [of Australia]”) 

f5 (“He”; “bec. [a] [found.] just. of [the] H. C. of”; “Australia”) 
 (“He”; “bec. [a] [found.] just. of [the] H. C.”; “of Australia”) 

Input sentence (DE): Er diente als erster Premierminister von Australien und wurde Gründungsrichter des  
                                     obersten Gerichts von Australien. 

f1 (“Er”; “diente als”; “[erster] Premierminister [von Australien]”) 
 (“Er”; “diente”; “als [erster] Premierminister [von Australien]”) 

f2 (“Er”; “diente als [erster] Premiermin. von”; “Australien”) 
 (“Er”; “diente als [erster] Premierminister”; “von Australien”) 

f3 (“Er”; “wurde”; “Gründungs. [des obersten Gerichts] [von 
Aus.]”) 

f4 (“Er”; “wurde Gründungsrichter“; “[des] obersten Gerichts [von Australien]“) 

f5 (“Er”; “wurde Gründungs. [des] oberst. Ger.“; “von Australien“) 
 (“Er”; “wurde Gründungs. … Gerichts von“; “Australien“) 

Input sentence (GL): Serviu como primeiro primeiro ministro de Australia e converteuse nun xuíz  
                                     fundador do Tribunal Superior de Xustiza de Australia. 

f1 (  / “Serviu”; “como [primeiro] primeiro ministro [de Aus.]”) 
 (  / “Serviu como”; “[primeiro] primeiro ministro [de Aus.]”) 

f2 (  / “Serviu como prim. primeiro ministro”; “de Australia”) 
 (  / “Serviu como prim. primeiro ministro”; “Australia”) 

f3 (  / “converteuse”; “nun xuíz [fund.] do T. Sup. de Xus. [de Aus.]”) 
 (  / “converteuse nun”; “xuíz [fund.] do Trib. Sup. de Xus. [de Aus.]”) 

f4 (  / “converteuse nun xuíz [fundador] do”; “Tribunal Superior de Xustiza [de Australia]”) 

f5 (  /  “con. nun xuíz [fund.] do T. S. de X. de”; “Australia”) 
 (  /  “con. nun xuíz [fund.] do T. S. de X.”; “de Australia”) 

 
Figure 12: Example sentence with five fact synsets (f1–f5) in several languages: English (EN), German (DE) and
Galician (Galician). Square brackets ([]) are a shorthand notation for multiple extractions: triples both with and
without the expression(s) in the brackets are considered correct. For continuation of this figure, see Figure 13,
whereas the same input sentence and its corresponding OIE annotations are written in Chinese (ZH), Japanese (JA)
and Arabic (AR).

59



Input sentence (ZH): 他 曾 担 任 澳 大 利 亚 第 一 任 总 理 ， 并 成 为 澳 大 利 亚 高 等 法 院 的 创  

                                      始 法 官 。 

f1 (“他”; “[曾] 担 任”; “[澳 大 利 亚] [第 一 任] 总 理]”) 

f2 (“他”; “成 为”; “[澳 大 利 亚 高 等 法 院 的] [创 始] 法 官”) 

Input sentence (JA): 彼はオーストラリアの初代首相を務め、オーストラリア高等裁判所の創設裁 
                判官になりました。 

f1 (“彼 [は]”; “務め”; “[オーストラリア] [の] [初代] 首相 を”) 
 (“彼 [は]”; “を 務め”; “[オーストラリア] [の] [初代] 首相”) 

f2 (“彼 [は]”; “の 初代 首相 [を] 務め”; “オーストラリア”) 
 (“彼 [は]”; “初代 首相 [を] 務め ”; “オーストラリア の”) 

f3 (“彼 [は]”; “なり [まし] [た]”; “[創設] 裁判 官 に”) 
 (“彼 [は]”; ”なり [まし] [た]”; "[オーストラリア] 高等 裁判 所 の [創設] 裁判 官  

に“) 

f4 (“彼 [は]”; “の [創設] [裁判] 官 [に] なり 

まし た“; 

“[オーストラリア] 高等 裁判 所“) 

 (“彼 [は]”; “[創設] [裁判] 官 [に] なり ま
し た“; 

“[オーストラリア] 高等 裁判 所 の“) 

f5 (“彼 は”; “高等 裁判 所 の [創設] 裁判 

官 [に] なり [まし] [た]“ 

“オーストラリア“) 

Input sentence (AR): اليا وزراء رئيس أول منصب شغل هو ي العليا للمحكمة مؤسسًا قاضيًا وأصبح لأستر  
اليا ف   . أستر

f1 (”اليا] وزراء رئيس [أول منصب]” ;”غل” ;”هو  (”[لأستر

f2 (”اليا“ ;”وزراء رئيس [أول منصب] غل” ;”هو  (”أستر

f3 (”ي] العليا للمحكمة [مؤسسًا] اضيًا” ”أصبح” ;”هو  
اليا ف   (”[أستر

 (”[مؤسسًا] اضيًا” ”أصبح ” ;”هو”) 

f4 (”ي] العليا لمحكمة” ”[مؤسسًا] قاضيًا وأصبح” ;”هو  
اليا ف   (”[أستر

f5 (”للمحكمة [مؤسسًا] قاضيًا أصبح” ;”هو 
 ;”العليا

ي]“  
اليا [ف   (“أستر

    
 Figure 13: Example sentence and its corresponding OIE annotations in Chinese (ZH), Japanese (JA) and Arabic

(AR). This figure is continuation of Figure 12.
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Abstract
The open-access dissemination of pretrained
language models through online repositories
has led to a democratization of state-of-the-art
natural language processing (NLP) research.
This also allows people outside of NLP to use
such models and adapt them to specific use-
cases. However, a certain amount of techni-
cal proficiency is still required which is an en-
try barrier for users who want to apply these
models to a certain task but lack the neces-
sary knowledge or resources. In this work, we
aim to overcome this gap by providing a tool
which allows researchers to leverage pretrained
models without writing a single line of code.
Built upon the parameter-efficient adapter mod-
ules for transfer learning, our AdapterHub Play-
ground provides an intuitive interface, allowing
the usage of adapters for prediction, training
and analysis of textual data for a variety of NLP
tasks. We present the tool’s architecture and
demonstrate its advantages with prototypical
use-cases, where we show that predictive per-
formance can easily be increased in a few-shot
learning scenario. Finally, we evaluate its us-
ability in a user study. We provide the code and
a live interface1.

1 Introduction

The success of transformer-based pretrained lan-
guage models (Devlin et al., 2019; Liu et al., 2019)
was quickly followed by their dissemination, gain-
ing popularity through open-access Python libraries
like Huggingface (Wolf et al., 2020), Adapter-
Hub (Pfeiffer et al., 2020a) or SBERT (Reimers
and Gurevych, 2019). Researchers and practition-
ers with a background in computer science are able
to download models and fine tune them to their
needs. They can then upload their fine-tuned model
and contribute to an open-access community of
state-of-the-art (SotA) language models for various
tasks and in different languages.

1https://adapter-hub.github.io/
playground

This has significantly contributed to the democ-
ratization of access to the latest NLP research as the
individual implementation process has been sim-
plified through the provision of easy-to-use and ac-
tively managed code packages. However, one still
needs a certain level of technical proficiency to ac-
cess these repositories, train models, and predict on
new data. This is a limiting factor for researchers in
disciplines who could benefit from applying SotA
NLP models in their field, but lack the technical
ability. Furthermore, there is growing interest for
text classification models in interdisciplinary re-
search (van Atteveldt et al., 2021; Boumans and
Trilling, 2016), although often the methods are not
SotA in NLP.

In this work, we hope to bridge this gap by
providing an application which makes the power
of pretrained language models available without
writing a single line of code. Inspired by the re-
cent progress on parameter-efficient transfer learn-
ing (Rebuffi et al., 2017; Houlsby et al., 2019),
our application is based on adapters which intro-
duce small and learnable task-specific layers into a
pretrained language model. During training, only
the newly introduced weights are updated, while
the pre-trained parameters are frozen. Adapters
have been successfully applied in machine transla-
tion Bapna and Firat (2019); Philip et al. (2020),
cross-lingual transfer (Pfeiffer et al., 2020b, 2021b;
Üstün et al., 2020; Vidoni et al., 2020), commu-
nity QA (Rücklé et al., 2020), task composition
for transfer learning (Stickland and Murray, 2019;
Pfeiffer et al., 2021a; Lauscher et al., 2020; Wang
et al., 2021) and text generation (Ribeiro et al.,
2021). Adapters are additionally computationally
more efficient (Rücklé et al., 2021a) and more ro-
bust to train (He et al., 2021; Han et al., 2021). In
our work, we build our application on top of the
AdapterHub (Pfeiffer et al., 2020a) library which
stores task-specific adapters with a large variety
of architectures and offers upload functionalities
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Figure 1: Diagram of the AdapterHub Playground work-
flow. 1⃝ Users upload their text data to GoogleSheets
and 2⃝ link it to a new project. 3⃝ In each project, users
can create multiple actions by selecting a specific ac-
tion type Training, Prediction, Clustering.
For the Training and Prediction action types,
the user needs to define the desired downstream task
(e.g. Sentiment Analysis). Information about
available pretrained adapters for the specified task are
dynamically retrieved from AdapterHub. 4⃝ After gen-
erating predictions, the user can visualize the results
within the project.

for community-developed adapter weights. We
leverage this library to allow no-code access to pre-
trained adapters for a many text classification tasks
using dynamic code generation. Finally, our appli-
cation enables the analysis of multi-dimensional an-
notations to further investigate model performance.

Our application supports both NLP and inter-
disciplinary researchers who want to evaluate the
transferability of existing pretrained adapters to
their specific domains and use cases. We intend this
application for both zero-shot as well as few-shot
scenarios where a user annotates a small number
of data points and monitors model improvements.
This is especially interesting for intermediate task
training (Phang et al., 2018) where models trained
on a compatible task are utilized and fine-tuned on
the target task.

Some efforts are being made to abstract away
engineering requirements to use SotA NLP (Akbik
et al., 2019), but their usage still requires certain
technical skills. Existing no-code (or AutoML)
applications like Akkio2, Lobe3, or Teachable Ma-

2https://www.akkio.com/
3https://lobe.ai/

chines4 allow users to upload data, annotate it using
self-defined labels, and train a model for predic-
tion. Most approaches focus on vision tasks and
follow commercial goals. To the best of our knowl-
edge, we are the first to provide a non-commercial,
no-code application for text classification. Our ap-
plication is transparent (i.e. details about usable
pretrained adapters are traceable), and extendable
via the community-supported AdapterHub library.
Finally, we enable execution on third party com-
putational servers for users without access to the
required GPU hardware for efficient training and
prediction (Rücklé et al., 2021b), while also pro-
viding the necessary scripts to setup a self-hosted
computing instance, mitigating technical dependen-
cies.

Our contributions are: 1) The AdapterHub Play-
ground application which enables no-code infer-
ence and training by utilizing pretrained adapters;
2) Prototypical showcase scenarios from social sci-
ences using our application for few-shot learning;
3) An elaborate user study that analyzes the usabil-
ity of our proposed application.

2 AdapterHub Playground

The AdapterHub Playground is a lightweight web
application offering no-code usage of pretrained
adapters from the AdapterHub library. A user in-
terface accompanied by dynamic code generation
allows the utilization of adapters for inference and
training of text classification tasks on novel data.
Below, we describe the application workflow5, pro-
vide details on the specific functionalities and high-
light the technical architecture.

2.1 Workflow
The workflow of the AdapterHub Playground is
depicted in Figure 1. First, a user creates a
GoogleSheet6 and uploads the input data for the
desired classification task. If applicable, additional
metadata, for example, annotations or timestamps,
can be added. Next, a new project can be created
and linked to the data via the GoogleSheet sharing
functionality. Within a project, the user can define
an action, resembling a computational unit (e.g.
training an adapter). Upon submission of a new
action, the input text data is downloaded and the
specified computation is performed. The user is

4https://tinyurl.com/teachablemachines
5We provide information about user requirements in the

Appendix A.
6https://docs.google.com/spreadsheets/

62



Figure 2: Screenshot of the action creation dialogue. A
user has to provide a name for the action, the action
type (here Prediction), the column in GoogleSheet
where results are written to and the downstream task
(here Sentiment Analysis). In the expert mode,
the user has additional options for the pretrained adapter,
i.e. the dataset which was used for pretraining and the
specific architecture. The available options are dynami-
cally retrieved from AdapterHub. Alternatively a self-
provided adapter can be uploaded.

informed visually about the status of the execution
in the application. After finishing the computation,
the results are written directly into the GoogleSheet
by the system and evaluation details are provided in
the action interface. By default the system supports
accuracy and macro-F1 evaluation metrics. To aid
users in estimating model performance we addition-
ally provide the results for random and majority
prediction.

A user can create multiple projects, and within
each project, multiple actions can be triggered us-
ing the same input data.7 Finally, within a project
a user can explore the predictions on the data using
different visualization methods.

7This allows direct comparison among multiple adapters.

2.2 Actions

Our application focuses on three main ac-
tions, namely Prediction, Training and
Clustering. For each action, the respective
code is dynamically generated by merging static
code snippets with parameters defined by the user
(e.g. the specific adapter architecture). In the fol-
lowing we describe the procedure of each action.

Prediction. Pretrained task-specific adapters can
be utilized for predictions on proprietary data. The
user creates a new action in the project detail page
and selects as action type Prediction, defines
the column of the GoogleSheet in which the predic-
tions should be written, and selects the respective
downstream task which is dynamically retrieved
from the AdapterHub.8 Execution triggers the back-
end program to load the specified adapter and data,
and produce task-specific labels for the data. A
screenshot of the action creation dialogue is pro-
vided in Figure 2.

Training. To allow for continual training of
adapters on labeled data, the user creates a new
action of type Training. When executed, the
backend process loads the specified adapter, down-
loads both data and target labels, and starts the
training procedure. Once training is completed,
the user can download the fine-tuned adapters as a
zipped file. This makes fine-tuned adapter weights
available for another Prediction action.

The choice of hyperparameters can have substan-
tial influence on task performance but evaluating
these effects is out of scope for this work. Defaults
are set based on the literature (Pfeiffer et al., 2021a),
however, if necessary, the user can modify training
hyperparameters through various dropdown fields.
This allows to compare multiple adapters trained
with different hyperparameters.

Clustering. Discovering recurrent patterns in
text data is a common procedure in various research
disciplines. To allow for deeper text analysis,
we additionally provide the Clustering action
which enables users to apply clustering algorithms
on the data based on their textual similarity. We
provide K-Means and hierarchical clustering (Pe-
dregosa et al., 2011) as algorithm choices and sup-
port Tf-Idf and SBERT embeddings (Reimers and
Gurevych, 2019) as text representations.

8We currently focus on (pairwise) text classification tasks.
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Figure 3: The AdapterHub Playground architecture

2.3 Architecture

The architecture of the AdapterHub Playground
(Figure 3) is designed to be easy to setup and re-
quires a minimal set of dependencies. The tool
is based on three main components; Frontend,
Backend and Data Storage. A user interacts
with the frontend and triggers various actions as
described in §2.2. The backend receives instruc-
tions via the frontend and manages the execution
on the computational resource. Our application ad-
ditionally hosts a local database for user and project
management.

We chose GoogleSheet as text data storage com-
ponent due to its similarity to established easy-to-
use spreadsheet applications. It supports a variety
of import and export mechanisms which simplify
the data management process, especially for non-
technical users. GoogleSheet also reduces storage
requirements on the local computational resource,
keeping the application lightweight and manage-
able. Finally, the Sheets API9 provides a program-
matic interface for communication. Although this
requires users to use a Google account, we argue
the advantages compensate for this restriction.

Below, we describe the technical details of the
implementation for the specific components.

Frontend. The frontend provides the visual inter-
face for management (i.e. creation, editing, dele-
tion) of projects and their respective actions. After
login with an authentication token10, a webpage
lists all user projects. By selecting a project, a cor-
responding details page allows actions to be man-
aged (see §2.2) and visualizations to be created

9https://tinyurl.com/SheetsAPI
10Depending on the chosen backend solution, this can be a

JSON file provided by the system administrator of the backend
server or the authentication token provided by Kaggle.

using project-specific data storage.
The frontend is implemented using the React11

framework and is written in TypeScript12. The fron-
tend design is based on Bootstrap13. Communica-
tion with the backend is realized via the GraphQL
query language. The data is retrieved using the
Sheets API and can be visualized via Recharts14

which offers seamless integration of the D315 visu-
alization library within the React framework.

Backend. The backend organizes the storage of
application-relevant objects (i.e. users, projects,
tasks) and manages both dynamic code generation
and execution. User credentials, projects, and tasks
are stored in a SQL database. When an action is
executed in the frontend, the backend server loads
the task-specific code template and dynamically
integrates parameter information provided for the
individual task. Depending on the choice of the
computational node, the generated Python script
is scheduled for execution either locally or on a
Kaggle compute node via the KaggleAPI16.

The backend is implemented using Node.js17

and TypeScript. For application-relevant data, any
TypeORM18-supported database (e.g. MySQL,
PostgreSQL, etc.) can be used. Communication
with data storage is realized via Sheets API.

3 Few-shot scenario

Several prominent tasks in NLP such as senti-
ment analysis (Socher et al., 2013; Rosenthal
et al., 2017), stance detection (Mohammad et al.,
2016; Schiller et al., 2021) or identifying semanti-
cally similar texts (Cer et al., 2017; Agirre et al.,
2012) are of great interest in social science re-
search (Boumans and Trilling, 2016; Beck et al.,
2021; van Atteveldt and Peng, 2021). We there-
fore replicated two scenarios, namely sentiment
analysis and semantic textual similarity.

We envision a situation where a user has col-
lected textual data (e.g. sentence-level) for a given
task and wishes to perform analysis using a text
classification pipeline. A labeled test set to eval-
uate the performance of the classifier, and further
training data is available.

11https://reactjs.org/
12https://www.typescriptlang.org/
13https://getbootstrap.com/
14https://recharts.org
15https://d3js.org/
16https://www.kaggle.com/docs/api
17https://nodejs.org
18https://typeorm.io/
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3.1 Experiments

Data. For demonstration purposes, we recre-
ated the above-mentioned scenario using existing
datasets for both tasks. For sentiment analysis, we
use the dataset by Barbieri et al. (2020). In par-
ticular, we retrieve text for the Twitter Sentiment
Analysis dataset which was originally used for the
Semeval2017 Subtask A (Rosenthal et al., 2017).
At time of writing, the AdapterHub provides mostly
pretrained adapters for binary sentiment classifi-
cation (positive, negative). Thus, we discarded
all items labeled as neutral from the dataset and
are left with 24,942 Tweets for training and 6,347
Tweets for testing.

For semantic textual similarity, we use the
dataset by Lei et al. (2016) which is a set of pair-
wise community questions from the AskUbuntu19

forum annotated for duplicates. Specifically, we
use the question titles of the human-annotated de-
velopment (4k) for training and the test instances
(4k) for testing.

Setup. For binary sentiment classification, we use
the AdapterHub to obtain three different adapters
which were previously trained (Pfeiffer et al.,
2021a) on English datasets from the movie review
domain. The IMDB adapter was fine-tuned on the
dataset by Maas et al. (2011), the RT adapter was
trained on the Rotten Tomatoes Movie Reviews
dataset by Pang and Lee (2005), and the SST-2
adapter was trained using a binarized dataset pro-
vided by Socher et al. (2013).

For semantic textual similarity, we obtained the
MRPC adapter trained on the paraphrase dataset by
Dolan and Brockett (2005) and the QQP adapter
trained on the Quora Duplicate Question dataset.20

The experiments were conducted using the
AdapterHub Playground without writing any code.
We experiment with different training dataset sizes,
repeated three times with different subsets of the
training data randomly selected for each run.21.
We evaluated statistically significant differences
(p < 0.05) between zero-shot and few-shot results
of each adapter using a paired Bootstrap test (Efron
and Tibshirani, 1994).

3.2 Results

The results for both tasks are shown in Table 1.

Sentiment Analysis. The overall best performance
19https://askubuntu.com/
20https://tinyurl.com/quora-qp
21See Appendix B for experimental details.

is achieved by the SST-2 adapter, simultaneously
the most robust performance in terms of the stan-
dard deviation across different runs and varying
amounts of training data. This is most likely due
to the substantially larger size of the initial train-
ing data (SST-2: 67k, RT: 8k, IMDB: 25k) for the
adapter. Although, on average, for all adapters zero-
shot performance could be outperformed using a
minimum of 10 instances, the differences between
individual runs vary largely and statistically sig-
nificant improvements are only achieved using a
larger number of training instances (e.g., at least
N≥100 for SST-2). We find using a small num-
ber of annotated examples (N≤50) leads to worse
performance compared to zero-shot performance
(N=0) and to less robust results across runs with
randomly sampled training data. Providing 1,000
training samples leads to significant improvements
for adapters IMDB and SST-2 but only providing
the full dataset results in statistically significant
improvements for all adapters.

Semantic Textual Similarity. The performance
gap between both adapters is large, with a differ-
ence of 42.10 in the zero-shot setting, favoring
QQP. The results for the MRPC adapter show no
clear tendency to improve as the training data size
grows, with performance peaking at 50 training
instances. Most surprisingly, using 1,000 or all
available training samples (4k) leads to a severe
performance decrease. For the QQP adapter, per-
formance variations are minimal and none of the
few-shot experiment settings leads to a significant
improvement over zero-shot performance.

Summary. Poth et al. (2021) investigated the ef-
fects of intermediate task fine-tuning in adapter
settings. They showed that domain similarity, task
type match and dataset size are good indicators for
the identification of beneficial intermediate fine-
tuning tasks. Our experiments confirm this finding
although we cannot observe consistent improve-
ment with larger training data size. Thus, more
research on robust few-shot learning is necessary.

In contrast to relying on off-the-shelf tools for au-
tomated content analysis, our application enables
direct evaluation of both zero-shot and few-shot
performance of existing pretrained adapters. This
is especially helpful for assessment of the appli-
cability of such models for interdisciplinary re-
search (Grimmer and Stewart, 2013) but can also
be used to test robustness with varying hyperpa-
rameter configurations.
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Adapter 0 5 10 20 50 100 1,000 N

IMDB 71.99 65.40 ±2.08 72.25 ±14.78 67.51 ±11.25 71.37 ±4.93 81.87 ±2.49 84.10 ±5.34 88.36
RT 76.24 72.33 ±0.97 76.76 ±10.08 67.38 ±10.09 67.44 ±5.57 76.88 ±4.22 82.64 ±6.01 90.50
SST-2 84.61 84.53 ±0.15 86.23 ±2.91 84.22 ±0.53 82.33 ±2.41 83.54 ±0.61 88.19 ±2.08 92.04

MRPC 31.18 31.64 ±5.37 29.22 ±0.08 28.46 ±1.30 38.57 ±3.66 36.66 ±8.54 28.31 ±3.18 26.23
QQP 73.28 73.10 ±0.16 73.19 ±0.06 72.79 ±0.44 71.08 ±1.17 69.60 ±0.48 73.01 ±0.30 73.68

Table 1: Few-shot performance of various pretrained adapters from AdapterHub using increasing size of training
data. Underlined scores are significantly (p < .05) better than their zero-shot counterpart. Bold scores resemble
experiments with minimum training data required for outperforming zero-shot performance of respective adapter.
All numbers are accuracy scores. N is for using all available training data.

4 Usability Study

AdapterHub Playground is designed to be simple
to use, requiring minimal training effort and tech-
nical knowledge. While we followed these princi-
ples throughout the conception and implementation
of the application, we also evaluated the usability
with users from our target group. Therefore, we
followed the approach by Hultman et al. (2018)
and let study participants conduct a series of tasks
which were designed to reflect a use-case scenario
as described in §3. Afterwards, we used a question-
naire to capture their experiences.

Participants. We recruited study participants
(N=11) from the communication science field, the
majority of whom were (post)graduate-level re-
searchers at a university (two Professors, two Post-
Docs, six PhDs, one B.Sc.). Our data suggests that
the participants have limited or no understanding
of the technical computer science concepts but can
envision themselves using the AdapterHub Play-
ground (for details see Appendix D). Thus, our
participants belong to one of the target groups we
aim to aid with this application.

Procedure. The participants were provided a tex-
tual description of several tasks to be completed.22

Users were asked to complete a Training and
Prediction action in a sentiment analysis sce-
nario. We provided both labeled test data and unla-
beled training data again using the dataset by (Bar-
bieri et al., 2020).23 After completing the tasks, we
asked the participants to complete a questionnaire
targeting their experience with the tool.

Results The participants were asked to assess the
difficulties they faced on a five-point Likert scale,
specifically, their experience with the overall task,

22We provide the full task description in the Appendix D.
23Our focus is to evaluate the usability of the AdapterHub

Playground application. Therefore, we did not require the
participants to import the data on their own but rather provided
them links to Google Docs containing the imported data.

Figure 4: Participants’ estimation of difficulty.

the navigation of the application, and the difficulty
of the task description (see Figure 4). The majority
of participants found the task and the navigation of
the application to be simple.

Three participants found the task description dif-
ficult to understand. We note here that the task
description did not explain each individual naviga-
tion step in the application. This was designed on
purpose - both to reduce the reading volume of the
task description and to evaluate the accessibility of
each feature of the application.

We further asked the participants about the diffi-
culty of each individual task they had to solve, i.e.
prediction, annotation, and training, on a five-point
Likert scale ranging very difficult (1) to very easy
(5). Participants had the least trouble with the pre-
diction action (91% voted either category 5 or 4;
none voted category 1 or 2). Despite the training
action being technically similar to the prediction
action, participants perceived it as more difficult
with only 64% selecting easier categories (4 and
5) and 27% of the participants being undecided
(category 3). This is most likely due to some par-
ticipants having issues finding the downloadable
zip file which required opening the action detail
page after training (we received this information as
feedback in a free-answer form).
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5 Conclusion and Future Work

Open-access dissemination of SotA NLP models
has accelerated their use and popularity, yet the re-
quired technical proficiency to apply them remains
a limiting factor for their democratisation. To mit-
igate this, we introduced the AdapterHub Play-
ground application which provides an easy-to-use
web interface for no-code access to light-weight
adapters for text classification tasks. Our system is
built on-top of the open-source AdapterHub library
and uses a dynamic code generation approach. We
demonstrated the features of the application using
two exemplary use-case scenarios and evaluated
its usability in a user study with researchers from
communication sciences. In addition to providing
execution on third-party hardware, we also enabled
a self-hosted computational instance.

As future work, we plan to extend the appli-
cation with dynamic user control over all hy-
perparameter specifications in the expert mode.
To support users in efficient sampling of prof-
itable training instances, we plan to investigate
the integration of active learning methods (Yuan
et al., 2020). A running instance of our tool
can be found under https://adapter-hub.
github.io/playground. and the open-
source code24 under https://github.com/
Adapter-Hub/playground.

Broader Impact Statement

Intended Use Our proposed application can be
used in several ways and by different audiences.
First of all, it allows evaluating the performance
of already existing fine-tuned adapters for vari-
ous prominent text classification tasks on hold-
out data, possibly from another domain. Further,
one can provide annotated data for any of the sup-
ported tasks and continue training the correspond-
ing adapter. Training procedures can be repeated
using different hyperparameters to investigate the
effect of those on the prediction performance. This
makes our application interesting for both our tar-
get group, i.e. researchers outside of NLP using
text classification methods, as well as NLP re-
searchers interested in comparing various adapter
models without setting up the required codebase to
do so.

Possible Risks Primarily, the goal of our appli-
cation is to lower the technical entry barrier for

24Licensed under Apache License 2.0.

users interested in using state-of-the-art text clas-
sification models. These users usually also lack
the expertise to evaluate all aspects of the language
understanding capabilities of such a model, as com-
pared to researchers from within the NLP domain.
Rightfully, one can argue that publishing such an
application increases the opportunities to develop
more bad black box models, caused by limited
evaluation and missing expertise. This can lead
to severe misjudgements if conclusions are drawn
based on predictions of such a model.

While we cannot eliminate this risk, we would
like to raise some points which, in our opinion, put
it into perspective with regard to the benefits of
having such an application.

From a broader perspective, the AdapterHub
Playground contributes to the democratization of
access to the latest NLP research by simplifying
the process of applying language model adapters
for training and prediction. This is especially help-
ful for interdisciplinary research where the applied
text classification tools often rely on outdated meth-
ods (Stoll et al., 2020) or off-the-shelf tools (Sen
et al., 2020). As a consequence, details about the
model architecture, training procedure or out-of-
domain performance are mostly omitted. While
this does not imply low performance on hold-out
data per se, it limits the possibilities for model eval-
uation and demands a certain level of trust from
the end user. In many cases, adapting the model to
the target domain is not possible or requires some
technical proficiency. In addition, these models
are often trained once-and-for-all while our frame-
work allows for an interactive approach to eval-
uate model performance and offers the rich vari-
ety of pretrained adapters being available from the
community-driven AdapterHub.

Further, we argue that advancements in NLP re-
search should be made available to the researchers
most profiting from them as soon as possible - not
only for the sake of accelerating research outside
of NLP but also to enable a feedback loop inform-
ing NLP researchers about the shortcomings of
such models. While the generalization capabili-
ties of state-of-the-art language models are subject
to increased scrutiny within NLP (Sanchez et al.,
2018; Gururangan et al., 2020; Tu et al., 2020),
the datasets and tasks to test them often originate
from within the same community, thereby intro-
ducing a selection bias (Ramponi and Plank, 2020).
By enabling interdisciplinary researchers to eval-
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uate NLP models without the technical barriers
involved, we are able to gain more insights about
the robustness and out-of-domain performance of
these models. Our application is a first step into
this direction.
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A Frequently Asked Questions

What are the requirements to use the Adapter-
Hub Playground? The most basic usage require-
ment is an up-to-date modern web browser25. To
use the application without setting up your own
computing instance, one needs to create a Kag-
gle account and download the API Token for lo-
gin. We provide information on setting up a
local compute instance at https://github.
com/Adapter-Hub/playground. As we
use GoogleSheet as data hosting platform, the user
needs an active Google account.

If used for prediction, textual target data must
be uploaded to a GoogleSheet and linked with a
project within the application. For training, each
text must be additionally labelled according to the
target task’s label matching schema. While we also
provide information about each supported task on a
separate page in the application, we expect the user
to have a basic understanding of the procedure of
the targeted task (e.g. Sentiment Analysis is about
predicting the sentiment tone of a given text).

How is a user able to identify label mismatch?
For each supported task, we provide the necessary
label matching information within the dialogue to
create a new Action (e.g. in Figure 2). If the user-
provided labels in the Google data sheet do not
match the selected task or adapter architecture, an
error message will be provided giving information
about the indices of the mismatched data points.

How could a new user determine the task for
their data? In general, this application is in-
tended for users who know what type of predic-
tions (i.e. the task) they want to apply on their data.
We provide support for a subset of (pairwise) text
classification tasks from AdapterHub.ml with the
goal to cover the most prominent ones used in in-
terdisciplinary research. However, we also provide
basic information about each supported task on a
separate page in the application.

What if my task is not supported in the Adapter-
Hub Playground? In general, we can only pro-
vide support for the classification tasks which are
covered on Adapterhub. We have selected a sub-
set of tasks which we deem to be of interest in
interdisciplinary research (e.g. computational so-
cial science). Integration of new tasks is possible

25We tested the application using Desktop Firefox and Desk-
top Chrome.

by extending the application which requires some
technical background in coding and web develop-
ment. If you are a researcher and lack the technical
proficiency to do so, we encourage you to get into
contact with us to find out if and how we can inte-
grate your task.

Which pretrained adapter should be used?
This is still an open research question and we re-
fer to the literature for more details (Phang et al.,
2018; Pruksachatkun et al., 2020; Poth et al., 2021).
However, there are some heuristics which can be
followed. Regarding adapters, it has been shown
that domain similarity (e.g. training and test data
are both from Twitter) and training dataset size (the
more the better) can be indicators for good transfer
performance (Poth et al., 2021).

How should hyperparameters be set? Hyper-
parameter optimization for machine learning is a
research field of its own and there is no one-size-
fits-all solution to this. Especially for users without
experience in tuning ML models identifying rea-
sonable hyperparameter values might seem rather
arbitrary.

Currently, we support tuning the learning rate
and the number of epochs. In general, if the learn-
ing rate is high the training may not converge or
even diverge. The changes in the weights might
become too big such that the optimizer will not find
optimal values. A low learning rate is good, but the
model will take more iterations to converge because
steps towards the minimum of the loss function are
tiny. In practice it is good strategy to test different
(high and low) learning rates to identify their effect
on the model performance.

One epoch describes a full cycle through the en-
tire training dataset. A single epoch can sometimes
be enough to improve performance significantly
and training text classification adapters longer than
for 10 epochs rarely provides substantial improve-
ments. We recommend testing different numbers
of epochs (between 2 and 5) to evaluate if longer
training is beneficial for the task at hand.

B Training Details

We did not perform any hyperparameter optimiza-
tion for our experiments and used the default
settings in the AdapterHub Playground applica-
tion. We adopted a learning rate of 1e-4 from re-
lated work (Pfeiffer et al., 2020a) and trained each
adapter for three epochs. In Table 2 we provide the
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Adapter Task Pretrained Language Model Identifier Architecture

IMDB Sentiment Analysis distilbert-base-uncased Pfeiffer
RT Sentiment Analysis distilbert-base-uncased Pfeiffer
SST-2 Sentiment Analysis bert-base-uncased Houlsby

MRPC Semantic Textual Similarity bert-base-uncased Houlsby
QQP Semantic Textual Similarity bert-base-uncased Houlsby

Table 2: Adapter architecture details for each specific task.

respective adapter architectures which were used
for each specific adapter.

C Extensibility

Extending the AdapterHub Playground with a new
text classification task requires adaptations to both
the frontend and backend.

The repository supports a deployment workflow
which will update a configuration file with all rel-
evant information from the AdapterHub. This en-
ables that all tasks and their corresponding pre-
trained adapters (with a classification head) are
potentially available within the AdapterHub Play-
ground. The tasks for these adapters are filtered
based on a predefined set of tasks which should
be available to users of the application. Within the
application, the filter list needs to be adapted such
that the new task is not filtered during startup of
the application. Additionally, the task name and
its description need to be added to the frontend
code as well as the label mapping information. In
the backend we need to add the label mapping and
the list of supported tasks such that the evaluation
computation is correct.

We provide the technical details within the
code repository at https://github.com/
Adapter-Hub/playground.

D Usability Study

D.1 Participants

As can be seen in Figure 5, most participants have
only a basic understanding of the technical con-
cepts related to machine learning or natural lan-
guage processing. However, it is likely they have
experience with annotating data. We further asked
them if they can envision using the AdapterHub
Playground application in their research. Slightly
more than half gave a positive answer (54%) and
the rest were undecided; no participant claimed
they would never use our application.

Figure 5: Participants’ experience with underlying tech-
nical concepts.

Thus, we conclude that our participants belong
to our target group.

D.2 Instructions
We provide the instructions for the usability study
in Figure 6.
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User study for the AdapterHub:Playground
application

Study Details

This study is conducted for research purposes by the Ubiquitous Knowledge Processing (UKP) Lab of
the Technical University of Darmstadt. Your participation is completely voluntary and you are allowed to
cancel at any time. The goal of this study is to evaluate the usability of the Adapterhub:Playground
application. The whole study will take approximately 25 minutes. During the study you will be asked to
complete certain tasks in the application and fill out a questionnaire afterwards.

Contact Person:
Tilman Beck, M.Sc.
S2|02 B104
Hochschulstraße 10
64289 Darmstadt
beck@ukp.informatik.tu-darmstadt.de
+49 6151 16-25294

Preliminary

To take part in this study, you need to register on Kaggle.com. After registering, click on your profile
picture in the top right corner and choose Account in the menu. Then, scroll down to the Phone
verification field and provide your mobile number for verification (Important: without verification we
can’t use Kaggle as computational resource). Next, scroll to the API field, click Create new API
token and download the kaggle.json file to your computer. You are now ready to take part in the
study.

Data:
User ID: <user-ID>
D1: <url-to-data-D1>
D2: <url-to-data-D2>
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Task Description

Prediction

You are provided a set of Social Media posts and are asked to analyze the sentiment in these texts. The
AdapterHub:Playground offers you a tool which allows you to make use of machine learning models to
analyze these Social Media posts. They are specialized on a variety of natural language processing
tasks such as sentiment analysis.
Please evaluate the performance of those models on the first set of Social Media posts we provided (see
D1 above). This Googledocs file does not only contain the Social Media posts, but also their respective
sentiment label (positive or negative). Log into the AdapterHub:Playground tool, create a new
project and insert the above mentioned link to the Googlesheet. Enter your new project by clicking on
your chosen name in the list, then start a new task with type Prediction for Sentiment Analysis.
In the expert mode you can specify additional details about the model selection like the dataset the
model was trained on (e.g. SST-2) or the model architecture (e.g. bert-base-uncased |
pfeiffer). Upon starting the task, the tool will write its predictions directly into the provided
Googledocs in the column you provided. This may take some minutes. Once the task is finished, you can
investigate the performance of the task using the measures Accuracy and F1.

Training

To further improve the performance of the models, the AdapterHub:Playground tool allows you to train
existing models with annotated data. Therefore, you are provided a second set of Social Media posts
without labels (see D2 above).
Please, visit this Googledocs and start with providing labels (type positive or negative) in the
column annotation for the corresponding texts in the first column (input1). We recommend
annotating at least 10-15 texts, but you are free to annotate more texts.
After you finish your annotation, return to the AdaterHub:Playground tool and create a new project. To do
so, please insert the link to the Googledocs (D2 above) where you have made annotations on your own
(please be aware, the link is different to the first Googledocs).
Now, create a new Training task for Sentiment Analysis. Choose the same model selection
details as for the previous prediction task and start the training task by submitting. Once the training is
finished, download the trained model (trained_adapter.zip) to your computer. Congratulations, you
have just trained your own sentiment analysis model! Now, please evaluate if your own model achieves
better performance than the off-the-shelf model from AdapterHub:Playground. Please, use it to create
predictions on your initial set of Social Media posts. Therefore, repeat the process of the first part of this
study (Prediction), i.e. create a new project, start a new task with type Prediction for Sentiment
Analysis. However, this time make use of the Upload Adapter function in the expert mode and
upload the previously downloaded file (trained_adapter.zip). After completion of the task,
investigate the performance measures again.

Now, please answer the questions in this questionnaire:
<url-to-questionnaire>

Thank you very much for your participation!

Figure 6: Instructions for the participants of the user
study.
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Abstract

Lyrics generation has been a very popular ap-
plication of natural language generation. Previ-
ous works mainly focused on generating lyrics
based on a couple of attributes or keywords,
rendering very limited control over the content
of the lyrics. In this paper, we demonstrate
the QiuNiu, a Chinese lyrics generation sys-
tem which is conditioned on passage-level text
rather than a few attributes or keywords. By
using the passage-level text as input, the con-
tent of generated lyrics is expected to reflect
the nuances of users’ needs. The QiuNiu sys-
tem supports various forms of passage-level
input, such as short stories, essays, poetry. The
training of it is conducted under the framework
of unsupervised machine translation, due to
the lack of aligned passage-level text-to-lyrics
corpus. We initialize the parameters of Qiu-
Niu with a custom pretrained Chinese GPT-2
model and adopt a two-step process to fine-
tune the model for better alignment between
passage-level text and lyrics. Additionally, a
postprocess module is used to filter and rerank
the generated lyrics to select the ones of high-
est quality. The demo video of the system is
available at https://youtu.be/OCQNzahqWgM.

1 Introduction

AI creation is an important application domain of
Natural Language Generation (NLG), including
story generation (Zhu et al., 2020; Alabdulkarim
et al., 2021), poetry writing (Zhipeng et al., 2019;
Liu et al., 2020; Yang et al., 2019), lyrics gener-
ation (Potash et al., 2015; Lee et al., 2019; Shen
et al., 2019), etc,. Particularly, lyrics generation has
always been a popular task of NLG since its intru-
siveness and easy data availability. Previous works
of lyrics generation (Castro and Attarian, 2018;
Watanabe et al., 2018; Manjavacas et al., 2019; Fan
et al., 2019; Li et al., 2020; Zhang et al., 2020)
mainly focused on generating lyrics conditioned
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十七岁那年
At the age of seventeen
男孩花了半年的积蓄
the boy spent half a year 
of his savings
陪女孩去听演唱会
Accompany the girl to 
the concert
但爱情来得快也去得快
But love comes and goes 
quickly
总是让人落泪
Always leave people in 
tears

她来听我的演唱会
She came to my concert
在十七岁的初恋第一次约会
First date at the age of seventeen
男孩为了她彻夜排队
Boy queued all night for her
半年的积蓄买了门票一对
Half a year of savings to buy a pair 
of tickets
我唱得她心醉我唱得她心碎
I sang her heart drunk and broken
三年的感情一封信就要收回
Three years of love was taken back 
by a letter
她记得月台汽笛声声在催
She remembered that the 
platform whistle was rushing
播我的歌陪着人们流泪
Play my song with people’s
tears

Figure 1: This figure depicts a typical creation pattern:
the author firstly conceives a rough draft (in the left box)
and then polishes it to the final work (in the right box).

on specified keywords (e.g., Flower) or certain at-
tributes such as the lyrics’ text style (e.g., Hip-hop)
and expected theme described by the lyrics (e.g.,
Love). However, these input only provide very lim-
ited control over the content of generated lyrics.
Sometimes the generated lyrics may deviate far
from the user’s needs. To improve the usability
of AI as a creation tool, we need to improve the
controllability of the generated content.

We argue that adopting free form text as the input
is an approach to having precise control over the
content of generated lyrics. As seen in Figure 1, an
author usually conceives a passage (shown in the
left text box) in his/her mind that expresses his/her
inner feelings and thoughts, and then uses a wealth
of writing skills and rhetorical techniques to create
the final work (shown in the right text box).

In this paper, we demonstrate QiuNiu (the eldest
son of the dragon in ancient Chinese mythology,
who loves music), a Chinese lyrics generation sys-
tem conditioned on free form passage-level text.
The QiuNiu system can receive various forms of
passage-level user input, which may be in different
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Passage-level 
User Input

Short story

essay

Classical Poetry

Modern Poetry

Generation 
Model

十七岁那年
At the age of seventeen
男孩花了半年的积蓄
The boy spent half a 
year of his savings
陪女孩去听演唱会
Accompany the girl to 
the concert
……

Postprocess

𝑬𝒏𝒄𝒔
for passage-

level text

𝑫𝒆𝒄𝒕
for lyrics

她来听我的演唱会
She came to my concert
在十七岁的初恋第一次约会
First date at the age of 
seventeen
男孩为了她彻夜排队
Boy queued all night for her
半年的积蓄买了门票一对
Half a year of savings to buy a 
pair of tickets
……

Relevance 
Reranking

Anti-spam

Lyrics scoring

Figure 2: The architecture of QiuNiu system. The module of user input can receive various forms of passage-level
text. And the generation model generates lyrics conditioned on the passage-level user input. Finally, a postprocess
module is used to select the high-quality lyrics.

genres (e.g., short stories, essays, poetry), and eras
(e.g., classical poetry, modern poetry). It is basi-
cally a text style transfer problem, which greatly
suffers from the lack of aligned corpus. To con-
struct the training data, we collected a passage-level
corpus Ds from multiple sources and 300K differ-
ent styles of lyrics corpus Dt. Note that it is in-
tractable to train a sequence-to-sequence (seq2seq)
model from passage-level text to lyrics directly be-
cause the Ds and Dt are not aligned.

To address the issue, the QiuNiu system adopts
the framework of unsupervised machine translation
(UMT) (Lample et al., 2018; Yang et al., 2019).
Specifically, The framework consists of an encoder
Encs and a decoder Decs for the input side, an en-
coder Enct and a decoder Dect for lyrics side. The
encoder Encs (or Enct) encodes the passage-level
input text (or lyrics) into a hidden representation
and the decoder Decs (or Dect) decodes it into
lyrics (or passage-level text). The objective of the
model training is to align the passage-level text and
lyrics in the latent representation space.

To train the model, we first initialize the parame-
ters with a custom Chinese GPT-2 (Radford et al.,
2019) model, which is pretrained on around 30G
Chinese books corpus collected online. Then we
adopt a two-step process to finetune the model by
jointly optimizing self-reconstruction loss, cross-
reconstruction loss and alignment loss. After the
training is finished, Encs encodes the passage-level
input and Dect generates the candidate lyrics. Fi-
nally, a postprocess module is used to filter and
rerank the generated lyrics to select the ones of
highest quality. Human evaluation indicates the
effectiveness of the framework.

The contributions of the QiuNiu system are sum-
marized as follows:

1. The paper demonstrates the QiuNiu system,
which can generate Chinese lyrics from vari-

ous forms of passage-level text input for the
first time.

2. To better align the passage-level text and
lyrics, we propose a two-step process to fine-
tune the UMT model of QiuNiu, which is ini-
tialized with the pretrained Chinese GPT-2
parameters. And a postprocess module is ap-
plied to select the high-quality lyrics by filter-
ing and reranking the generated candidates.

3. The QiuNiu system and demo video are avail-
able at https://qiuniu.apps.danlu.netease.com/
and https://youtu.be/OCQNzahqWgM.

2 Architecture

The architecture of QiuNiu system is shown in Fig-
ure 2. It mainly consists of three modules: Passage-
level User Input, Generation Model and Postpro-
cess. Each module is described in detail below.

2.1 Passage-level User Input
The module receives passage-level inputs from
the user, performs appropriate pre-processings and
passes the results to the trained model to gener-
ate lyrics. A passage-level input here refers to a
piece of text that can briefly depict the main idea
that the lyrics is expected to convey. For the ex-
ample in Figure 1, the author writes lyrics of lost
love, which is based on the experiences of falling
in love (e.g., "The boy spent half a year of his sav-
ings, accompany the girl to the concert.") and his
own understanding of love (e.g., " Love comes and
goes quickly, always leaves people in tears."). A
passage-level text piece is much stronger than the
keywords or attributes at depicting complex stories
or nuanced feelings.

The QiuNiu system can support various forms
of passage-level text inputs, such as short stories,
essays, classical poetry, modern poetry. Though
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𝑬𝒏𝒄𝒔
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level text

Passage-
level text

Lyrics

𝑫𝒆𝒄𝒕
for lyrics
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for passage-

level text

𝑬𝒏𝒄𝒕
for lyrics
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1 Alignment loss

2 Self-reconstruction loss

3 Cross-reconstruction loss

Figure 3: The framework of training the QiuNiu model.
The framework is composed of two pairs of Encoder-
Decoders, one pair for passage-level text and the other
for lyrics. And the model is jointly optimized with the
self-reconstruction loss, cross-reconstruction loss and
alignment loss.

all these passage-level inputs have the same pow-
erful semantic description capabilities, they may
be different from each other in genres (e.g., story,
poetry), and eras (e.g., classical text, modern text).
In order to convert the input text into a form that
can be processed by the generation model, pre-
processings consists of conversion from traditional
Chinese characters to simplified characters, spam
filtering, error detection and correction, and con-
version to token ids.

2.2 Generation Model

The generation model follows the Transformer-
based sequence to sequence (seq2seq) framework
(Vaswani et al., 2017), which consists of an En-
coder for source text Encs and a Decoder for tar-
get text Dect. In the inference phrase, it takes in
passage-level user inputs and generates several can-
didate lyrics. As shown in Figure 2, Encs encodes
the passage-level text into latent representation and
Dect decodes the latent representation into lyrics.
We will describe the details of training below.

2.2.1 Corpus
Lyircs: We collected 300K different styles of Chi-
nese lyrics from Internet, including Pop, Hip-hop,
Chinese Neo-traditional, etc. For the lyrics cor-
pus, we filtered the abnormal characters, removed
lyrics less than 100 in length, and de-duplicated.
We denote the processed lyrics corpus as Ds.

Passage-level Text: To support various forms of
passage-level text input, we collected the passage-

level corpus covering different genres and eras
from many sources. Specifically, the corpus con-
tains short stories or essays collected from social
medias, such as Weibo Tree Hole1, Douban Essay2,
Micro Novel3. We filtered out the noisy text and
processed them into uniform format. Besides, we
also collected refined literature from both classical
and modern eras which are naturally the passage-
level text, mainly including Chinese classical po-
etry (e.g., Han Fu, Tang poetry, Song Ci, Yuan Qu,
etc.), Chinese modern poetry with different styles
(e.g., Philosophy, Love, Child, etc.). Finally, we
obtain a passage-level corpus of 600K that denoted
as Dt.

Pseudo-aligned Dataset: Note that the passage-
level text Dt and the lyrics Ds are not aligned. To
help model for alignment, we further constructed
a pseudo-aligned dataset Da, respectively for clas-
sical and modern text. For classical text, we first
counted the n-gram (n = 1, 2) tokens in classical
Chinese poetry of Ds. Then for lyrics of each Chi-
nese Neo-traditional song which is most similar to
Chinese classical text, we selected these n-gram
tokens appeared in lyrics and combined them based
on the format of classical Chinese poetry (e.g., Five-
character Quatrain, a four-line poetry with five char-
acters each line). These pseudo poetry were finally
paired with corresponding Chinese Neo-traditional
lyrics. For modern text, We constructed pseudo-
aligned pairs with back translation. Specifically,
for lyrics of each song, we used the API4 to first
translate it into English text and then the English
text was translated into Chinese plain text. Finally,
we selected several segments of the translated plain
text and reordered them, which is regarded as the
aligned text with original lyrics.

2.2.2 Framework of Model
Due to the lack of aligned corpus from passage-
level text to lyrics, we could not train the encoder
and decoder of seq2seq model directly. Therefore,
our training model adopts the framework of un-
supervised machine translation (UMT) (Lample
et al., 2018; Yang et al., 2019). As illustrated
in Figure 3, the framework is composed of two
pairs of Encoder-Decoders, one pair Encs-Decs
for passage-level text and the other Enct-Dect for
lyrics. Encs (or Enct) encodes passage-level text

1https://weibo.com/
2https://www.douban.com/
3https://www.567876.com/duanwen/weixiaoshuo/
4https://fanyi.youdao.com/
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Method Fluency Coherence Relevance Overall Quality
Two-step Training 3.05 2.86 2.85 2.98
- step 1 (Reconstruction Loss only) 2.74 2.16 2.22 2.23
- step 2 (Alignment Loss only) 2.81 2.66 3.06 2.79

Table 1: Human evaluation results of Ablation.

(or lyrics) into latent representation, and Decs
(or Dect) decodes the latent representation into
passage-level text (or lyrics). The training object
is to align the passage-level text and lyrics in the
latent representation space.

Now we introduce three kinds of losses in the
training process as shown in Figure 3.

1) Alignment Loss: The loss tries to capture the
distribution of lyrics in Dect (or passage-level text
in Decs) given the passage-level text in Encs (or
lyrics in Enct). It optimizes the model parameters
by calculating the negative log likelihood (NLL)
on pseudo-aligned dataset Da:

La = −
∑

Da

logP (yi|Dect (Encs (xi)))

−
∑

Da

logP (xi|Decs (Enct (yi)))
(1)

where (xi, yi) ∈ Da represent the pseudo-aligned
passage-level text and lyrics respectively.

2) Self-reconstruction Loss: The loss is to cal-
culate the reconstructed distribution for passage-
level text or lyrics itself. Specifically, the passage-
level text (or lyrics) is encoded into latent represen-
tation by Encs (or Enct) and then decoded by Decs
(or Dect). The NLL loss is computed as

Lsr = −
∑

xsi∈Ds

logP (xsi|Decs (Encs (xsi)))

−
∑

xti∈Dt

logP (xti|Dect (Enct (xti)))

(2)

3) Cross-reconstruction loss: Given a passage-
level text (or lyrics), we first generate lyrics (or
passage-level text) by Encs-Dect (or Enct-Decs).
Then the generated text is used to reconstruct the
original input by Enct-Decs (or Encs-Dect). It is
formulated as

Lcr = −
∑

xsi∈Ds

logP (xsi|Decs (Enct (y
g
ti)))

−
∑

xti∈Dt

logP (xti|Dect (Encs (y
g
si)))

(3)

where ygti and ygsi are the intermediate generated
lyrics or passage-level text.

2.2.3 Training
Model Initialization: To make the model easier to
learn and generate more fluent text, we first initial-
ize the parameters of both the two encoder-decoder
pairs with a pretrained GPT-2 model (Radford et al.,
2019). Note that the encoders in our system use the
unidirectional self-attention to be consistent with
the structure of GPT-2. The pretrained GPT-2 with
total 210 million parameters has 16 layers, 1,024
hidden dimensions and 16 self-attention heads. The
GPT-2 is pretrained on about 30G Chinese novels
collected online, whose vocabulary size is 11,400
and context size is 512.

Two-step Training: Next we use a two-step
training method to finetune the model. In the first
step, we train the Encs-Dect and Enct-Decs on
constructed pseudo-aligned corpus Da with align-
ment loss La for several epochs. Through this
step, we improve the ability of the alignment be-
tween encoder and decoder, which is a warm-up
for training on unaligned corpus. In the second
step, the model is trained on all the corpus (Da,
Ds and Dt) with jointly optimizing the weighted
alignment loss La, self-reconstruction loss Lsr and
cross-reconstruction loss Lcr. In this step, The cor-
pus Ds of passage-level text and Dt of lyrics is
aligned in the latent representation space (Lample
et al., 2018). In general, the training loss can be
formulated as

L = α1La + α2Lsr + α3Lcr (4)

where α1 = 1, α2 = 0, α3 = 0 for the first step
and α1 = 1, α2 = 1, α3 = 1 for the second step.

2.3 Postprocess

After the model training is finished, we use Encs
and Dect to generate lyrics with the passage-level
inputs in the inference phrase. Then we postprocess
the candidates as followed.

Lyrics Scoring: To select the lyrics with high
quality, we trained a classifier to judge whether the
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On the road at dusk, I met a beautiful girl. 
I don't know if it was hell, or heaven.

On the road at dusk, I met a……

Figure 4: The interface of the user input. Users can write
multiple forms of passage-level text as input. Several
examples of input are provided for each type.

candidate lyrics are good and use its confidence
as the lyrics score Scorel. We used the lyrics of
popular and classic songs as positive examples and
the lyrics of less played songs as negative samples.
The model is based on pretrained Chinese Bert (De-
vlin et al., 2019) implemented by Transformers5.
Experimental results show that our model prefers to
give high scores to graceful and ornate lyrics, such
as metaphorical sentences, rather than the verbose
and plain ones.

Relevance Reranking: The metric denoted as
Scorer is to measure the relevance between the
passage-level inputs and the generated lyrics. The
Scorer is computed based on the n-gram (n =
1, 2, 3, 4) overlapping between the passage-level in-
put S and the generated lyrics T , which is denoted

5https://github.com/huggingface/transformers

as On. We formulate the Scorer as follows:

Scorer =
∑N

n=1On

N |S| (N = 4) (5)

where |S| is the length of passage-level input.
Finally, we rerank the lyrics filtered by an anti-

spam process with the final score Scoref .

Scoref = Scorel + Scorer (6)

3 Evaluation

3.1 Demonstration

In this section, we demonstrate how the QiuNiu
system works. And mores details are described in
the demo video.

The user input interface is shown in Figure 4.
Users can choose one type of the passage-level text
input, write passage-level text corresponding to the
chosen type or try the provided examples as input.
After that, click the button "Generate!".

Then we show some generated lyrics of differ-
ent passage-level inputs, mainly including Chinese
modern text and classical text.

1) Modern Text: The generated lyrics of two
genres (short story, essay), as examples, are shown
in the left and middle of Figure 5. For each genre,
the QiuNiu system can perform well with con-
tent expansion and produce fluent and high-quality
lyrics relevant to the inputs.

2) Classical Text: The QiuNiu system also sup-
ports Chinese classical poetry input. An example
of Song Ci (a type of Chinese classical poetry) is
shown in the right of Figure 5. Note that we can
also receive other types of Chinese classical poetry,
such as Tang poetry, Han Fu and so on. We will
not show their generated results due to space lim-
itation, but they are available at the url of QiuNiu
https://qiuniu.apps.danlu.netease.com/.

3.2 Ablation

We conduct ablation study to evaluate our two-step
training framework.

Metrics: We evaluate the generated lyrics from
four perspectives: 1) Fluency: Is the lyric grammat-
ically well formed, 2) Coherence: Is the lyric itself
logical and consistent, 3) Relevance: Is the lyric
relevant with the input, 4) Overall quality: Is the
lyric a good lyric overall subjectively. Note Overall
quality is not the average score of the others. All
the metrics are scale from 1 to 5 while 5 is the best.
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I walk into the coffee bar

Order a cup of coffee

Watching the sweetness of others

And their intimateness

Sitting at the window

Drinking slowly

My eyes become blurred

Reminds me

Those beautiful memories

It has rained outside

Street lights are still gorgeous

It's raining again here

Wetting the air

Maybe it's been lonely for too long

Maybe just leave

I walk into the coffee shop, order a cup of coffee, 

sit in front of the window, and drink slowly. It is 

still raining outside.

You once said you would marry me when my hair 

reached  waist. My hair reaches the floor now. But 

why you only see the newcomer smile, not the 

past one cry? Do you know on the bridge of rebirth, 

I have waited for you alone for hundreds of years.

You once said when my hair reached waist

You would marry me and drink wedding wine

But now my hair reaches floor

I have waited for long and never turn back

Think of the past, I feel sad once again

Only for the old love of that time

You don't see past people cry

Only look at the newcomer’s smile

Good look is never seen on her face anymore

What can be seen is her tears soak the clothes

You will not see her smile

Only lovesickness lingers  in her heart

May fly with you in the next life

Moonlight pass through plum blossoms, and short-leaf

floret is weak. The guest from north complains that it

blooms earlier in south. What make it bloom before winter?

Maybe it is passionate to spring. It Keeps everyone

intoxicated when the rain and the wind are stopped.

The east wind blows down the flowers again

Moon likes a hook, and I becomes emaciated

Autumn night is bored. I drink a pot of wine

Shadows are paired. She is teary eyes whirling

She sings a song in the small garden

boiling wine with green plum, what make her cry

Why do I have to leave away

The spring is as usual in south

It’s hard to decide to leave with a beauty aside

Parting is always sad

Goose returns to the willow bank

My heart has been broken

Your smile face in my dream is so lovely

Love likes river, and goes quickly with time

The road is long. Nothing can compare with your songs 

Figure 5: The examples of generated lyrics for different text inputs, including short story, essay, classical poetry.

Test set: We sampled 30 passage-level inputs
for each of four genres (short story, essay, modern
poetry and classical poetry), totally 120 samples.

Baselines: We compare our 1) Two-step Train-
ing method with 2) Two-step Training - step 1 (use
reconstruction loss only. Here we set α1 = 0 to re-
move the alignment loss) and 3) Two-step Training
- step 2 (use alignment loss only and can be consid-
ered as a seq2seq model with a small corpus).

We invited 3 evaluators to evaluate all the 120
generated lyrics generated independently. The re-
sults are shown in Table 1. All the scores are the
means of 3*120 human evaluation results. Two-
step training method gets around 0.2 promotion in
perspectives of Fluency, Coherence and Overall
Quality, which indicates the effectiveness. Recon-
struction loss does make model acquire knowledge
from more corpus and improve the fluency and
coherence of the generated lyrics. The method
Two-step Training - step 2 achieve the best in Rel-
evance. The supervised learning guarantees the
correlation between the input and the generated

lyrics while the unsupervised step slightly reduces
the relevance. The method Two-step Training - step
1 performs worst except in Fluency. This shows
that the warm-up step is necessary for model to
learn the connection between the input and lyrics.

4 Conclusion

In this paper, we demonstrate QiuNiu, a Chinese
lyrics generation system conditioned on passage-
level input. We support various forms of passage-
level input, covering different genres and eras. The
QiuNiu system adopts the framework of unsuper-
vised machine translation due to the lack of aligned
corpus from passage-level text to lyrics. Besides,
the model of QiuNiu is initialized with the pre-
trained Chinese GPT-2 parameters and finetuned
in a two-step process to improve the alignment be-
tween the passage-level text and lyrics. Finally, a
postprocess module is used to filter and rerank the
generated lyrics to select the high-quality ones.
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Abstract

A multi-language dictionary is a fundamental
tool for language learning, allowing the learner
to look up unfamiliar words. Searching an un-
recognized word in the dictionary does not usu-
ally require deep knowledge of the target lan-
guage. However, this is not true for sign lan-
guage, where gestural elements preclude this
type of easy lookup. This paper introduces
GlossFinder, an online tool supporting 2, 000
signs to assist language learners in determining
the meaning of given signs. Unlike alternative
systems of complex inputs, our system requires
only that learners imitate the sign in front of
a standard webcam. A user study conducted
among sign language speakers of varying abil-
ity compared our system against existing al-
ternatives and the interviews indicated a clear
preference for our new system. This implies
that GlossFinder can lower the barrier in sign
language learning by addressing the common
problem of sign finding and make it accessible
to the wider community.

1 Introduction

Unlike most language systems, which are com-
posed of their written and spoken forms, sign lan-
guages (e.g., American Sign Language (ASL) and
the Australian Auslan language) used by the Deaf
or Hard-of-Hearing (DHH) community are repre-
sented by the rich inputs including facial and ges-
ture movements. As of the year 2020, 430 million
people worldwide have developed hearing loss—
that is, one in every ten people—and it is estimated
that this number may increase to 700 million by
2050 (WHO, 2021). Sign languages are also used
by people suffering the loss of ability to speak (e.g.,
aphasia) or brain stroke. They are spoken by in-
dividuals with various relational connections to
sign language speakers, e.g., family members or
co-workers. Additionally, a substantial and grow-
ing number of people are learning a sign language
as a second language, e.g., among U.S. university

students (Goldberg et al., 2015). Despite the ef-
forts made in building tools to support their learn-
ing (Lee et al., 2005; Schioppo et al., 2019; Hou
et al., 2019; Scassellati et al., 2018; Li et al., 2021),
many sign language learners have limited means of
seeking assistance, and are restricted to class offer-
ings or relying on other experienced sign language
speakers. It is therefore increasingly important to
support the sign language learner community to
facilitate better education and communication.

As a fundamental tool in language study, a dic-
tionary is more than a tool to assist sign language
learners in searching unfamiliar words. The rich
content present in current online dictionaries (e.g.,
example pronunciation recordings and visual ma-
terials) also provide positive feedback to foster
the learner’s understanding and proficiency in the
target language (Corbeil and Archambault, 2006;
Laska, 1993). Most existing sign language dictio-
naries (e.g., AslSearch (ASLSearch, 2009), Hand-
speak (Lapiak, 1995), and Signing Savvy (Sign-
ing Savvy, 2021)) are text-based and centered on
one spoken language, with signs presented in an
alphabetical order of their corresponding gloss, i.e.,
the spoken language counterpart. This does not
serve the important scenario when someone en-
counters an unfamiliar sign and does not know
its spoken language translation. Another issue
with the text-based dictionary is the fact a one-to-
one correlation between sign and spoken language
words does not always exist, and no standard con-
vention exists for handling these discrepancies. The
absence of these types of dictionary for sign lan-
guage learner is due to the difficulty of processing
visual input and the lack of intuitive alphabetics
assumed in most language dictionaries. An early
effort made towards a sign-centric dictionary is Ten-
nant et al. (1998) where researchers use pre-defined
handshapes (finger poses) to formalise the signs so
that they can be arranged similar to a conventional
dictionary. Follow-up work (Lapiak, 1995; Neidle
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et al., 2012; Alonzo et al., 2019) parameterised the
signs by key properties (e.g., handshape, position
of hands, and whether the sign involves repetitive
movement) to make a filtering-based search system.
In addition, Elliott et al. (2011) used the Microsoft
Kinect to collect human body movements from the
sign language speaker and match the performed
signs against the database.

Modern advancements in deep learning algo-
rithms enable processing of unstructured video in-
puts, and these algorithms have been applied to sign
language. Progress has been made in identifying
isolated (Li et al. (2020a,c); Albanie et al. (2020);
Sincan and Keles (2020); Momeni et al. (2020))
or continuous signs (Li et al. (2020b); Zhou et al.
(2021); Bull et al. (2021); Duarte et al. (2021);
Chen et al. (2022)) from a video. This presents
opportunity to develop a dictionary system, which
accepts direct video inputs from a user perform-
ing a sign, and attempts to return the meaning of
that sign. One of the early attempts on such video-
based system is Alonzo et al. (2019) where the
author discussed some characteristics in the design
and evaluation metrics regarding the user satisfac-
tion. Notably, the work did not build an actual
automatic recognition technique and the users are
only presented with a predetermined set of results
during the study.

In this paper, we present the platform of Gloss-
Finder, our new video-based sign dictionary, where
users directly provide videos of the target sign by
performing it to their webcam or via uploaded clips,
and the system will retrieve matched signs without
any extra input. To the best of our knowledge, it
is the first attempt of user study with a function-
ing system built. The study identifies some key
considerations in designing for this specific sign
language context. It also verifies sign language
learners’ frustration when using previous sign dic-
tionaries, either due to the steep learning curve or
the poor quality of results.

2 System Design

2.1 System Design Criteria

After initial consult with sign language instructors
and learners, we determined the following three
design criteria items for GlossFinder:
C1. Result with Feedback: Unlike with conven-
tional dictionaries, locating the exact target word
(i.e., the sign the user is searching for) is laborious
with a sign language dictionary. For example, even

basic signs such as those for “father” or “mother”
can lead to confusion for beginners. Therefore,
the system should provide additional materials to
support the user in matching the results and guide
refining the search, if appropriate.
C2. Robust to Noise: Example videos in online
sign language learning platforms and related re-
search are sourced in a controlled environment. In
contrast, we aspire to our system to be applicable to
amateur scenarios so that the system is robust even
in less formal noisy situations where such clean
inputs are unavailable. Namely, we focus on the
following two types of noise commonly presented
in the videos from informal sources: First, the user
captured videos often include blank segments be-
fore and after the informative part, in contrast to
the videos from professionals which are trimmed
and standardized. Second, the lightning conditions
may vary among users. We require the system to
be robust to these noises.
C3. Minimal Learning: The large sign language
learner community includes people of diverse sign
language levels and backgrounds. We argue the
proposed system should be straightforward to use
in order to be perceived as both usable and useful
by a broader cohort of sign language learners. With
that in mind, a favored dictionary design should be
similar to how sign language learners consult peers
in practice by performing again the sign to their
best ability.

2.2 System Architecture
An overview of the GlossFinder system is demon-
strated in Figure 2. Gloss Recognizer accepts an
incoming video feed of signers performing the tar-
get gloss and determines the ranking of predicted
gloss categories. Top gloss candidates from the
ranking result are relayed to the Gloss Retriever
component to collect enriched information for each
gloss, e.g., the sample gloss video. Users’ access
to the system through the web-based platform as
illustrated in Figure 1 where they can provide the
gloss video feed either by using their camera to
record or uploading a pre-recorded video file.

2.3 Gloss Recognizer
The Gloss Recognizer is based on models from
supervised training on a sign recognition dataset.
Recent works in this field can be categorized into
two streams depending on the input feature, namely,
human pose or gesture based approaches inspired
by the long-term development in sign language rep-
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Figure 1: A screenshot of GlossFinder. The top panel is for the input, with the left part being the real-time capture
from a webcam or the user’s pre-recorded video. The captured video is played to the right as a preview. After the
system has made a prediction, the candidate glosses are displayed in the result panel at the bottom along (including
example videos). (Faces have been blurred in this paper for privacy reasons.)

resentation (Wang et al., 2010), and recent works
relying on deep learning and raw video frames (Li
et al., 2020a; Momeni et al., 2020). We observe
that the recent video-based approaches report a
higher top-k accuracy, but in comparison the over-
all results from pose-based approaches are more
consistent in retrieving visually similar examples
which may be attributed to the sparsity of their pose
input. To align with the aforementioned criteria of
C1. Result with Feedback which promotes return-
ing more similar signs for the user to examine, we
construct a model of each kind and ensemble the
results to retain the benefits of both.

Training Material: To facilitate building the
recognition model for the model training, we adopt
the public available WLASL dataset (Li et al.,
2020a) with 2, 000 sign glosses performed by over
100 signers. This dataset ensures an average of
10.5 examples per sign to support sufficient super-
vision signals for the model training and vocabulary
diversity for our user study.

Image-Based Model: We adopt the I3D net-
works pre-trained on the Kinetics dataset, consid-
ering their effectiveness on sign langauge recog-
nition (Li et al., 2020c) and translation (Li et al.,

2020b). The pre-trained backbone enjoys the ro-
bustness to varying video conditions, remedying
the second noise covered in the criterion C2. Ro-
bust to Noise. We attach a projector on the repre-
sentation features extracted from the I3D backbone
network. The model is finetuned on the WLASL
dataset, and achieves an accuracy of 60.21% at top-
5, slightly better than those baselines reported in Li
et al. (2020a).

Pose-Based Model: The pose-based model in-
herits the setting from (Li et al., 2020a) by first ex-
tracting the body and 2D keypoints for each frame
applying OpenPose (Cao et al., 2019). Considering
that face and lip movements are less reliable in the
training corpus WLASL, we only use keypoints
of the main upper-body with the both hands. The
concatenation of all 2D key point coordinates at
each frames forms the input feature, before feed-
ing to the Temporal Graph Convolution Networks
(TGCN) (Li et al., 2020a). A complete graph is con-
structed by connecting all key points present in the
input features and the TGCN model is trained by
learning to aggregate information over this graph
of key points.

Sliding Window Inference: Following the cri-
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Figure 2: An overview of the main components in GlossFinder. The Gloss Recognizer and Gloss Retriever
components jointly generate the enriched view of gloss matches from the input sample video. (Faces have been
blurred in this paper for privacy reasons.)

terion of C2. Robust to Noise, we incorporate
a mechanism to cope with the commonly present
short blank segments before and after the represen-
tative frames (e.g., users raising or putting down
their hands). As demonstrated in Figure 2, We
apply the recognition model over several contin-
uous segments of a fixed length of time (sliding
windows). As the model slides through the whole
input, the result ranking of glosses is obtained from
their maximum prediction in all segments. Intu-
itively, a gloss is predicted as present as long as it
appears in any of the segment.

2.4 Gloss Retriever

The Gloss retriever component collects enriched
information for the predicted glosses from Gloss
Recognizer, including example videos and explana-
tions. We first shortlist a few public ASL sources
and construct a database of glosses with their ex-
amples in possible dialects. To avoid duplicate in
the result, we only include video examples from
the source with most examples present for each in-
dividual gloss, with the assumption that these ASL
sources mostly include one example video for each
dialect. The retriever component includes two re-
sult modes. The gloss-centric mode lists individual
glosses in the predicted order, with one example
video for each. The example-centric mode expands
the result gloss with their varieties in the database,
that is, a gloss with 3 variety videos will take 3
spots in the result list. The gloss-centric mode pro-
vides a clearer view of the gloss guesses from the
model, while more freedom is given to the user

in example-centric mode to inspect examples and
match them with their target in the memory.

2.5 GlossFinder
Based on the criterion of C3. Minimal Learning,
GlossFinder avoids any pre-defined parameters and
the user is only prompted to give a video input of
the target gloss, as illusrated in Figure 1. To start,
the system guides the user to focus on their camera
to capture a video of the target sign. The “capture”
button toggles between the start and stop status
during the recording. Whenever the stop status is
reached, the recorded video is played in the preview
window next to it for any adjustment. The preview
window is also initialized with an example video to
demonstrate the recommended camera position and
hand placement. Once the user is satisfied with the
recording, they will click the “Predict” button to
issue the request to the back-end Gloss Recognizer
and Gloss Retriever component for results. The
“capture” button is disabled during the prediction
with the progress bar below indicating the current
status. Top predicted gloss candidates are then
displayed in the result panel sitting in the bottom
panel. Each candidate gloss is featured with some
example videos from a professional signer so that
the users can quickly compare with the one they
are looking for.

3 User Evaluation

3.1 Benchmark Systems
We include in our comparison the existing public
available sign language dictionaries that can serve
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Figure 3: The success rate for each participant P1-P10 in reaching the correct sign during the trials.

the purpose of search for glosses. They are mainly
of two categories:

• List-based Dictionary: All supported glosses
were listed in their alphabetic order or grouped
by category. We adopted widely used Signing
Savvy (Signing Savvy, 2021) as the default
one for participants, with the option of Hand-
Speak (Lapiak, 1995).

• Parameter-based Dictionary: The user was
required to tick several parameters such as
hand-shape to filter in the glosses. HandSpeak
reverse dictionary (Lapiak, 1995) was adopted
in our study.

3.2 Research Ethics and Recruitment

Ethical approval (Protocol 2021/375) was obtained
from the Human Research Ethics Committee of
The Australian National University. Each partici-
pant provided written informed consent.

Acknowledging that the primary users of this
study was sign language leaners, the selection crite-
ria were set to adults of any level of sign language
experience. Particularly, experienced sign language
users were favored if they were not using ASL. As
such, we were able to collect direct feedback from
experienced sign language users without forcefully
asking them to pretend knowing the target signs.
All participation was voluntary to encourage both
positive and negative feedback.

3.3 Interview Process

The evaluation of the system is conducted in a form
of interview with the participants to collect both
quantitative and qualitative results. Each partici-
pant is guided to try each of the 3 target systems
to search for specific signs. They started by experi-
menting with up to 6 signs from a determined set
we constructed based on the consideration of the
gesture diversity. The participant also chose a few
signs from the vocabulary at will. Within the trial,
they are encouraged to play around the systems for

a few rounds to simulate the use of a dictionary.
After some trials, they are asked to rate their satis-
faction with the overall experience of interacting
with the system, by taking into account both the
quality of retrieved results and the support of the
system to refine the search.

3.4 Participants

In total, 10 people participated in the study: 3 fe-
males and 7 males, and all in the age range of
20–40 years. The participants varied in their level
of sign language experience. There were 3 inter-
mediate sign language users with over 10 years of
experience, of which 2 were attending professional
jobs related to sign language interpretation. Addi-
tionally, there was 1 person having going through
less than 1 year of systematic study, and 6 junior
learners (a.k.a. beginners). All participants self-
identified themselves as hearing, and were learning
sign language for work, family members, or of their
personal interest.

3.5 Evaluation Results

In this section, we summarize the ratings of the
target systems from the three aspects as described
below:
Ratings of learning to use the system The list-
based dictionary and GlossFinder received higher
ratings for easy to learn. A post-hoc analysis was
conducted by Wilcoxon Signed-Rank Test to ex-
amine the significance of difference in pairwise
comparison. Particularly, the corrected p-value
were 0.0065 for LB-PB, 0.0103 for GF-PB, and
0.1025 for LB-GF 1. We considered the difference
is significant for the parameter-based method to the
other two.

Noticably, the ratings for both the parameter-
based system and GlossFinder rose after the trials.
For the parameter-based system, the participants

1When it is not ambiguous, we will use the abbreviation
of List-based (LB), Parameter-based (PB), and GlossFinder
(GF) in reporting numeric results.
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Figure 4: Ratings our participants gave to the benchmark systems during the trials. The rating for learning the
system was collected both before and after the trial to cope with the bias from the system introduction and long-term
effects of the user getting familiar with the system.

had a tendency to be less frustrated when realizing
they did not have to always specify all the param-
eters at once. For example, participant (P5) strug-
gled on several signs about their location parame-
ter especially for signs involving large or circular
movements such as “family”. He decided to ignore
the location in the following trials. In the mean-
time, the participants also showed more confidence
in using GlossFidner as they got comfortable with
using their camera. They also attributed the positive
change to the capability of system to accommodate
imprecise gestures and hand placement.

Ratings of using the system It was not surpris-
ing to see most participants quickly gave up using
the List-based dictionary. Although some disagree-
ment arose here, participants are giving a higher
rating to GF in comparision to LB and PB. Simi-
larly, Wilcoxon Signed-Rank Test was conducted
to compare the pairwise significance of difference.
The corrected p-values were 0.0069 for LB-PB,
0.0276 for GF-PB, and 0.0019 for GF-LB.

The Parameter-based system received controver-
sial feedback among different groups. One of the
intermediate signer had particularly used the sys-
tem before and was reluctant to test it based on
his previous experience. Junior learners showed a
more optimistic view towards exploring the param-
eters. However, they reported strong depression
over the minimal feedback the system was giving
to them, which often confused them about if they
were getting close to the target.

The participants expressed their favor to Gloss-
Finder justified by the quality of results with the
minimal effort. As pointed out by the participant
P6, when he was searching for a sign (e.g., “travel”,
performed by circulating a hand with two fingers
bent forwards) in practice, he might not have been
certain if the two fingers should have been pointing

towards the front or up. This type of a local change
led to less confidence in selecting the parameters.
GlossFinder was less demanding on such precise-
ness. Some other testimonies focused on the inter-
action. As stressed for the parameter-based system,
the users were not receiving feedback regarding
their input. In contrast, they were able to compare
against the gloss examples present in GlossFinder
for possible matches. The participants said that
the examples provided more than simply evidence
for the correct match, but also guidance on how to
proceed next if the target sign was not seen.

Success rate of search For quantitatively analyz-
ing the system performance, we kept a record of
the exact success rate for each trial of search during
the interview, as the target sign was known to us.
Detailed results can be found in Figure 3. For the
list-based system, a success was defined as when-
ever the user clicks in the correct sign, no matter
if they realized it is correct. It was extended for
the parameter-based system to when the correct
sign was in the first page of returned results (no-
ticeably it was slightly favoring the system as the
user might not be patient enough to examine all
candidates even though they are certain with the
correctness of parameters). For GlossFinder, we
considered a success if the correct sign appears in
the top-k results with k = 12 for that was the max-
imum number of videos to display in a common
monitor resolution without scrolling. As shown in
Figure 3, the success rate correlated positively with
the user rating on usability and was clearly favoring
the GlossFinder system. The average success rate
for LB, PB and GF are 6%, 25% and 66% respec-
tively. Most participants succeeded in locating the
correct sign with 1 or 2 rounds of trials possibly
by capturing a new video. Only the experienced
signers were able to use the list-based system by
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relating the ASL sign here to the sign language they
mastered and thus making a reasonable guess. In
comparison, the results from the parameter-based
system were relatively diverse, which unexpectedly
was regardless of sign language experience. The
testimony from participants of higher success rate
suggested the method of only combining 2 parame-
ters they were certain and brute force searching the
candidates.

4 Conclusion

We construct, to the best of our knowledge, the first
automatic sign dictionary digesting direct video
capture as its inputs. Our user study validates the
improved usability from the new system. The par-
ticipants describe it as less demanding to learn in
comparison to the existing parameter-based sys-
tems. Retrieved results are said to be more accu-
rate and able to accommodate the varying video
capture quality. Enriched results include example
videos and explanations are agreed to largely help
the user in correctly locating and refining the search.
Overall, the reported success rate in reaching the
searched sign is on average 66% from GlossFinder,
significantly surpassing the benchmarks. We also
conduct analysis to compare different views for pre-
senting the results. It is favored by the participants
for the system to include more examples of vari-
eties even at the cost that less glosses can be shown
in a single page. Our study strengthens the belief
that the sign language dictionary design should be
visual-based to imitate the practical form of ac-
tual sign language teaching and learning. We hope
it can also motivate the related research to make
sign language learning increasingly accessible to a
broader community.

As one of the early attempts in building such
system, we notice some limitations in the current
study:

• The benchmark systems are comparatively
weak, for which it is to blame the fact that
sign language learners community is receiv-
ing insufficient support and no such stronger
peers are public available. Existing systems
are in majority made with voluntary contribu-
tion and limited in resource. While the incor-
porated benchmark systems are still receiving
some positive feedback, stronger benchmarks
are subject to encourage the participants to dis-
cover more places to improve in the current
designs.

• The target audience of this study is set to gen-
eral sign language learners, which is in con-
cept a larger community covering DHH. We
recruit people of both intermediate and junior
level of sign knowledge to collect plausible
data. Yet future research may be framed to
be more customized for the DHH community.
Space may still remain to improve based on
their need.
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A Testimony and Discussion

We extend the semi-structured open discussion with
the participants on the general thoughts about sign
language dictionary.

What should be the input format for a sign
language dictionary?
Strong preference is given by the participants to-
wards a rather simple input format to use the dictio-
nary. One surprising finding is that despite experi-
enced users are able to understand better the specifi-
cation required in the parameter-based system (e.g.
to choose the correct handshape and hand location),
they also show stronger concerns over the capa-
bility as less-structured and more-composite signs
are taken into scope (e.g. signs involving different
movements from both hands). Junior sign learners
show neutral altitude to learning the parameter-
based system but it is also stressed by them the
challenge they faced in understanding the parame-
ters without further instruction.

It is hard to know the clear definition
of these parameters. Like now I feel I
have to try each of these as they all look
legitimate. (P5)

Imaging a sign I don’t know, maybe I
won’t really remember the gestures ex-
actly but just a rough idea. (P6)

The participants express their favor towards the
video capture used by GlossFinder for its nature
correspondence to how people learn from peers.
One improvement suggested is on the fact that both
the interface and input require hand movements,
i.e., they have to click the button and place the
hand back to perform the sign. The future design
may incorporate other UI elements to help the user
focus on performing the sign. Examples include
gesture-based UI input and foot controller.

It would be cool if I can get all things
done just by gestures. (P10)

One thing raised by the experienced signer P2
is:

What are the things the system is looking
at? ... Is it reading my lip as well? (P2)

As discussed in Section 2, the lip input is pur-
posely dropped because of the inconsistency of
quality and we want to prevent the model from

accidentally learning to overfit to the lip-reading
instead of the gesture. However, P2 pointed out
that lip movement can be crucial in determining
some of the signs, potentially a factor to consider
in future development.

What should the dictionary show as the re-
sult?
Consensus is made by the participants on the ad-
vantage of displaying example videos:

I can guess the meaning of some of these
signs as I know them in another (sign lan-
guage). I have no idea what other people
would do if they only see the glosses in
English (text). (P2)

It becomes immediate now I know I find
it. (P9)

In the meantime, future work is suggested on
improving the order among variety examples for
each individual gloss in the example-centric view.
The matched glosses are ranked by confidence but
the examples within each gloss are not. The result
can be more reasonable if it can ensure the matched
varieties to appear higher.

In addition, GlossFinder retrieves a fixed number
of examples each time. It is argued that the number
should adapt to cases for a clearer view.

Some signs have many similar examples
and it is good you show all of them. Just I
feel like there may not always be so many
similar glosses to show, and you see the
later examples in the result become less
meaningful. (P10)

As a language learning tool, what else should
a dictionary have?
Since the primary audience of dictionary is lan-
guage learners. We encourage the participants to
think what can be improved from this perspective.
A major point raised is that the dictionary may pro-
vide guidance on improving their sign. Even in
case the dictionary retrieved the correct gloss, it is
said:

If you can put a confidence score for my
recording, it sort of tells if I now remem-
ber it correctly. (P4)

A more sophisticated design may incorporate
more instructions than the a score.
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Maybe the dictionary can indicate the
problems as I perform it. I see some
difference in my form compared to that
professional. (P4)
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Abstract

PromptSource is a system for creating, sharing,
and using natural language prompts. Prompts
are functions that map an example from a
dataset to a natural language input and target
output. Using prompts to train and query
language models is an emerging area in NLP
that requires new tools that let users develop
and refine these prompts collaboratively.
PromptSource addresses the emergent chal-
lenges in this new setting with (1) a templating
language for defining data-linked prompts, (2)
an interface that lets users quickly iterate on
prompt development by observing outputs
of their prompts on many examples, and (3)
a community-driven set of guidelines for
contributing new prompts to a common pool.
Over 2,000 prompts for roughly 170 datasets
are already available in PromptSource. Prompt-
Source is available at https://github.
com/bigscience-workshop/
promptsource.

1 Introduction

Prompt engineering is emerging as a new focus in
NLP, particularly in zero- and few-shot learning
settings. Prompting is the practice of representing
a task as a natural language utterance in order to
query a language model for a response (Liu et al.,
2021). For example, if a language model is con-
ditioned on the text “She hit a home run. The
previous sentence is about ...”, then the model’s
subsequent generation would be interpreted as a
prediction of the topic of the preceding sentence,

e.g. by mapping a response such as “sports” to
a class label. In specific contexts, prompting has
been shown to have advantages over traditional
classification, for example facilitating adaptation
of language models to ad-hoc tasks and improv-
ing sample efficiency in low-data settings (Brown
et al., 2020; Schick and Schütze, 2021b; Le Scao
and Rush, 2021; Gao et al., 2021). These advan-
tages motivate a practical challenge: How can we
enable users to create, refine, and share prompts?

The process of prompt engineering is critical
for successful deployment as choices in prompt-
ing can affect downstream predictions significantly,
particularly in the zero-shot setting (Perez et al.,
2021; Zhao et al., 2021; Webson and Pavlick, 2021).
Furthermore, training directly on collections of
prompts can enable large models to generalize to
new prompts more robustly (Sanh et al., 2021; Wei
et al., 2021; Min et al., 2021; Mishra et al., 2021).
There is therefore a growing need for tools that
support the creation of corpora of prompts.

PromptSource is an integrated development en-
vironment and repository for natural language
prompts to use in the context of zero-shot (or
gradient-based few-shot) learning. It provides a
Web-based GUI that enables developers to write
prompts in a templating language and immediately
view their outputs on different examples. The sys-
tem is integrated with the HuggingFace Datasets
library (Lhoest et al., 2021), so that users can load
any dataset automatically, browse existing prompts,
and create new ones. Through the course of writing
thousands of prompts, we converged on three key
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aspects to the design of PromptSource:
• Flexible Templating Language. We adapt

a templating language to represent prompts.
Prompt authors can define prompts in terms of
dataset fields, hard-coded text, and simple con-
trol logic. This choice provides the flexibility
of a programming environment without the
mental overhead of having to write and read
arbitrary code. Prompt templates can easily
be distributed and used in other systems.

• Tools for Prompt Management. Prompt-
Source has multiple view to address the needs
of prompt authors at different stages of the
prompt engineering cycle. A global view lets
authors browse datasets and existing prompt
templates. A local view facilitates iteration
on prompt wording and metadata, as well as
testing on individual examples.

• Community-Driven Quality Standards.
PromptSource includes a set of guidelines for
prompting based on a large-scale prompt writ-
ing pilot. PromptSource’s collection is meant
to be useful for a wide range of research,
based on iterative refinement of a set of quality
standards. Prompts in PromptSource are also
annotated with various pieces of metadata to
make finding and using prompts easier.

The PromptSource system includes over 2,000
open-source prompts for roughly 170 datasets,
which have all been reviewed to meet the quality
standards. This collection, which we call the Public
Pool of Prompts (P3), allows users to materialize
prompted forms of datasets for hundreds of differ-
ent tasks. The T0 series of models (Sanh et al.,
2021) for zero-shot inference were fine-tuned on
a subset of P3. Since then, PromptSource and P3
have been extended for research on multi-lingual
prompting (Lin et al., 2021) and priming, i.e., in-
context few-shot learning (Min et al., 2021). The
PromptSource system and associated content is a
first step in the study of systems for prompt engi-
neering, an area that is likely to continue to grow.

2 Background and Related Work

PromptSource builds on recent work in prompting
and prompt engineering. It is also related to work
on systems for other types of annotations.
Prompting Recently, prompting has emerged
as a new focus within NLP as it can dramati-
cally improve language models’ few-shot and zero-
shot performance in a wide range of downstream

tasks (Brown et al., 2020; Schick and Schütze,
2021a; Sanh et al., 2021; Wei et al., 2021). Prompts
and prompt engineering come in several vari-
eties (Liu et al., 2021). PromptSource is focused on
facilitating research with human-written prompts,
in which natural language is the medium for de-
scribing tasks. This approach has the advantage
that prompts can be understood, modified, and ap-
plied without being tied to a specific model. In
contrast, past work has also aimed to automatically
construct prompts by framing the search for a good
prompt as a learning problem. These prompts can
either be expressed in natural language (Gao et al.,
2021; Shin et al., 2020) or as arbitrary vectors (a.k.a.
“continuous” or “soft” prompts) not corresponding
to words in the model’s original vocabulary (Lester
et al., 2021; Qin and Eisner, 2021)

When using human-written prompts, there are
several possible approaches to learning. One is a
zero-shot setting, where the goal is to generalize to
prompts for which no training examples are given.
Prompts can also be used in a few-shot setting, in
which a model is either (1) trained on prompted ex-
amples of the target task via gradient updates, or (2)
priming (i.e. in-context learning), in which labeled
examples are included in an input sequence in or-
der to prime models to make predictions without
gradient updates (Brown et al., 2020).

PromptSource was originally designed for zero-
shot learning, so it emphasizes explicit task instruc-
tions and no priming examples. If needed, users
can extend PromptSource for few-shot learning
(e.g., as done in Lin et al., 2021 and Min et al.,
2021, described in §7).

Systems for Annotating Data Most work on
collecting annotations has focused on labels and
other annotations at the level of individual exam-
ples (Neves and Ševa, 2021). GATE (Cunningham
et al., 2002) was an early system for annotating
text, and includes support for many data types such
as labels and entity tags. Since then, many Web-
based systems for annotating text have been devel-
oped (Stenetorp et al., 2012; Salgado et al., 2012;
Wei et al., 2013; Yimam et al., 2013; Chen and
Styler, 2013; Eckart de Castilho et al., 2016; Putra
et al., 2020). Other systems support collaboration
among multiple annotators (Yang et al., 2018; Stew-
art et al., 2019). More recently, many annotation
systems have begun to incorporate learned models
to improve workflow, using techniques such as ac-
tive learning (Lin et al., 2019; Li et al., 2021) and
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S1: Exploration S2 + S3 + S4: Creation S5: Review

Browse

SNLI

The SNLI corpus (version 1.0) is a 
collection of 570k human-written 
English sentence pairs manually 
labeled for the task of NLI…

{ premise:    “The kids…”, 

  hypothesis: “All kids…”,

  label:      2 }

{ premise:    “A person…”, 

  hypothesis: “A person…”,

  label:      1 }

Sourcing

SNLI

Browse

SNLI

The SNLI corpus (version 1.0) is a 
collection of 570k human-written 
English sentence pairs manually 
labeled for the task of NLI…

“The kids…” Based on the previous 
passage, is it true that “All kids…”? 
Yes, no, or maybe? |||
No

“A person…” Based on the previous 
passage, is it true that “A 
person…”? Yes, no, or maybe? |||
Maybe

Based…

based on the previous passage

{{premise}} Based on the 
previous passage, is it true 
that "{{hypothesis}}"?
Yes, no, or maybe? |||
{{ answer_choices[label] }}

Original Task Choices in Prompt

Adapted from the BoolQ prompts in 
Schick & Schütze 2021.

Yes ||| No ||| Maybe Accuracy

Figure 1: The five stages of creating prompts in PromptSource. The Browse view for Dataset Exploration (S1). The
Sourcing view for Prompt Writing (S2), Prompt Documentation (S3), and Iteration and Variation (S4). The Browse
view for performing a Global Review (S5).

example recommendation (Lee et al., 2020; Kiela
et al., 2021). These systems are possible because
the annotations to be collected are labels, for which
metrics like inter-annotator agreement and model
confidence are available.

There has also been some work on collecting
annotations other than labels. AlvisAE (Papazian
et al., 2012) and TreeAnnotator (Helfrich et al.,
2018) support creating ontologies and other struc-
tured annotations. Prompts differ from these anno-
tations in that they are semi-structured functions,
requiring new tools for developers.

3 System Design and Workflow

Creating prompts differs from other types of data
collection and annotation. We focus on three chal-
lenging aspects on which prompting differs from
traditional NLP annotation:

• Functions, not Labels. A single prompt is a
function that maps dataset examples (dictio-
naries of arbitrary fields) to natural language
input/target pairs. Creating a prompt is there-
fore more like programming than typical data
annotation. How should a prompt format trade
off between expressivity and simplicity?

• Dataset-Level Choices. Prompts are associ-
ated with datasets, unlike label annotations
that are local to single examples. Prompt en-
gineering requires developers to evaluate their
choices across all examples. What interfaces
do authors need to inspect and debug their
prompts?

• Variation in Prompt Construction. Unlike
with labels, it is often desirable to have varia-
tion within prompt construction, as different
prompt choices may lead to different results.
However, variation complicates quality judg-

ment, and makes it impossible to apply simple
metrics like inter-annotator agreement. How
can multiple authors collaborate to build a
high-quality corpus of prompts and associated
metadata?

To illustrate these distinct aspects, we start with
a concrete overview of the prompt creation process
of PromptSource. For this example, we imagine
that a user of PromptSource is creating prompts for
a natural language inference dataset, specifically
SNLI (Bowman et al., 2015). The goal is to de-
sign a prompt query such that the answer can be
mapped onto the SNLI classes. A prompt author
can accomplish this goal with PromptSource via
the following five steps (Figure 1):

S1: Dataset Exploration The prompt author
starts in the Browse view to read the dataset de-
scription, including linked READMEs and papers,
and to browse through examples. In this case, they
would see that SNLI is a dataset for natural lan-
guage inference: assume a given premise sentence
is true, the goal is to determine whether a hypoth-
esis sentence is true (entailment), false (contradic-
tion), or undetermined (neutral).

S2: Prompt Writing The prompt author uses
the Sourcing view to try out a prompt wording, and
then adjusts it by observing prompted examples
(Figure 1 middle, full example in Figures 3 and 4).

S3: Prompt Documentation To facilitate us-
ing the prompt, the author fills in various metadata
including possible metrics to evaluate the prompt,
valid outputs if applicable, whether the prompt ex-
presses the original intended task of the dataset,
and whether the template explicitly states the valid
outputs.

S4: Iteration and Variation The prompt author
then iterates through S2 and S3 to create multiple
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prompts for the dataset. Authors are encouraged to
vary multiple factors such as the formulation of the
prompt and the targeted task (see Section 6).

S5: Global Review The author saves the draft
prompts in a structured file which are then verified
by other contributors through code reviews. New
prompts need to meet the quality standard with a
series of automatic tests and by validation through
prompted instances. Upon passing review, the new
prompts can be merged into a global prompts col-
lection.

Upon submission, prompts can be viewed
through PromptSource by other users. The full col-
lection is stored globally and can be used outside of
the tool, for instance to be applied on an example
from a dataset of the Datasets library (Lhoest et al.,
2021).
from promptsource.templates import DatasetTemplates
from datasets import load_dataset

prompts = DatasetTemplates("snli")
prompt_key = "based on the previous passage"
p = prompts[prompt_key]

dataset = load_dataset("snli", split="train")
example = dataset[0]

result = p.apply(example)
print("INPUT: ", result[0])
print("TARGET: ", result[1])

With this workflow in mind, we next describe the
key aspects of the PromptSource system in greater
detail.

4 Prompting Language

A key design decision is the format for prompts.
Previous works on prompting tended to use code
for specifying each prompt. We experimented with
this format and found a trade-off between expressiv-
ity and explicit structure. On one side, a maximally
expressive format such as pure Python code would
let users write complex programs to manipulate
the semi-structured examples into prompted exam-
ples. However, interpreting and analyzing these
programs becomes difficult. This difficulty lim-
its downstream manipulation and analysis of the
prompts, for example for possible future work on
automatic prompt augmentation. On the other side,
a maximally structured format, such as rule-based
generation, limits the kinds of prompts that users
can create. We found it infeasible to enumerate
types of rules sufficient for the wide range of tasks
and data formats for which we wanted prompts.

We therefore settled on a middle ground between
the two: a templating language. Specifically,

we use the Jinja2 templating engine,1 originally
designed for producing web markup. Users
write templates as prompts with placeholders,
such as If {{premise}} is true, is
it also true that {{hypothesis}}?
||| {{entailed}}. The separator |||
denotes the break between the conditioning text
and the desired completion. Placeholders refer
to fields in the underlying example (represented
as a Python dict by Datasets (Lhoest et al.,
2021)). Users also have access to Jinja’s built-in
functions, such as manipulating strings and
structured data. For each prompt, prompted
examples are created by applying the prompt to
all examples in the corresponding dataset. While
Jinja is a complete programming language, our
review guidelines encourage simple functions with
minimal additional logic (see Figure 3 and 4 for
example).

During the development of PromptSource, we
found that a few idioms were particularly useful.
First, not all templates are applicable to all exam-
ples in a dataset. Users can wrap templates in
Jinja’s built-in conditional statements, and any ex-
ample that results in an empty prompted example
is simply skipped. Second, many examples can
be used to make multiple training instances, such
as a question that has multiple valid answers. We
therefore added a choice function that selects an
element from a list in a way that can be controlled
during dataset generation, such as picking a random
element using a seeded random number generator
or generating different prompts for each combina-
tion of elements in the template. Third, many tasks
such as classification and binary question answer-
ing have a small set of possible valid completions,
and it is common to make predictions for these
tasks by scoring only the valid completions and
returning the highest one (Brown et al., 2020; Sanh
et al., 2021; Wei et al., 2021). Users therefore can
list the valid completions in a separate field and
access them as a list in their prompts (displayed as
Answer choices in Figure 3). These comple-
tions are then explicitly available when evaluating
predictions for these prompted examples.

5 The PromptSource UI

The PromptSource system is designed to enable
prompt creators to view data (S1), write prompts
in a standard format (S2, S3, and S4), and ver-

1https://jinja.palletsprojects.com
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Figure 2: Prompt creators can browse through the
dataset examples (left-column) and their prompted form
(right column) using the Browse view.

ify that their templates work correctly (S5). We
implemented a lightweight interface for the tool in
Streamlit2 so that users could download, run locally
in a web browser, and then upload their results to
a central repository. Testing iterations of the inter-
face on pilot template-writing tasks, we converged
on three views for the interface.

V1: Browse This view (Figure 2) lets users in-
spect datasets before creating prompts (S1). Once
prompts are created, they can select prompts and
browse the prompted examples generated by them
(S5). The original example is viewed side-by-side
with the resulting prompted example, with the sub-
stituted text highlighted to distinguish from text
hard-coded in the template. Users can quickly
scroll through many examples, verify the behavior
of their prompt, and return to the sourcing view if
changes are needed.

V2: Sourcing This view (Figures 3 and 4) al-
lows users to select a dataset to prompt, browse
examples from that dataset in the form of tables,
and enter a prompt for that dataset. As the user
writes their template (S2, S3, and S4), every time
they save it, the output of the template applied to
the current example is displayed next to the edi-
tor. We also collect metadata like a name for the
template, and a reference for any bibliographic in-
formation or rationale for the template.

V3: Helicopter This view (Figure 5) allows
users to see what datasets are available for writing
templates and how many are written for each, to
prioritize user attention. This view is particularly
useful for moving between datasets and for the
prompt reviewers (S5).

2https://streamlit.io/

6 Community Guidelines and Process

Due to the variety of existing NLP datasets, we
found it challenging to exhaustively describe the
characteristics of a good prompt: there are no
simple metrics like inter-annotator agreement on
example-level labels. Instead, over a few iterations,
we converged on community guidelines3 with three
objectives in mind: (a) provide a standardized vo-
cabulary for discussing prompts between prompt
authors, reviewers and users, and minimum require-
ments for a valid prompt, (b) highlight common
errors and best practices, (c) collect the necessary
information about the prompts to support current
and future research on prompt engineering. The
guidelines were enforced in the use of Prompt-
Source by a code review process in which each
prompt was reviewed before being committed to
the central repository.

Guidelines apply to the combination of a tem-
plate (a function that maps an example into an in-
put/target pair in natural language) and a set of
metadata about the template. The most impor-
tant constraint we imposed for a template to be
valid is that it is formulated in natural language
(both for the input and the target). We forbid the
use of non-natural language prompts such as pure
code. Each prompt should clearly state what task
should be solved, in a way a non-specialist adult
can understand. We found this guideline strikes a
good balance between freedom and expressivity in
the wording of the prompts on one side and short
generic prompts on the other side.

In early experiments, we found that user-written
prompts that did not explicitly state the possible
valid completions tended to perform worse in ex-
periments than their counterparts in which the pos-
sible valid completions were listed. We encouraged
prompt authors to explicitly state the valid outputs
in some of their prompts. In addition, when work-
ing with training prompts that include target text,
we found it useful to remove variations on the target
format that led to spurious ambiguity. For instance,
the target template should only contain the answer
to the task. It should not contain any extra text such
as “The answer is ...”, which can be equivalently
moved to the input template.

One of the research question we hope to enable
with PromptSource is whether the diversity of the

3Complete guidelines can be found at https:
//github.com/bigscience-workshop/
promptsource/blob/main/CONTRIBUTING.md.
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Figure 3: With the Sourcing view, prompt authors can
write new prompts, fill in the associated metadata, ob-
serve the result on examples, and iterate.

prompt formulation during training leads to mod-
els that are more robust to the prompt formulation
at test time. Therefore, we encouraged prompt
authors to create between 5 and 10 (or more)
prompts per dataset while varying the prompt for-
mulation. For a given dataset, authors produce
multiple prompts per example, sometimes for task
formulations that differed from the original dataset.
For instance, for question answering dataset, one
prompt can ask to extract the answer to a given
question from a given passage, while a second
prompt can ask to generate a potential question
given an answer and a passage.

As part of the community process and to facil-
itate future research, PromptSource asks prompt
authors to include additional metadata for each
prompt. Metadata fields include a name for the
prompt, a reference to the paper it was extracted
from (or any relevant explanation), whether the
prompt expresses the task originally intended by
the dataset, the valid outputs (if relevant), whether
the input template states the valid outputs, and pos-
sible metrics to evaluate the prompted examples.
These can be used in future systems to evaluate how
the style and structure of prompts leads to different
downstream results.

7 Case Studies

A system for creating, maintaining, and using
prompts is a key tool for supporting the emerg-
ing research area of prompting in a standardized
and reproducible manner. We highlight three recent
research projects for which PromptSource was a
key resource.

Figure 4: Another example of the the Sourcing view,
focusing on the editor. The templating language strikes
a balance between expressivity and explicit structure.
This prompt for QA-ZRE (Levy et al., 2017), a dataset
for zero-shot relation extraction, shows how to manipu-
late strings and do conditional statements with Jinja.

Massively multitask prompted training Sanh
et al. (2021) study the question of zero-shot be-
haviors in large language models and ask whether
zero-shot generalization can be induced by train-
ing a language model on a massively multitask
mixture of prompts. To test this question, they
use PromptSource to create diverse prompts for a
large collection of NLP datasets. Their training and
evaluation prompts are a subset of P3. This work
demonstrates that PromptSource allows training a
language model on a massively multitask mixture
of prompted datasets and evaluating the ability of
models trained with such a procedure to perform
unseen tasks.
Multilingual prompting Lin et al. (2021) study
the zero- and few-shot learning abilities of an mul-
tilingual autoregressive language model trained on
30 languages. In particular, they are interested in
the cross-lingual generalization of such models and
benchmark a variety of tasks in multiple languages.
PromptSource allows using a massive set of high-
quality English prompts. Moreover, the English
prompts serve as support to create prompts in other
languages (through either machine or human trans-
lation).
Priming (in-context learning) Min et al. (2021)
study improving models’ few-shot priming perfor-
mance by first fully training a model (with gradient
updates) on a multitask mixture formatted with
priming examples. They find that incorporating
templates from P3 significantly further improves
performance compared to training on priming ex-
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Figure 5: The Helicopter view indicates what datasets
have prompts and how many prompts are available for
each dataset.

amples alone. Although PromptSource was not
originally designed for this specific form of prompt-
ing, users were able to easily use P3’s template col-
lection and the templating language for their own
priming methods.

8 Conclusion

PromptSource is an open-source system for creat-
ing, sharing, and using natural language prompts
and addresses the need for new collaborative and
centralized tools to support the emerging research
around prompting. The tool is designed to an-
swer three key needs: a flexible template lan-
guage, a suite of tools for prompt management, and
community-driven quality standards. As of January
2022, PromptSource includes a growing collection
of 2,000 public prompts for roughly 170 datasets,
and has already been an instrumental resource for
multiple recent research projects.
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Figure 6: Most of the datasets have between 5 and 10
prompts.

A Data and Statistics

P3 is the largest public collection of English
prompts and is actively growing. As of January
2022, it contains 2’052 English prompts for 170
English datasets (or 269 subsets, one dataset can
contain multiple subsets with different prompts).
There is an average of 7.6 prompts per data subset
and an average 5.6 original-task prompts per data
subset (see Figure 6).

P3 was developed as part of the BigScience
project for open research5. There was a open
hackathon to collect prompts for as many English
NLP dataset (or English subsets of datasets) as pos-
sible. Almost 50 unique contributors affiliated with
more than 25 institutions in 10 countries partici-
pated.

B Complete Views

We show higher resolution examples of the full
interfaces for the Browse (Figure 7), Sourcing (Fig-
ure 8), and Helicopter (Figure 9) views.

5https://bigscience.huggingface.co
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Figure 7: Complete example of the Browse view.

Figure 8: Complete example of the Sourcing view.

103



Figure 9: Complete example of the Helicopter view.
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Abstract

Prompt-learning has become a new paradigm
in modern natural language processing, which
directly adapts pre-trained language models
(PLMs) to cloze-style prediction, autoregres-
sive modeling, or sequence to sequence gen-
eration, resulting in promising performances
on various tasks. However, no standard im-
plementation framework of prompt-learning
is proposed yet, and most existing prompt-
learning codebases, often unregulated, only
provide limited implementations for specific
scenarios. Since there are many details such
as templating strategy, initializing strategy,
and verbalizing strategy, etc., need to be
considered in prompt-learning, practitioners
face impediments to quickly adapting the de-
sired prompt learning methods to their ap-
plications. In this paper, we present Open-
Prompt, a unified easy-to-use toolkit to con-
duct prompt-learning over PLMs. Open-
Prompt is a research-friendly framework that
is equipped with efficiency, modularity, and
extendibility, and its combinability allows the
freedom to combine different PLMs, task for-
mats, and prompting modules in a unified
paradigm. Users could expediently deploy
prompt-learning frameworks and evaluate the
generalization of them on different NLP tasks
without constraints.1

1 Introduction

Pre-trained language models (PLMs) (Han et al.,
2021a; Qiu et al., 2020) have been widely proven
to be effective in natural language understanding
and generation, ushering in a new era of modern
natural language processing (NLP). In the early
stage of this revolution, a standard approach to
adapt PLMs to various specific NLP tasks is the
∗ equal contribution
† corresponding authors
1OpenPrompt is released at https://github.com/
thunlp/OpenPrompt.

pretraining-finetuning paradigm, where additional
parameters and task-specific objectives are intro-
duced in the tuning procedure. However recently,
the paradigm of the adaptation of PLMs is shifting.
Originated in T5 (Raffel et al., 2019) and GPT-
3 (Brown et al., 2020), researchers find that PLMs
can be effectively stimulated by textual prompts or
demonstrations, especially in low-data scenarios.

Take a simple prompt-based sentiment classifi-
cation for example, the pipeline consists of a tem-
plate and a verbalizer, where a template is used to
process the original text with some extra tokens,
and a verbalizer projects original labels to words
in the vocabulary for final prediction. Assume
the template is “<text> It is <mask>”, where
the token <text> stands for the original text,
and the verbalizer is {“positive”:“great”, “neg-
ative”:“terrible”}. The sentence “Albert Einstein
was one of the greatest intellects of his time.” will
first be wrapped by the pre-defined template as “Al-
bert Einstein was one of the greatest intellects of
his time. It is <mask>”. The wrapped sentence is
then tokenized and fed into a PLM to predict the
distribution over vocabulary on the <mask> token
position. It is expected that the word great should
have a larger probability than terrible.

As illustrated above, prompt-learning projects
the downstream tasks to pre-training objectives
for PLMs with the help of textual or soft-
encoding prompts. A series of studies of prompt-
learning (Liu et al., 2021a) have been proposed
to investigate the strategies of constructing tem-
plates (Schick and Schütze, 2021; Gao et al., 2021;
Liu et al., 2021b), verbalizers (Hu et al., 2021), op-
timization (Lester et al., 2021), and application (Li
and Liang, 2021; Han et al., 2021b; Ding et al.,
2021a) for this paradigm.

A prompt-learning problem could be regarded
as a synthesis of PLMs, human prior knowledge,
and specific NLP tasks that need to be handled.
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Example PLM Template Verbalizer Task Reference

Naive TC MLM & Seq2Seq M. text M. One-Many Text Classification -
Naive KP LM & Seq2Seq M. text - Knowledge Probing -
Naive FET MLM M. text (meta info) M. One-Many Entity Typing (Ding et al., 2021a)
PTR MLM M. text (complex) M. One-One Relation Extratcion (Han et al., 2021b)
P-tuning LM Soft tokens M. One-One Text Classification (Liu et al., 2021b)
Prefix-tuning LM, Seq2Seq Soft tokens - Text Generation (Li and Liang, 2021)
LM-BFF MLM A. text M. One-Many Text Classification (Gao et al., 2021)

Table 1: Some examples implemented by OpenPrompt, where M. is the abbreviation of manually defined and A.
is the abbreviation of automatically generated. Note that different approaches focus on different parts in prompt-
learning. Additional to the whole pipeline, our specific implementations of these methods are integrated into the
specific classes of OpenPrompt.

Hence, it is hard to support the particular implemen-
tations of prompt-learning elegantly with the cur-
rent deep learning or NLP libraries while there is
also a lack of a standard paradigm. Previous works
pursue the most efficient way to implement prompt-
learning with the least modification to the existing
framework for traditional fine-tuning, resulting in
poor readability and even unstable reproducibility.
Moreover, the performance of a prompt-learning
pipeline varies greatly with the choice of templates
and verbalizers (Zhao et al., 2021), creating more
barriers for implementations. Lastly, there is no
comprehensive open-source framework particularly
designed for prompt-learning at present, which
makes it difficult to try out new methods and make
rigorous comparisons for previous approaches.

We present OpenPrompt, an open-source, easy-
to-use, and extensible toolkit for prompt-learning.
OpenPrompt modularizes the whole framework of
prompt-learning and considers the interactions be-
tween each module. We highlight the feature of
combinability of OpenPrompt, which supports flex-
ible combinations of diverse task formats, PLMs,
and prompting modules. For example, we can eas-
ily adapt prefix-tuning (Li and Liang, 2021) to a
text classification task in OpenPrompt. This feature
enables users to assess the generalization of their
prompt-learning models on various tasks, but not
only the performance on specific tasks.

Specifically, a Template class is used to define
or generate textual or soft-encoding templates to
wrap the original input. To flexibly support various
templates under a unified paradigm, we design a
new template language that could easily conduct
token-level customization for the corresponding
attributes. A Verbalizer projects the classi-
fication labels to words in the vocabulary, and a
PromptModel is responsible for the training and
inference process. Each module in OpenPrompt

is clearly defined while retaining its independence
and coupling so that researchers can easily deploy
a model and make targeted improvements. We also
implement baselines with OpenPrompt and evalu-
ate them on a broad scope of NLP tasks, demon-
strating the effectiveness of OpenPrompt.

The area of prompt-learning is in the exploratory
stage with rapid development. Hopefully, Open-
Prompt could help beginners quickly understand
prompt-learning, enable researchers to efficiently
deploy prompt-learning research pipeline, and em-
power engineers to readily apply prompt-learning
to practical NLP systems to solve real-world prob-
lems. OpenPrompt will not only keep all the code
open source, but will also continue to update the
documentation to provide detailed tutorials.

2 Design and Implementation

As stated in § 1, prompt-learning is a comprehen-
sive process that combines PLMs, human knowl-
edge, and specific NLP tasks. Keeping that in mind,
the design philosophy is to simultaneously consider
the independence and mutual coupling of each mod-
ule. As illustrated in Figure 1, OpenPrompt pro-
vides the full life-cycle of prompt-learning based
on PyTorch (Paszke et al., 2019). In this section, we
first introduce the combinability of OpenPrompt,
and then the detailed design and implementation of
each component in OpenPrompt.

2.1 Combinability
In the NLP world, we usually adopt different PLMs
with corresponding objective functions to different
underlying tasks (roughly, classification and gener-
ation). But in prompt learning, given that the core
idea of the framework is to mimic pre-training tasks
in the downstream task, which are essentially ”pre-
dicting words based on context”, we can further
unify the execution of downstream tasks. Open-
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⼯具包设计图

Template
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Tokenizer

PLMs

PromptTokenizer

PromptDataset

TemplateEmbeddings

Verbalizer

PromptModel

Prompt 
Trainer

example

wrapped 
example

input for PLMs

logits for words

Wrapper Class: These classes aim to 
make prompt-learning align with 
PyTorch pipeline, and users do not need 
to modify them.

PLM-related Class: These classes 
support the calling and management of 
various PLMs.

Prompt-related Class: These classes are 
unique modules for prompt-learning, 
and they can be implemented by users.

Dataset-related Class:  These classes 
support the uAliAes for datasets across 
different NLP tasks.

wrapped 
example

Figure 1: The overall architecture of OpenPrompt. Note that according to the prompt-learning strategies, not
all the modules are necessarily used. For example, in generation tasks, there are no verbalizers in the learning
procedure. The PromptTrainer is a controller that controls the data flow and the training process with some
unique attributes, users can also implement the training process in a conventional fashion.

Prompt supports a combination of tasks, PLMs,
and prompt modules in a flexible way. For example,
from a model perspective, T5 (Raffel et al., 2019) is
not only used for span prediction and GPT (Brown
et al., 2020) is not only used for generative tasks.
From the perspective of prompting, prefix-tuning
can also be used for classification, and soft prompt
can be used for generation. All these combina-
tions can easily be implemented and validated on
NLP tasks in our framework so that we can better
understand the mechanisms involved.

2.2 Pre-trained Language Models

One core idea of prompt-learning is to use addi-
tional context with masked tokens to imitate the
pre-training objectives of PLMs and better stimu-
late these models. Hence, the choice of PLMs is
crucial to the whole pipeline of prompt-learning.
PLMs could be roughly divided into three groups
according to their pre-training objectives.

The first group of PLMs use masked language
modeling (MLM) to reconstruct a sequence cor-
rupted by random masked tokens, where only the
losses of the masked tokens are computed. Typical
PLMs with MLM objective include BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), etc, and
such an objective is regarded suitable for natural
language understanding (NLU). The second group
exploits the autoregressive-style language model-

ing (LM) to predict the current token according to
its leading tokens. GPT-3 (Brown et al., 2020) is
one of the representative works adopting this objec-
tive. The third part is the sequence-to-sequence
(Seq2Seq) models, which aim to generate a se-
quence with a decoder conditioned on a separate en-
coder for an input sequence. Typical seq2seq PLMs
include T5 (Raffel et al., 2020), MASS (Song et al.,
2019) and BART (Lewis et al., 2020), etc.

Different PLMs have different attributes, result-
ing in various adaptation capabilities for different
NLP tasks in prompt-learning. Practically in Open-
Prompt, we support directly loading PLMs from
huggingface transformers (Wolf et al., 2020), and
PLMs implemented by other libraries will be sup-
ported in the future. Once the PLM is determined,
researchers could deploy a known valid prompt-
learning pipeline (e.g., RoBERTa for few-shot sen-
timent classification) or explore other uses of PLM
that could exploit its potential. Users of Open-
Prompt do not need to implement objective heads
for different PLMs to calculate the corresponding
loss, a unified interface can perform these opera-
tions automatically (§ 2.6).

2.3 Tokenization

Tokenization is a crucial step in processing data
for NLP, and it faces new challenges in prompt-
learning. After designing the template, the spe-
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cific implementation of the tokenization for orig-
inal input and the designed template could be
time-consuming and error-prone. First, in prompt-
learning, some specific information such as the
indices of entities and masked tokens should be
carefully tackled in tokenization. Some small er-
rors, such as the mismatch of masked token indices,
may lead to serious consequences. Moreover, con-
catenation and truncation issues after tokenization
(templates are not supposed to be truncated) should
also be handled. Since different PLMs may have
different tokenization strategies, we should also
consider the inconsistency in the details of addi-
tional context processing. We specifically design
the tokenization module for prompt-learning and
significantly simplify the process. By using our
encapsulated data processing APIs, users could
use the human-readable style to design templates
and conveniently operate on the input and the tem-
plate at the same time. Our component integrates
complex information from input and template and
then conducts tokenization. Based on the choice
of PLMs, OpenPrompt automatically chooses the
appropriate tokenizer in prompt-learning, which
could save considerable time for users to process
prompt-related data.

2.4 Templates

As one of the central parts of prompt-learning, a
template module wraps the original text with the
textual or soft-encoding template. A template nor-
mally contains contextual tokens (textual or soft)
and masked tokens. In OpenPrompt, all the tem-
plates are inherited from a common base class with
universal attributes and abstract methods.

Previous works design a wide variety of tem-
plates, including manually written template (Schick
and Schütze, 2021) and pure soft template (Lester
et al., 2021). Gu et al. (2021) report a mix of
manual template tokens and soft (trainable) to-
kens sometimes yields better results than separate
manual template and soft template. In Liu et al.
(2021b), a promising performance is achieved by
fixing the majority of manual tokens while tuning a
small number of the others. In Han et al. (2021b),
the template is contextualized, which needs to be
filled with the head entity and the tail entity to form
a complete one, moreover, the output of multiple
positions is used in the loss calculation in their
template. Logan IV et al. (2021) design null tem-
plate with simple concatenation of the inputs and

an appended <mask> token.
It’s not reasonable to design a template format

for each prompt since it will require high learning
cost for practical use. To this end, in OpenPrompt,
we design a template language to ease the prob-
lem, with which we can construct various types of
templates under a unified paradigm. Our template
language takes insight from the dict grammer of
Python. And such a design ensures flexibility and
clarity at the same time, allowing users to build
different prompts with relative ease. More specifi-
cally, a template node is a text (or empty text) with
an attributes’ description. In our template language,
one is free to edit the attributes of each token in
the template, such as which characters are shared
embedding, how the characters are post-processed
(e.g. by MLP), etc. We show some template ex-
amples in Figure 2, and the detailed tutorial for
writing templates is in the documentation 2.

2.5 Verbalizers

When it comes to prompt-based classification, a
verbalizer class should be constructed to map origi-
nal labels to label words in the vocabulary. When
a PLM predicts a probability distribution over the
vocabulary for one masked position, a verbalizer
will extract the logits of label words and integrate
the logits of label words to the corresponding class,
thereby responsible for the loss calculation. Fig-
ure 3 shows a simple way to define a binary senti-
ment classification verbalizer.

Similar to templates, all the verbalizer classes are
also inherited from a common base class with nec-
essary attributes and abstract methods. Additional
to manually-defined verbalizers, we implement au-
tomatic verbalizers like AutomaticVerbalizer and
KnowledgeableVerbalizer (Hu et al., 2021). More-
over, important operations like calibrations (Zhao
et al., 2021) are also realized in OpenPrompt.

Prompt-learning could also facilitate the unifi-
cation of NLP tasks. In such kind of paradigm,
a span of text (i.e., the target text) is expected to
be generated in the masked position. Then the fi-
nal prediction will be based on a mapping from
the target texts to the labels (Ye et al., 2021; Du
et al., 2021). To fully support such a paradigm, we
implement a novel GenerationVerbalizer,
which supports designating any kind of text, in-
cluding a piece of text from the input, as the
target text. To compose a target text for a

2https://thunlp.github.io/OpenPrompt
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1 # Example A. Hard prompt for topic classification
2 a {"mask"} news: {"meta": "title"} {"meta": "description"}
3

4 # Example B. Hard prompt for entity typing
5 {"meta": "sentence"}. In this sentence, {"meta": "entity"} is a {"mask"},
6

7 # Example C. Soft prompt (initialized by textual tokens)
8 {"meta": "premise"} {"meta": "hypothesis"} {"soft": "Does the first sentence

entails the second ?"} {"mask"} {"soft"}.
9

10 # Example D. Pure soft template in Lester et al., 2021.
11 {"soft": None, "duplicate": 100} {"meta": "text"} {"mask"}
12

13 # Example E. Post processing script support
14 # e.g. write an lambda expression to strip the final punctuation in data
15 {"meta": "context", "post_processing": lambda s: s.rstrip(string.punctuation)}. {"

soft": "It was"} {"mask"}
16

17 # Example F. Mixed prompt with two shared soft tokens
18 {"meta": "premise"} {"meta": "hypothesis"} {"soft": "Does"} {"soft": "the", "

soft_id": 1} first sentence entails {"soft_id": 1} second?
19

20 # Example G. Specify the title should not be truncated
21 a {"mask"} news: {"meta": "title", "shortenable": False} {"meta": "description"}

Figure 2: Some examples of our template language. In our template language, we can use the key “meta” to refer
the original input text (Example B), parts of the original input (Example A, C, G), or other key information. We
can also freely specify which tokens are hard and which are soft (and their initialization strategy). We could assign
an id for a soft token to specify which tokens are sharing embeddings (Example F). OpenPrompt also supports the
post processing (Example E) for each token, e.g., lambda expression or MLP.

1 from openprompt import
ManualVerbalizer

2

3 promptVerbalizer = ManualVerbalizer(
4 classes = classes,
5 label_words = {
6 "negative": ["bad"],
7 "positive": ["good", "

wonderful", "great"],
8 },
9 tokenizer = bertTokenizer,

10 )

Figure 3: An example to define a Verbalizer, the num-
ber of the label words for each class is flexible.

1 from openprompt import
GenerationVerbalizer

2

3 promptVerbalizer =
GenerationVerbalizer(

4 classes = classes,
5 label_words = {
6 0: ["other words."],
7 1: ["word {’meta’: ’word0’}"],
8 },
9 is_rule = True,

10 tokenizer = T5Tokenizer,
11 )

Figure 4: An example to use GenerationVerbalizer
to conduct a co-reference resolution task. This task
requires the model to distinguish whether a pronoun
refers to the ’word0’ in the sentence.

GenerationVerbalizer, the syntax is the
same as the template language (See Figure 4). Dif-
ferent evaluation metrics are then used for different
types of task, For example, exact match for clas-
sification tasks and BLEU score (Papineni et al.,
2002) for generation tasks.

2.6 PromptModel

In OpenPrompt, we use a PromptModel ob-
ject to be responsible for training and inference,
which contains a PLM, a Template object, and a
Verbalizer object (optional). Users could flex-
ibly combine these modules and define advanced
interactions among them. A model-agnostic for-
ward method is implemented in the base class to
predict words for the masked positions. One goal
of this module is that users do not need to specifi-
cally implement heads for different PLMs, but use
a unified API to “predict words for positions that
need to be predicted” regardless of the pre-training
objective. An example to define a PromptModel
is shown in Figure 6.

2.7 Training

From the perspective of trainable parameters, the
training of prompt-learning could be divided into
two types of strategies. The first strategy simulta-
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Figure 5: The illustration of the validation space of OpenPrompt. By driving different modules of the framework,
we could implement and evaluate different methods on a broad set of NLP tasks. We show four examples in this
illustration, the colored lines denote the implementation flow of the corresponding method.

1 from openprompt import
PromptForClassification

2

3 promptModel = PromptForClassification(
4 template = promptTemplate,
5 model = bertModel,
6 verbalizer = promptVerbalizer,
7 )
8

9 promptModel.eval()
10 with torch.no_grad():
11 for batch in data_loader:
12 logits = promptModel(batch)
13 preds = torch.argmax(logits,

dim = -1)
14 print(classes[preds])

Figure 6: An example to define a PromptModel and
conduct evaluation.

neously tunes the prompts and the PLM, which
is verified to be effective in a low-data regime
(OpenPrompt also provides a FewshotSampler
to support the few-shot learning scenario). The
second strategy is to only train the parameters of
prompts and keep the PLM frozen, this is regarded
as a parameter-efficient tuning method and is con-
sidered as a promising way to stimulate super-large
PLMs. Both of these strategies can be called with
one click in the trainer (or runner) module of Open-
Prompt. Trainer modules in OpenPrompt imple-
ment training process accompanied with prompt-
oriented training tricks, e.g. the ensemble of tem-
plates. Meanwhile, OpenPrompt supports exper-
imentation through configuration to easily drive
large-scale empirical study. We provide several
complete tutorials3 to use the basic and advanced
attributes of OpenPrompt.
3https://github.com/thunlp/OpenPrompt/
tree/main/tutorial

3 Evaluation

OpenPrompt aims to support a broad set of NLP
tasks under the paradigm of prompt-learning. In
terms of evaluation, we use OpenPrompt to im-
plement various baselines and assess them on the
corresponding NLP tasks. We show the validation
space in Figure 5. And the evaluation tasks include
WebNLG (Gardent et al., 2017) for conditional
generation, GLUE (Wang et al., 2018) and Super-
GLUE (Wang et al., 2019) for natural language
understanding; SemEval (Hendrickx et al., 2010),
Few-NERD (Ding et al., 2021b) for information
extraction; MNLI (Williams et al., 2017), AG’s
News (Zhang et al., 2015), DBPedia (Lehmann
et al., 2015) and IMDB (Maas et al., 2011) for
text classification; LAMA (Petroni et al., 2019)
for knowledge probing. The processors of these
datasets have already been implemented in Open-
Prompt, and they are all inherited from a common
base DataProcessor class. To keep the results
up to date, we are constantly updating and reporting
the latest results on our GitHub repository4.

4 Discussion

Although PLMs have achieved tremendous success
on almost all the subtasks in NLP, one problem
still hangs in the air, have we really fully exploited
the potential of PLMs, especially the big ones?
Conventional fine-tuning uses extra task-specific
heads and objectives for adaptation, but this strat-
egy may face two issues. On the one hand, such
an approach creates a natural gap between model
tuning and pre-training. On the other hand, as the
4https://github.com/thunlp/OpenPrompt/
tree/main/results/
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number of model parameters increases, this fine-
tuning approach becomes increasingly difficult to
operate due to the massive computational volume
(e.g., GPT-3 (Brown et al., 2020)).

By mimicking the process of pre-training,
prompt-learning intuitively bridges the gap be-
tween pre-training and model tuning. Practically,
this paradigm is surprisingly effective in low-data
regime (Le Scao and Rush, 2021; Gao et al., 2021).
For example, with appropriate template, zero-shot
prompt-learning could even outperform 32-shot
fine-tuning (Ding et al., 2021a). Another promising
empirical attribute of prompt-learning is the poten-
tial to stimulate large-scale PLMs. When it comes
to a 10B model, solely optimizing prompts (the
parameters of the model are fixed) could achieve
comparable performance to full parameter fine-
tuning (Lester et al., 2021). These practical studies
imply that we may use prompts to more effectively
and efficiently dig the knowledge kept in PLMs,
leading to a deeper understanding of the under-
lying principles of their mechanisms (Wei et al.,
2021; Qin et al., 2021; Vu et al., 2021). In addi-
tion to prompt-based methods, there are also other
techniques exploring the parameter-efficient stimu-
lation of large-scale PLMs (Houlsby et al., 2019;
Hu et al., 2022; He et al., 2022; Ding et al., 2022).
Although it is possible to achieve non-trivial re-
sults on the large-scale PLMs by just adjusting the
prompt. However, in small and medium-sized mod-
els, prompt still faces optimization problems that
need to be addressed.

From a practical implementation point of view,
prompt-learning is actually complex and requires a
lot of detailed consideration. With general-purpose
NLP under the prompt-learning paradigm as our
target, we present OpenPrompt, a unified toolkit
to effectively and efficiently implement prompt-
learning approaches. OpenPrompt demonstrates
a comprehensive view of the programming de-
tails of prompt-learning, and enables practition-
ers to quickly understand the mechanisms and
practical attributes of this technique. And one
can quickly deploy existing representative prompt-
learning algorithms that are already implemented
in the package under a unified programming frame-
work. Moreover, OpenPrompt allows researchers
or developers to quickly try out new ideas of
prompt-learning, which not only includes newly
designed templates or verbalizers, but also the ex-
ploration of the attributes of prompt-learning, e.g.,

prompt-based adversarial attacking.

5 Conclusion and Future Work

We propose OpenPrompt, a unified, easy-to-use,
and extensible toolkit for prompt-learning. Open-
Prompt establishes a unified framework with
clearly defined blocks and flexible interactions to
support solid research on prompt-learning. At the
application level, OpenPrompt could facilitate re-
searchers and developers to effectively and effi-
ciently deploy prompt-learning pipelines. In the fu-
ture, we will continue to integrate new techniques
and features to OpenPrompt to facilitate the re-
search progress of prompt-learning. Focusing on
organizing input and output and training processes,
Openprompt will be easily combined with tools
that focus on specific optimization execution pro-
cesses in the future.
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Abstract

Collecting data for conversational semantic
parsing is a time-consuming and demanding
process. In this paper we consider, given an
incomplete dataset with only a small amount
of data, how to build an AI-powered human-
in-the-loop process to enable efficient data col-
lection. A guided K-best selection process is
proposed, which (i) generates a set of possible
valid candidates; (ii) allows users to quickly
traverse the set and filter incorrect parses; and
(iii) asks users to select the correct parse, with
minimal modification when necessary. We
investigate how to best support users in effi-
ciently traversing the candidate set and locat-
ing the correct parse, in terms of speed and ac-
curacy. In our user study, consisting of five an-
notators labeling 300 instances each, we find
that combining keyword searching, where key-
words can be used to query relevant candidates,
and keyword suggestion, where representative
keywords are automatically generated, enables
fast and accurate annotation.1

1 Introduction

Conversational Semantic Parsing (CSP), which
aims to turn an utterance into a meaning repre-
sentation such as an executable program or logical
form, plays an important role in task-oriented di-
alogue systems (Zettlemoyer and Collins, 2009;
Cheng et al., 2020; Platanios et al., 2021). In
practice, building a complete task-oriented dia-
logue system requires back-and-forth revision of
the meaning representation design. Such a muta-
ble nature makes the data collection process dif-
ficult and costly. Depending on the complexity
of the meaning representation, annotators might
even need further training to equip them with ba-
sic domain knowledge about the task. Inspired by
Computer Assisted Translation (CAT) (Green et al.,

*Equal contribution. Work performed during an intern-
ship at Microsoft Semantic Machines.

1Demo video: https://youtu.be/AtbCCYxjKIY

When’s the lecture 

scheduled for in May?

Natural utterance

start time of find event called something 
like “lecture” during May

(Yield :output (:start (singleton 
(:results (FindEventWrapperWithDefaults 
:constraint (EventDuringRange :event 

(Constraint[Event] :subject (?~= 
#(String "lecture"))) :range 

(FullMonthofMonth :month #(Month 
"MAY"))))))))

Canonical utterance

Meaning representation

Interchangeable using an SCFG

Low-Resource Semantic Parsing Model

Model trained on 1k Dialogues:  
Accuracy@1 = 0.63

Guided K-best Selection

Model trained on 1k Dialogues + K-Best UI:  
Accuracy@1 = 0.74

Candidate #1

Candidate #2

Candidate #100

…

Figure 1: Guided K-best selection approaches achieve
accuracy up to 74% when applied to VACSP-1k (Pla-
tanios et al., 2021), a conversational semantic parsing
model trained on only 1k dialogues. The canonical ut-
terance, used as the annotation target, is interchange-
able with the meaning representation using an SCFG.

2013, 2014), we would like to know if we can ac-
celerate the annotation process with AI-powered
human-in-the-loop interfaces. The main difference
between our task and the traditional CAT task lies
in the facts that (i) only a prototype model trained
on a small amount of initial data is available (low-
resource setting), leading to limited prediction per-
formance; and (ii) annotators have relatively little
or no knowledge about the meaning representation.

Because neither the model nor the annotators
are 100% accurate in our scenario, we propose the
K-best selection approach as shown in Figure 1,
where we (i) generate a set of candidates using a
low-resource model; and (ii) ask annotators to tra-
verse the set to select the correct parse and only
modify it if necessary. This formulation allows an-
notators to focus on reading and verification and
thus minimizes the need for annotators to write the
complicated meaning representation. While the no-
tion of K-best selection is established (Duan et al.,
2016; He et al., 2016), to our knowledge there has
been no investigation into optimizing this approach
beyond a simple enumeration of candidates ranked
by model score. In addition, a standard K-best
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Natural Utterance Canonical Utterance

Okay, I’ll get in touch with them. Can you tell me if
Sqirl in Los Angeles has waiter service?

Does “Sqirl in Los Angeles” have waiter service

What do I have on my calendar after 12 pm tomorrow? find event tomorrow after 12 PM

Can you add a workout with Kim between the sales
meeting and dinner?

create event called “workout” starting between find event called
something like “sales meeting” to find event called something
like “dinner” with recipient “Kim”

The first one. Also make a Stand-up meeting for early
next Monday

Yes, create the first one and then create event called “Stand-up
meeting” starting next Monday early morning

Yes please do so. Looks good!

Is it cloudy in Florida? weather at “Florida” now is cloudy

Table 1: Examples of natural and canonical utterances extracted from the SMCalFlow training set (Semantic
Machines et al., 2020). The canonical utterances are generated by the SCFG defined by Shin et al. (2021a)2.

selection approach may face challenges such as:

• Annotation speed: as K grows larger, an annota-
tor needs to spend more time reading the candi-
date list. Can we organize the candidates list in a
way that allows for fast filtering?

• Annotation accuracy: early plausible candidates
in a ranked list may bias interpretation; an annota-
tor may commit early to a less-than-perfect result
without exploring further. Can we encourage
exploration without adversely affecting speed?

In this work we demonstrate the validity of these
concerns and propose a solution called guided K-
best selection, consisting of: (i) a search interface
that allows annotators to type keywords and nar-
row down the K choices, (ii) a keyword suggestion
method that guides the exploration of K-best lists
for less experienced users. We show that it is the
combination of efficient search and guidance that
strikes the optimal balance between accuracy and
speed while achieving high annotator satisfaction.

2 Conversational Semantic Parsing

For our study we focus on a version of Conver-
sational Semantic Parsing (Figure 1), where we
are given a user’s natural utterance, and the goal
of the task is to annotate it into a canonical utter-
ance. The use of canonical utterances formulates
semantic parsing as a paraphrasing task that para-
phrases a natural utterance into a “canonical” utter-
ance in a constrained language (Berant and Liang,
2014; Marzoev et al., 2020; Shin et al., 2021a; Wu
et al., 2021). A synchronous context-free grammar
(SCFG) defines a mapping between task-specific
meaning representations and their corresponding

constrained languages. That is to say, using such an
SCFG, a complicated meaning representation can
be presented as a human-readable canonical utter-
ance (more similar to natural language) so models
can focus on learning how to paraphrase a natu-
ral utterance to a canonical utterance. We choose
to annotate canonical utterances also because it
substantially reduces the task complexity, since an-
notators no longer need to learn the syntax of the
meaning representation itself. We use canonical ut-
terances induced by an SCFG defined in (Shin et al.,
2021a). The corresponding meaning representation
is defined in the SMCalFlow dataset (Semantic
Machines et al., 2020), which contains 41.5K task-
oriented dialogues about calendar events, weather,
places, and people. Examples of natural and canon-
ical utterances are shown in Table 1.

3 Guided K-best Selection Interfaces

In this section, we describe three proposed and
two baseline annotation interfaces. Figure 2 shows
their basic components. The user utterance and its
context are given in (A) and the K-best candidate
list is provided in (C). (C) and its variants provide
different functions to help users efficiently get to
the correct parse. Note that (A), (B), (D), and (E)
are shared across all UIs.

no-kbest This interface, shown on Figure 2
(C-1), is an “annotate from scratch” baseline. Users
need to type the canonical utterance without see-
ing the K-best list. They can use (D) to validate
whether the current utterance is grammatical.

2SCFG implementation is available on the Github reposi-
tory (Shin et al., 2021b).
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C-1

C-2

C-3

E

B

C

A

C-4

D

Figure 2: The main components of search-keywords and other interfaces. (A), (B), (D) and (E) are shared
across all interfaces. (A) shows the dialog context and the target user utterance to annotate; (B) shows the top 5
candidates to serve as the options and hints; (D) indicates whether the current input is grammatical, i.e. can be
parsed with an SCFG (the latency of the grammar verification function is around 70 ms, which is quick enough
for real-time querying); (E) presents buttons for submitting the current task, “skipping” it to work on later, or
“escalating” it for manual annotation (via the “I can’t find the answer” button, which declares that the correct parse
is not in the top K). Search-keywords (C) suggests a set of keywords for users to query relevant candidates
on. No-kbest (C-1) only provides an input box for manually entering the annotation. Scroll (C-2) simply
presents all the candidates for users to select. Autocomplete (C-3) shows both a full sentence completion and
possible next chunks of the tokens. Search (C-4) allows users to enter keywords to query relevant candidates.

scroll Figure 2 (C-2) shows the scroll in-
terface. scroll serves as another baseline in our
experiments. We simply present all the candidates
ordered by their model scores. Users are able to
use their mouse or keyboard to traverse the list.

autocomplete As shown in Figure 2 (C-3),
autocomplete shows a full sentence comple-
tion above the input area and possible next chunks
of tokens next to the cursor. To generate the sugges-
tions, we insert all candidates into a trie (Browning,
2021). The full sentence completion is the one that
satisfies the prefix constraint and has the highest
model score; and the next chunks of tokens are
generated by traversing the trie until different to-
kens appear. The red box serves as a cursor around
the current token in the full sentence completion.
When using autocomplete, users essentially
explore the K candidates by traversing the trie.

search Figure 2 (C-4) shows the search in-
terface. It aims to break the left-to-right nature
of autocomplete, where users need to traverse

the trie in a certain order. search allows users
to enter keywords in arbitrary order to remove ir-
relevant candidates. After entering the keywords,
valid candidates ordered by the model scores will
be shown below the input area. The matched key-
words are highlighted in bold and underlined for
quick reference. We use flexsearch (Wilkerling,
2021) to index the candidate list in the frontend UI
to further reduce the latency.

search-keywords As shown in Figure 2 (C),
search-keywords extends the search inter-
face by showing a list of top 5 discriminative key-
words. These keywords are used to narrow down
the current candidates. They also give users a rough
overview of the candidate list and the annotation
grammar. Users can choose to include (+) or ex-
clude (−) the keyword in the correct parse.

To provide suggestions, we develop a Keyword
Suggestion (KS) method inspired by post-decoding
clustering (PDC) from (Ippolito et al., 2019). We
similarly perform k-means clustering over the K-
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Figure 3: KS example. We generate an explanation tree
over a k-means clustering (k=7) and use k′ = 5 unique
intermediate nodes’ n-grams as suggested keywords.

Top-5 Top-20 Top-100 Escalate

Stratified 25% 25% 25% 25%
True 76% 6% 4% 14%

Table 2: We apply stratified sampling to control the dis-
tribution of gold answers. Escalate is the case where
the gold parse is not in top 100. The True distribution
gives each stratum’s real distribution in the dev set.

best list and choose the candidate with the highest
model score to represent each cluster. This distills
the original K candidates into fewer but more di-
verse candidates, where k � K. In addition, we
employ a cluster explanation technique recently
proposed by Dasgupta et al. (2020) to further distill
the k diverse candidates into k′ keywords. This
is done by approximating the k clusters’ decision
boundaries (which are arbitrarily shaped) with k
axis-aligned rectangles. As a result, this approxi-
mated k-means clustering can be summarized with
a binary tree, consisting of k leaf nodes and at most
k − 1 intermediate split nodes. Split nodes corre-
spond to n-grams (n = 1, 2, 3) formed from the
canonical representations of candidate parses. We
use the set of all unique split nodes’ n-grams to
form a set of suggested keywords. Thus, the k di-
verse candidates are distilled even further into k′

keywords, k′ < k � K. An example of this pro-
cess is given on Figure 3. Finally, the k′ keywords
are re-ranked based on their discriminativeness, or
how evenly they split the current candidates, and
the 5 most discriminative keywords are shown in
the interface. This allows combining keyword sug-
gestion with the search interface. In Section 4.3,
we compare keyword suggestion with other mecha-
nisms to guide annotators.

4 Experiments

4.1 Protocol

Data 300 utterances were sampled from the SM-
CalFlow development set (Semantic Machines
et al., 2020). For each utterance, we used
the state-of-the-art conversational semantic parser
VACSP (Platanios et al., 2021) to generate K =
100 candidate parses.3 To simulate a low-resource
setting, we used the variant of VACSP trained on
1k dialogues (VACSP-1k). We sampled utterances
according to the stratified distribution from Table 2
in order to represent multiple rank settings equally.
For Escalate samples, where the gold answer was
not presented in the candidate list, we expected the
participants to either choose the “I can’t find the
answer” option,4 or edit one of the candidates to
obtain the correct parse.

Participants A total of 5 participants joined the
experiment. All participants were not previously
exposed to the canonical language and the proposed
interfaces. To help annotators get familiar with the
canonical grammar, they were asked to read 300
(user utterance, canonical utterance) pairs.5 Partici-
pants were then randomly assigned to a particular
interface and data split. Each interface was used
along with a different data split to reduce potential
bias. After finishing, participants filled out a ques-
tionnaire, evaluating (i) interface preference on a
5-point Likert scale, (ii) cognitive load using the
NASA Task Load Index (Hart, 2006) on a 7-point
Likert scale, and (iii) free-text suggestions.

4.2 Interface Comparison

We compare interfaces from (i) the requester’s per-
spective by evaluating annotation accuracy and
time and (ii) the annotator’s perspective by evaluat-
ing their UI preference across multiple criteria.

Accuracy and time Table 3 shows the exact
match accuracy and the time usage per utterance.

To verify how accuracy and time differ depend-
ing on the difficulty of each instance, we measure
the rank of the gold parse in the K-best list, and ag-
gregate the results over three non-overlapping set-

3We used Accuracy@K as a proxy to decide the best K.
We chose K = 100 since larger values of K did not substan-
tially improve Accuracy@K with our prototype model: e.g.
Accuracy@200 was only 0.8% higher than Accuracy@100.

4Practically, Escalate means sending this hard instance
to experienced and knowledgeable annotators to handle.

5The 300 pairs were selected to represent a diverse set of
functions in the canonical and meaning representations.
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Exact Match Accuracy ↑ Median Time (sec) ↓
Top-5 Top-20 Top-100 Escalate Escalatem All True Top-5 Top-20 Top-100 Escalate All

No-KBest .411 .189 .123 .400 .067 .197 .339 56.13 73.17 97.48 74.29 69.43
Scroll .880 .320 .213 .453 .067 .370 .706 13.00 25.84 26.47 30.23 24.73

Autocomplete .919 .370 .333 .427 .067 .422 .743 13.71 26.01 30.02 31.47 25.53
Search .878 .320 .213 .400 .080 .373 .707 8.48 19.09 17.16 19.55 16.02
Search-Keywords .880 .419 .213 .480 .093 .401 .716 12.78 24.51 36.26 31.15 23.91

Table 3: Accuracy and time usage of the baseline and proposed interfaces. In the last stratum, Escalate, in which
answer is not provided, we present two values: Escalatem, where only matching the gold answer is correct, and
Escalate, where in addition to that selecting “I Can’t Find The Answer” is also treated as correct. All is the
mean accuracy over all the strata. True stands for the true accuracy weighted by the true distribution in the dev
set (Table 2). Note All and True are computed using Escalatem. Bolded is the best result; underlined is the
second-best result. Autocomplete achieves the highest accuracy and Search help reduce time usage up to
35% compared to Scroll. Search-keywords strikes the balance between accuracy and time usage.

Figure 4: Summary of the user feedback on the interface preference. Across six evaluation criteria, the users
preferred the proposed UIs over baselines, with search-keywords being their top choice across all criteria.

tings: “Top-5”, “Top-20”, and “Top-100”,6 which
correspond to varying difficulties of instances.

We further compute the true accuracy by estimat-
ing the real distribution of the strata in our dataset
to compare with Platanios et al. (2021)’s VACSP-
1k results. As shown in the True accuracy column
in Table 3, by introducing humans into the semantic
parsing process, no matter which K-best interface
they use, the performance always improves (the
True accuracy of the VACSP-1k model is 0.630).
When comparing each interface, autocomplete
achieves the highest accuracy overall but it also
takes a longer time. We hypothesize that the ac-
curacy gain comes from the fact that annotators
are required to review tokens individually. Com-
pared to scroll, search does not substantially
improve the accuracy, but it does reduce the overall

6“Top-5” corresponds to the rank in [1, 5] “Top-20” cor-
responds to [6, 20], and “Top-100” corresponds to [21, 100].

time usage by up to 35%. No-KBest shows that,
with only the grammar verification, annotators are
much slower (69s vs 25s) and less accurate (.339 vs
.706) even compared to scroll (see Appendix B
for more analysis on annotation time distribution).
Overall, search-keywords strikes a balance
between the trade-offs, being generally either best
or close to best in both accuracy and time usage.

User feedback Figure 4 summarizes user an-
swers to UI preference questions from the ques-
tionnaire.7 Annotators generally preferred the pro-
posed interfaces to the no-kbest and scroll
baselines: they found that the proposed UIs enable
them to be more accurate (A) and faster (B), as well
as requiring less unnecessary reading (D). The level
of confusion was roughly the same across UIs (C),
perhaps due to non-UI related factors (such as an-

7More feedback, incl. excerpts of free-form suggestions
and NASA task load index results, is provided in Appendix C.

118



Oracle simulation results (k = 5) Human annotation results (k = 5)
Average number of turns ↓ Median time (sec) ↓

Top-5 Top-20 Top-100 All Top-5 Top-20 Top-100 All

KS (ours) 1.10 2.39 2.80 1.24 15.30 46.99 48.20 36.71

PDC (k-means, canonical) 1.11 2.40 2.84 1.24 25.09 73.23 55.42 52.94
PDC (agglomerative, canonical) 1.16 2.73 3.10 1.31 — — — —
PDC (agglomerative, meaning) 1.15 2.68 2.91 1.29 — — — —

Scroll 1.00 2.63 7.75 1.33 24.18 42.30 56.37 37.21

Table 4: Comparison of K-best guidance strategies: by suggesting keywords (top row), diverse candidates (middle
rows), or all K candidates (bottom row). In both oracle and human settings, k = 5 candidates are displayed per
each interaction turn. Bolded is the best result, underlined is the second-best result. While KS and PDC perform
similarly in the oracle setting, the former leads to faster annotation when tested with real human annotators.

notation grammar or stratified distribution of exam-
ples). The annotators also preferred the proposed
UIs for future use (F), with search-keywords
being the most preferred one by a large margin.

4.3 Guidance Comparison

We compare our keyword suggestion (KS) method,
based on explainable k-means clustering, with the
PDC algorithm from (Ippolito et al., 2019) and
the scroll baseline from Section 3. We com-
pare multiple variants of PDC, exploring whether
agglomerative clustering (based on string edit dis-
tance) or k-means is better, and whether canonical
or meaning representation is better. All algorithms
are used interactively: e.g., during one turn of PDC,
a user would pick one out of k clusters (represented
by the top scoring parse each) that looks most cor-
rect to them, and on the next turn, they would only
see candidates from the cluster chosen previously.
In KS, one turn corresponds to choosing whether
a single suggested keyword (e.g. “create event”)
should or should not be included in the correct
parse while seeing the currently best scoring k
candidates. Finally, in scroll the user simply
scrolls over K candidates using a size-k window.
To achieve a fair comparison and manageable work-
load, all methods display k = 5 candidates per
interaction turn.

We evaluate guidance methods in two ways:
with a simulated (oracle) user, and with a pool
of human annotators described in Section 4.1. The
simulated user will always make the best choice
at each interaction turn: that is, pick the keyword
or the candidate parse that will be included in, or
will be closest to, the best parse. Human annota-
tors, however, might make mistakes. Thus, in all
interfaces, they are allowed to go several turns back
and fix mistakes before submitting. We report the

number of turns for the simulated user and the wall
annotation time for human annotators in Table 4.

Oracle simulation results Table 4 (left) shows
several trends: first, adding explanations and
“coarsening” clusters’ decision boundary in KS
does not hurt annotation speed, compared to the
otherwise similar “PDC (k-means, canonical)”.
Second, both KS and PDC substantially decrease
the gap between the easiest Top-5 and the hardest
Top-100 settings observed for scroll, contribut-
ing to a more predictable annotator experience. Fi-
nally, comparing the results across PDC variants,
we can conclude that k-means over canonical rep-
resentation is a reasonable default setting, and we
lock on to it for human annotation experiments.

Human annotation results Table 4 (right)
agrees with the simulation finding that KS and PDC
help decrease the gap between Top-5 and Top-100
settings, albeit to a lesser extent than in the simula-
tion experiment. Most notable is the difference in
speed between KS and PDC: while in simulation
it was only marginal, here the lack of explanations
substantially slows the human annotators down.
In addition, in the post-experiment survey, the an-
notators were confused by “non-intuitive similar-
ity relations” and “too much extra reading” of the
clustering-based PDC while praising the keyword-
based KS for being “intuitive” and “engaging”.

5 Related Work

5.1 Interactive Semantic Parsing

K-best selection is aligned with interactive seman-
tic parsing. These approaches assume access to an
existing parsing model, and to a user that provides
corrections in binary (Clarke et al., 2010; Artzi
and Zettlemoyer, 2013; Iyer et al., 2017), multiple-
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choice (Iyer et al., 2017; Gur et al., 2018; Yao
et al., 2019), or natural language form (Elgohary
et al., 2021). Many of these methods also rely on
separate trainable modules or parsing model’s pa-
rameters to identify inference steps the parser is
most uncertain about. In contrast, K-best selec-
tion is parameter-free (making it well-suited for
low-resource settings).

5.2 Computer-Assisted Translation

Our search and autocomplete UIs are motivated
by computer-assisted translation. There are three
main directions in CAT. Post-Editing (PE) asks
users to revise and verify a machine translated
text (Green et al., 2013; Aranberri et al., 2014;
Toral et al., 2018; Herbig et al., 2020; Lee et al.,
2021). Interactive Translation Prediction (ITP)
suggests translations dynamically based on users’
input (Langlais et al., 2000; Foster et al., 2002;
Bender et al., 2005; Barrachina et al., 2009; Koehn,
2009; Alabau et al., 2014; Green et al., 2014; Cheng
et al., 2016). Both PE and ITP assume users’ trans-
lations are nearly perfect which is not always the
case in CSP. Iterative translation (IT) asks two
groups of monolingual speakers to iterate over
the translation back and forth to improve trans-
lation quality (Morita and Ishida, 2009; Hu et al.,
2010, 2011). Although IT ensures quality, its low
throughput (2.5 to 6 times slower compared to pro-
fessional translators (Hu et al., 2011)) prevents us
from using it.

5.3 Diverse Generation

Our keyword suggestion mechanism is motivated
by diverse text generation. Typical strategies for
improving the collective diversity (Hu et al., 2019)
of the output candidates include: modifications to
beam search (Vijayakumar et al., 2018; Tam, 2020),
modifications to the sampling method (Fan et al.,
2018; Holtzman et al., 2020), stratified sampling
based on semantic codes (Weir et al., 2020), and
post-decoding clustering (Kriz et al., 2019; Ippolito
et al., 2019). The latter approach involves over-
generating candidates by using a large beam size,
clustering the final candidates, and selecting one or
a few representative candidates per cluster.

6 Conclusion

In this paper, we tackled the challenge of efficient
data collection for conversational semantic parsing.
In the presence of little available training data, we

propose human-in-the-loop interfaces for guided
K-best selection, using a prototype model trained
on limited data. Guided K-best selection interfaces
generate a set of possible candidates with functions
for fast traversal and ask annotators to select the
correct parse. User studies show that combining
keyword search functionality with a keyword sug-
gestion system strikes an optimal balance between
annotation accuracy and speed.
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A Discussion

In this section, we share additional lessons we
learned while interacting with expert annotators in
the preliminary experiments and adapting our final
proposed interfaces according to their feedback.

Latency is a critical issue when generating com-
pletions dynamically. We initially experimented
with the autocomplete interface suggesting comple-
tions fully dynamically, similar to recent works on
CAT (Green et al., 2014; Knowles et al., 2019). To
achieve this, we periodically sent users’ inputs to
the backend BART model (Shin et al., 2021a) that
would perform completions using beam search de-
coding. We found the latency of the BART model
to be around 300-600 ms even with the beam size
of one and constrained decoding turned off (turn-
ing the constrained decoding on ensures the gen-
erated completions are grammatical but doubles
the latency). In a small preliminary study, par-
ticipants generally noted the dynamic interface to
be “laggy”. Similar issues also happened in prior
studies, e.g. Green et al. (2014) noticed that users
deemed the interface as “sluggish” unless the la-
tency was reduced to less than 300 ms by using
the phrase-based decoding algorithm to reduce the
search space; Chen et al. (2019) examined the la-
tency of LSTM as well as Transformer and con-
cluded that Transformer’s high latency was not
suitable for production despite the performance
gain. We thus concluded that generating comple-
tions dynamically is infeasible and directed our
study towards K-best selection.

Figure 5: KDE plot of the time usage for the baseline
and proposed interfaces. Search has a higher distri-
bution between 5-20 seconds; The long tail is merged
and forms another peak in 100+ where we can clearly
see that no-kbest � scroll > autocomplete
> search-keywords > search.

Users are not able to produce a full canonical ut-
terance from scratch. Compared to CAT tasks
(Section 5.2), one of the difficulties of annotating
semantic representations is that the canonical lan-
guage is hard and subject to change. In CAT, peo-
ple assume that the produced translation is always
valid which is not always true for semantic rep-
resentation annotation tasks. Annotators found it
substantially harder to author a complete annota-
tion from scratch using the no-kbest interface
(Figure 4), as compared to selecting from a list of
K options with all other UIs. We thus believe that a
K-best framework should be a preferred approach
as it relies on people’s ability to read and verify
the candidates rather than producing an answer
from scratch.

B Additional Experiments

Oracle simulation results In addition to k = 5
(Section 4.3), we experiment with displaying less
(k = 2) and more (k = 10) items per turn. The
results are shown on Table 5. When displaying
k = 2 (left) items per turn, the difference between
Top-100 “tail” performance of the scroll baseline
vs proposed methods is very high, thus making pro-
posed methods more predictable on the tail. For
k = 10 (right) items per turn, this difference is
more leveled and the overall performance is essen-
tially the same across all methods, at the expense
of increased reading per turn. In the human experi-
ments, we chose k = 5 to strike balance between
workload per turn and reasonable number of turns.

Overall time usage distribution In addition to
the user study results presented in Section 4.2, we
show the kernel density estimation (KDE) plot of
the time usage distribution in Figure 5. The KDE
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Oracle simulation results (k = 2) Oracle simulation results (k = 10)
Average number of turns ↓ Average number of turns ↓

Top-5 Top-20 Top-100 All Top-5 Top-20 Top-100 All

KS (ours) 1.19 4.22 5.90 1.53 1.06 1.79 2.09 1.14

PDC (k-means, canonical) 1.19 4.19 5.85 1.52 1.06 1.81 2.11 1.14
PDC (agglomerative, canonical) 1.24 5.38 7.14 1.68 1.10 1.92 2.10 1.18
PDC (agglomerative, meaning) 1.23 5.00 6.55 1.63 1.10 1.94 2.03 1.18

Scroll 1.09 5.65 18.58 1.96 1.00 1.45 4.15 1.14

Table 5: Additional oracle simulation results with k = 2 (left) and k = 10 (right) candidates displayed per turn.
Bolded is the best result, underlined is the second-best result.

plots are produced using seaborn8 with bandwidth
adjustment bw_adjust = 3 and clip = (0, 100).
Note that we clip the time to the range [0, 100] to
better display the distribution tail. We find that a
huge portion of search locates within 5–20 sec-
onds showing that users indeed can finish the task
much faster. In another peak (100+ seconds), the
distribution clearly shows no-kbest� scroll
> autocomplete > search-keywords >
search meaning that no-kbest takes much
longer time in general; and a higher portion from
scroll and autocomplete takes much longer
time to finish; whereas search-keywords and
search have fewer such cases. This peak is con-
tributed almost evenly by the four different strata,
perhaps because users tend to read through all can-
didates to make sure they get the right answer.

Time usage distribution per interface We plot
the time usage distribution using KDE for the pro-
posed interfaces to illustrate the time usage for each
stratum. Again, the KDE plots are produced using
seaborn with bandwidth adjustment bw_adjust
= 3 and clip = (0, 100). The plots shown on Fig-
ure 6 tell us that, for K-best interfaces, only Top-
5 shows a different behavior where tasks can be
mostly finished within 10 seconds; while Top-20,
Top-100, and Escalate have very similar distribu-
tions. We hypothesize this is because we explicitly
show the top 5 candidates in the interface (Figure 2
(B)). When the gold parse is not in the top 5 can-
didate list, annotators go through a similar process
to find the answer, resulting in a similar time us-
age distribution for Top-20, Top-100, and Escalate.
The no-kbest shows that without any supports,
a huge portion of the tasks took more than 100
seconds to finish.

8https://seaborn.pydata.org

C Additional User Feedback

NASA Task Load Index Figure 7 summarizes
user responses to a NASA Task Load Index
questionnaire (Hart, 2006) that evaluates partici-
pants’ subjective workload across six dimensions.
The original 7-point Likert scale was mapped
to a 5-point scale for conciseness: “very low”,
“very high”, and “medium” labels were preserved,
and the four intermediate labels were mapped
into two. This feedback was not collected for
search-keywords; for autocomplete and
search we observe that, compared to baselines,
users report lower temporal demand and higher per-
formance, which correspond to higher perceived
speed and accuracy, respectively. This agrees with
the interface preference feedback (Figure 4) and
quantitative results of our user study (Table 3).

Free-form suggestions We collected partici-
pants’ free-form suggestions by asking four ques-
tions: (i) “I like the provided function because ...”,
(ii) “I do not like the provided function because ...”,
(iii) “I think provided function can be improved by
...”, and (iv) “I would like to have some other func-
tions such as ...”. Tables 6 to 9 summarize the re-
sponses. In general, participants expressed positive
impression towards autocomplete, search,
and search-keywords. Users especially like
search-keywords as it helps quickly narrow
down the options; gives insights into grammar;
and even when the suggestions fail, it can be fig-
ured out very quickly and do not cause a huge
negative impact (Table 6). Participants suggested
to add more keywords and allow pulling key-
words from natural utterances to further improve
search-keywords (Table 8). We also found
that participants believe a grammar guide would
improve their annotation process (Table 9) which
might be infeasible in a rapid prototyping setup.
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(a) Time usage for no-kbest. (b) Time usage for scroll.

(c) Time usage for autocomplete. (d) Time usage for search.

(e) Time usage for search-keywords.

Figure 6: For interfaces with K-best supports ((a), (b), (c), (d)), only Top-5 has a different shape of distribution
where there is a much higher peak around 10 seconds; Top-20, Top-100, and Escalate have very similar time
distribution which suggests that annotators might need to go through the same searching process no matter which
stratum it is. The distribution of no-kbest is relatively flat with a huge peak in 100+, meaning that it takes much
more time to finish in general.

Figure 7: Summary of the user feedback on NASA Task Load Index (Hart, 2006) across six different criteria.
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I like the provided function because ...

scroll “You can easily comb through the many variations of grammar.”

autocomplete

“... the ability to create the correct grammar with assistance was very helpful and lowered the
frustration overall”
“... it has enough context/information to quickly determine the right path forward.”
“It seemed to be focused and direct ... It seemed to give the right amount of predictive assistance.”

search
“Being able to narrow down the options based on a keyword is nice, especially in cases where
the bot mostly gets it wrong right at the start”
“... nicely and succinctly. It seems more intuitive to use ...”

search-keywords

“... the suggested keywords can very quickly narrow down the list of displayed options (without
having to type in a single search parameter myself) so that the correct one is easy to locate.”
“It was useful for narrowing things down quicker and helped minimize typos in the search.”
“It gave insight into the grammar, but was also very efficient. It allowed myself more control
over the options I was seeing, meaning it was much more streamlined and was very fast.”
“Even in those cases where the suggested keywords don’t end up helping much, it only takes a
few second to figure that out. It has minimal impact on the interface, too, so its presence doesn’t
hurt even when it doesn’t help.”

Table 6: Free-form suggestions for question “I like the provided function because ...”.

I do not like the provided function because ...

scroll
“the scrollable list is just annoying to look at.”
“It is hard to navigate. And makes little sense.”

autocomplete “... sometimes it presenting two options that both look like they could be valid side-by-side ...”

search “... it sometimes highlights in odd ways that decreases readability.”

search-keywords “They weren’t usually presented in an order that I would immediately search by.”

Table 7: Free-form suggestions for question “I do not like the provided function because ...”.

I think the provided function can be improved by ...

scroll

“It would be nice if the options displayed in the list respected what you had in the answer line.
For example, I type "update" and all the ones which aren’t that disappear.”
“Have the top 5 candidates be attached to the scrollable list function, but frozen as the top 5
results (in the same way you can freeze rows or columns in excel).”

autocomplete
“Maybe the ability to hide the top 5 suggestions or hide specific options would be nice for some
users.”

search
“It would be nice if the list were a little more readable, especially when it constantly changes
the boldness/underlines.”

search-keywords

“If we could add more suggest words to help us find the answer even faster.”
“the ability to pull "must include" elements of the utterance into the initial set of suggested
keywords would be helpful.”
“the main thing that would make it work better is just the model being improved so predictions
are better in general.”
“the way matched terms are both bolded and underlined changes the list of predictions in a way
that sometimes confuses the eyes as you’re matching things.”

Table 8: Free-form suggestions for question “I think provided function can be improved by ...”.

I would like to have some other functions such as ...

scroll
“... change suggestions based on the text in the annotation box.”
“the displayed list respecting the contents of the type-box would be nice.”

autocomplete “A searchable dictionary or index listing common translation.”

search “An accompanying lexicon or index of common translations.”

search-keywords “A method of manually filtering out words ...”

Table 9: Free-form suggestions for question “I would like to have some other functions such as ...”.
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Abstract

Natural Language Processing (NLP)’s applied
nature makes it necessary to select the most
effective and robust models. However, just pro-
ducing slightly higher performance is insuffi-
cient; we want to know whether this advantage
will carry over to other data sets. Bootstrapped
significance tests can indicate that ability. Com-
puting the significance of performance differ-
ences has many levels of complexity, though.
It can be tedious, especially when the experi-
mental design has many conditions to compare
and several runs of experiments. We present
BooStSa, a tool that makes it easy to compute
significance levels with the BOOtSTrap SAm-
pling procedure. BooStSa can evaluate models
that predict not only standard hard labels but
soft labels (i.e., probability distributions over
different classes) as well.

1 Introduction

Text classification is one of the main applications
of NLP, with hundreds of papers published every
year at NLP conferences. While these publications
cover various domains, they essentially follow the
same steps: Pick a classification problem. Identify
baseline models, standard models from previous
literature, and State-Of-The-Art (SOTA) models.
Propose a novel approach to the problem. Show
that it outperforms the previous ones on benchmark
data sets.

Developing better methods for a task is a com-
mon feature of the computational linguistics litera-
ture, and selecting the best model from a range of
options is crucial for the whole experimental pro-
cedure. However, showing absolute improvements
on several data sets (let alone one) is not sufficient.
Variations in model initialization, batch sampling
and other factors might result in an improvement
that does not generalize. We can use significance
tests to assess whether the observed improvements
are likely to hold on future data sets.

However, identifying the best method(s) depends
on two different but correlated aspects of the eval-
uation process. The metrics adopted for the per-
formance measurement and the significance test
carried out for the models’ comparison.

To compute the significance of the models’ im-
provements over comparison sets, BooStSa relies
on bootstrap sampling (Efron and Tibshirani, 1994;
Berg-Kirkpatrick et al., 2012). As Søgaard et al.
(2014) discussed, the effect size, that is, the per-
formance gap between different methods, can be
modelled as a random variable. When this random
variable follows a normal distribution, it is possible
to use Student’s t-test to estimate the significance
in the performance difference. However, the as-
sumption of normal distribution does not hold in
most NLP applications. Therefore, randomized,
sample-based, non-parametric tests such as boot-
strap sampling are better suited for NLP.

However, the correct implementation of this
method can be non-trivial (especially on top of
other experiments). To allow for a safe, flexible
application, we release BooStSa to the community.
Since the results of bootstrap methods are “very
sensitive to sample size, [...] as well as to the exis-
tence of multiple metrics” (Søgaard et al., 2014, p.
1), BooStSa incorporates some constraints in the
hyper-parameter choice (Section 2.3) to prevent the
accidental misuse of the methods.

Concerning the metrics, the scenario differs
when the prediction uses hard labels or soft labels.
Hard labels are standard one-hot encoded labels,
where one class is correct and is assigned the value
of 1, and the others are wrong and have a value of
0. In the case of soft labels, the actual label value is
ultimately uncertain. This uncertainty is expressed
as a probability distribution over classes, each re-
ceiving a value from 0 to 1, all summing up to 1.
In the first case, the use and the interpretation of
metrics such as accuracy (Acc), precision (Prec), re-
call (Rec), and F-measure (F1) are well-understood

127



in the literature (Forman et al., 2003; Uma et al.,
2021). BooStSa computes these metrics for hard
labels. In the second case, no metric is generally
accepted to evaluate the divergence between proba-
bility distributions. BooStSa follows the approach
of Uma et al. (2021) and provides cross entropy
(CE), Jensen-Shannon divergence (JSD), entropy
similarity (E-Sim) and entropy correlation (E-Corr)
for soft labels.

Contributions. We release BooStSa, an open-
source application that computes:

• Standard metrics for hard labels, macro-
averaged or over selected target classes;

• Metrics for soft labels, following best prac-
tices form previous literature;

• The bootstrap sampling significance test,
with safety-constraints for hyper-parameter
choices.

The tests can be run efficiently, even for com-
plex experimental designs comparing many differ-
ent models trained in several runs of experiments.
The package can be installed with pip and is re-
leased on github/fornaciari/boostsa (documentation
at boostsa.readthedocs.io).

2 Methods

2.1 Metrics for hard labels

We adopt the standard metrics for classification
tasks – F-measure (F1), precision (Prec), recall
(Rec), and accuracy (Acc). They have been widely
studied in literature and their interpretation is gen-
erally shared and accepted (Goutte and Gaussier,
2005; Forman et al., 2003).

2.2 Metrics for soft labels

For the soft label evaluation, we consider the four
metrics proposed by Uma et al. (2021): 1) cross en-
tropy (CE), 2) Jensen-Shannon divergence (JSD),
3) entropy similarity (E-Sim) and 4) entropy cor-
relation (E-Corr). The first two measure the di-
vergence between target and predicted probability
distribution (CE and JSD), the second two eval-
uate how well the predicted distributions capture
the uncertainty embodied in the target distribution,
usually generated by humans (E-Sim and E-Corr).

Cross-entropy. Cross-entropy is a widely used
loss-function to measure the divergence between
probability distribution. Peterson et al. (2019)

also suggest using it to measure the confidence of
trained models with respect to target distributions,
typically resulting from human predictions.

Jensen-Shannon divergence. Based on the
Kullback-Leibler divergence (Kullback and Leibler,
1951) and proposed by Lin (1991), the JSD is an-
other common measure of divergence from prob-
ability distributions. Compared to the Kullback-
Leibler divergence, it is symmetric, making JSD
more easily interpretable.

Entropy similarity. Proposed by Uma et al.
(2021), the E-Sim is given by the cosine similarity
between two vectors, containing the normalized
entropy of the probability distribution of each data
point, target or prediction.

Entropy correlation. It relies on Pearson’s corre-
lation (Pearson, 1896), applied to the same vectors
used for the E-Sim (Uma et al., 2021). Based on
the probability distributions’ entropy, E-Sim and E-
Corr measure how well the predicted distributions
detect the uncertainty of the target distributions.

2.3 Bootstrap sampling

We follow the algorithm as described by Berg-
Kirkpatrick et al. (2012). The bootstrap sampling
procedure relies on the iterative simulation of “new”
data sets. Random test sets are repeatedly sub-
sampled (with replacement) from the whole test
data. At each iteration, we compare the perfor-
mance difference between baseline and experimen-
tal model, δsample, computed on the original test
set, to the difference computed on the sampled
subset, δsub−sample. By counting how many times
the sub-sample differences are at least twice as
large as the overall difference value, δsub−sample >
2δsample, we can derive the p-value by dividing this
count by the number of iterations.

Bootstrap sampling is agnostic to the chosen per-
formance metric, making the tool very versatile.
It allows, for example, to use all the metrics de-
scribed in the previous sections, as long as they
follow the Central Limit Theorem (CLT) (Pólya,
1920; Rosenblatt, 1956): i.e., it is required that the
distribution of sample means approximates a nor-
mal distribution as the sample size becomes wider,
regardless of the population’s distribution.

However, bootstrap sampling is still sensitive to
some experimental parameters, that is, the overall
test set size, the sub-sampled test set size and the
number of iterations. This point is critical, as the
notion of significance is not grey-scaled: a p-value
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Figure 1: Significance test simulation for classification, showing the effect of interaction between test set size
and sub-sample sizes. The test set is perfectly balanced (50% instances for each class). The baseline and model
predictions are also balanced (F1 = Prec = Rec = Acc), and the difference is one percentage point, δ = .01.
Each data point comes from 10 simulations. Every significance test simulation was carried out with 1 000 iterations.
The narrow confidence interval (light blue) across the 10 simulations, indicates that 1 000 iterations are sufficient to
obtain stable results.

is either significant or not with respect to a cho-
sen threshold, but its value is also affected by the
bootstrap hyper-parameters. Their effect can be
summarized as follows.

Test set size. The wider the sample, the more ro-
bust the results, and the easier to reach significance
levels.

If several experiments are run for each experi-
mental condition, BooStSa concatenates the test
data, the baseline and experimental predictions as
if each of them was a single experiment.

Sub-sample size. The previous hyper-parameter
is usually determined by the availability of the data
sets, limiting the possibilities of control for the re-
searcher. However, the size of the sub-samples can
freely be chosen by the experimenter. Determining
its correct value is not trivial, though.

Søgaard et al. (2014, p. 3) observe that “for
the bootstrap test to work, the original sample has
to capture most of the variation in the population.
If the sample is very small, though, this is likely
not the case. Consequently, with small sample
sizes, there is a risk that the calculated p-value will
be artificially low–simply because the bootstrap
samples are too similar”.

The opposite risk exists as well: if the sub-
sample is too similar to the size of the whole test
set, the bootstrap samples will be too similar to the
test set, producing p-values that are artificially high.
In other words, too broad a sample implies that the
test set sample actually represents the whole popu-
lation, which is quite a strong assumption indeed.

Figure 1 shows a simulation of the relationship
between test size and sub-sample size. The curves
come from an artificially created test set and per-

fectly balanced predictions, where the experimental
model beats the baseline by one point per cent on
every standard classification metric (F1, Prec, Rec
and Acc). The trends are similar to those shown by
Berg-Kirkpatrick et al. (2012) on real data.

To the best of our knowledge, there are no clear
guidelines in the literature for selecting the “correct”
sample size. In BooStSa, we prevent the selection
of extreme sub-sample sizes (too small or too big)
by only allowing a range between 5% and 50% of
the test set size. Beyond this, we suggest choosing
smaller sub-sample sizes, if the test set size allows,
as this should keep the sub-sample size far from
the dangerous extreme values. We also encourage
practitioners to use bootstrap sampling responsibly
and transparently by always specifying the chosen
test parameters.

Number of iterations. On the other hand, tun-
ing the number of iterations is straightforward: the
more, the better. The confidence intervals shown
in figure 1 suggest that 1, 000 iterations are already
sufficient to obtain quite stable results; therefore,
the often suggested 10, 000 iterations are a per-
fectly safe amount.

3 Experiment

Figure 2 shows the BooStSa’s output for a real use
case. We use the barely significant results of the
Part-Of-Speech (POS) tagging classification task
carried out by Fornaciari et al. (2021, p.2593, table
1, POS tag, separate test set, STL vs. MTL + Cross-
Entropy). In that task, a Single-Task Learning
(STL) model (h0) is compared with a Multi-Task
Learning (MTL) model (h1). A hold-out validation
procedure is followed, with a test set containing
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Figure 2: P-levels from significance test simulations
with different sub-sample rates and 10 000 iterations.
The results concern a POS-tagging classification task
from the study of Fornaciari et al. (2021), where a
Single-Task Learning (STL) model (h0) is compared
with a Multi-Task Learning (MTL) model (h1).

3064 instances.

We consider two metrics, accuracy and F-
measure, and six different sub-sample sizes, from
5% to 50% of test set rate. The h0’s accuracy and
F-measure were 85.84 and 74.56, the h1’s accuracy
and F-measure were 86.27 and 75.13, with a delta
of 0.43 and 0.57, respectively. Similar to the re-
sults shown by Fornaciari et al. (2021), significant
p-values appear only for sample sizes greater than
30% of the whole test set.

4 Usage

4.1 Installation

BooStSa can be installed in the shell simply via:
pip install -U boostsa .

4.2 Getting started

To use BooStSa in a Python script, the first step is
to import the library:

1 from boostsa import Bootstrap

Second, we need to create a bootstrap instance:
1 boot = Bootstrap()

This instance will store the experiments’ outcomes
and compute performances and the significance test
between the experiments that need to be compared.

4.2.1 Inputs

The basic assumption for using BooStSa is that at
least two classification models have been trained.

One model is considered the baseline, control, or
null hypothesis (h0). The other is the experimental
model, treatment, or hypothesis 1 (h1). In most
settings, we expect this model to beat the baseline.

Their respective performance is tested against
the same test set. It does not matter if this is a
dedicated test set or resulting from a k-fold cross-
validation procedure. In any case, the test set (tar-
gets) must be the same for both models.

The h0 predictions, h1 predictions and targets
are the inputs for the Bootstrap instance.

4.2.2 Outputs

BooStSa’s outputs are directly printed to standard
out, and returned as a pandas DataFrame , that can
be directly used, for example, to export them to a
LaTex table.

However, when the Boostsa() object is instan-
tiated, it is possible to define which output to save
on disk. BooStSa can produce two kinds of out-
puts:

results.tsv It contains the experiments’ perfor-
mance and the (possible) significance levels
of the experimental against the control condi-
tions;

outcomes.json It contains targets and predic-
tions for all the experimental conditions.

Target and predictions are the same that
BooStSa takes as inputs. However, as de-
scribed in Section 4.4, it can be useful to
save them in JSON format if the test needs
to be rerun, for example, when adding new
experimental conditions to those that had al-
ready been considered. In these cases, feed-
ing BooStSa with outcomes.json allows us
to recreate the previous inputs’ configuration
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without needing to instantiate BooStSa again
from scratch.

These outputs can be created using the following
parameters:

save_results Type: bool ; default: True .
Boolean variable to determine whether to save
the performances and the tests’ results.

save_outcomes Type: bool ; default: True .
Boolean variable to determine whether to save
as json the input predictions and targets.

dir_out Type: str ; default: ” . String vari-
able that indicates the directory where to save
results.tsv and outcomes.json .

The box below shows an example:
1 boot = Bootstrap(save_outcomes=False,

dir_out=’my/favourite/directory/’)

4.3 Simple use-case

In the simplest use case, it is necessary to carry
out the significance test between the predictions of
two experiments. This can be done with the test

function, which accepts the following parameters:

targs Type: list , numpy.array or str .
They are the targets, or test set, that is the
benchmark to measure the h0 and h1 predic-
tions’ performance. BooStSa automatically
infers from the input shape if hard or soft la-
bels are provided, according to these cases:

• A simple list will be assumed to be
a list of integers, each corresponding to
hard classes’ indexes.

• A list of list s will be assumed to
contain in each sub-list, as a row in a
2D matrix, float numbers summing up to
one, which will be treated as soft labels.

• A 1D or 1-column numpy.array will
be considered as containing integers for
hard labels.

• A 2D numpy.array will be treated as
containing float numbers constituting a
soft label in each row.

• The str input will be processed as a
full path to a file, which will have to com-
ply with the following rules:

– A file with extension ’.txt’ has to con-
tain an integer in each row, represent-
ing hard classes’ indexes.

– A file with extension ’.csv’ has to
contain comma-separated values for
soft labels.

– A file with extension ’.tsv’ has to con-
tain tab-separated values for soft la-
bels.

– A file with extension ’.npy’ has to
contain a NumPy binary file.

h0_preds Type: list , numpy.array or str .
The h0 predictions, in the same formats of
targs .

h1_preds Type: list , numpy.array or str .
The h1 predictions, in the same formats as
above.

h0_name Type: str , default: h0 . Expression
to describe the h0 condition.

h1_name Type: str , default: h1 . Expression
to describe the h1 condition.

n_loops Type: int , default: 1000 . Number
of iterations for computing the bootstrap sam-
pling.

sample_size Type: float , default: .1 . Per-
centage of data points sampled from their
whole set. The admitted values range between
0.05 (5%) and 0.5 (50%).

targetclass Type: int , default: None . If
provided, it is interpreted as a label index, and
for hard labels BooStSa will provide perfor-
mance and significance levels with respect to
that class. The parameter has no effect with
soft labels.

verbose Type: bool , default: False . If true,
the experiments’ performance is printed on
the shell.

An example of test function use is shown in
figure 3. The significance levels are indicated by
∗∗ : p ≤ .01 and ∗ : p ≤ .05. Figure 4 shows an
example with soft labels as inputs. Note that, for
CE and JSD, the difference between the baseline
and experimental model is negative. In fact, they
are distance measures; therefore, lower is better in
their case.

131



1 boot.test(targs=’test_boot/hard/h0.0/targs.txt’, h0_preds=’test_boot/hard/h0.0/preds
.txt’, h1_preds=’test_boot/hard/h1.0/preds.txt’, h0_name=’baseline’, h1_name=’
experiment’, n_loops=1000, sample_size=.2, verbose=True)

1 data shape: (1000, 1)
2 sample size: 200
3 h0: h0 - h1: h1
4 targs count: [’class 0 freq 465 perc 46.50%’, ’class 1 freq 535 perc 53.50%’]
5 h0 preds count: [’class 0 freq 339 perc 33.90%’, ’class 1 freq 661 perc 66.10%’]
6 h1 preds count: [’class 0 freq 500 perc 50.00%’, ’class 1 freq 500 perc 50.00%’]
7 F-measure...... - h0: 0.6776 - h1: 0.7407 - diff: 0.0631
8 accuracy....... - h0: 0.6900 - h1: 0.7410 - diff: 0.0510
9 precision...... - h0: 0.6994 - h1: 0.7410 - diff: 0.0416

10 recall......... - h0: 0.6796 - h1: 0.7422 - diff: 0.0626
11 bootstrap: 100%|===========================| 1000/1000 [00:09<00:00, 100.40it/s]
12 count sample diff f1 is twice tot diff f1....... 15 / 1000 p < 0.015 *
13 count sample diff prec is twice tot diff prec..... 65 / 1000 p < 0.065
14 count sample diff rec is twice tot diff rec ..... 9 / 1000 p < 0.009 **
15 count sample diff acc is twice tot diff acc...... 38 / 1000 p < 0.038 *

Figure 3: Input and output of the test function.

1 data shape: (1000, 3)
2 sample size: 200
3 h0: h0 - h1: h1
4 targs distribution: [0.33241763 0.33790091 0.32968146]
5 h0_preds distribution: [0.33571912 0.33230295 0.33391209]
6 h1_preds distribution: [0.33337905 0.3336012 0.33301975]
7 Jensen-Shannon divergence: - h0: 0.2143 - h1: 0.1817 - diff: -0.0326
8 cross-entropy: - h0: 1.3515 - h1: 1.0886 - diff: -0.2629
9 entropy similarity: - h0: 0.9816 - h1: 0.9857 - diff: 0.0041

10 entropy correlation: - h0: 0.0064 - h1: 0.0529 - diff: 0.0465
11 bootstrap: 100%|===========================| 1000/1000 [00:05<00:00, 181.20it/s]
12 count sample diff jsd is twice tot diff jsd....... 0 / 1000 p < 0.0 **
13 count sample diff ce is twice tot diff ce........ 0 / 1000 p < 0.0 **
14 count sample diff sim is twice tot diff sim....... 7 / 1000 p < 0.007 **
15 count sample diff cor is twice tot diff cor....... 315 / 1000 p < 0.315

Figure 4: Output of the test function with soft labels.

1 boot = Bootstrap(dir_out=’my/favourite/dir/’)
2 boot.feed(h0=’h0’, exp_idx=’h0.0’, preds=h0_exp1_preds, targs=targs)
3 boot.feed(h0=’h0’, h1=’h1’, exp_idx=’h1.0’, preds=h1_exp1_preds, targs=targs)

1 next_boot = Bootstrap() # if not already instantiated
2 next_boot.loadjson(’my/favourite/dir/outcomes.json’)
3 next_boot.feed(h0=’h0’, exp_idx=’h0.1’, preds=h0_exp2_preds, targs=targs)
4 next_boot.feed(h0=’h0’, h1=’h1’, exp_idx=’h1.1’, preds=h1_exp2_preds, targs=targs)
5 next_boot.run(n_loops=1000, sample_size=.2)

Figure 5: feed , loadjson and run functions.

4.4 BooStSa in a pipeline

In most cases, the experimental conditions are com-
plex and imply the comparison between several
baselines and several different experimental mod-
els, and for all of them, several runs of experiments
can be planned. In those cases, BooStSa can be
included in the whole pipeline, collecting the exper-
iments’ outcomes while they are produced, storing
them and computing performance and significance
levels at the end of the whole procedure.

This is done with two functions, feed and
run . The first one collects BooStSa’s inputs while

they are produced by the experiments; the second
one computes performance and bootstrap sampling.
The feed functions feeds the outcomes.json

file and takes the following inputs:

h0 Type: str . This is a string that identifies a
control condition. It must be provided both
in the case of control experiments (h0) and
treatment experiments (h1s) because BooStSa
needs to know with which baseline the treat-
ment results have to be compared.

h1 Type: str ; default: None . This is a string
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that identifies a treatment condition. It must
be provided only in case of treatment experi-
ments (h1s).

exp_idx Type: str ; default: None . This string
(ideally, an index) identifies each unique ex-
periment within its experimental condition,
defined by h0 or h1 . This is useful in case
of multiple experiments for the same experi-
mental condition.

targs , preds Type: list , numpy.array or
str ; default: None . Equivalent to the
targs , h0_preds , and h1_preds parame-

ters in test .

idxs Type: list , numpy.array or str ; de-
fault: None . Treated like targs and
preds , idxs stores the indexes of the data

points, that might have been shuffled during
the experiments. The data point order does
not affect the bootstrap sampling, but storing
the shuffled indexes allows us to link the pre-
dictions to the original data points later on.

epochs Type: int . Lastly, epoch can store the
number of training epochs run by the experi-
ment.

The flexibility of feed allows storing together
several control conditions and the relatives treat-
ments for comparison. Also, the process can be
stopped and resumed: the function loadjson al-
lows to load a previously saved outcomes.json

file and to keep on feeding it. Once all the inputs are
provided, the run function computes performance
and bootstrap sampling. The run parameters are:

n_loops Type: int ; default: 1000 . The itera-
tions’ number of bootstrap sampling.

sample_size Type: float ; default: .1 . The
sub-sample size, expressed as percent part of
the test set. The value is constrained between
.05 and .5 (inclusive).

targetclass Type: int , default: None . Equal
to the same parameter in test .

verbose Type: bool , default: False . If true,
the experiments’ performance is printed on
the shell.

Figure 5 shows the whole process.

5 Limitations
Besides the constraints discussed in Section 2.3,
aimed to prevent the significance test misuse,
BooStSa assumes that h0 predictions, h1 predic-
tions, and targets are available. When compar-
ing with results from previous literature, this as-
sumption might not hold: in these cases, to apply
BooStSa it is necessary to find or reproduce the h0
outcomes.

6 Conclusion
We present BooStSa, a Python package to allow
NLP practitioners to efficiently compute signifi-
cance values for hard and soft labels using a safe
set of hyper-parameters.

We discuss how the test hyper-parameters can af-
fect the outcome, introducing safety constraints for
the test use and suggesting, as a good practice, to
report the hyper-parameters with the experiments’
results.

While the metrics for hard labels consolidated
in literature, those for soft labels that measure the
divergence between probability distributions are
not yet widely used, and the consensus about their
interpretation is still on the way to be reached. We
follow the extensive survey of Uma et al. (2021),
which takes into consideration the most recent
trends in NLP.

We also agree with Basile et al. (2021), who
point out that incorporating into the models the
information about the intrinsic entities’ ambiguity,
expressed as inter-coders disagreement and repre-
sented as a probability distribution over different
classes, is a necessary step to create models that
carry out NLP task with human-like performance.
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7 Ethical Considerations
Psychology has seen a growing scandal around
p-hacking, i.e., the generation of enough experi-
mental variations to produce a significant outcome
in one of them. This risk is low in NLP, as signif-
icance alone is not sufficient for publication: typ-
ically, proof of predictive performance on ideally
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several test sets is necessary instead. Reporting
significance in NLP is therefore an additional ro-
bustness measure, indicating the model’s general-
izability. While users might abuse the capabilities
of BooStSa to make significant results more likely,
this would require deliberate tampering (and even
then would not guarantee significance). If used
as intended, however, BooStSa should reduce un-
intended variance via researcher degrees of free-
dom and make results more comparable and repro-
ducible.
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Abstract

The COVID-19 pandemic has received exten-
sive media coverage, with a vast variety of
claims made about different aspects of the
virus. In order to track these claims, we present
COVID-19 Claim Radar1, a system that auto-
matically extracts claims relating to COVID-19
in news articles. We provide a comprehensive
structured view of such claims, with rich at-
tributes (such as claimers and their affiliations)
and associated knowledge elements (such as
events, relations and entities). Further, we use
this knowledge to identify inter-claim connec-
tions such as equivalent, supporting, or refut-
ing relations, with shared structural evidence
like claimers, similar centroid events and argu-
ments. In order to consolidate claim structures
at the corpus-level, we leverage Wikidata2 as
the hub to merge coreferential knowledge el-
ements, and apply machine translation to ag-
gregate claims from news articles in multiple
languages. The system provides users with a
comprehensive exposure to COVID-19 related
claims, their associated knowledge elements,
and related connections to other claims. The
system is publicly available on GitHub3 and
DockerHub4, with complete documentation5.

1 Introduction

Claims present in daily news are unfiltered and po-
tentially of great value, but can also have negative
effects when misinformation is widespread. The
COVID-19 pandemic is a crucial example of when
false claims can be particularly harmful, with the
torrent of misinformation impacting public percep-
tion. For example, a claim such as “Vaccines are
DNA changers” is likely to discourage vaccinations.

1Live Demo: http://18.221.187.153/
2https://www.wikidata.org/
3GitHub: https://github.com/uiucnlp/

covid-claim-radar
4DockerHub: https://hub.docker.com/

repository/docker/blendernlp/covid-claim-radar
5Video: http://blender.cs.illinois.edu/aida/

covid_claim_radar.mp4

Further, a study by KFF6 COVID-19 Vaccine Moni-
tor project found that 78% of U.S. adults agree with
one of eight false claims regarding the pandemic.

In order to distinguish misleading information,
a fundamental step is to first identify claims and
discover their supporting or refuting relations. Au-
tomatic claim detection (Palau and Moens, 2009;
Eger et al., 2017; Stab et al., 2018; Li et al., 2019)
aims to mine arguments regarding a topic of consid-
eration and has been applied to the COVID-19 sce-
nario (Saakyan et al., 2021; Liu et al., 2020; Reddy
et al., 2021). However, existing approaches ignore
rich claim structures, or fail to associate claims
with structured knowledge elements, thereby being
incapable of supporting a more structured analy-
sis. Further, they do not support real-time claim
discovery, a feature required to process the rapidly
updating COVID-19 pandemic information.

In this paper, we release a claim detection system
that aims to automatically mine rich claim struc-
tures from news. Different from traditional claim
detection systems that discover claims in isolation,
we introduce a structured view for claims that con-
sists of:

(1) Structured Claim Attributes including
claim TOPIC, SUBTOPIC, TEMPLATE, CLAIMOB-
JECT, CLAIMER, AFFILIATION, LOCATION, and
TIME. Our extraction is performed at the corpus-
level with entity linking and coreference resolution,
which allows for the construction of such compre-
hensive structures. For example, Table 1 shows a
claim related to the topic Wearing Masks, where
the claimer’s AFFILIATION can not be directly ex-
tracted from the local sentence, but it can be derived
from the “General Affliation” of the CLAIMER that
is extracted from the corpus.

(2) Associated Knowledge Elements namely the
entities, relations and events associated with the

6Kaiser Family Foundation, an American non-profit orga-
nization.
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CLAIMTEXT Cloth face coverings are most likely to re-
duce the spread of COVID-19 when they
are widely used by people in public settings

TOPIC Wearing Masks

TEMPLATE Wearing masks is necessary in location [X]

CLAIMOBJECT public settings
[Identity Qnode] Q294440 (public space)
[Type Qnode] Q7551384 (social space)

CLAIMER Reed
[Identity Qnode] Q30105757 (Carrie Reed)
[Type Qnode] Q1650915 (researcher)

AFFILIATION Centers for Disease Control and Prevention
[Identity Qnode] Q583725 (CDC)
[Type Qnode] Q20857065 (United States
federal agency)

LOCATION None

TIME

EarliestStart: 2020-01-01
LatestStart: 2020-07-27
EarliestEnd: 2020-07-27
LatestEnd: None

STANCE affirm

ASSOCIATED
KNOWLEDGE

Cloth face coverings [COM.EQUIPMENT]

are most likely to reduce
[CONTROL.IMPEDEINTERFERE] the
spread [DISASTER.DISEASEOUTBREAK]

of COVID-19 [MHI] when they are
widely used [SOCIALBEHAVIOR.WEAR]
by people in public settings [LOC]

SUPPORTING
CLAIMS

33,000 deaths could be avoided by October
1 if 95 percent of people wore masks in
public
masks can prevent transmission in high-risk
scenarios

REFUTING
CLAIMS

face masks can be harmful, because they
force the wearer to breathe in too much
carbon dioxide
with an N95 mask, some people have an
elevated blood carbon dioxide level, and
some also reduced oxygen level
Masks can cause carbon dioxide poisoning

Table 1: An example of claim structure.

claims as claim evidence. For example, reduce is
identified as a CONTROL.IMPEDEINTERFERE event
with COVID-19 as TARGET and cloth face cover-
ings as INSTRUMENT. This representation provides
a structured perspective of thr claim semantics and
enables discovery of semantic relatedness across
multiple claims via knowledge elements.

(3) Inter-Claim Connections for identifying
supporting, refuting and equivalent claims, with
complex structured connections via claim attributes

and knowledge elements. For example, Table 1
shows the supporting claims that share the mask
entity and CONTROL.IMPEDEINTERFERE event, as
well as refuting claims about masks having nega-
tive effects of elevating blood carbon dioxide level.

(4) Wikidata Linking for linking claim at-
tributes (including CLAIMER, CLAIMOBJECT, AF-
FILIATION and LOCATION) and knowledge ele-
ments (entities, events and relations) to Wikidata,
as shown in Table 1. It enables corpus-level knowl-
edge consolidation and provides external refer-
ences for users. Note that we use the terms “Qnode”
and “Wikidata item” interchangeably.

(5) Structured Search Queries to support multi-
dimensional search and analysis. Figure 1a shows
our multi-dimensional search interface for search-
ing multiple claim attributes jointly, as well as their
associated knowledge elements. Each search di-
mension also provides some frequent candidates
as references, such as Centers for Disease Control
and Prevention for CLAIMER.

COVID-19 Claim Radar automatically pro-
vides users with a comprehensive and structured
overview about COVID-19 related claims, allow-
ing an accurate understanding of rapidly emerging
claims, their importance, and their interconnections.
The structured view enables seamless search with
complex queries and discovery of alternative claims
over the rich claim structures. The system is partic-
ularly useful for tracking current claims, providing
alerts, and predicting possible changes, as well as
topics related to the ongoing incidents.

2 Overview

The architecture of our structured claim extrac-
tion system is illustrated in Figure 2. The sys-
tem pipeline consists of different components with
two main modules, namely, Claim Extraction (CE)
(Section 3) and Knoweldge Extraction (KE) (Sec-
tion 4). Each module creates a separate knowledge
base, using the document corpus as input. The
corpus-level knowledge base is then associated to
claims according to the justifications, as well as
coreferential entities and events. Inter-claim rela-
tions such as equivalent, supporting or refuting are
then identified based on their structural connections
(Section 5).
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(a) Home page with a multi-dimensional search interface.

(b) List of claims returned corresponding to a search for
claimer “Center for Disease Control and Prevention.”

(c) Structured claim view with associated knowledge elements
and equivalent claims shown. Hovering over a knowledge
element shows its corresponding arguments.

Figure 1: Screenshots of the demo corresponding to (a)
main page, (b) list of claims returned from search, and
(c) the structure claim view.

3 Claim Extraction

3.1 Core Claim Extraction

We employ a zero-shot claim detection framework
that identifies claims relating to COVID-19 in addi-
tion to background attributes such as the CLAIMER

and CLAIMOBJECT. Specifically, the system con-
sists of a claim-spotting model to identify sentences
that contain claims, with additional modules for fil-
tering topics, and detecting the claimer and claim
objects.

For the claim-spotting model, we use Claim-
Buster7 (Hassan et al., 2017) to identify sentences
which contain claims. Next, we leverage an ex-
tractive Question Answering (QA) system (Alberti
et al., 2019) in a zero-shot setting for topic filter-
ing, claimer detection and claim object detection.
We use a QA model that is trained on SQuAD
2.0 (Rajpurkar et al., 2018) and Natural Questions
(Kwiatkowski et al., 2019).

For each topic, we have two topic filtering ap-
proaches: (1) hand-crafting questions correspond-
ing to the topic, and (2) retrieving topic-related
questions from Google Search API to handle un-
seen topics 8. Then, we use the claim sentence as
context and pass these questions as input to the QA
model. The answer score for each question is used
as the corresponding topic score and a threshold is
set on the highest topic score in order to select the
claim. Table 2 shows the examples of individual
questions used to select claims relating to specific
topics about COVID-19.

For claim object detection, we use the answer
span for the question corresponding to the claim
topic as the CLAIMOBJECT. For identifying the
claim span, we use the claim boundary detection
service released as part of the Project Debater (Bar-
Haim et al., 2021). Next, we leverage the same QA
model for claimer detection, by using the answer
corresponding the question “Who said that <claim
span>?", with the entire news article as context.

3.2 Knowledge-Enhanced Claim Extraction

To identify the knowledge elements associated to
the extracted claims, we leverage entities, relations
and events that are extracted from the Knowledge
Extraction module (detailed in Section 4). We ex-
tract knowledge elements within each claim span

7https://idir.uta.edu/claimbuster/api/
8We employ the topic as the query, the API we used is

https://serpapi.com, and we select top two questions for
each topic.
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Figure 2: Architecture of the structured claim and knowledge extraction system.

Topic Question

Tranmission of COVID-19 What transmits the virus?
Contraction of COVID-19 Who can contract the virus?
Protection from COVID-19 What can protect from the virus?
Origin of COVID-19 What animal is associated with

the origin of the virus?
Origin of COVID-19 Where did the first case of the

virus occurr?
Wearing Masks What are the harmful effects of

wearing masks?
Wearing Masks Where is it necessary to wear

masks to prevent the virus?
Cure for COVID-19 What can cure the virus?

Table 2: Examples of questions corresponding to indi-
vidual topics about COVID-19.

and within the sentences before and after the claim
span. To provide a comprehensive understanding
of claim attributes such as the AFFILIATION of the
claimer, we extract entity-entity relations of types
“General Affiliation” and “Organization Affiliation”
from the entire corpus and perform corpus-level
entity conference resolution. We also fill in each
claim’s LOCATION and TIME according to the spa-
tial and temporal attributes of the events mentioned
in the claim span.

4 Knowledge Extraction

4.1 Joint Information Extraction
We first perform joint extraction of events of 144
types, entities of 7 types and relations of 38 types
using the state-of-the-art supervised Information
Extraction system (Lin et al., 2020) 9. To extract

9We use the extended version (Li et al., 2020) that sup-
ports the most comprehensive DARPA AIDA ontology. The
ontology is attached to the Appendix.

event types and entity types newly emerging in
the COVID-19 pandemic scenario, we employ a
keyword-based event detection system. Specifi-
cally, we manually collected a list of keywords for
each new event type, and compute keyword rep-
resentations by averaging the contextualized rep-
resentations from BERT (Devlin et al., 2019) of
keyword occurrences in an unlabeled pandemic-
related corpus. We provide 4.9 keywords for each
type in average. Then we aggregate keyword repre-
sentations for the same event type to get the event
type representation. For event trigger detection,
we first compute BERT representations of all the
tokens in a sentence, and consider a token as an
event trigger if its cosine similarity with an event
type representation is larger than a threshold.

4.2 WikiData Qnode Linking
Wikidata is the most extensive crowdsourced
knowledge graph. As such, it allows us to tie
claimers, claim objects, and knowledge elements
(e.g., entities) together to consolidate claim struc-
tures at the corpus level.

The massive number of entities in Wikidata (i.e.,
QNodes) makes entity linking challenging. To ef-
fectively narrow down the search space, we pro-
pose a candidate retrieval paradigm based on entity
profiling. Wikidata entities and their textual fields
are first indexed into a Elasticsearch. During infer-
ence, given a mention and its context, we follow
EPGEL (Lai et al., 2022) using a trained sequence-
to-sequence (seq2seq) model to generate the profile
of the target entity, which consists of a generated
title and a generated description. We use the pro-
file to query the indexed search engine to retrieve
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candidate entities. We use Wikipedia anchor texts
and their corresponding Wikidata entities as the
supervision signals for training the framework. In
addition to instance-level linking, we also perform
Qnode linking on the fine-grained entity types in
our ontology.

4.3 Coreference Resolution

We conduct entity coreference resolution within
each document (Lai et al., 2021b) by employing
SpanBERT (large) (Joshi et al., 2020) as the base
Transformer encoder and train the entire neural
model on ACE 2005 (Walker et al., 2006), NIST
TAC-KBP EDL 201610 (Ji et al., 2015), EDL
201711 (Ji et al., 2017), and OntoNotes (English)
(Pradhan et al., 2012). After that, we utilize the
Wikidata entity linking results to refine the predic-
tions of the neural model. We prevent two entity
mentions from being directly merged if they are
linked to different entities (i.e., Qnodes) with high
confidence. To construct a corpus-level knowledge
graph, all entities that are linked to the same Qnode
will be merged into the same cluster (even if the
entities are from different documents).

Our event coreference resolution is performed
within each document and adopts a similar method
as entity coreference resolution, while incorporat-
ing additional symbolic features such as the event
type information (Lai et al., 2021a). We use the
multilingual XLM-RoBERTa (XLM-R) (Conneau
et al., 2020) as the base Transformer encoder. We
train the model on ACE 2005 (Walker et al., 2006)
and ERE (Song et al., 2015a).

5 Claim-Claim Relation Extraction

We consolidate the claims from the entire corpus
according to the Wikidata Qnode linking results
and claim attributes.

5.1 Stance Classification

We identify the stance from the perspective of each
claimer, namely whether the claimer affirms or re-
futes a claim. This is different from prior stance
detection tasks (Hardalov et al., 2021), which de-
fine stance with respect to target-context pairs, such
as claim-evidence or headline-article.

In this setting, we follow Reddy et al. (2021) to
use pre-trained Natural Language Inference (NLI)

10LDC2017E03
11LDC2017E52

models for stance detection. Specifically, we for-
mulate hypotheses for both of the affirm and refute
labels, using the claim’s corresponding topic. Then,
the claim sentence is used as the premise as input
to the NLI model, with the hypothesis correspond-
ing to higher entailment score considered as the
stance. We use a Bart-large (Lewis et al., 2020)
model trained on MultiNLI (Williams et al., 2018)
as our pre-trained NLI model.

5.2 Equivalent Claims
We use the structured claim information to
identify claims that are equivalent. Specifi-
cally, we consider claims that share the same
SUBTOPIC, CLAIMOBJECT and STANCE as equiva-
lent. For CLAIMOBJECT, we use the corresponding
Wikipedia QNode to account for diversity in the
object mentions.

5.3 Supporting and Refuting Claims
We also identify claims that are supporting or re-
futing each other. We formulate this as an NLI
task where the claims are corresponding premise-
hypthosis pairs. We use high entailment or con-
tradiction scores as an indication of whether two
claims are supporting or refuting each other respec-
tively. We leverage the same pre-trained NLI model
as used in Section 5.1.

6 Experiment

6.1 Dataset
The system can take any set of news articles to
extract claims and perform visualization. The live
demo 12 supports two functions: (1) Real-time
Extraction: Users are able to copy a piece of news
content and extract claims; (2) Periodical Update:
To track claims in this rapidly evolving pandemic,
we periodically collect newly emerging COVID-19
related news articles from Google News 13, and
perform claim extraction and knowledge extraction
to update the COVID-19 Claim Radar.

6.2 System Performance
The performance of each component is shown
in Table 4. We evaluate the end-to-end perfor-
mance of our system on 1,139 COVID-19 news
articles released by the Linguistic Data Consortium
(LDC2021E11). We translated the Spanish and
Russian news into English and perform end-to-end

12http://18.221.187.153/
13https://news.google.com/rss/search?q=xx
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#doc #claim #claimer #affiliation #location #startearliest #startlatest #endearliest #endlatest #entity #event

English 484 905 581 133 166 714 693 661 336 11,302 1,718
Spanish 385 427 285 94 76 324 318 309 114 5,812 722
Russian 234 566 362 73 135 466 457 442 237 6,751 1,179

Table 3: Results of structured claim extraction.

extraction on the entire corpus. More analysis on
the extraction results are detailed in the Appendix.

Component Benchmark Metric Score

Claim
Extraction

Claim NewsClaims F1 36.0%
Claim Object NewsClaims F1 57.0%

Claimer NewsClaims F1 50.1%
Stance NewsClaims Acc. 87.5%

Knowledge
Extraction

Entity ACE F1 89.6%
Relation ACE F1 58.6%

Event Trigger ACE F1 72.8%
Argument ACE F1 54.8%

Wikidata Qnode Linking TACKBP-2010 Acc. 90.9%

Coreference Entity OntoNotes CoNLL 92.4%
Event ACE CoNLL 84.8%

Table 4: Performance of each component. The bench-
mark references are: NewsClaims (Reddy et al., 2021),
ACE (Walker et al., 2006), ERE (Song et al., 2015b),
TACKBP-2010 (Ji et al., 2010), OntoNotes (Pradhan
et al., 2012).

6.3 Case Study

In the context of comprehensive claim structures,
our system can perform explainable and reliable
predictions in terms of supporting and refuting
claims, by exploiting the shared or related attributes
and stances. For example, for the claim “masks
should be carefully taken off after getting inside
a car or room”, we are able to discover its refut-
ing claim as “wear them in your car, your bed, the
shower, wear three of them if you want just leave
it to the rest of us to decide when it is necessary”,
since they share the entities mask and car, but their
STANCE is conflicting, i.e., refute and affirm re-
spectively.

In addition, we compare the claims extracted
from multiple languages, which can be refuting.
For example, regarding the TOPIC about “transmit-
ting the virus”, the claim extracted from a Span-
ish document “...small mammals might have trans-
mitted coronavirus to a worker...” (STANCE = af-
firm) is refuting with the claim extracted from Rus-
sian document “ domestic animals cannot be in-

fected with COVID-19 coronavirus and spread it”
(STANCE = refute).

6.4 Discussions

Generality. Our claim extraction system can
be easily adapted to newly emerging topics by re-
trieving topic-related questions from the Google
Search API, as illustrated in 3.1. It is capable of
extracting claims and knowledge elements of other
scenarios, by providing in-domain questions in Sec-
tion 3.1 and several keywords for unseen types in
Section 4.1.
Downstream Applications. Our system provides
a way to transform the massive unstructured news
to structured claims with knowledge elements. The
structured claim attributes enable users to consoli-
date claims from multiple sources and to explore
the connections between claims, such as shared
claimers, related claimer affiliations, etc. It is then
can support to exploit the constructed claim base
for various downstream tasks, such as question
answering, misinformation detection, report gener-
ation, etc.

7 Related Work

Claim detection is a central task in argumentation
mining (Palau and Moens, 2009; Goudas et al.,
2014; Sardianos et al., 2015; Eger et al., 2017;
Stab et al., 2018). It aims to identify argument
components and their relations, including context-
denpendent methods (Levy et al., 2014) with topics
as input, and context-independent methods (Lippi
and Torroni, 2015) without predefined topics. Levy
et al. (2017) proposes corpus-wide claim detection
to extend the traditional document-level setting. Re-
lated work also involves claimer dectection (Pareti,
2016; Elson and McKeown, 2010) and stance detec-
tion (Hanselowski et al., 2019; Allaway and McKe-
own, 2020).

COVID-19 related claim detection and argument
mining are generally still limited. The majority of
other argument mining approaches for the biomed-
ical domain focus on research literature (Li et al.,
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2019; Saakyan et al., 2021; Liu et al., 2020). The
work by Reddy et al. (2021) is one of the few ex-
ceptions that tackle this challenge and propose a
pipeline to extract health-related claims with claim
attributes from news articles. However, it does not
attempt associating claims and their attributes with
structured knowledge elements. To the best of our
knowledge, detecting structured COVID-19 claims
associated with structured knowledge elements has
not been approached yet. Our system leverages the
state-of-the-art information extraction and Wiki-
data entity linking techniques to dynamically con-
struct a COVID-19 claim knowledge base.

8 Conclusions and Future Work

We present our COVID-19 Claim Radar system,
to automatically extract claims in real time from
rapidly updating information on the COVID-19
pandemic. We provide users with an in-depth struc-
tured view of claims, along with associated knowl-
edge elements. Our system enables exploring vari-
ous inter-claim connections, including supporting
and refuting relations, shared claimers and claim
objects, along with related events and entities. In
future work, we plan to validate claims from multi-
ple modalities, languages, and sources, as well as
support information surgery to correct false claims
automatically. In addition, we aim to track claims
so as to predict changes in perspectives of claimers
and facilitate generating alerts for such changes.

Ethical Considerations

Usage Requirements

COVID-19 Claim Radar provides investigative
leads rather than final results, so it should not be
used as direct conclusions or be applied to any
human subjects directly. Research involving hu-
man subjects should first be approved by the stake-
holder’s IRB (Institutional Review Board) who will
ensure the safety of the studies.

Required workflow Our system is designed to
facilitate the understanding of rapidly updating and
expanding news articles regarding COVID-19 pan-
demic, which is difficult for human to keep track of
newly emerging claims and to discern false claims
from the true ones. Our claim extraction tool (and
all claim discovery tools for biomedical applica-
tions) is not intended to be used for direct appli-
cations involving decisions or human subjects. In-
stead, our tool aims to highlight structures of claims

from a large amount of news text data, which would
be too time-consuming for humans to digest. As a
result, the tool would be useful to identify claims
and analyze the inter-connections between claims.
It allows users to narrow down concerned claims
from the claimers or affiliations, and then followed
by a careful evidence checking to validate claims
before making further decisions. Our system does
not perform claim verification, which we leave as
future work. Failure to follow this workflow, and
use of the system without the required human vali-
dation, could lead to undesired experimental design
wasting time and resources.

Evidence checking We provide evidence in the
form of structured output in the surrounding con-
texts with confidence values, as well as the original
news article and raw text content as justification. In
addition, we provide Wikidata as external knowl-
edge for the user’s reference. In order to mini-
mize potential harm caused by extraction errors,
consumers of the extracted claims and knowledge
elements should double-check the source informa-
tion and verify the accuracy of the discovered leads
prior to undertaking expensive or time-consuming
experimental studies.

Limitations of System Performance
COVID-19 Claim Radar is capable of converting a
large number of news articles into structured claims.
However, none of our extraction components is per-
fect, as reported in the experiments. However, as
we described in the workflow, the output of our sys-
tem is intended to be interpreted by humans. With-
out human validation, incorporating the system out-
put into a decision-making application could result
in undesirable results.

Limitations of Data Collection
The system output might cause harm if it is used
in a manner that magnifies the errors or bias in its
training data or source input data.

Bias in training and development data The per-
formance of our system components as reported is
based on the specific benchmark datasets, which
could be affected by such data biases. Thus
questions concerning generalizability and fairness
should be carefully considered. In our paper, most
components rely on weak distant supervision such
as external knowledge base Wikidata or manually
selected keywords. In order to ensure proper appli-
cation, we recommend: ethical considerations are
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expected to be included in every step of the system
design, the system ensures high transparency and
interpretability of data, algorithms, models, and
functionalities.

Bias in source data Proper use of the technol-
ogy requires that input documents are legally and
ethically obtained. Our goal is to automatically
process unstructured text from diverse sources to
obtain structured claims, and highlight the com-
plex connections across claims to better identify
refuting and supporting claims. The input should
not disclose personally identifiable health informa-
tion, and is expected to have countermeasures for
protecting vulnerable groups.
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Abstract

We introduce TS-ANNO, an open-source web
application for manual creation and for eval-
uation of parallel corpora for text simplifica-
tion. TS-ANNO can be used for i) sentence–
wise alignment, ii) rating alignment pairs (e.g.,
w.r.t. grammaticality, meaning preservation, ...),
iii) annotating alignment pairs w.r.t. simplifica-
tion transformations (e.g., lexical substitution,
sentence splitting, ...), and iv) manual simplifi-
cation of complex documents. For evaluation,
TS-ANNO calculates inter-annotator agreement
of alignments i) and annotations ii).

1 Introduction

A large number of texts are difficult to understand
for many people, e.g., people with low literacy
skills, non-native speakers, or people with cog-
nitive disabilities (Alva-Manchego et al., 2020b).
Text simplification (TS) aims to make complex
texts more accessible by editing their wording
and syntax, while preserving the original mean-
ing (Alva-Manchego et al., 2020b).

In automatic TS, parallel corpora that align sen-
tences from the original text with corresponding
professionally simplified sentences are precious
resources for training and evaluating TS systems.
Currently, however, high-quality corpora of this
type are rare and often of comparably small size
(e.g., Zero Hora (Caseli et al., 2009) or Terence
& Teacher (Brunato et al., 2015)). Therefore, of-
ten resources that were not designed for TS in the
first place are used to train TS systems (e.g., Sim-
ple Wikipedia texts (Coster and Kauchak, 2011;
Hwang et al., 2015)) (Štajner, 2021). As text sim-
plification is often performed on sentence-level,
two further problems of TS corpora arise: missing
sentence-level alignment (e.g., see Newsela (Xu
et al., 2015)) or error-prone automatic sentence
alignment (e.g., see PWKP (Zhu et al., 2010)) (Šta-
jner, 2021).

Furthermore, TS corpora are provided, if at all,
with the alignment, e.g., WikiLarge (Zhang and La-
pata, 2017) or Wiki-Auto (Jiang et al., 2020). Only
a few corpora contain information about the actual
types of simplification (simplification transforma-
tions, respective grammaticality, lexical complexity
etc. of the aligned sentences, etc.) (e.g., see Por-
Simple Corpus Caseli et al. (2009), SimpleSEW
corpus Amancio and Specia (2014) or Terence &
Teacher corpus Brunato et al. (2015)). Collecting
such data is difficult but could be useful to analyze
the advantages and limitations of TS systems (Alva-
Manchego et al., 2020b).

To facilitate the creation of manually annotated
high-quality TS corpora with n:m alignments of
full documents, we developed TS-ANNO, an open-
source, language-independent, all-in-one web ap-
plication. The web application supports:

• web scraping of parallel websites and local
files upload,

• n:m sentence-wise manual alignment,

• sentence-wise rating of grammaticality, sim-
plicity, coherence and ambiguity,

• pair-wise rating of meaning preservation, in-
formation gain, overall simplicity, structural
simplicity and lexical simplicity,

• pair-wise annotation of (fine-grained) simplifi-
cation transformations on word-level, phrase-
level, sentence-level and paragraph-level, and

• evaluation of the data collected.
The main functionalities of the annotation tool

are illustrated in Figure 1. A demonstration of
the tool and a demo video can be found here
https://ts-anno.phil.hhu.de/.1 The
source code is also available to create an own copy
of the annotation tool.2

1Register yourself to annotate on a test basis or log in
as test-User (password: TS_anno22) to test evaluations and
downloads.

2https://github.com/rstodden/TS_annotation_tool
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Figure 1: Visualization of TS-ANNO’s main function-
alities: i) build & upload, ii) annotation, iii) evaluation,
and iv) export. The numbered lists describe consecutive
steps, whereas the lettered lists describe alternatives.

In the remainder of the paper, we elaborate tech-
nical details and functionalities of TS-ANNO and
exemplify its usage.

2 TS-ANNO: Preparing the data

This section introduces implementation details,
user administration, data uploading and pre-
processing options of TS-ANNO.

2.1 System Architecture

TS-ANNO is an open-source web-based applica-
tion implemented in Python (Version 3.8)3 using
the Django web framework (Version 4)4 and Post-
greSQL5 for the underlying database structure. NG-
INX6 is used to configure the server of TS-ANNO.
The responsive interface of the application is de-
signed with Bootstrap (Version 4.5)7. Currently, all
interface instructions are in English, but they can
also be translated to other languages if required.
For each annotation step, the time is measured
to identify more or less difficult corpora or do-
mains. To further develop the tool, contributions
by the community are welcome by participation on
GitHub or by using the changelog function of the
annotation tool itself.

3https://www.python.org/downloads/
4https://www.djangoproject.com/
5https://www.postgresql.org/
6https://www.nginx.com/
7https://getbootstrap.com/

2.2 Administration + User Management

Django comes by default with an administrator in-
terface. In our case, it is helpful for the control
of corpora, users and annotations. In addition to
the basic user information of Django, upon reg-
istration, users are asked for some optional demo-
graphic characteristics, such as native language and
language level of the language to annotate. This
information can help to better understand the users’
ratings, especially regarding simplicity, which has
been shown to be subjective (Štajner, 2018).

2.3 Uploading and Metadata

TS-ANNO supports different approaches for data
insertion. Either local data can be uploaded or
online data can be automatically crawled and read
to the database.

Local Upload. TS-ANNO permits the upload of
parallel documents either as plain texts, paragraph
segmented texts, or pre-aligned texts.8 If no sim-
ple version of a document exists, the “to_simplify”
option can be ticked to add the data for the man-
ual simplification part of the tool. Furthermore,
before uploading, additional metadata regarding
copyright, domain and language levels of the doc-
uments are requested to incorporate practices for
responsible data (re-)use (Rogers et al., 2021) from
the start.

The functionality of uploading pre-aligned data
is illustrated in the online demo with the man-
ual simplifications of the ASSET corpus (Alva-
Manchego et al., 2020a). This corpus is selected
because a further analysis regarding the rewriting
transformations applied in combination with fine-
grained manual ratings of the simplification seems
to be a relevant supplement to ASSET.

Web Crawling. More and more manually and
professionally simplified texts are available on web-
sites. Among others, it might be due to the rec-
ommendation of the European standard for digital
accessibility (European Telecommunications Stan-
dards Institute, 2021) to provide easy-to-read texts
on (at least public authority) websites. Mostly these
texts are aligned with parallel versions in standard
language.

8TS-ANNO does not support automatic sentence alignment,
but it can handle already aligned sentences. Before upload-
ing, the texts can be aligned manually or with any automatic
alignment algorithm (e.g., MASSalign (Paetzold et al., 2017),
CATS (Štajner et al., 2018), or a neural CRF model (Jiang
et al., 2020)).
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Battisti et al. (2020) have shown that TS can
benefit from these websites by developing a web
crawler to download their texts, images and typog-
raphy. In order to also access the texts of the paral-
lel web pages, TS-ANNO integrates a web crawler
(build with the Python library Beautiful Soup9) that
enables the extraction and alignment of these valu-
able documents. The web crawler automatically
aligns complex documents with parallel, simple
documents and recognizes paragraph endings.10

Currently, the system contains example web
crawlers for the websites of “Inclusion Europe”11

and “Alumniportal Deutschland”12. On the web-
site of Alumniportal Deutschland, openly licensed,
parallel German documents (original: CEFR level
B1-B2, simple A1-A2) are published, which ex-
emplify the annotation of everyday documents in
TS-ANNO. The website of Inclusion Europe in-
cludes parallel complex-simple documents in four
languages (German, English, Spanish and French),
which make possible to create a multi-lingual sim-
plification corpus with TS-ANNO.

2.4 Pre-processing

During upload, no matter whether local or online,
the data will be pre-processed with a language-
specific NLP pipeline of SpaCy (Version 3) (Hon-
nibal et al., 2020).13

Possible pre-processing problems, e.g., segmen-
tation errors or HTML left-over of crawling, can
be reported per sentence in the interface.

3 TS-ANNO: Annotation

The main functionality of TS-ANNO is the annota-
tion, which comprises alignment, transformation
annotation, rating and manual simplification. Over-
all, the annotation is structured by the corpora to an-
notate. Each corpus contains at least one document
pair, which in turn consists of a complex document
and a parallel simplified document (except for man-
ual simplification). For detailed instructions on
how to annotate and how to use the annotation tool,
we refer to the annotation guidelines.14

9https://www.crummy.com/software/BeautifulSoup/
10If the web crawler is used, please pay attention to the

copyright of the texts of the websites.
11https://www.inclusion-europe.eu/
12https://www.alumniportal-deutschland.org/
13SpaCy currently supports 18 languages, 44 are planned

and a multi-language model exists for other languages.
14https://github.com/rstodden/TS_annotation_tool/tree/-

master/annotation_schema

The online demo contains pre-aligned senentece
pairs of ASSET (Alva-Manchego et al., 2020a) and
a few annotated document pairs of Alumniportal to
illustrate the functionalities of TS-ANNO.

3.1 Aligning Sentences

Alignment is the process of finding and group-
ing text elements, such as documents, paragraphs
or sentences, of at least two parallel or compa-
rable texts with a quite similar meaning. In TS-
ANNO, in any case, complex and simple documents
are aligned when uploading the data (see subsec-
tion 2.3). Depending on the input data, sentence
pairs can also be already aligned during the up-
load. The annotation tool further supports the man-
ual alignment (or alignment correction) of para-
graphs and sentences. Each complex and simple
sentence co-occurs with a button that highlights the
most similar sentence(s) in the corresponding text
(based on SpaCy’s word embeddings) to facilitate
sentence alignment.

In TS, sentence alignment pairs mostly contain
only one sentence of each document (1:1, e.g.,
copying or rephrasing the text). However they can
also contain only one sentence of one document
(1:0 or 0:1, e.g., sentence omitting for removing
unimportant text or sentence insertion for explana-
tions), several sentences in one document (1:n or
n:1, e.g., splitting a sentence or merging sentences)
or several sentences in both documents (n:m, e.g.,
sentence fusion) (Alva-Manchego et al., 2020b).
As illustrated in Figure 2, any number of sentences
of both documents can be selected, therefore, TS-
ANNO supports all of the named (n:m) alignments.

All sentences which are identical in the complex
and simplified document are automatically aligned
and disabled in the front-end to speed-up manual
alignment. Furthermore, after the manual align-
ment of a document, all not aligned simple and
complex sentences are automatically aligned as in-
sertion or omitting.

Currently, for most existing corpora, the align-
ments are automatically generated. However, TS-
ANNO does not include alignment algorithms due
to their questionable quality. The automatic align-
ment models can often only identify pairs of
(nearly) identical sentences but cannot correctly
extract “strong paraphrases” where the structure
and semantic were highly changed (Štajner, 2021).
Therefore, at least for test sets, manually alignment
or alignment post-editing are highly recommended.
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Figure 2: Screenshot of TS-ANNO during the sentence alignment of two complex and one simple sentences of a
German document pair of Alumniportal Deutschland. The upper part contains the complex document on the left
and the simple document on the right. Per each document, all sentences are listed, including paragraph markers and
three buttons: i) a bug button to report content issues, ii) a button to focus most similar sentences in the counterpart,
and iii) an edit button to change the alignment of the sentence. In the lower part, all already aligned sentences are
shown accompanied with buttons i) to edit or ii) to delete the alignment, iii) to rate the aligned sentence pair or iv)
to add the rewriting transformations of the pair.

3.2 Transformation Annotation of Alignment
Pairs

In the simplification process, various different
rewriting strategies can be applied to the complex
texts and, hence, it can result in several different
simplified sentences. For the creation of some
TS corpora, annotators were asked to simplify the
text following a given list of rewriting transforma-
tions, e.g., Barancikova and Bojar (2020); Alva-
Manchego et al. (2020a) or were asked to add the
transformations during (or after) alignment, e.g.,
Caseli et al. (2009); Bott and Saggion (2011b);
Amancio and Specia (2014); Brunato et al. (2015).

Enriching aligned corpora with transformation
annotations could help to improve TS systems by
adding a preceding sequence labeling step for trans-
formation identification (e.g., Dong et al. (2019);
Kumar et al. (2020); Omelianchuk et al. (2021)).
TS systems with other approaches could benefit
from the transformation annotations by splitting
and mixing the data splits based on the annota-

tions or gaining more insights into the generated
simplifications (Alva-Manchego et al., 2020b). Fur-
thermore, the number of different transformations
can be used to quantify the “simplicity gain” (Xu
et al., 2016).

TS-ANNO permits the annotator to choose af-
fected tokens in the alignment pair and to assign
transformation labels to it; multiple labels are possi-
ble. The tokens can optionally be color-coded, e.g.,
red for delete, orange for replaced, and blue for
added, to emphasize the changes in the sentences.
The label can correspond to the general transfor-
mation level (paragraph, sentence, phrase or word),
or a transformation class name can be specified
per level. In addition, the labels can be chosen
even more fine-grained as for some transformation
classes sub-transformation labels are provided.

The transformation levels, classes and sub-
transformations can be dynamically changed to
consider language-wise differences and preferred
annotation schemes. As default, TS-ANNO con-
tains transformations that were used (with similar
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terms) in existing TS annotation schemes (Bott
and Saggion, 2014; Brunato et al., 2015; Gonzalez-
Dios et al., 2018; Koptient et al., 2019): 1. delete,
2. insert, 3. merge, 4. reorder, 5. split, 6. lexical
simplification. In addition, we add verbal changes
as transformation because, in German text simplifi-
cation, the verb’s voice or mood are often changed.
A list of the default labels of TS-ANNO is provided
in Appendix A.2.

3.3 Rating of Alignment Pairs

Following Alva-Manchego et al. (2020b), human
assessment of system predictions is for now the
most reliable evaluation method of text simplifica-
tion systems. Furthermore, rating of the simplifi-
cation pairs helps to reveal the unclear initial state
of a (web-) corpus, e.g., i) are the original and sim-
plified sentences grammatically correct, ii) is the
(simplified) sentence really simple, iii) to which
extent are the simplified sentences simpler than
the original sentences or iv) to which extent are
the pairs lexically or syntactically simplified. An
imbalance in the data could for instance lead to
training a TS system to only correct grammar is-
sues, to only produce syntactic simplifications or
only weak simplifications.

Therefore, TS-ANNO supports relative rating of
the aligned sentence pairs, i.e., change between
original and simplified sentence (see example iii)
and iv)), and absolute ratings of the original and
simplified sentence (see example i) and ii)) on a
Likert-scale. As many different rating schemes for
TS exist (for a summary see Alva-Manchego et al.
(2020b); Štajner (2021)), the rating aspects and the
rating scale size can be dynamically changed in
TS-ANNO.

All aspects are accompanied by a statement for
which the annotators are asked to agree or disagree,
following Alva-Manchego et al. (2020a); Maddela
et al. (2021). An overview of all default aspects, in-
cluding all statements, is provided in Appendix A.1.
The chosen default scale is a 5-point Likert-scale,
normally ranging from 1 to 5. However, rating
of simplicity is a subjective task (Štajner, 2018),
hence, different ratings are expected. To ensure
that the ratings are due to subjective perspectives
on simplicity and not due to different understand-
ings of the scale,15 the scale endpoints of some

15Stodden (2021) shows that annotators of TS corpora have
different understandings of the lowest scale point in simplicity
rating, i.e., either same and higher complexity or only higher
complexity.

aspects can be changed to −2 to +2 to emphasize
the meaning of the lowest (−2, reverse change)
and the middle point (0, no change). Furthermore,
annotation guidelines with the annotation scheme
chosen should be handed out to all annotators.

3.4 Manual Simplification

As an additional feature, TS-ANNO supports
sentence-wise manual simplification. Most of the
available simplification corpora focus on Wikipedia
data or news texts (Štajner, 2021). However, in
2014, Pellow and Eskenazi already justified the
need to simplify everyday documents. Therefore,
we encourages the simplification of texts of other
domains, such as illustrated with how-to-articles
of wikiHow16 (Koupaee and Wang, 2018) in the
online demo. Furthermore, the manual simplifi-
cation option can be used to generate alternative
simplifications of existing simplification pairs for a
better evaluation (Alva-Manchego et al., 2020a).

After the complex data upload, an annotator can
select at least one sentence of a complex document
on the left and add a simpler version in the text box
on the right. To ease the simplification, the guide-
line of Inclusion Europe is linked as simplification
instructions for easy-to-read language (CEFR level
A1);17 as soon as the ISO standard of plain lan-
guage is published these instructions will also be
linked for plain language (CEFR level A2 to B1).18

Furthermore, TS-ANNO exemplary integrates
the multi-lingual TS system MUSS (Martin et al.,
2020) to provide suggestions on how to simplify
the marked complex sentence(s); it can be easily
exchanged with other TS systems.

4 TS-ANNO: Evaluation and Export

4.1 Evaluation / Inter-Annotator Agreement

The annotation tool also provides some evaluation
approaches.The inter-annotator agreement (IAA)
of the alignment and the rating is calculated per
all corpora, each corpus, each domain and each
document.19

However, a low level of IAA does not always
indicate a bad quality of the annotations. On the

16https://www.wikihow.com/Main-Page
17Guidelines in many languages: https://www.inclusion-

europe.eu/easy-to-read-standards-guidelines/
18The ISO/WD 24495-1 is currently under development

see: https://www.iso.org/standard/78907.html.
19Depending on the number of annotators, either Cohen’s

Kappa (2 annotators) or Fleiss’ Kappa (> 2 annotators) is
calculated.
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one hand, it can be due to annotation errors, but on
the other hand, it can also be due to different sub-
jective perspectives on the task (see Reidsma and
op den Akker (2008)). Rating of simplicity is such
a subjective task. Hence, we plan to implement a
disagreement metric, similar to the polarization in-
dex of (Akhtar et al., 2019), that relates annotation
choices to the demographic characteristics of the
annotators.

4.2 Data Export

Alignment Export. TS-ANNO supports three for-
mats of alignment export: i) parallel files with a
simplification instance per line as most common
practice is TS research (Xu et al., 2016; Alva–
Manchego et al., 2020a), ii) crossed sentence pairs
of full documents with a label specifying whether
aligned or not (e.g., see Jiang et al. (2020)), or
iii) parallel files with a continuous document text
per line (e.g., see Sun et al. (2021)). The first for-
mat encourages sentence-level simplification, the
second training of a automatic sentence alignment
model and the third document-level simplification.

Annotation and Rating Export. Furthermore,
the data can also be exported in a CSV file contain-
ing all annotated information per aligned sentence
pair per user, e.g., one column per evaluation aspect
and one column per transformation. The output can
be filtered per corpus and per annotator.

Following the recommendations of Prabhakaran
et al. (2021) on transparency and increased utility
of datasets for downstream use cases, in the export
of the annotation tool, all annotations of all raters
are included without any aggregation to keep all
possibly subjective annotations and to facilitate
evaluation with disagreements.

Metadata Export. TS-ANNO provides auto-
matic support for completing data sheets based on
Huggingface Data Cards20 as demanded for produc-
ing responsible NLP (Rogers et al., 2021). The sys-
tem makes proposals for the data sheets questions
based on the given metadata, e.g., demographics of
the annotators or domains of the corpora.

5 Use Case

TS-ANNO was already tested by aligning Ger-
man parallel web texts, e.g., the openly licensed,
parallel documents of the website “Alumniportal

20https://github.com/huggingface/datasets/blob/master/temp-
lates/README_guide.md

Deutschland”. The documents have been uploaded
with the internal web crawler and were automati-
cally pre-processed. Two annotators have manu-
ally aligned the sentence pairs and annotated them
with rewriting transformations and rating aspects.21

The demonstration version of TS-ANNO contains
a few annotated documents of this corpus, includ-
ing different alignment types, ratings and rewriting
transformations to exemplify the evaluation and
download options.

Overall, the test usage of TS-ANNO led to some
minor improvements, which are already included
in this system description.

6 Related Work

Several aligned TS corpora exist, some with anno-
tated rewriting transformations and some test sets
with rated evaluation aspects (see (Alva-Manchego
et al., 2020b) as an overview). However, most au-
thors have not provided a reusing option for their
annotation interfaces or have only focused on one
of the TS annotation tasks, e.g., aligning, simplifi-
cation, rating, or transformation annotation. There-
fore, we present the related work per TS task.

Alignment. The most comparable manual align-
ment annotation frameworks to TS-ANNO are
Tiedemann (2006); Bott and Saggion (2011a); Paet-
zold et al. (2017), and Jiang et al. (2020), which
show also both documents (the original and sim-
plified), in parallel and highlight paragraph blocks.
However, in contrast to TS-ANNO, ISA (Tiede-
mann, 2006) supports only 1:1 alignment, and, in
the annotation interface of Jiang et al. (2020), sen-
tence borders can be changed as they are high-
lighted and not tagged as in our tool.

Simplification. For writing simplifications, sev-
eral commercial and non-commercial tools, or
computer-aided translation software exist to facili-
tate writing easy to understand texts. Some of them
offer more writing support than the others: e.g.,
LanguageTool for German,22 FriendlyReader for

21Both annotators are German native speakers, trained
in linguistics as well as simple languages, have at least a
graduation diploma, and were paid for their work with at
least the minimum wage of their country of residence. The
annotators were provided with the following annotation
guidelines and instructions on how to use the annotation
tool: https://github.com/rstodden/TS_annotation_tool/blob/-
master/annotation_schema/Annotationsrichtlinien_TS_anno-
DE.pdf.

22https://languagetool.org/de/leichte-sprache/
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Swedish,23 or Hero-App for English and Dansk,24

offer most of it by highlighting complex passages
and showing rewriting suggestions. The simplifica-
tion annotation editor of Caseli et al. (2009) also
offers rewriting suggestions, which the annotator
can accept or decline.

TS-ANNO does not support rewriting sugges-
tions yet and is more similar to the simplifica-
tion procedure described in Alva-Manchego et al.
(2020a), in which crowd workers were provided
only with annotation guidelines and should rewrite
the sentences without any assistance. However,
they added their simplifications within a crowd-
sourcing platform and not in an annotation tool.

Rating. Even if manual rating of TS output is per-
formed on many TS system outputs, no shared an-
notation tool for rating exists. Often crowdsourcing
platforms, e.g., Amazon Mechanical Turk or Fig-
ure Eight, are used to ask the rating questions, such
as for the ASSET Corpus (Alva-Manchego et al.,
2020a) and the Simplicity-DA Data Set (Alva-
Manchego et al., 2021).

Transformations. The annotation of rewriting
transformations is a general sequence labeling prob-
lem, therefore, popular sequence labeling tools
such as BRAT (Stenetorp et al., 2012) could be
used. Gonzalez-Dios et al. (2018) adapt BRAT for
TS rewriting annotation by pointing an affected
sequence in the original sentence and labeling it
with the transformation. In contrast, Koptient et al.
(2019) annotated the transformations on the word-
level at the parallel text using a modification of
YAWAT (Germann, 2008). TS-ANNO is more simi-
lar to YAWAT as it facilitates the annotation within
a parallel setting, but extends it via the annota-
tion of also phrase-, sentence-, and paragraph-level
transformations.

To the best of the authors’ knowledge, no annota-
tion tool exists yet, combining all needs of building
text simplification corpora, i.e., manual simplifi-
cation, pair rating, transformation annotation and
sentence alignment.

7 Limitations

So far, TS-ANNO has been tested only for English,
Spanish, French, Farsi, and German. SpaCy, which
is used for pre-processing, should support many
languages, though maybe not always be with the

23http://www.friendlyreader.se/
24https://heroapp.ai/en/

same quality. For languages that SpaCy does not
support, corpora have to be sentence split and to-
kenized before uploading them. However, it is
also possible to exchange SpaCy with another NLP
framework.

The annotation tool does not support active learn-
ing yet; its current focus is on high-quality manual
alignment, rating and annotation of parallel data.

Štajner (2021); Alva-Manchego et al. (2020b)
state that rating is not enough to evaluate TS texts,
comprehension tests, measuring reading time and
eye fixations are also relevant. Unfortunately, TS-
ANNO only supports rating as it is yet the most
dominant approach.

8 Conclusion & Further Work

We presented TS-ANNO, an open-source, web-
based application for the purpose of facilitating the
time-consuming process of building high-quality
corpora for text simplification or of evaluating
quality of existing corpora. The annotation tool
combines relevant functionalities for building TS
corpora, e.g., crawling parallel web documents,
sentence-wise alignment of parallel documents, hu-
man assessment of alignment pairs, annotation of
transformations applied to get the simplified sen-
tence of the pair and evaluating the data, e.g., via
inter-annotator agreement. The human assessment
of simplification pairs could help to identify and
filter out pairs of sentences with an increase of com-
plexity (rather than a decrease) from the complex to
the simple document. Furthermore, transformation
labels allow characterizing the performed changes.
Both information could be used to evaluate TS sys-
tems and give insights in their “black boxes”.

In future work, we plan to extend the simplifi-
cation option by highlighting complex phrases. In
addition, it would be interesting to integrate ac-
tive learning or a neural alignment system, which
could suggest possible sentence alignments. It is
also planned to add more websites to the crawler
option of TS-ANNO to facilitate creating corpora
with texts of other languages or other domains.
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9 Ethics/Impact Statement

Intended Use. In general, simplifying texts
makes sense in order to give more people access
to information. In addition to analog information
dissemination via newspapers or books, digital in-
formation dissemination via websites is becoming
increasingly relevant. In addition to technical barri-
ers, such as the readability and user guidance of a
website, the complexity or language level of texts
on websites also plays an important role. The sim-
pler the text, the more people can understand it.
The more people understand the text, the more peo-
ple have the chance to get involved, e.g., in the form
of discussions or dissemination of information.

The here proposed annotation tool is designed to
create parallel datasets with aligned sentence pairs,
one complex and one simplified for TS. Addition-
ally, the sentence pairs can be rated regarding their
complexity, grammaticality, meaning preservation
and added with transformations applied during the
simplification process. The output, a dataset for
TS, could be used to train an automatic TS sys-
tem which helps people with reading problems to
understand more texts.

Failure modes & Misuse Potential. The usage
of the annotation tool highly depends on what the
administrator and user do with it. Undesired texts
could be inserted or annotators could write harmful
comments or simplifications. The resulting corpus
could be misused to train a system to make texts
even more difficult to read than, as intended, more
simpler. Also, the annotations (ratings, alignments
or transformation annotations) could be intention-
ally manipulated or unintentionally wrongly pre-
processed by the underlying systems, e.g., sentence
splitting or tokenization.

However, the dataset’s quality is essential for the
use case of TS, as people will rely on it. Hence,
TS-ANNO tries to support quality checks of the pro-
duced data, e.g., by calculating the inter-annotator
agreement, reporting errors in the texts due to pre-
processing, and by rating the sentence pairs before
publishing the dataset. Users identified as not re-
liable or even harmful could be banned from the
annotation platform by the administrator. Addition-
ally, some unexpected behavior of the annotation
tool cannot be precluded entirely. However, users
can report issues either on GitHub to the developers
or via the changelog feature to the administrator.

Biases. ML systems can get biased based on the
data they are trained on, therefore we show texts
from different domains in our example. Adminis-
trators of TS-ANNO should be aware of this bias
and carefully select the texts to annotate. Further-
more, the ratings regarding simplicity are highly
subjective, hence, the selection of annotators, e.g.,
only people with high literacy and language level,
can bias the rating. The ratings might be com-
pletely different if the target group of the simplified
texts would rate the sentence pairs. Administrators
should keep it in mind and always describe the an-
notator group. Therefore, the metadata export of
TS-ANNO includes metadata of the texts and the
annotators to support the administrators.

Annotators. During registration, annotators are
asked to voluntarily add some relevant demo-
graphic characteristics, such as native language and
language level of the language to annotate. Also,
the username is freely selectable, hence, if not de-
sired, no personal information must be shared. All
information is optional but highly preferable as they
are helpful to understand the users’ annotations.

Furthermore, the annotators of the example
dataset were paid for their annotations following
with at least the minimum wage of Germany, the
country of residence.

Computing Time. The annotation tool is a web
application, hence, a server is required to run the
annotation tool. Administrators can run it either
locally or on an external server. No additional com-
puting power or hardware is required. However,
to ensure access to the annotation tool, the server
needs to be permanently run or the access time
should be restricted.
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A Appendix

A.1 Rating Aspects

Aspect Statement

Grammaticality The simplified sentence is fluent, there are no
grammatical errors.

Grammaticality
(original) The original sentence is fluent, there are no

grammatical errors.
Meaning
Preservation

The simplified sentence adequately expresses
the meaning of the original sentence, perhaps
omitting the least important information.

Information
Gain In the simplified sentence, information is

added or gets more explicit than in the orig-
inal sentence.

Overall
Simplicity The simplified sentence is easier to understand

than the original sentence.
Structural
Simplicity The structure of the simplified sentence is eas-

ier to understand than the structure of the orig-
inal sentence.

Lexical
Simplicity The words of the simplified sentence are easier

to understand than the words of the original
sentence.

Simplicity
(simple) The simplified sentence is easy to understand.

Simplicity
(original) The original sentence is easy to understand.

Coherence
(simple) The simplified sentence is understandable with-

out reading the whole paragraph.
Coherence
(original) The original sentence is understandable with-

out reading the whole paragraph.
Ambiguity
(simple) The simplified sentence is ambiguous. It can

be read in different ways.
Ambiguity
(original) The original sentence is ambiguous. It can be

read in different ways.

Table 1: Default rating aspects of TS-ANNO.

A.2 Rewriting Transformation Label Scheme

Level Class Name Sub Transformation

Word

Deletion

Discourse Marker
Abbreviation
Filler Words
Other

Lexical Substitution

Compound Segmentation
More Frequent Word
Abbreviation
Anaphora
Shorter Word
Synonym
Hyponym
Hypernym
Nominalization
Methaphor
Number
Date
Other

Inflection

Insert
Ellipsis Filled
Other

Phrase

Reorder
Discontinuity Resolution
Other

Deletion

Phrase
Clause
Replace
Less Adjunct Phrase
Other

Rephrase

Sentence

Split

Coordinate Clause
Subordinate Clause
Appositive Phrase
Adverbial Phrase
Relative Clause
Other

Verbal Changes
Voice of Verb
Verb Tense
Verb Mood

Lexical Substitution
Verbalization
Other

Reorder

Subject-Verb Reorder
Genetive to Dative
Negative to Positive
Other

Rephrase
No Operation

Paragraph

Reorder
Sentence-Order Changed
Other

Merge
Deletion

Insert
Explanation
Exemplification
Other

Table 2: Default rewriting transformation labels of TS-
ANNO.
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Abstract

The Universal Knowledge Core (UKC) is a
large multilingual lexical database with a focus
on language diversity and covering over two
thousand languages. The aim of the database,
as well as its tools and data catalogue, is to
make the abstract notion of linguistic diver-
sity visually understandable for humans and
formally exploitable by machines. The UKC
website lets users explore millions of individual
words and their meanings, but also phenomena
of cross-lingual convergence and divergence,
such as shared interlingual meanings, lexicon
similarities, cognate clusters, or lexical gaps.
The UKC LiveLanguage Catalogue, in turn,
provides access to the underlying lexical data
in a computer-processable form, ready to be
reused in cross-lingual applications.

1 Introduction

A recent challenge in computational linguistics
has been the development of efficient multilin-
gual and cross-lingual techniques for language
understanding and processing. In terms of solu-
tions, a mainstream, yet often implicit assump-
tion has been that shared meaning unites lan-
guages beyond superficial differences in lexicon
and grammar: after all, humankind on the whole
has been successful in getting ideas across linguis-
tic borders. Hence the recent trend of massively
multilingual resources—lexical databases, cross-
lingual transfer matrices, pre-trained multilingual
language models—exploiting a common meaning-
based mapping across linguistic units.

Linguistic diversity remains, nevertheless, a key
concept insomuch as it refers to deep-running, ir-
reducible, meaning-level differences across lan-
guages and underlying cultural concepts. To take
real examples from state-of-the-art machine trans-
lation, syntactically correct but semantically absurd
outputs such as ‘my older brother is younger than
me’ or ‘this raw rice is tasty’ are not rare exceptions
but recurrent consequences of diversity: the diverg-
ing ways languages express culturally significant
concepts such as brother or rice. While phenom-
ena such as lexical gaps (Lehrer, 1970), culturally
diverse terminology, or the varying relevance of the
notion of word itself across languages are not unfa-
miliar to us computational linguists, this intuitive
and high-level understanding is hard to translate
into actual ‘diversity-aware’ computational appli-
cations, not the least because of the lack of formal
datasets that would provide such information.

Lexical typology has described and catalogued
many of such phenomena (Koptjevskaja-Tamm
et al., 2015). A few online databases also provide
contrastive data and visualisations, sometimes over
thousands of languages (Dryer and Haspelmath,
2013; Rzymski et al., 2020; Holman et al., 2011;
Arora et al., 2021). The These databases are rarely
used in the NLP community, probably because they
are often targeted towards historical linguistics and
use phonetic representations of words or are limited
to a few hundred core concepts. Yet, our position
is that typological data can and should be reused
for computational purposes, provided that they are
meaningfully integrated with existing resources on
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Figure 1: Structural elements in the UKC lexical database for representing cross-lingual unity and diversity.

contemporary language.
Computationally-oriented resources that address

language diversity or linguistic typology have so
far been concentrating on multilingual morphosyn-
tax (Ponti et al., 2019; Batsuren et al., 2021b; Nivre
et al., 2016). On diversity in lexical semantics, only
a few studies (Giunchiglia et al., 2017) and sporadic
data have been available for specific languages,
such as a few hundred lexical gaps in Hebrew (Or-
dan and Wintner, 2007) or in Italian (Pianta et al.,
2002). Large-scale multilingual lexical databases
(MLDB), such as BabelNet (Navigli and Ponzetto,
2012) or the Open Multilingual Wordnet (Bond
and Foster, 2013), have so far ignored phenomena
related to language diversity and have concentrated
on shared meaning.

The Universal Knowledge Core (UKC) database
and system presented in this paper provides
computer-readable cross-lingual lexical data, cover-
ing both the common and the diverse among more
than a thousand lexicons. The data is being made
available for download from the UKC LiveLan-
guage catalogue1, while the UKC website2 pro-
vides a set of interactive tools that allow both high-
level visualisations and an in-depth exploration of
diversity data. The rest of the paper provides an
overview of the UKC database structure and con-
tents, the online tools, and the data catalogue.3

2 A Multilingual Lexical Database
on Language Diversity

Among existing large-scale MLDBs, those with
a published formal, computer-exploitable data

1http://www.livelanguage.eu
2http://ukc.datascientia.eu
3See http://youtu.be/b90SdCJjtCw for a video.

model—such as the Open Multilingual Word-
Net, BabelNet, or EuroWordNet (Vossen, 1997)—
concentrate solely on language unity, i.e. shared
supra-lingual meaning, through linking together
words with the same meaning across languages.
The UKC offers a richer, two-layered representa-
tion of language unity, as well as introducing lan-
guage diversity as formal data, both in terms of
lexical model and actual content.

The UKC data model, the theoretical underpin-
nings of which have been exposed in (Giunchiglia
et al., 2018), is illustrated in Figure 1. On the top of
the figure, a supra-lingual concept layer contains
hierarchies of concepts that represent lexical mean-
ing shared across languages. Concepts thus act as
bridges across languages. The only criterion for a
concept to be present in the concept layer is that it
is lexicalised by at least one language.

The bottom lexicon layer consists of language-
specific lexicons. As in other lexical databases,
these provide lexicalisations for concepts, such as
the English ‘rice’ and the Italian ‘riso’ for the con-
cept of rice in Figure 1. Beyond lexicalisations,
however, the UKC lexicons also provide rich cross-
lingual information on language unity and diversity
through the additional constructs detailed below.

Lexical gaps. As evoked in the introduction,
when unrecognised, lexical untranslatability can
decrease the performance of cross-lingual applica-
tions. Syntactically correct yet meaningless Google
translations, such as the Hungarian sentence

‘A bátyám három évvel fiatalabb nálam,’

meaning ‘my older brother is three years younger
than me,’ are systematically produced due to non-
existent equivalent translations, in this case for the
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Figure 2: Lexicons in the UKC: circle sizes indicate lexicon size and their colour the language family (phylum).

word brother in Hungarian.4 Likewise, as shown
in Figure 1, English has no single word for raw,
uncooked rice while Swahili—and many other lan-
guages, cf. (Joo, 2021)—has no equivalent for the
general term rice. The UKC provides evidence of
untranslatability by representing lexical gaps inside
lexicons. Such information can be used, among oth-
ers, to indicate the absence of equivalent terms to
downstream cross-lingual applications.

Cross-lingual sense relations. Beyond provid-
ing shared word meanings as other MLDBs do, the
UKC represents a richer set of interlingual con-
nections between word senses. For example, in
Figure 1, the English ‘rice’ and the Italian ‘riso’
are connected through a cognate relationship. Cog-
nates are words in different languages that sound
the same and have the same (or similar) mean-
ing due to a common etymological origin. Cog-
nates are key indicators of language unity on the
lexical level, i.e. of the cross-lingual similarity of
lexicons. Such information can thus be exploited
e.g. as seeds in cross-lingual tasks such as bilingual
lexicon induction (Batsuren et al., 2021a).

Metadata on language diversity. Beyond stan-
dard typological metadata such as language phy-
logeny or the geographical locations of speakers,
the UKC also integrates cross-linguistic metadata
computed from its own lexico-semantic content.
Based on cross-lingual cognate relationships, we
computed large-scale lexicon similarity data across
27 thousand language pairs over 331 languages.
Lexicon similarity (Bella et al., 2021) formally

4Apart from the laborious and thus rarely used fiútestvér.

characterises the extent to which the vocabular-
ies of two languages ‘resemble each other’, taking
differing writing systems and orthographies into
account. This metric has, in our view, a better po-
tential in predicting the success of cross-lingual
tasks (such as transfer learning or joint supervised
training) than language phylogeny, as it is based on
the overlaps of contemporary lexicons as opposed
to historical relatedness.

Language-specific word meanings. Diversity
also means acknowledging our partial understand-
ing of how specific languages conceptualise lexical
meaning and the ultimate impossibility of an ex-
haustive interlingual model. The UKC is the only
lexical database to allow the co-existence of shared
and language-specific word meaning hierarchies,
inside the concept layer and the lexicons, respec-
tively. Figure 1 shows culture-specific words and
meanings (of rice-based foods) represented inside
the Kannada lexicon, not yet integrated into the
shared concept layer.

Language-specific lexical relations. Lexical re-
lations within individual languages are sometimes
part of lexical databases, such as antonymy or
derivation in the Princeton WordNet (Miller, 1998).
The UKC integrates derivational relationships for
20 languages, introduces relation types not typi-
cally part of lexical databases—such as metonym-
of or homograph-of —and provides corresponding
relation instances.

Table 1 shows the current contents of the UKC
(as of January 2022) in terms of the data types
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Figure 3: Exploring the concept of blueness as lexicalised in the English language (left), in the world (middle), and
as part of the supra-lingual concept hierarchy (right).

enumerated above. Concepts and concept rela-
tions were initially derived from the Princeton
WordNet, as in all other MLDBS, but then ex-
tended with 400 new concepts and 490 new re-
lations. We obtained lexicalisations from Wik-
tionary, NorthEuraLex (Dellert et al., 2020), the
Native Languages of the Americas5, as well as
from 28 monolingual wordnets cited at the end
of our paper. Lexical gaps were mostly obtained
from original research (about 33k from diversity-
rich domains such as kinship and colours, but also
600 gaps from (Bella et al., 2020)), and over a
thousand gaps from the few third-party resources
providing such information (Pianta et al., 2002;
Ordan and Wintner, 2007). We computed cross-
lingual sense relations from UKC data, reusing
our method published in (Batsuren et al., 2019a,
2021a). Language-specific sense relations were
obtained in a minor part from wordnets provid-
ing such data (48k relations), and in a major part
from our own research on multilingual morphol-
ogy (Batsuren et al., 2021b) (770k derivations in
16 languages) and metonymy (25k metonyms in
191 languages). Finally, lexicon-level metadata on
language diversity combines online sources (Dryer
and Haspelmath, 2013) with results of our own re-
search on the similarity of lexicons (Bella et al.,
2021).

3 Exploring Diversity Data

The website of the UKC database provides
browseable online access to the full database con-
tents, data visualisation tools, extensive informa-
tion on related projects, publications, source mate-
rials, as well as example downstream services, such

5http://www.native-languages.org

Content type Data size
Languages 2,176
Concepts 106k
Concept relations 109k
Lexicalisations (word senses) 2.8M
Lexical gaps 35k
Cross-lingual sense relations 8M
Language-specific relations 840k
Lexicon-level diversity metadata 30k

Table 1: UKC contents and data sizes.

as word translation between any two languages or
multilingual word sense disambiguation (to be re-
leased soon).

A major feature of the website is the interactive
exploration of lexicons and diversity data. The user
can browse: (1) linguistic metadata of the 2k lex-
icons, selecting the language from an interactive
map (Figure 2) or by name; (2) within a language,
all meanings of a word typed in by the user; and
(3) lexicalisations and gaps of a concept in the cur-
rent language and in all languages of the world.

A screenshot of the last—and richest—concept
exploration functionality, taking the example con-
cept of blueness, is provided in Figure 3. On the
left-hand side of the screen, details are provided on
the lexicalisation of the concept in the current lan-
guage, such as synonyms, definition, part of speech,
as well as lexical relationships to other word senses
(e.g. derivations, metonyms, cognates in other lan-
guages). The middle part of the screen shows an
interactive clickable map of all languages that ei-
ther lexicalise the concept in the database or, on
the contrary, are known not to lexicalise it. The
colour-coded dots (indicating the language family
while ‘black holes’ stand for gaps) thus provide an
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instant global typological overview for the concept
selected, e.g. from Figure 3 one can see that a lot of
languages in the Americas do not lexicalise blue as
a separate colour. Some language do not appear on
the map due to lexicon incompleteness: for those
languages the UKC has no information whether
they lexicalise blueness or not.

The right-hand side, finally, shows the concept
in the context of the lexico-semantic concept hierar-
chy, displayed as a graph. A detail of the full graph
is shown, including the currently observed concept
blueness, the parent (broader), and the child (nar-
rower) concepts. Other lexico-semantic relation-
ships (e.g. meronymy and metonymically related
concepts) are also shown when they exist. While
for usability reasons the graph only displays a part
of the full hierarchy, it is interactive, allowing the
entire concept graph to be explored in the currently
selected language. Changing the language is as
simple as clicking on the map or selecting it from
the drop-down in the upper left corner of the screen.
Colours in the graph are indicative of language di-
versity: they show whether a concept is lexicalised
in the current language (dark-coloured nodes), are
missing from its lexicon (light-coloured nodes), or
are lexical gaps (black nodes).

4 Visualising Language Diversity

Beyond the fine-grained word and concept explo-
ration presented in the previous section, the UKC
website also offers visualisation tools that allow
humans to grasp diversity both in its globality and
from different angles. Currently the following tools
are provided, three of which we present below:
(1) cognate diversity clusters; (2) colexifications;
(3) a gap explorer for a fixed set of domains that
are lexically diverse; (4) lexical similarity graphs;
and (5) visual statistics.

Cognate diversity clusters. This tool shows cog-
nate clusters on the map for a given concept se-
lected by the user, computed from cognate data
inside the UKC. In Figure 4, the concept of fish is
selected: each dot represents a lexicon that contains
a word for fish. Two dots are of the same colour
if the two words are cognates of each other. For
example, the English ‘fish’ and the Italian ‘pesce’
are within one cognate cluster (in light green in the
figure) while the Hungarian ‘hal’ and the Finnish

‘kala’ are in another cluster (in turquoise). The
number and distribution of clusters for a given con-
cept provide information about its universality or

diversity: coffee is a so-called universal concept
while woman is an extremely diverse one.

Lexical gap explorer. Certain domains—such as
kinship, food, colours, or body parts—are known
by linguists to be lexically diverse, for reasons re-
lated to culture, geography, but also grammar and
other factors (Lehrer, 1970). The gap explorer tool
displays a full concept hierarchy for a domain or
subdomain selected by the user. Figure 5 shows
the UKC concept structure of the subdomain of
siblings from the kinship domain. For the language
selected (Danish in the figure), the tool displays
existing lexicalisations, indicates incompleteness
(missing word), and provides known lexical gaps.
This allows for quick comparisons of how differ-
ent languages lexicalise (or not) a given domain.
For example, for the cousins subdomain that con-
sists of 67 concepts, English only lexicalises the
root concept cousin with all other concepts as gaps,
while South Indian languages provide no less than
16 distinct words depending on the age, sex, and
lineage (patrilineal/matrilineal) of the cousin.

Lexical similarity graphs. Relying on the ex-
tensive lexical data inside the UKC, we compute
pairwise similarities between languages based on
the amount of shared cognates, using the method
described in our recent paper (Bella et al., 2021).
In order to interpret the resulting similarity data for
humans, i.e. provide a global overview of lexical
similarity, we compute a dynamic graph visualisa-
tion where nodes are languages and edge lengths
are proportional to lexical similarities. The graph
computation relies on a physical model of attraction
and repulsion among nodes, using the ForceAtlas2
library (Jacomy et al., 2014). We provide two dis-
tinct colourings for the same graph: one based on
language families (shown in Figure 6) and the other
based on geographical distance. These graphs visu-
alise how the similarity of contemporary lexicons
correlates with (historic) phylogeny and with the
geographical closeness of speakers. As a way to
make language evolution visual, we also provide
the equivalent graph computed over data from his-
torical linguistics, obtained from the ASJP database
(Holman et al., 2011). Insights gained from these
graphs may also help computational linguists pre-
dict the performance of automated tasks that in-
volve some form of lexicon mapping (e.g. bilingual
lexicon induction or machine translation) over spe-
cific language pairs.
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Figure 4: Cognate clusters for the concept of fish.

Figure 5: Detail of the grandchild subdomain as lexicalised by the Danish language.

Figure 6: Detail from the lexical similarity graph coloured according to language families.
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Figure 7: The UKC LiveLanguage Data Catalogue.

5 The LiveLanguage Data Catalogue

As a complement to online exploration, we are
also making available the contents of the UKC for
computational applications. While an open, fine-
grained, API-based access to the data is planned
as future work, we are already in the process of
publishing data for download through the UKC
LiveLanguage data catalogue. The catalogue, ac-
cessible from the website through any of the numer-
ous download links, provides access to the UKC
data through multiple modalities. Accordingly, the
structure of the catalogue, shown in Figure 7, con-
sists of (1) cross-lingual datasets; (2) individual
lexicons that aggregate all types of data about a sin-
gle language; and (3) lexicon sets that also provide
cross-lingual information. All datasets are pub-
lished in full respect of the licensing constraints
of their constituting resources; data that disallow
redistribution are excluded from the catalogue.

Raw data on cross-lingual diversity. These
datasets originate from projects on diversity and
cover domain-specific lexical gaps, multilingual
morphology, lexical similarity, and cognate rela-
tionships. Datasets are distributed in their original
formats, with concepts linked to Princeton Word-
Net 3.0 identifiers for interoperability with third-
party data.

Individual lexicons. These datasets are produced
as language-specific ‘cross-sections’ of the full
UKC data. Their added value lies in the integra-
tion of multiple sources—words from wordnets
and Wiktionary, language-specific morphological
and lexico-semantic relationships, gaps—into a sin-
gle formal representation. These datasets will be
provided in multiple formats (under development),

including the ISO standard Lexical Markup Frame-
work (LMF) format as well as OntoLex.

Lexicon sets. The notion of language diversity
gains full significance across languages. Conse-
quently, the development of an online service is
underway to allow the simultaneous download of
multiple concept-aligned lexicons as a single mul-
tilingual resource. The service will export multilin-
gual data from the UKC database in real time. Such
datasets will be directly exploitable in cross-lingual
training and evaluation tasks.

6 Conclusions and Future Work

We see a huge research potential both in the cre-
ation and in the reuse of diversity-aware language
resources. Exploiting diversity to improve state-
of-the-art cross-lingual applications is a direction
that we expect to gain importance and popularity in
the community. The UKC database, website, and
data catalogue aims to contribute to such efforts.
All components of the system are going through
a rapid evolution: the database contents in terms
of language support, lexicon correctness and com-
pleteness, the data exploration and visualisation
tools, new demonstrators, and APIs are continually
being created and extended. We are also deploying
regional instances of the UKC—e.g. for the Middle-
East or the Indian subcontinent—where diversity
among local languages and dialects is studied in
fine detail by local communities of linguists.
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Abstract

In this paper, we propose , a knowl-
edge graph embedding (KGE) toolkit, which
aims to represent the multi-source and hetero-
geneous knowledge. For multi-source knowl-
edge, unlike existing methods that mainly focus
on entity-centric world knowledge, CogKGE
also supports the representations of event-
centric world knowledge, commonsense knowl-
edge and linguistic knowledge. For hetero-
geneous knowledge, besides structured triple
facts, CogKGE leverages additional unstruc-
tured information, such as text descriptions,
node types and temporal information, to en-
hance the meaning of embeddings. Moreover,
CogKGE aims to provide a unified program-
ming framework for KGE tasks and a series
of knowledge representations for downstream
tasks. As a research framework, CogKGE con-
sists of five parts, including core, data, model,
knowledge and adapter module. As a knowl-
edge discovery toolkit, CogKGE provides pre-
trained embedders to discover new facts, clus-
ter entities and check facts. Furthermore, we
construct two new benchmark datasets for fur-
ther research on multi-source heterogeneous
KGE tasks: EventKG240K and CogNet360K.
We also release an online system 1 to discover
knowledge visually. Source code, datasets and
pre-trained embeddings are publicly available
at GitHub 2, with a short instruction video 3.

1 Introduction

In recent years, knowledge graphs (KGs) have ex-
perienced rapid development. A large number of
KGs, such as FrameNet (Baker et al., 1998), Wiki-
data (Vrandečić and Krötzsch, 2014), DBpedia
(Lehmann et al., 2015) and ConceptNet (Speer
et al., 2017), have been built and successfully
applied to many real-world applications. Most

*These authors contribute equally to this work.
1http://cognlp.com/cogkge/
2https://github.com/jinzhuoran/CogKGE/
3https://youtu.be/BiA2Rm9JYKs/

Nell Armstrong

Description: …American 

astronaut and aeronautical 

engineer, and the first human 

being to walk on the Moon…

Type: Astronaut/Person

Rocket

Description: …rocket is used for 

flying to the moon; rocket is 

capable of taking you into space;

rocket is related to oxidizer…

Buzz Aldrin

Description: …American former 

astronaut, engineer and fighter 

pilot. He is the last surviving crew 

member of Apollo 11…

Type: Astronaut/Person

Apollo 11 Moon Landing

Description: …Astronauts Neil 

Armstrong and Buzz Aldrin landed 

their Apollo Lunar Module (LM) 

on July 20, 1969, and walked on…

Type: Space Event

NASA

Description: …NASA's science is 

focused on better understanding 

Earth through the Earth Observing 

System, advancing heliophysics …

Type: Organization

Participation

Defination: …An Event with 

multiple Participants takes…

LexUnit: concerned.a, engage.v, 

embroiled.a,, entanglement.n…

Frame elements: Event, Place, 

Participant_1, Participant_2...

RelateParticipate in

Work at

Participate in

Launched by [1961-1972]

[1962-1971]

World Knowledge (Entity-centric)

From Wikidata

Relate

Linguistic Knowledge

From FrameNet

World Knowledge (Event-centric)

From Wikidata

Commonsense Knowledge

From ConcepNet

Entity-centric Knowledge

Event-centric Knowledge Commonsense Knowledge

Linguistic Knowledge Additional Information

Relation

World Knowledge (Entity-centric)

From Wikidata

World Knowledge (Entity-centric)

From Wikidata

Figure 1: An example of a multi-source heterogeneous
KG. Grey, blue, green and purple denote entity-centric
world knowledge, event-centric world knowledge, com-
monsense knowledge and linguistic knowledge, respec-
tively. The dotted boxes show additional information.

KGs are originally organized in the form of triples
(h, r, t), where h and t indicate head and tail enti-
ties, and r indicates the relation between h and t.
However, a KG is a symbolic system that cannot be
directly applied to large-scale deep learning frame-
works. To this end, a series of knowledge graph
embedding (KGE) models have been proposed to
represent the entities and relations into continuous
spaces (Bordes et al., 2013; Wang et al., 2014; Lin
et al., 2015; Sun et al., 2018; Abboud et al., 2020).

To facilitate the development of KGE models,
some remarkable KGE toolkits, such as OpenKE
(Han et al., 2018), Graphvite (Zhu et al., 2019),
LibKGE (Broscheit et al., 2020), PyKEEN (Ali
et al., 2021) and Pykg2vec (Yu et al., 2021) have
been released, providing easy-to-use frameworks
for a series of KGE models. However, most of them
perform the embedding task solely based on entity-
related triple facts, so they are still limited to two
critical challenges in practical applications: multi-
source challenge and heterogeneous challenge.

As to the multi-source challenge, real-world
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KGs involve not only world knowledge (including
entity-centric knowledge and event-centric knowl-
edge), but also linguistic knowledge and common-
sense knowledge. In various practical applications,
we need to use multi-source knowledge simultane-
ously. For example, as shown in Figure 1, to under-
stand an article about “Neil Armstrong”, we need
(1) entity-centric world knowledge, e.g., “Neil Arm-
strong worked at NASA” from Wikidata; (2) event-
centric world knowledge, e.g., “Neil Armstrong
is a participator of the Apollo 11 Moon Landing”
from Wikidata; (3) linguistic knowledge, e.g., the
linguistic frame of “Participation” from FrameNet;
(4) commonsense knowledge, e.g., “rocket is used
for flying to the moon” from ConceptNet. How-
ever, most existing toolkits only focus on repre-
senting world knowledge, especially entity-centric
knowledge, while ignoring other knowledge, like
commonsense knowledge and linguistic knowledge.
Therefore, developing a toolkit that can represent
multi-source knowledge is essential.

As to the heterogeneous challenge, real-world
KGs involve not only triple facts, but also addi-
tional information, such as text descriptions, node
types and temporal information. In many practical
applications, we should use these heterogeneous
knowledge together. Likewise, as shown in Figure
1, to understand an article about “Neil Armstrong”,
besides structured triple facts, we also need (1) text
descriptions, e.g., “Neil Armstrong was the first
human being to walk on the Moon”; (2) node types,
e.g., “Neil Armstrong is an astronaut”; (3) tempo-
ral information, e.g., “Nell Armstrong participated
in Apollo 11 Moon Landing from 1962 to 1971”.
All these heterogeneous knowledge can be used
for obtaining the embeddings, but conventional
KGE models cannot take full advantage of the addi-
tional information mentioned above. Therefore, it
is highly desirable to have a toolkit that can bridge
these heterogeneous knowledge by plug-and-play
knowledge adapters.

To solve the above two problems, we propose
, a knowledge graph embedding toolkit

that aims to represent multi-source and hetero-
geneous knowledge. The toolkit consists of five
parts, including core module, data module, model
module, adapter module and knowledge module.
CogKGE currently supports 17 models, 11 datasets,
five evaluation metrics, four knowledge adapters,
four loss functions, three samplers and three built-
in data containers. Besides, we also construct two

large-scale benchmark datasets to promote the re-
search on KGE. In summary, the main features and
contributions are as follows:

• Multi-source and heterogeneous knowledge
representation. CogKGE explores the uni-
fied representation of knowledge from diverse
sources. Moreover, our toolkit not only con-
tains the triple fact-based embedding models,
but also supports the fusion representation of
additional information, including text descrip-
tions, node types and temporal information.

• Comprehensive models and benchmark
datasets. CogKGE has implemented 17 clas-
sic KGE models of four categories, including
translation distance models, semantic match-
ing models, graph neural network-based mod-
els and transformer-based models. Besides
nine built-in public datasets, we also release
two new large benchmark datasets for fur-
ther evaluating KGE methods, called Even-
tKG240K and CogNet360K.

• Extensible and modularized framework.
CogKGE provides a programming framework
for KGE tasks. Based on the extensible archi-
tecture, CogKGE can meet the requirements
of module extension and secondary develop-
ment, and pre-trained knowledge embeddings
can be directly applied to downstream tasks.

• Open source and online demo. Besides the
toolkit, we also release an online CogKGE
demo to discover knowledge visually. Source
code, datasets and pre-trained embeddings are
publicly available at GitHub.

2 System Architecture

The overall system architecture of CogKGE is pre-
sented in Figure 2. The top part is composed of
the core module and data module. The former is
the basis of the toolkit, while the latter provides
fundamental data containers, loaders and proces-
sors. The bottom part is built upon the top part,
the model module contains lots of built-in models,
the knowledge module integrates multi-source and
heterogeneous knowledge, and the adapter module
acts as a bridge between the two. In the following,
we will cover these five modules in detail.

2.1 Core Module
In the core module, we develop an extensible frame-
work and various ready-to-use components.
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Figure 2: The main architecture of CogKGE.

Trainer, Evaluator and Predictor. Since train-
ing, evaluation, and prediction are the core pro-
cesses in the deep learning pipeline, we de-
sign Trainer class, Evaluator class and
Predictor class to implement them, respec-
tively. To improve the efficiency of our toolkit,
we also involve some functions to support multi-
GPUs training, breakpoints resume, logs record
and result visualization as shown in Appendix A.

Loss and Sampler. All models in CogKGE
are trained by minimizing MarginLoss func-
tion or NegLogLikehoodLoss function. Both
of these loss functions need to construct false
triples as negative samples. We encapsu-
late the efficient process of constructing neg-
ative samples in Sampler class, including
UniSampler class, BernSampler class and
AdversarialSampler class.

Metric. KGE models are usually evaluated on
link prediction, which aims to predict the missing
entities in triples (?, r, t) or (h, r, ?). In CogKGE,
the Metric class computes the ratio of answers
ranked top-k (Hits@1/3/10), the mean rank of the
answers (MR) and the mean reciprocal rank of the
answers (MRR), both raw and filtered results are
available.

2.2 Data Module
A primary design principle of CogKGE is to sup-
port unified KGE tasks. For this purpose, the data
module is based on easy-to-use data containers,
such as LUT class for looking up items in table
form, Vocabulary class for converting labels

to indexes. To improve reusability, CogKGE in-
cludes built-in Loader and Processor class
for many benchmarking datasets and is compatible
with multi-source heterogeneous KGs with addi-
tional information.

2.3 Model Module
BaseModel class is the base class of all mod-
els in CogKGE. BaseModel class organizes code
into three basic sections: (1) forward function
for training, (2) embedding function for getting
the embedding of entities and relations and (3)
scoring function for computing the score of
triples. The model module consists of four parts,
which are: translation distance models, seman-
tic matching models, graph neural network-based
models and transformer-based models.

Translation Distance Models. The translation
distance models use distance-based measures to
compute the similarity score for a pair of entities
and their relationships. In CogKGE, the similarity
score function of translation distance models is
generally defined as:

fr(h, t) = ∥gh(h) + r− gt(t)∥1/2ℓ1/ℓ2
, (1)

where h, r, t are the embedding representations of
h, r, t, gh(·) and gt(·) are the transformation func-
tions. The translation-based models aim to find a
vector representation of entities with relation to the
translation of the entities. In CogKGE, we imple-
ment several translational distance models, includ-
ing TransE (Bordes et al., 2013), TransH (Wang
et al., 2014), TransR (Lin et al., 2015), TransD (Ji
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et al., 2015), TransA (Xiao et al., 2015), RotatE
(Sun et al., 2018), BoxE (Abboud et al., 2020) and
PairRE (Chao et al., 2020).

Semantic Matching Models. Compared with the
distance-based score function of translation dis-
tance models, semantic matching models use the
similarity-based score function. They measure the
plausibility of facts by matching latent semantics of
entities and relations embodied in their vector space
representations. RESCAL (Nickel et al., 2011),
DistMult (Yang et al., 2015), ComplEx (Trouillon
et al., 2016), SimplE (Kazemi and Poole, 2018)
and TuckER (Balažević et al., 2019) have been
built into CogKGE.

Graph Neural Network-based Models. Graph
neural network (GNN) has recently been shown to
be quite successful in modelling graph-structured
data. Considering that KG itself happens to be a
kind of graph-structured data, GNN can integrate
the topological structure and node feature, then
provides a more refined vector representation. We
implement R-GCN (Schlichtkrull et al., 2018) and
CompGCN (Vashishth et al., 2019) to represent the
multi-relational data.

Transformer-based Models. Transformer has
been widely used in pre-trained language models,
and its deep network architecture can learn contex-
tual representations of entities and relations in a
KG jointly by aggregating information from graph
neighbourhoods. Besides, transformer-based mod-
els can also utilize the text descriptions in KGs,
encoding the texts and facts into a unified seman-
tic space. We have implemented KEPLER (Wang
et al., 2021b) and HittER (Chen et al., 2021).

2.4 Knowledge Module

The knowledge module mainly integrates three
kinds of knowledge representation, namely world,
commonsense and linguistic knowledge.

World Knowledge. Encyclopedia KGs such as
Freebase, DBpedia and Wikidata mainly focus on
explicit world knowledge, containing facts about
specific instances, e.g., (Neil Armstrong, Work at,
NASA). Besides entity-centric knowledge, event-
centric knowledge is also an essential kind of
knowledge, which conveys dynamic and procedu-
ral knowledge, e.g., (Neil Armstrong, Participate in,
Apollo 11 Moon Landing). In CogKGE, we imple-
ment entity-centric knowledge representation based

on Wikidata and event-centric knowledge represen-
tation based on EventKG (Gottschalk and Demi-
dova, 2018). World knowledge representations
have been widely used in knowledge-enhanced pre-
trained language models, entity disambiguation and
event extraction.

Commonsense Knowledge. Commonsense
knowledge tries to capture implicit general facts
and regular patterns in our daily life. Nodes in
commonsense KG are semantically rich natural
language phrases rather than entities. CogKGE
supports the commonsense knowledge represen-
tation of ConceptNet, which can be helpful for
commonsense completion and reasoning.

Linguistic Knowledge. Linguistic knowledge in-
cludes considerable information about lexical, con-
ceptual and predicate argument semantics. For
example, “participation” has hyponymy relation
to “engagement” in WordNet, while “take part”
can evoke the “Participation” frame in FrameNet.
In CogKGE, the knowledge representation of
FrameNet can be applied for downstream tasks,
such as word sense disambiguation and machine
reading comprehension.

2.5 Adapter Module

Almost all of the models in Section 2.3 embed KGs
to a specific feature space only based on the triple
facts (h, r, t). In practice, as shown in Section 2.4,
multi-source and heterogeneous knowledge repre-
sentation is more realistic and valuable. There is
a lot of additional information in KGs that can
further enhance and refine the knowledge repre-
sentation. Inspired by the adapter pattern in the
design patterns, we leverage plug-and-play knowl-
edge adapters to build a bridge between KGE mod-
els and multi-source heterogeneous data.

Text Descriptions Adapter. As shown in Figure
1, there are text descriptions of entities in KGs,
containing abundant semantic information about
them. The challenge of KGE with text description
is to embed both structured fact knowledge and
unstructured textual information in the same space.
According to KEPLER (Wang et al., 2021b), we
adopt RoBERTa (Liu et al., 2019) as the encoder
to generate the entity embeddings based on text
descriptions. For a triple (h, r, t), we have:

h = Encoder(hd)

t = Encoder(td),
(2)
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where hd and td are the text descriptions for h and
t. Users can replace the traditional embedding ma-
trixes with the text descriptions adapter without
modifying scoring function of models. Models
with the text description adapters can generate em-
beddings from their descriptions for those entities
invisible during the training stage.

Node Types Adapter. In most KGs, nodes are
represented with hierarchical types or categories.
For example, “Neil Armstrong” belongs to “Astro-
naut” and “Person” category. To implement the
node types adapter, we use type-specific entity pro-
jections based on TKRL (Xie et al., 2016), which
is defined as:

gh(h) = Mchh

gt(t) = Mctt,
(3)

where Mch and Mct are the projection matrixes of
h and t belonging to category c.

Temporal Information Adapter. KG facts are
usually time-sensitive, different events and actions
cause entities and relations to change over time.
For example, Figure 1 illustrates “Nell Armstrong”
paticipated in “Apollo 11 Moon Landing” from
1962 to 1971. A fact with temporal information in
KGs is represented as a quadruple (h, r, t, [τb, τe]),
where τb and τe respectively denote the start and
end time of the fact. We implement diachronic
embedding (DE) (Goel et al., 2020) as the temporal
information adapter in CogKGE.

3 System Usage

Our goal of designing CogKGE is to provide a
unified research framework for KGE tasks and pre-
trained knowledge representations for downstream
tasks. In this section, we show a detailed guideline
on how to use our toolkit.

3.1 Pre-trained Embedder for Knowledge
Discovery

CogKGE provides a series of pre-trained knowl-
edge representations, such as EventKG, CogNet
(Wang et al., 2021a) and other KGs. Predictor
class serves as the pre-trained embedder, whose
model and dataset can be selected by users. As
shown in Figure 3, Predictor class implements
the following functions: similar nodes query, head
query according to tail and relation, relation query
according to head and tail, etc. Pre-trained embed-
ders can be applicable for knowledge discovery.

Figure 3: An example of pre-trained embedder.

Figure 4: An example of programming framework.

3.2 Programming Framework for Training
Models

As a unified programming framework, CogKGE
supports researchers to use various off-the-shelf
components to implement new models quickly.
Figure 4 shows the sample code of training mod-
els. To do this, users need to use Loader class
to load the lookup tables and process datasets
by Processor class. Then, Model, Loss,
Metric, Optimizer, Sampler class should
be initialized before added to Trainer class. And
finally, Trainer and Evaluator class can au-
tomatically train and validate the model.

3.3 Online System for Visualization
In addition to this toolkit, we also release an online
system as shown in Figure 5. We implement high-
performance KGE models for large-scale KGs and
deploy pre-trained knowledge embedders for on-
line access. The online system can be directly used
for querying nodes and relations in various forms,
and in the meantime, dimensionality reduction and
visualization of nodes are supported.

4 Evaluation Benchmark

To evaluate the KGE models on large-scale multi-
source heterogeneous KGs, we construct two
new benchmark datasets: EventKG240K and
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Model EventKG240K CogNet360K
Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10 MR MRR

RESCAL 6.3 14.3 29.4 1644.8 13.7 1.0 2.6 7.7 1734.9 4.0
TransE 6.2 16.1 34.7 1019.1 15.1 0.7 2.8 8.6 1167.0 4.1
TransH 6.7 15.9 32.5 1109.4 15.0 0.6 2.6 8.3 2077.9 4.0
DistMult 7.1 15.1 31.2 1113.6 14.8 1.4 3.7 10.4 923.9 5.1
ComplEx 8.4 19.7 41.1 1513.5 18.4 0.7 2.2 7.4 1167.2 3.8
RotatE 8.3 22.3 45.6 717.3 19.8 1.9 4.7 12.2 230.0 6.0
SimplE 9.2 20.6 42.8 2354.5 19.2 1.3 3.3 9.0 2973.3 4.7
BoxE 8.3 17.5 34.5 1871.8 16.5 1.4 3.8 10.1 355.5 5.1
PairRE 7.7 20.3 39.5 1051.0 17.7 1.3 4.1 11.3 810.6 5.4

Table 1: Link prediction results on EventKG240K and CogNet360K (% except MR). Under the raw evaluation
setting, we do not remove the corrupted triples before ranking. The embedding dimension is 50.

Figure 5: An example of online system.

CogNet360K. In this section, we introduce our
datasets and conduct evaluations for classic models
included in CogKGE.

4.1 EventKG240K

EventKG is an event-centric temporal knowledge
graph. To our best knowledge, EventKG240K is
the first event-centric KGE dataset. We use Even-
tKG V3.0 data to construct the dataset. First, we
filter entities and events based on their degrees.
Then, we select the triple facts when both nodes’
degrees are greater than 10. At last, we add text
descriptions and node types for nodes and trans-
late triples to quadruples by temporal information.
The whole dataset contains 238,911 nodes, 822
relations and 2,333,986 triples.

4.2 CogNet360K

CogNet is a multi-source heterogeneous KG dedi-
cated to integrating linguistic, world and common-
sense knowledge. To build a subset, we count the
number of occurrences for each node. Then, we

sort frame instances by the minimum occurrences
of their connected nodes. After the sorted frame
instances, we filter the triple facts according to the
preset frame categories. The final dataset contains
360,637 nodes, 45 relations and 1,470,488 triples.

4.3 Performance

To assess the challenges of EventKG240K and
CogNet360K, we benchmark several popular KGE
models on our dataset and select Hits@1/3/10, MR
and MRR as the metrics. Table 1 shows the per-
formance of KGE models on EventKG240K and
CogNet360K, and the evaluation result shows that
both datasets are more challenging due to their
multi-source and heterogeneous features. For Even-
tKG240K, traditional KGE models can not distin-
guish events and entities well. For CogNet360K,
it is difficult for vanilla KGE methods to represent
multiple kinds of knowledge uniformly. The re-
sults advocate for more efforts towards large-scale
multi-source heterogeneous KGE tasks.

5 Conclusion

In this paper, we propose CogKGE, a knowledge
graph embedding toolkit and benchmark for repre-
senting multi-source and heterogeneous knowledge.
For multi-source knowledge, CogKGE explores the
unified representation of world, commonsense and
linguistic knowledge. For heterogeneous knowl-
edge, CogKGE incorporates the structured and un-
structured knowledge to enhance the meaning of
embeddings. So far, we have implemented 17 clas-
sic KGE models. Besides nine public datasets,
we also release two new benchmark datasets for
further evaluating KGE models. Moreover, ow-
ing to the extensible and modularized architecture,
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CogKGE is not only a KGE research framework,
but also a knowledge discovery library. Besides the
toolkit, we also release an online system to discover
knowledge visually. In the future, more models,
benchmark datasets, and knowledge adapters will
be incorporated into CogKGE.
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A Visualization in CogKGE

As shown in Figure 6, CogKGE plots training loss
and commonly metrics by Tensorboard. To visu-
alize the high-dimensional embeddings, we use
t-SNE dimensionality reduction.

(a) Training Plot. (b) Embedding Plot.

Figure 6: Examples of visualization in CogKGE.

B EventKG240K Statistics

Type Train Validation Test
Nodes 238,911 28,844 28,848
Relations 822 289 301
Event-Event 219,128 1,389 1,427
Event-Entity 1,121,106 9,715 9,731
Entity-Entity 953,774 8,874 8,842
All Triples 2,294,008 19,978 20,000

Table 2: The statistics of EventKG240K.

In this section, we provide more details of our Even-
tKG240K. As shown in Table 2, EventKG240K
contains various event-centirc knowledge, espe-
cially event-event triples and event-entity triples.

C CogNet360K Statistics

In this section, we provide more details of our
CogNet360K. As shown in Table 3, CogNet360K
contains rich multi-source and heterogeneous
knowledge.

Type Train Validation Test
Nodes 360,637 12,989 13,044
Frames 1,273 253 258
Mini_frames 7,673 0 0
Micro_frames 12,188 1,556 1,558
Synset_frames 5,271 1,189 1,179
Frame_elements 5,642 256 246
Fers 1,419 424 420
Fis 254,384 5,611 5,655
Entitys 72,787 3,700 3,728
Frame-Frame 5,762 250 247
Fe-Frame 5,294 0 0
Fe-Fe 14,819 230 225
Fer-Fer 6,440 368 386
Fer-Micro_frame 5,375 462 444
Micro_frame-Micro_frame 63,202 9,108 9,088
Micro_frame-Frame 24,075 0 0
Mini_frame-Frame 15,346 0 0
Mini_frame-Micro_frame 47,548 0 0
Mini_frame-Synset_frame 21,084 0 0
Synset_frame-Frame 23,133 78 77
Synset_frame-Synset_frame 62,215 8,267 8,316
Synset_frame-Micro_frame 129,773 16,283 16,224
Fi-Fer 220,157 16 13
Fi-Entity 488,789 6,047 6,086
Fi-Micro_frame 255,035 112 114
All Triples 1,388,047 41,221 41,220

Table 3: The statistics of CogNet360K.
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Abstract
We introduce Dynatask: an open source sys-
tem for setting up custom NLP tasks that
aims to greatly lower the technical knowledge
and effort required for hosting and evaluat-
ing state-of-the-art NLP models, as well as
for conducting model in the loop data col-
lection with crowdworkers. Dynatask is inte-
grated with Dynabench, a research platform
for rethinking benchmarking in AI that facil-
itates human and model in the loop data col-
lection and evaluation. To create a task, users
only need to write a short task configuration
file from which the relevant web interfaces
and model hosting infrastructure are automat-
ically generated. The system is available at
https://dynabench.org/ and the full
library can be found at https://github.
com/facebookresearch/dynabench.

1 Introduction

Data is the backbone of NLP research. One of
the most fruitful approaches for making progress
on NLP tasks has historically been benchmarking.
Benchmarking is where the community adopts a
high quality dataset for a particular task and tests
various models against it to determine which is
best. The process of benchmarking requires the
effort of a large number of researchers, who col-
lect and clean data, train and evaluate models, and
work to understand model weaknesses. This pro-
cess is iterative: once models perform very highly
on the currently accepted community benchmark,
another is created to push progress further. Taken
as a whole, the benchmarking process is both no-
toriously difficult and expensive. This is due to
a variety of facts: the community is a loose con-
glomeration of researchers with different areas of
expertise, there is ever increasing need for larger
datasets (Halevy et al., 2009), and the AI commu-
nity has historically under-valued (Wagstaff, 2012)

∗ TT and DK conducted most of the work for this paper
when they were at Facebook AI Research.

and under-invested in data collection and best prac-
tices (Kiela et al., 2021; Sambasivan et al., 2021;
Mattson et al., 2022).

To make matters worse, in recent years, bench-
marks have been saturating with increasing speed.
Taking the trends from the greater AI commu-
nity into account, it took MNIST (LeCun et al.,
1998), Switchboard (Godfrey et al., 1992), and Im-
ageNet (Deng et al., 2009) several years to saturate,
and newer benchmarks such as SQuAD (Rajpurkar
et al., 2016), GLUE (Wang et al., 2018), and Super-
GLUE (Wang et al., 2019) about a year. Because
of this, data-centric approaches are gaining more
attention (Ng et al., 2021; Mattson et al., 2022;
Lhoest et al., 2021; Paullada et al., 2021; Luccioni
et al., 2021). This trend is clear evidence of the ur-
gency of finding a sustainable and data-centric way
to support the full benchmarking ecosystem, from
end-to-end, in a way that causes the least amount
of friction for anyone who wants to use it.

In this paper, we introduce our answer to these
issues: an easy-to-use, open source system that
integrates the creation of benchmark datasets for
any task, the selection of appropriate metrics, and
the evaluation of models while natively supporting
revisions to the benchmark as models saturate the
original version. We share a unified library that
enables these functionalities for the Dynabench
platform (Kiela et al., 2021).

2 Background

Dynabench was proposed as an open-source and
community-driven platform to host dynamic bench-
marks. The existing Dynabench tasks avoid satura-
tion by leveraging crowdworkers who continually
interact with state-of-the-art models. Crowdwork-
ers either write examples that fool existing mod-
els (Nie et al., 2020), or collaborate with generative
models to increase example diversity (Bartolo et al.,
2021b). Each task is administered by one or more
task owners from the research community who col-
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context:
- name: context

type: string
placeholder: Enter

context...↪→
input:
- name: hypothesis

type: string
placeholder: Enter

hypothesis...↪→
- name: label

type: multiclass
labels:
- entailed
- neutral
- contradictory
as_goal_message: true

output:
- name: label
- name: probs

type: probs
reference_name: label

input:
- name: image

type: image
display_name: image

- name: labels
type: multilabel
labels:
- Bird
- Canoe
- Croissant
- Muffin
- Pizza

output:
- name: labels

Figure 1: Two example config files and the data collection and validation interfaces they generate. Only config fields
that impact the data collection interfaces are shown (e.g. metrics for model ranking are not shown). The Context and
Input fields define the type of data that humans can enter. The Output field defines what models will output, given
the Context and the Input. Crowdworkers are typically expected to provide the gold truth annotations for a task. In
this case, Output will contain some of the object names from Input and Context. These gold truth annotations are
removed from the Context and the Input before they are sent to models to get a model-in-the-loop output.

(Top) The config implements a natural language inference task. The first image is the collection inter-
face, after a crowdworker submits their example and gets a model-in-the-loop response. The second
image is the validation interface. For brevity, the metadata field in the config is omitted. This field is used to
define the UI components for additional information, such as the “Explain why your example is correct...” input field.

(Bottom) The config implements an image labelling task. The first image is the collection interface, be-
fore a crowdworker submits their example. The second image is the validation interface with the same example.
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lect data, make the competition’s design decisions,
select metrics, and configure the task’s leaderboard.

Kiela et al. (2021) introduced Dynabench with
four English language NLP tasks: Natural Lan-
guage Inference (Nie et al., 2020), Extractive
QA (Bartolo et al., 2020), Sentiment Analy-
sis (Potts et al., 2020) and Hate Speech Detec-
tion (Vidgen et al., 2021). In follow-up work, Ma
et al. (2021) updated Dynabench with additional
leaderboard functionalities that allow task owners
to upload task-specific models which are evaluated
on each of the task’s datasets, and can subsequently
be included in model-ensembles that crowdwork-
ers interact with. As the platform kept expanding,
it became clear that Dynabench needed a scalable
and configurable system for adding new tasks.

A task is an essential concept in understanding
our work. On Dynabench, a distinct task is a par-
ticular relationship between inputs and outputs.1

Inputs and outputs are framed within some pre-
specified format. For example, Natural Language
Inference is a task on Dynabench. The input format
is two strings and the output format is a classifi-
cation label. The relationship between the inputs
and outputs is defined by what humans would do
when loosely instructed to treat the input strings
as a context (sometimes called the “premise”) and
a hypothesis, and return a label for whether they
think the hypothesis is entailed by the context.
MNLI (Williams et al., 2017), SNLI (Bowman
et al., 2015), and ANLI (Nie et al., 2020) can
be viewed as different datasets that instantiate the
same task. Schlangen (2021) takes a similar view.

3 Dynatask

Before the introduction of Dynatask, adding a
new task required close collaboration between task
owners and the Dynabench team, and extensive
software contributions to the Dynabench code-
base. This paper presents a system that enables
Dynabench to scale up to more tasks, including
into multimodal and multilingual domains, without
such requirements. Now, a task owner can create
their own task page on Dynabench with a short task
config file. The config file is used to automatically
generate crowdworker data collection interfaces, as
well as the model and dataset hosting/evaluating
infrastructure. The data collection interfaces and
hosting overlay existing services such as Amazon

1Although, any user can set up a new task that is a duplicate
of an existing one, with a duplicate config file.

Mechanical Turk,2 which provide a workforce and
payment mechanisms, but do not provide crowd-
worker interfaces for dynamic model-in-the-loop
data collection or their corresponding backends. In
fact, local installations of Dynabench can be run
on Mechanical Turk. Overall, a Dynabench task
owner can set up and host:

Crowdworker data collection: Task owners can
configure interfaces for data collection. Models-in-
the-loop can be optionally added, so crowdworkers
can receive real-time model responses from their
data (Figure 1).

Crowdworker data validation: Task owners can
configure interfaces for crowdworkers to label col-
lected examples as correct or incorrect. (Figure 1).

Dynamic dataset metrics: Metrics on the crowd-
worker data are computed, such as verified model
error rate (vMER) (Nie et al., 2020). Crowdworker
example leaderboards are displayed.

A train file leaderboard: Task owners can en-
able users to upload training data files for the auto-
matic creation, training, and evaluation of models
in our evaluation cloud.

A dynamic and interactive model leader-
board (Ma et al., 2021): Task owners can con-
figure a leaderboard, selecting from a variety of
metrics to determine model performance. Own-
ers can also upload new datasets, which triggers
automatic evaluation for all of the user-uploaded
models. Every leaderboard model can be interacted
with in real-time. See Figure 2 for an example.

A model upload pipeline: Once a new task goes
live on Dynabench, our command line tool3 allows
anyone to create a handler script and upload mod-
els by following a few command line instructions.
After models are uploaded, they are dockerized and
deployed automatically. Models can be viewed on
the leaderboard and put in-the-loop with crowd-
workers for data collection.

3.1 Task Configuration

To become task owners, Dynabench users submit a
short written proposal for their task which requires
approval by an administrator. We are still develop-
ing procedures for how Dynabench accepts tasks;

2https://www.mturk.com
3https://github.com/facebookresearch/

dynalab
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aggregation_metric:
type: dynascore

perf_metric:
type: squad_f1
reference_name:

answer↪→

delta_metrics:
- type: fairness
- type: robustness

Figure 2: An example of a task config next to the generated model leaderboard. Only config fields that impact the
leaderboard are shown. Throughput and memory do not need to be in the config; they are computed by default.

so far, we have reached out to have a discussion
with the proposer before accepting their proposal
and all non-spam proposals have been slated for
acceptance. After approval, the task owner submits
a task config file, which can be written in min-
utes. Once complete, the task is actively hosted on
Dynabench; data collection, data validation, model
hosting, and model evaluation starts immediately.
A complete config file is the combination of a snip-
pet in Figure 1 with that in Figure 2.

The task config is a YAML file which allows
someone to encode the specifications for their task—
it can be viewed as a lightweight declarative pro-
gramming language. Task owners can specify:

The datatypes of the task’s inputs and outputs.
There are a variety to choose from, including String,
String Selection, Multiclass, Multilabel, Probabil-
ities, and Image. The datatype definition enables
Dynatask to automatically construct the UIs for
data collection, the dataset uploading and down-
loading infrastructure, and the model uploading
and hosting infrastructure.

A variety of metrics to understand the task’s
datasets and models. Several metrics can currently
be computed for the leaderboard: Macro F1, F1
for Visual Question Answering, F1 for Question
Answering, Accuracy, BLEU, robustness and fair-
ness (Ma et al., 2021), memory usage, and example
throughput. Task owners select or propose an ag-
gregation metric, which combines results across
multiple datasets and metrics to arrive at a ranking
for the leaderboard. Currently, the only supported
aggregation metric is the Dynascore (Ma et al.,
2021), which combines metrics across datasets
based on microeconomic utility (Ethayarajh and
Jurafsky, 2020) of user provided weights. Metrics
can also be specified for model-in-the-loop data col-
lection to judge whether a model’s output matches

Figure 3: The task owner interface for ANLI.

that of a crowdworker (i.e., whether the model is
“correct”). Dynatask supports a variety of such met-
rics, including a string F1 threshold (for outputs
that are strings), exact match, and simply asking
the crowdworker whether the model was correct.

Other optional items, such as messages and in-
structions that appear in crowdworker interfaces,
and options for train-file leaderboards.

3.2 Options After Task Configuration

Crowdworker Interfaces, Data Generation, and
Data Evaluation: Data collection interfaces are
automatically hosted at dynabench.org. In or-
der for Dynabench to scale, task owners source
and pay crowdworkers themselves. If crowdworker
management, compensation, and sourcing features
are needed, an owner can clone Dynabench and
run it on Mechanical Turk by hosting the data col-
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Figure 4: A cross-section from a model card. The task
owner has enabled downloading of model evaluation
logs for each dataset via the buttons on the right.

lection frontend using Mephisto.4 Task owners
can upload context data for crowdworkers to use
and download data collected from crowdworkers
directly from the Dynabench web interface. Task
owners can also initiate new rounds of data col-
lection where they are free to upload entirely new
contexts and models. As part of the data collection
process, vMER, number of total collected exam-
ples, and number of validated examples are com-
puted. Finally, task owners can alter instructions to
crowdworkers at any time. They can also specify
whether crowdworkers should validate non-model
fooling examples, and provide a validation consen-
sus threshold above which examples are considered
fully validated. Figure 3 shows an example of the
interface that task owners use to adjust settings.

Model Submission, Interaction, and Evaluation:
Task owners can decide whether their task accepts
model submissions, they can upload datasets for
model evaluation, and they can download model
evaluation logs for any dataset and model. Task
owners can optionally allow users to download
these logs to debug their models; see the exam-
ple in Figure 4.

4 Decentralized Evaluation-As-A-Service

Most task owners currently use the centralized Dyn-
abench evaluation and model deployment server.
With Dynatask, however, we offer a decentralized
evaluation feature that will increase the platform’s
flexibility even further. With this feature, task own-
ers can set up a Dynabench model deployment and
evaluation server or select an existing one. To set
up a new server, an owner only needs to follow
our documentation, creating an AWS account and
installing some Dynabench code along the way.
Distributed hosting of model building and evalua-
tion enables Dynatask to scale: no one organization
needs to fund hosting for all of the models on Dyn-

4https://github.com/facebookresearch/
Mephisto

Statistic Count

Datasets Hosted 191
Unique Crowdworkers 5,595
Model Uploads 589
Data Collection Rounds 38
Tasks (incl. private) 24
Examples Collected 559,229
Example Validations 436,922

Table 1: Current Dynabench statistics.

abench, and every owner of a model deployment
and evaluation server can flexibly upload or take
down models to suit their budget. It is also de-
signed with re-usability in mind: several tasks can
share the same evaluation servers. Task owners do
not need to do any setup if they have permission to
use an existing evaluation server.

5 Case Studies of Tasks Enabled so Far

Tables 1 and 2 provide an overview of Dynabench
so far. In this section, we report on some use cases.
Most of the following projects (besides Image La-
belling and Open Domain QA) were added to Dyn-
abench before the introduction of Dynatask, which
took months of coding in every case. With Dy-
natask, they can all be implemented in minutes.

Hate Speech Detection: There are a number
of hate speech detection projects on Dynabench,
where a model must label strings as hateful or
not. Groups from Oxford, The Alan Turing Insti-
tute, The University of Sheffield, and Facebook AI
own task pages that focus on collecting adversarial
data (Vidgen et al., 2021), collecting emoji-based
hate (Kirk et al., 2021), and evaluating models on
a large number of hate speech data perturbations.

Visual Question Answering: To combat satu-
rating datasets for the VQA task, which is about
answering a question based on an image, Face-
book AI and Tecnológico de Monterrey introduced
AdVQA (Sheng et al., 2021) using Dynabench.
The task’s model leaderboard has an additional
adversarial VQA dataset from Microsoft and Ts-
inghua (Li et al., 2021).

Extractive Question Answering: Groups from
UCL and Facebook AI run SQuAD-style (Ra-
jpurkar et al., 2016) extractive QA projects on Dyn-
abench. The Adversarial QA (Bartolo et al., 2020)
project resulted in a popular dataset on the Hug-
ging Face hub (Lhoest et al., 2021). Follow-up
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Selected Dynabench Tasks Context and Input Types Output Types

Hate Speech Detection https://dynabench.org/tasks/hs String, String, Multiclass Multiclass, Probs
Visual QA https://dynabench.org/tasks/vqa Image, String String
Extractive QA https://dynabench.org/tasks/qa String, String, String Select String Select, Probs
Open Domain QA https://dynabench.org/tasks/qb String, String, String String, Probs
Natural Language Inference https://dynabench.org/tasks/nli String, String, Multiclass Multiclass, Probs
Sentiment Analysis https://dynabench.org/tasks/sentiment String, String, Multiclass Multiclass, Probs
Machine Translation https://dynabench.org/tasks/flores String, String, String, String String
Image Labelling https://dynabench.org/tasks/vision-dataperf Image, Multilabel Multilabel

Table 2: IO types from the task config, for some tasks on Dynabench. Tasks share the same building blocks.

projects explored the generation of synthetic adver-
sarial QA data (Bartolo et al., 2021a), generative
assistants in the loop to help annotators create ex-
amples (Bartolo et al., 2021b), and a study of how
adversarial model-in-the-loop training data affects
generalization out of domain (Kaushik et al., 2021).

Open-Domain Question Answering: A team at
Facebook AI and The University of Maryland has
started a model-in-the-loop data collection effort
for the Quizbowl task (Rodriguez et al., 2019; Wal-
lace et al., 2019), as well as a model leaderboard.
The task is open domain question answering, where
both the question and answer are strings.

Natural Language Inference: The NLI dataset
ANLI (Nie et al., 2020) is currently a popular
dataset on Hugging Face datasets (Lhoest et al.,
2021) and an ongoing Dynabench project. Groups
from Facebook AI, UC Berkeley, and UNC have set
up additional NLI projects on distinct Dynabench
task pages. These projects have ranged from an
analysis of the contents of adversarially collected
development sets (Williams et al., 2022), to an ex-
plication of the benefits of dynamic adversarial
data collection over multiple rounds (Wallace et al.,
2021), to model and leaderboard hosting for a large
number of robustness-perturbed NLI datasets.

Sentiment Analysis: In later rounds of their work,
a team at Stanford used Dynabench to create a new
adversarial sentiment analysis dataset, called Dy-
nasent (Potts et al., 2020). They added prompts to
their data collection interfaces to encourage crowd-
workers to generate naturalistic and diverse data.

Large-Scale Machine Translation: The Work-
shop on Machine Translation (Wenzek et al.,
2021) organizers created a Dynabench task page
and hosted the FLORES benchmark competi-
tion (Goyal et al., 2021) of over 10,000 language
pairs. It featured competitors from Microsoft,
Huawei, Tencent, and Facebook, and individual
competitors. The result of the competition was a
BLEU increase of over 10 points on the full task.

The owners used Dynabench for its leaderboard,
model upload, and evaluation-as-a-service feature,
without collecting data on the platform yet.

Image Labelling: DataPerf (Mattson et al., 2022)
is a working group of the non-profit ML Commons,
which focuses on dataset benchmarking for gen-
eral AI. For their image labelling task hosted on
Dynabench, they configured their task via the task
config to accept training data file uploads. Users up-
load train files and models are automatically trained
against them and evaluated in the evaluation cloud.

6 Conclusion

We introduced Dynatask, a collection of open
source features in the Dynabench platform that
empowers anyone to create and own a task on Dyn-
abench with only a short config file. Dynabench
started as an NLP project with only four English-
only tasks. Since then, Dynatask has helped re-
searchers produce several datasets and host com-
petitions, expanding scalably into multimodal and
multilingual domains with owners from various
corners of the AI community. Dynatask offers
the functionalities of Dynabench to the broader
research community by allowing them to easily
create and host new AI tasks on the platform: it
provides a one-stop shop for constructing datasets
with or without models in the loop, hosting chal-
lenges and competitions, investigating the effects
of models in the loop, characterizing distributional
shift and continual learning, exploring annotator
efficiency and expertise, and improving model ro-
bustness through collaboration with humans.

Finally, Dynabench is an open source,
community-driven effort. Anyone who wants to
add a new input/output type, a new metric, or any
other new feature, need only submit a pull request.
We hope that our our work can help enable new
exciting scientific progress in data-centric AI
research in general and dynamic (adversarial) data
collection in particular.
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Abstract

Despite data’s crucial role in machine learning,
most existing tools and research tend to focus
on systems on top of existing data rather than
how to interpret and manipulate data. In this
paper, we propose DATALAB, a unified data-
oriented platform that not only allows users
to interactively analyze the characteristics of
data, but also provides a standardized inter-
face for different data processing operations.
Additionally, in view of the ongoing prolifer-
ation of datasets, DATALAB has features for
dataset recommendation and global vision anal-
ysis that help researchers form a better view of
the data ecosystem. So far, DATALAB covers
1,715 datasets and 3,583 of its transformed ver-
sion (e.g., hyponyms replacement ) , where 728
datasets support various analyses (e.g., with re-
spect to gender bias) with the help of 140M
samples annotated by 318 feature functions.1

DATALAB is under active development and has
been recently upgraded based on reviewers’
constructive suggestions.2 We have released a
wealth of resources to meet the diverse needs
of researchers: web platform,3 open-sourced
code of web platform,4 web API, open-sourced
SDK,5 PyPI published package,6 and online
documentation.7

1 Introduction

Datasets power modern natural language pro-
cessing (NLP) systems, playing an essential

∗Work done during a remote research collaboration with
CMU

†Corresponding author
1Users can also customize their favored feature functions

using DATALAB SDK.
2Recent update: https://datalab.nlpedia.ai/

update
3http://datalab.nlpedia.ai/
4https://github.com/ExpressAI/DataLab_

web
5https://github.com/ExpressAI/DataLab
6https://pypi.org/project/datalabs/
7https://expressai.github.io/DataLab/
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Figure 1: Overview of DATALAB functionality

role in model training, evaluation, and deploy-
ment (Paullada et al., 2021). Furthermore, meth-
ods to process data and understand have been sub-
ject to much research, including on topics such as
data augmentation (Fadaee et al., 2017; Feng et al.,
2021), adversarial evaluation (Jia and Liang, 2017;
Ribeiro et al., 2021), bias analysis (Zhao et al.,
2018a; Blodgett et al., 2020), and prompt-based
learning (Liu et al., 2021b). Despite the critical role
of data in NLP, the majority of open-source tooling
regarding NLP has focused on methods to build
models given data, rather than to analyze and inter-
vene upon the data itself. In this paper, we present
DATALAB, a unified platform that allows NLP re-
searchers to perform a number of data-related tasks
in an efficient and easy-to-use manner:

(1) Data Diagnostics: While a significant
amount of research has focused on interpreting the
outputs of machine learning systems (Lipton, 2018;
Belinkov and Glass, 2019), data deserves deeper
understanding as a first-class citizen of the machine
learning ecosystem. DATALAB allows for analysis
and understanding of data to uncover undesirable
traits such as hate speech, gender bias, or label
imbalance (as shown in Fig.1 and § 3.1).

(2) Operation Standardization: There are a num-
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Aspects Numbers

Tasks/Languages 142/331
Features/Prompts 318/1007
Plain/Diagnostic Datasets 1,715/3,583
Annotated Datasets 728
Annotated Samples 139,570,057

Table 1: Key statistics of DATALAB. “Diagnostic
Dataset” refers to a dataset obtained by applying trans-
formations to the original version.9“Annotated” indi-
cates datasets or samples where we compute features
to obtain additional information that is not originally
present in the dataset.

ber of well-designed packages for data-oriented
operations such as preprocessing (Loper and Bird,
2002; Manning et al., 2014; Kudo, 2020) or editing
(Ribeiro et al., 2021; Dhole et al., 2021). In prac-
tice, however, the diversity of requirements makes
it necessary for users to install a variety of packages
that use different data processing interfaces. This
(a) reduces the efficiency of development, (b) can
confuse users (e.g., not knowing what preprocess-
ing methods are appropriate for a given dataset?),
and (c) is detrimental for reproducibility (Marie
et al., 2021). DATALAB provides and standard-
izes a large number of data processing operations,
assigning each operation a unique identifier, to mit-
igate these issues (§ 3.2).
(3) Data Search An important question in practice
is which datasets to use in a given scenario, given
the huge proliferation of datasets in recent years.8

DATALAB provides a semantic dataset search tool
to help identify appropriate datasets (§ 3.3).
(4) Global Analysis Beyond individual datasets,
analyzing the entire ecosystem of existing datasets
as a whole can yield insights. From a birds-eye
view, we can get a clearer picture: where we are
and where efforts should be focused to avoid sys-
temic inequalities (Blodgett et al., 2020; Blasi et al.,
2021). DATALAB provides tools to perform similar
global analyses over a variety of datasets (§ 3.4).

With the above use cases in mind, DATALAB

focuses on the following design principles:

• Broad-coverage: DATALAB is designed to
cover the majority of NLP tasks, and imports
data from a very large number of plain datasets

8According to Papers With Code, the number of AI-related
academic datasets has doubled in the past two years.

9We collect diagnostic datasets by performing an extensive
literature review and searching for existing works that released
diagnostic samples from different tasks.

and diagnostic ones as shown in Table 1.10

• Interpretable: DATALAB has annotated statisti-
cal information for many datasets (728 datasets,
139,570,057 samples) that is not originally in-
cluded in the dataset. These features can help
researchers and developers better understand
datasets before use, and help data creators im-
prove data quality (e.g., removing artifacts, bias)

• Unified: One of the main goals of DATALAB is
to unify different data analysis and processing op-
erations into one platform and SDK. To achieve
this goal, we design a generalized typology for
data and operations (Figure 2).

• Interactive: DATALAB makes data exploration,
assessment, and processing more accessible and
efficient (real-time search, comparison, filter-
ing, generation of dataset diagnostic reports).
DATALAB can also be used as an off-the-shelf
annotation platform where some missing yet im-
portant crowdsourcable information can be con-
tributed by users.

• Inspirational: DATALAB’s global view of
datasets makes it possible to inspire new research
directions, e.g. by (i) finding more appropriate
datasets as shown in §3.3 (ii) tracking the global
status of dataset development and identifying
future directions as illustrated in §3.4.

2 Related Work

Toolkits for NLP Pipelines There are a wealth of
toolkits that support the processing of various NLP
tasks, making it easier to build a composable NLP
workflow. Typical examples are NLTK (Loper and
Bird, 2002), NLPCurate (Clarke et al., 2012), Stan-
ford CoreNLP (Manning et al., 2014), AllenNLP
(Gardner et al., 2018), SpaCy (Honnibal and Mon-
tani, 2017), GluonNLP (Guo et al., 2020), Forte
(Liu et al., 2021c), HuggingFace (Lhoest et al.,
2021).

In contrast to these toolkits, DATALAB focuses
on data analysis, bias diagnostics, and standard-
ization of data-related operations. Moreover, be-
sides providing the SDK, DATALAB also provides
a web-based interactive platform, featuring hun-
dreds of datasets and millions of additional annota-
tions w.r.t. diverse features. KYD (Google, 2021)
also provides a web platform for data analysis but
it mainly focuses on image data. ExplainaBoard
(Liu et al., 2021a) presents an analysis platform
while it focuses on system diagnostics.

10Details can be found in Appendix.
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Standardization by Community Wisdom In
ML in general and NLP in particular, researchers
have been paying increasing attention to analyz-
ing and improving systems from the perspective of
data. In NLP, one major challenge in data process-
ing is the diversity of data formats (e.g., CONLL,
BRAT), task types (e.g., classification, generation)
and design considerations (e.g., which types of
preprocessing or augmentation) hinders the estab-
lishment of a unified platform. Recently, however,
researchers in the field are actively trying to allevi-
ate this problem by allowing community members
to collectively contribute data-related operations on
the same set of code frameworks, and eventually
build a data processing platform around those oper-
ations. For example, HuggingFace (Lhoest et al.,
2021) and Tensorflow (TFData, 2021) Datasets,
where researchers in the community contribute
data loaders for different tasks and datasets. In
XL-Augmentor (Dhole et al., 2021) and Prompt
Sourcing (Sanh et al., 2021) different data transfor-
mations or prompts are crowdsourced respectively.

After seeing this implicit pattern, we ask, can
we have a more general platform above to unify all
of these different operations? DATALAB makes a
step towards this goal by not only focusing on how
to unify data loader interfaces like Huggingface
and Tensorflow have done, but also unifying data
operations and analysis.

3 DATALAB

In this section we detail four major varieties of
functionality provided by DATALAB.

3.1 Data Diagnostics
Data diagnostics aim to provide users with a com-
prehensive picture of data through various statisti-
cal analyses, enabling better model designs.

3.1.1 Fine-grained Analysis
Fine-grained analysis aims to answer the question:
what are the characteristics of a dataset? Existing
works have shown its advantages in better system
designs (Zhong et al., 2019; Fu et al., 2020b; Te-
jaswin et al., 2021) . Conceptually, this analysis
over various dimensions can be performed over
each data point (i.e. sample-level) or whole datasets
(i.e. dataset-level). These are either generic (text
length at sample-level or the average text length at
corpus-level) or task-specific (for summarization:
summary compression (Chen et al., 2020) or the
average of summary compression). We detail the

features utilized for fine-grained analysis in Ap-
pendix.

One key contribution of DATALAB is that we not
only design rich sample-level and dataset-level fea-
tures, but also compute and store those features in
a database for easy browsing. As shown in Table 1,
so far, we have designed more than 300 features
and computed features for 140M samples.

3.1.2 Bias Analysis

The research question to be answered by bias analy-
sis is: Does the dataset contain potential bias (e.g.,
artifacts, gender bias)? Bias problems have been
discussed extensively in NLP (Zhao et al., 2018a;
Blodgett et al., 2020), and we argue that establish-
ing a unified platform for data bias analysis can
more efficiently identify or prevent (for data cre-
ators) data bias problems. For example, through
the artifact analysis, users can know the shortcut
provided by the dataset for model training and be
inspired to design more robust systems. So far,
DATALAB supports three types of bias analysis.

Artifact Identification As observed in many pre-
vious works (Gururangan et al., 2018; McCoy et al.,
2019), artifacts commonly exist in datasets, which
provide shortcuts for model learning and there-
fore reduce its robustness. DATALAB allows re-
searchers to easily identify potential artifacts in a
dataset using the features we have pre-computed
for each sample. Specifically, we use PMI (Point-
wise mutual information) (Bouma, 2009) to detect
whether there is an association between two fea-
tures (e.g. sentence length vs. label). We detail this
method using an example in Appendix.11

Gender Bias Analysis Gender bias is a prevalent
social phenomenon. In this work, we introduce a
multidimensional gender biased dictionary12 used
by Dinan et al. (2020) to measure the degree of
gender bias in a dataset. Given a dictionary D1 of
female names and a dictionary D2 of male names.
Suppose a dataset A with N samples has n1 name
appearing in D1 and n2 in D2. Following Zhao
et al. (2018b), we can calculate the female bias for
dataset A as n1/N ; the male bias as n2/N .

Hate Speech Analysis Hate speech (Badjatiya
et al., 2017) can lead to a "dehumanizing effect"

11https://expressai.github.io/DataLab/
docs/WebUI/bias_analysis_for_artifacts

12huggingface.gender_bias
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Aspect Functionality Input Example Output
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Characteristic histogram: The bar chart on
the left shows the distribution of the number of
samples of different lengths in a dataset.
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Bias pie chart: The pie chart on the left shows
the hate speech bias of a dataset. The orange
portion on the right is the percentage of the data
samples containing hate speech, while the green
portion on the left is the rest.
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Comparison spider chart: The spider diagram
on the left shows the differences between two
datasets (D1 and D2) in three dimensions: Den:
density, Nov: novelty, Cov: coverage.
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Statistics or transformed datasets: The figure
here shows five example operations (one for each
category) computed on either one sample (You)
or the whole dataset (You and Not bad).
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Related datasets: The example on the left uses
the keyword Summarization to search for
recommended datasets. .

Global Vision Language Map Multiple datasets
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Heatmap: We use a heatmap to show how many
datasets are available for each country in terms
of the languages people speak in that country.

Table 2: A graphical breakdown of the functionality of DATALAB.

that harms people’s mental health by undermin-
ing empathy (Tsesis, 2002). We make a first step
by following Davidson et al. (2017), classifying
the samples into hate speech, offensive language
and neither categorizing by the “hatesonar” tool.13

Users are also allowed to customized other hate
speech models using DATALAB SDK. We also av-
eraged the offensiveness of all samples in a dataset
to analyze the hate speech bias of the dataset.14

3.1.3 Interactive Analysis
Interactive analysis aims to meet users’ customized
data analysis requirements in real time. Although
interactivity is present in many aspects of DATA-
LAB, we highlight here its use in three scenarios
that make data analysis more accessible. (1) Users

13pypi.org.hatesonar
14Note that deciding whether a sentence contains toxic lan-

guage is a complex task, which may involve the confounding
effects of dialect and the social identity of a speaker Sap et al.
(2019), and future iterations of DataLab may use meta-data
of datasets to further perform this analysis intersectionally.
We have also stored the results of hate speech detector for all
samples to make the analysis process more transparent and
well-grounded and users could browse them and report error
cases.

can choose two datasets they are interested in and
align them for comparative analysis over differ-
ent dimensions, as shown in Table 2. (2) Users
can upload their own datasets and DATALAB will
generate diagnostic reports for comprehensive anal-
ysis and evaluation of the datasets. (3) Users can
contribute some missing metadata information by
directly editing in the web interface.

3.2 Data Operations

Another key feature of DATALAB is the standard-
ization of different data operations into a unified
format to satisfy different data processing require-
ments in one place. To this end, we devised a
general typology for the concepts of data and op-
eration as shown in Figure 2 and curated schemas
for these objects. For the operation schema, we
introduced (i) “operation id”: so that researchers
can report them papers for easy re-implementation
for follow-up research. (ii) “contributor“ to credit
those who contributed to the operation. Notably,
user-defined operations are also supported (we give
an example in Appendix).
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(a) PMI analysis results of hypothesis length and labels for the SNLI dataset. (b) Gender bias analysis
on SNLI.

(c) Language map

Research idea

Recommend datasets

We want to train a model that can recognize 
the positive or negative sentiments contained 
in a text

(d) Data Recommendation.

Figure 3: Case study

Dataset Recommendation Fig. 3-(d) presents a423

case study of dataset recommendation in our DATA-424

LAB. When a user inputs an research idea “We425

want to train a model that can recognize the pos-426

itive or negative sentiments contained in a text”,427

DATALAB can reasonably recommend sentiment428

analysis datasets, such as ASTD (Arabic Sentiment429

Tweets Dataset) (Nabil et al., 2015), MPQA (Wiebe430

et al., 2005), and Sentimental LIAR (Upad-431

hayay and Behzadan, 2020).432

433
from datalabs import load_dataset434

435
# Load dataset436
dataset =437

load_dataset("ag_news")["train"]438
439

from preprocess import *440
# apply operation441
res = dataset.apply(lower)442

443
from edit import *444
# Apply operation445
res = dataset.apply(add_typo)446

447
from featurize import *448
# Apply operation449
res = dataset.apply(get_entities_spacy)450451

5 Ethics/Broader Impact Statement452

We discuss ethical issues of this work from the453

following aspects:454

Intended Use If the platform works as expected, 455

researchers, developers and analysts can all ben- 456

efit from it. Researchers can gain a deeper and 457

more comprehensive understanding of the charac- 458

teristics of the datasets, developers can more easily 459

access the datasets and manipulate the data sam- 460

ples, and analysts can see some social insights from 461

the datasets. 462

Failure Modes and Solutions While the Global 463

Vision functionality is useful to some extent in help- 464

ing us recognize the extent to which different lan- 465

guages are studied and where the strengths of dif- 466

ferent institutions lie. However, its ranking infor- 467

mation should not be used as a criterion for judging 468

how good or bad an institution is. On the one hand, 469

we designed this feature to provide a reference for 470

researchers with specific research interests to read 471

papers and to promote complementarity between 472

institutions. On the other hand, the statistics we use 473

cannot be absolutely comprehensive, nor can the 474

statistical methods be absolutely objective. How- 475

ever, we provide evidence of the rankings we give 476

and support the reporting of errors in order to be 477

transparent. 478

References 479

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta, 480
and Vasudeva Varma. 2017. Deep learning for hate 481
speech detection in tweets. CoRR, abs/1706.00188. 482

7

(c) SDK

Figure 2: Typology of Data and Operations. Gray-white text (e.g., Image Data) indicates that the data type has been
defined but we have not yet added data of that type.

Preprocessing Data preprocessing (e.g., tok-
enization) is an indispensable step in training deep
learning and machine learning models, and the
quality of the dataset directly affects the learning of
models. Currently, DATALAB supports both gen-
eral preprocessing functions and task-specific ones,
which are built based on different sources, such
as SpaCy (Honnibal and Montani, 2017), NLTK
(Loper and Bird, 2002), Huggingface tokenizer.15

Editing Editing aims to apply certain transforma-
tions to a given text, which spans multiple impor-
tant applications in NLP, for example (i) adversarial
evaluation (Ribeiro et al., 2021; Wang et al., 2021),
which usually requires diverse perturbations on test
samples to test the robustness of a system. (ii) Data
augmentation (Wei and Zou, 2019; Dhole et al.,
2021; Feng et al., 2021). Essentially, many of the
methods for constructing augmented or diagnos-
tic datasets involve some editing operation on the
original dataset (e.g., named entity replacement
in diagnostic dataset construction (Ribeiro et al.,
2021), token deletion in data augmentation (Wei
and Zou, 2019)). DATALAB provides a unified in-
terface for data editing and users can easily apply
to edit the data they are interested in.

Featurizing This operation aims to compute
sample-level features of a given text. In DATA-
LAB, in addition to designing some general feature
functions (e.g. get_length operation calculates the
length of the text.), we also customize some feature
functions for specific tasks (e.g. get_oracle opera-
tion for the summarization task that calculates the
oracle summary of the source text.).

15huggingface.tokenizers

Aggregating Aggregation operations are used
to compute corpus-level statistics such as TF-IDF
(Salton and Buckley, 1988), label distribution. Cur-
rently, DATALAB supports both generic aggrega-
tion operations applicable to any task and some
customized ones for four NLP tasks (classification,
summarization, extractive question answering and
natural language inference).

Prompting Prompt-based learning (Liu et al.,
2021b) has received considerable attention, as bet-
ter utilization of pretrained language models ben-
efits many NLP tasks. In practice, what makes
a good prompt is a challenging question. We de-
fine the prompt schema as shown in fig. 3. The
elements we included in a prompt cover diverse as-
pects including its features (e.g. length, shape, etc.),
metadata (e.g. unique identifier, language, etc.), at-
tributes (e.g. template, answers, etc.) as well as its
performance w.r.t. different pre-trained language
models and settings. The design can not only help
researcher design prompts but also analyze what
makes a good prompt.

So far, DATALAB covers 1007 prompts which
can be applied to five types of tasks (topic classi-
fication, sentiment classification, sentence entail-
ment, summarization, natural language inference),
covering 309 datasets in total.

3.3 Data Search
Data search aims to answer the research question:
which datasets should one use given a description
of a research idea? As more datasets are proposed,
there is an open question of how to choose the right
dataset for a given application. DATALAB takes
a step towards solving this problem by including
semantic dataset search.

DATALAB data search takes a natural language
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Figure 3: Prompt schema in DATALAB.

description of a research idea,16 compares it with
descriptions of thousands of datasets, and displays
the datasets best matching the input (a detailed
example is given in Figure 4). This retrieval system
goes beyond keyword search by using semantic
matching. The algorithm is described in a pending
paper; we provide technical details in Appendix.

3.4 Global Vision Analysis

Language Map: Which languages’ datasets get
less attention? A language map is used to ana-
lyze which languages are more studied and which
are less studied from a geographical view (Faisal
et al., 2021), identifying potential systemic in-
equalities. Specifically, we first count how many
datasets are available for each language. Then for
each country we calculate a distribution over lan-
guages,17 where the ratio of each language rep-
resents the proportion of people who speak that
language. Finally, for each country, we can get the
weighted average number of datasets available for
it in terms of its spoken languages (see Appendix
for details).

4 Case Study

We perform three case studies to show the utility
of DATALAB and put more in the appendix.

Artifacts One famous example of a dataset ar-
tifact reported by Gururangan et al. (2018) (Fig-
ure 1) is that in NLI datasets, the length of the
hypothesis sentence is closely associated with the
assigned label of the premise-hypothesis pair. In
fact, DATALAB is able to easily re-discover this

16DATALAB also supports keyword queries as input. How-
ever we find the added context provided by natural language
descriptions improves search quality.

17We refer to some official statistics from this link.

artifact, and more. Fig. 4-(a) shows an analysis
on the SNLI dataset (Bowman et al., 2015) be-
tween two features lengthhypothesis and label (en-
tailment, neutral or contradiction). We can ob-
serve that, when lengthhypothesis is larger than 8.4,
PMI(labelneutral, lengthhypothesis) > 0.28, suggest-
ing that “long hypotheses” tend to co-occur with
the “neutral” label, even without consideration of
the premise. Additionally, when lengthhypothesis ∈
[1, 4.7], PMI(labelentailment, lengthhypothesis) =
0.359, implying that “short hypotheses” tend to
co-occur with the label “entailment”. However,
this is not all; we further observed more than ten
potential artifacts on SNLI and another popular
dataset SST2 (Socher et al., 2013) (see Appendix),
which demonstrates the ability of DATALAB to ef-
ficiently identify these artifacts.

Systemic Inequalities Fig. 4-(b) is a statistic of
the degree to which languages are studied from a
global (w.r.t each country in the world) perspective,
with a darker red indicating more datasets studied/-
constructed for the languages spoken in a given
country, and darker blue indicating the opposite.
Unsurprisingly, we observe that English is the most
studied (large English-speaking countries like the
US, Canada, and UK are in dark red), which also
benefits those English-speaking African countries
(e.g. Madagascar, Uganda, and Libya are in red.).
We also observe that the languages spoken in bm
(Mali), ee (Ghana), and kr (Niger) are rarely stud-
ied, as can be seen from our language map that
these three languages have a value of 0.

Gender Bias We also showcase the gender bias
analysis on SNLI as illustrate in Fig. 5. We can find
that the samples in the SNLI dataset contain more
male-oriented words than females (male(0.62) >
female(0.38)).

Dataset Recommendation Fig. 4-(c) presents a
case study of using our DATALAB to get recom-
mended datasets. When a user enters a research
idea “I want to train a model that can recognize
the positive and negative sentiments contained in
a beer review.”, DATALAB returns the beer review
dataset BeerAdvocate (McAuley and Leskovec,
2013) first in the interface, which is a precise re-
sult since the dataset consists of beer reviews from
beeradvocate.18

18https://www.beeradvocate.com/
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(a) PMI analysis between two features: hypothesis length and label for the SNLI

(b) Language map (c) Data recommendation

Figure 4: Case studies on artifact detection, systemic inequality, and dataset recommendation.

Figure 5: Gender bias analysis on SNLI.

5 Implications and Roadmap

DATALAB was born from our two visions (1) It is
essential to standardize both the format of data and
the interface of data-centric operations. (2) The
standardization of data and operations allows more
people in the community to contribute and share
community wisdom. For example, in DATALAB,
community researchers can easily contribute (1)
new feature functions that enable us to conduct data
analysis from more dimensions; (2) new datasets or
the missing metadata. We hope that the unity of the
platform can make it easier for collective wisdom
to come into play.

In the future, we will extend DATALAB more
broadly in terms of following perspectives: (1)
index more data with different domains such as
scientific and medical ones, and different modal-
ities, such as image, video. (2) refine the current
data typology over time, (3) add more built-in fea-
ture functions (e.g., labeling function (Ratner et al.,

2020)). (4) introduce more effective data manage-
ment methods into DATALAB, such as FAIR.19
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searchers can gain a deeper and broader understand-
ing of the characteristics of the datasets, developers
can more easily access the datasets and manipulate
the data samples, and analysts can see some social
insights from the datasets.

During the whole data analysis process, we tried
to make it as transparent as possible, and the results
of the analysis were well-grounded on sufficient
evidence so that users could more reliably use it.
Additionally, users are encouraged to report a case
where the annotation results are not precise.

For those private datasets, we introduce three
processing strategies for users: (1) users could flex-
ibly use DATALAB SDK to deal with their data
offline. (2) We introduce an account system20 for
users to set up a private space for their datasets. (3)
We also open-source the code of DATALAB web
platform21 so that users can host this web service
locally.

As no feature analysis method will ever be per-
fectly reliable,22 to alleviate this issue, so far,
DATALAB SDK provides several built-in feature
functions for users to choose from and also make
it customized by users. We are now working on
benchmarking different feature functions in differ-
ent domains of data so that users can have a better
idea when choosing.

Currently, DATALAB only supports public
datasets. In addition, knowing more about the char-
acteristics of the test sets might make overfitting
easier for model training. One possible approach is
through multi-dataset evaluation, i.e., a good sys-
tem should achieve good results across a series of
different datasets.

DATALAB can privilege some datasets and data
sources over others. To alleviate this problem,
we introduce the dataset FINDER23 functionality,
where users can retrieve the dataset either from
DATALAB and external resources like paperswith-
code datasets24 based on their requirement. Addi-
tionally, we will continue to keep the data corpus
updated. For example, we recently added datasets
from ACL2022.

Although DATALAB categorizes datasets into
common tasks and paradigms, it still retains the

20https://datalab.nlpedia.ai/user
21https://github.com/ExpressAI/DataLab_

web
22Thank reviewers for raising the discussion of this issue.
23https://datalab.nlpedia.ai/dataset_

recommendation
24https://paperswithcode.com/datasets

original information provided by the creators of
each dataset. For example, the text to be classified
in imdb is named as “review” while in ag_news
is named as “sentence”. We introduce an interme-
diate variable25 “text_column” to store the dataset-
dependent naming information.

We appreciate any suggestions you have on how
to make DATALAB better. Your issues are highly
welcome,26 and we will actively update.
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A Appendix

A.1 Detailed Statistics of DATALAB.
Here, we list more detailed statistics of DATALAB

in Table 3.

Aspect Number

Tasks 142
Plain datasets 1,715
Diagnostics datasets 3,583
Language 331
Organization 794
Prompts 1,007

Operation

Aggregate 8
Preprocess 4
Featurize 16
Edit 23
Prompt 32

Feature
Sample level 138
Dataset level 180

Bias analysis

Hate speech datasets 240
Gender bias datasets 241
Gender bias samples 18,520,130
Hate speech samples 18,511,763

Annotated Datasets 728
Annotated samples 139,570,057
Total samples 408,460,905

Table 3: More detailed statistics of the DATALAB. “Di-
agnostic Dataset” refers to a dataset obtained by apply-
ing transformations to the original version.27“Annotated”
indicates datasets or samples where we compute features
to obtain additional information that is not originally
present in the dataset.
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A.2 Features
Features (e.g., sentence length) allow us to
understand the characteristics of a dataset from dif-
ferent perspectives. Following Fu et al. (2020a),
we define 318 features for 142 NLP tasks. Be-
low, we list some core features at the sample- and
dataset-level and suitable tasks.

A.2.1 Sample-level
General Features General features are task-
agnostic and suitable for all NLP tasks.

• Sentence length: the number of tokens in a sen-
tence.

• Part-of-speech tags: the part-of-speech tag for
each token is automatically labeled by NLTK
(Loper and Bird, 2002) Python tool.

• Named entities: entity names are automatically
recognized by NLTK and SpaCy (Honnibal and
Montani, 2017) Python tools.

• Basic words ratio: the proportion of words that
appear in the basic English dictionary28.

• Lexical richness (Richards, 1987): the propor-
tion of unique words, obtained by dividing the
number of unique words by the total number of
words.

• OOV density: the proportion of words in a test
sentence that do not appear in the training set.

Specialized Features In addition to general fea-
tures, we also design task-specific features for some
core NLP tasks. Below, we list some key task-
specific features, as well as applicable tasks.

• Span length: the length of span. Span can be en-
tity/answer/chunk/aspect. (NER, QA, Chunking,
ABSA)

• Label consistency of span (Fu et al., 2020a): the
visibility of a span and its label in the training
set. (NER, Chunking)

• Span frequency: the frequency of entities in the
training set. (NER, Chunking)

• Span density: the number of words belonging
to entities in a sentence divided by the length of
the sentence. (NER, Chunking)

• Text similarity: measures how similar two texts
are. Here, we explore BLEU (Papineni et al.,
2002) and ROUGE2 (Lin, 2004) for two texts.
(SUMM, Match, QA)

• Text length comparison: measures the sentence-
length relationship of sentence pairs, including
28wikipedia.basic_words

addition, subtraction, and division operation of
sentence lengths. (Match, SUMM,QA)

• Answer/span position: measures where the an-
swer/span starts in the text. (QA, ABSA, Chunk-
ing)

• Coverage ratio: measures to what extent a
summary covers the content in the source text.
(SUMM)

• Copy length: the average length of segments
in a summary copied from the source document.
(SUMM)

The full names of the tasks mentioned above are
as follows:

• NER: Named Entity Recognition
• Chunking: Chunkinig
• POS: Part-of-speech Tagging
• ABSA: Aspect-Based Sentiment Analysis
• QA: Question Answering
• Matching: Text Matching
• SUMM: Text Summarization

A.2.2 Dataset-level
• Average on dataset-level: a sample-level fea-

ture can be converted into a dataset-level feature
by averaging that feature of each sample in the
dataset (e.g. the average text length, the average
span length).

• Distribution of vocabulary: measured by the
word frequency of each word in the dataset.

• Distribution of label: characterize the number
of samples contained in each category in the
dataset.

• Sample size of different splits: characterize the
number of samples contained in different splits.

• Hate speech ratio: characterize the degree of
hate speech bias of the dataset.

• Spelling errors ratio: measures the extent of
spelling errors contained in a dataset with the
help of a detection tool29.

A.3 Bias
PMI for Sentiment Classification Taking the
sentiment classification task as an example, we can
use PMI to detect whether sentence length can in-
dicate sentiment polarity. Given a sentence length
sequence L = {l1, l2, · · · , ln} with n sentences,
and a category sequence C = {c1, c2, · · · , cm}
with m categories, the correlation measure PMI be-
tween sentence length and category can be defined

29spelling_error_detect_tool
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Observation Conclustion

SNLI

lenhp > 8.4, PMI(labelneutral, lenhp) > 0.28; Long hypotheses tend to be neutral.
lenhp ∈ [1, 4.7], PMI(labelentailment, lenhp) = 0.359; Short hypotheses tend to be entailment.

flesch_reading_easehp ∈ [−50, 1.352]; When the hypothesis is difficult enough to read,
PMI(labelentailment, flesch_reading_easehp) > 0.585; the sample tends to be labeled as entailment.

malehp > 2, PMI(labelneutral,malehp) > 0.317; Hypotheses with gender bias words
(male/female) tend to be neutral.femalehp > 2, PMI(labelneutral,malehp) > 0.377;

X = lenpm − lenhp, if X ∈ [8, 30], When the length difference of hypothesis and premise is small
enough ([0,7]), the sample tends to be entailment, and when
it is large enough ([8,30]) the sample tends to be entailment.

PMI(labelentailment, lenpm − lenhp) > 0.084;
while X ∈ [0, 7]; PMI(labelneutral, lenpm − lenhp) = 0.045

X = lenpm + lenhp, if X ∈ [4, 13], When the sum of the lengths of hypothesis and premise
is small enough, the sample tends to be entailment, and when
it is large enough it tends to be neutral.

PMI(labelentailment, lenpm + lenhp) = 0.259;
if X > 22, PMI(labelneutral, lenpm + lenhp) > 0.105;

X = lenpm/lenhp, if X < 2, When the lengths of hypothesis and premise are close enough,
the samples tend to be neutral, and when their lengths are
sufficiently different, samples tend to be entailment.

PMI(labelneutral, lenpm/lenhp) > 0.094;
if X > 2, PMI(labelentailment, lenpm/lenhp) > 0.141;

PMI(label∗, lenpm) ≈ 0; The length and gender features of the premise are
irrelevance with the label.

SST2

lensent < 7, PMI(labelpositive, lensent) = 0.06 Sentences that are long enough tend to be negative,
while sentences that are short enough tend to be positive.lensent > 7, PMI(labelnegative, lensent) > 0

femalesent ∈ [4.8, 5.4], PMI(labelpositive, femalesent) = 0.58

Sentences with low female bias tend to be negative,
with high female bias tend to be positive;
while sentences with high male bias tend to be negative.

femalesent < 0.6, PMI(labelnegative, femalesent) = 0.021

malesent < 1.2, PMI(labelpositive,malesent) = 0.018

malesent > 1.2, PMI(labelnegative,malesent) > 0.068

Table 4: Observations and conclusions of bias analysis with PMI on the SNLI and GLUE-SST2 dataset. “hp” and
“pm” denote hypothesis and premise, respectively. “len” is a function that computes the length of a sentence. “sent”
denotes “sentence”.

as:

ϕpmi(ci, lj) = log(
p(ci, lj)

p(ci)p(lj)
), (1)

where ci and lj denote the sentence length of the
i-th sentence and the j-th category, respectively.

Gender Bias Given a male dictionary Kmale =
[wm,1, wm,2, . . . , wm,k1 ] with k1 words, female
dictionary Kfemale = [wf,1, wf,2, . . . , wf,k2 ] with
k2 words, and a dataset D = [s1, s2, . . . , sN ] with
N samples, the gender bias gb of dataset D can be
defined as:

bm = Nmale/N, (2)

bf = Nfemale/N, (3)

gb = bm/bf , (4)

where bm and bf is the degree to which the dataset
is biased towards men and towards women, respec-
tively. Nmale and Nfemale represent the number of
words in the dataset D that appear in the dictio-
nary Kmale and the number of words in the dictio-
nary Kfemale, respectively. N is the sample size of
dataset D.

A.4 Calculation for Language Map

In language map, each country will be assigned a
number that can be obtained by following steps: (1)
for each country, collect the information that the
languages spoken in this country and the proportion
of people speaking each language. (2) for each data
set, record the language of the data set (3) for each
language, count the number of data set that belong
to the language (4) for each language in the country,
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multiply the ration of the language and the number
of data set belong to the language. Finally sum the
score of all languages in the country.

A.5 Customized Operation

from datalabs import load_dataset
from featurize import featurize

# Operation definition
@datalabs.feature
def get_length(text):

return len(text.split(" "))

# Load dataset
dataset =

load_dataset("ag_news")["train"]
# Apply operation
res = dataset.apply(get_length)

A.6 Technical Implementation of Data Search

Our dataset search tool is designed to take as input
a natural language description of a method and
compare it against a search corpus of datasets.

We train our retrieval model with the Tevatron
package.30 The retrieval algorithm we use is effec-
tively identical to Dense Passage Retrieval (DPR,
Karpukhin et al. (2020)). Under this dual-encoder
framework, the search corpus is indexed by en-
coding each document using the CLS embedding
from BERT (Devlin et al., 2019). When our system
receives a query, we first compute its embedding
(again using the CLS embedding from BERT), then
we rank the top documents using approximate near-
est neighbor search (Johnson et al., 2017) on the
shared inner product space of embeddings:

score(q, d) = CLS(BERT(q))TCLS(BERT(d))

As a supervised learning-based retrieval method,
this approach requires a large training set. To ef-
fectively generate a large training set, we adopt
an automatic method for constructing annotations.
We make the key observation that published AI/ML
research papers reveal both a system description
(contained in the abstract) as well as the datasets
used to train or evaluate the system (usually found
in the “Results” or “Experiments” section).

We use the abstracts of real papers as a proxy for
natural language method descriptions, but we do
not expect users to submit abstract-length queries
into our system. Therefore, we pass these abstracts

30https://github.com/texttron/tevatron

through the “TLDR” scientific abstract summariza-
tion system (Cachola et al., 2020) to generate brief
method descriptions.

We next automatically extract the datasets used
by a given paper, which are used as a proxy for
the relevant (positive) documents for each query
during training. We extract these using a heuristic:
for a given paper, if it mentions a dataset by name
twice in the “Results“, “Experiments“, or “Meth-
ods“ section and also cites the paper that introduces
the dataset, we register this dataset as being used
by the given paper. By manually inspecting 200
automatic dataset tags, we found over 90% of the
tags from this method were correct.

We also support traditional keyword queries in
our system. To support these queries, we dupli-
cate each example in our training set to replace the
natural language description “query” with a key-
word query. To generate keyword queries, we pass
the abstract through a keyphrase extraction system
trained on OpenKP (Xiong et al., 2019). We then
train a single retriever using a training set contain-
ing these two heterogenous types of queries.
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Abstract

Intelligent conversational assistants have be-
come an integral part of our lives for perform-
ing simple tasks. However, such agents, for ex-
ample, Google bots, Alexa and others are yet to
have any social impact on minority population,
for example, for people with neurological disor-
ders and people with speech, language and so-
cial communication disorders, sometimes with
locked-in states where speaking or typing is a
challenge. Language model technologies can
be very powerful tools in enabling these users
to carry out daily communication and social
interactions. In this work, we present a sys-
tem that users with varied levels of disabilties
can use to interact with the world, supported
by eye-tracking, mouse controls and an intel-
ligent agent Cue-bot, that can represent the
user in a conversation. The agent provides
relevant controllable ‘cues’ to generate desir-
able responses quickly for an ongoing dialog
context. In the context of usage of such sys-
tems for people with degenerative disorders,
we present automatic and human evaluation of
our cue/keyword predictor and the controllable
dialog system and show that our models per-
form significantly better than models without
control and can also reduce user effort (fewer
keystrokes) and speed up communication (typ-
ing time) significantly.

1 Introduction

Conversational agents, especially systems such as
Alexa and Google Home, have become commod-
ity items in people’s homes. Such systems have
enabled carrying out one-shot tasks such as setting
reminders, playing music and accessing informa-
tion simpler for the general population. We also
have other PC and cloud based chatbots that are
designed to perform certain goals or tasks, or to
just engage in a casual conversation/chat with a
user. The latter class of open-domain conversa-
tional agents have not yet seen widespread adop-
tion besides mostly research exploration projects

for developing conversational agents (Ram et al.,
2018).

Large language models are being developed
today with end-to-end pre-training. Large-scale
pre-training has attained significant performance
gains across many tasks within NLP (Devlin et al.,
2019; Radford and Narasimhan, 2018), including
intent prediction (Castellucci et al., 2019; Chen
et al., 2019) and dialogue state tracking (Heck
et al., 2020). Open-domain chatbots are also be-
ing trained using generative language modeling
objective of minimizing perplexity on next word
prediction task using large conversational corpora
and transformer based models. These models have
demonstrated surprising generality, with models
like DialoGPT (Zhang et al., 2020b), Meena (Adi-
wardana et al., 2020) and Blender (Roller et al.,
2020) achieving response generation performance
competitive with humans in certain settings. These
improving systems still suffer from issues such as
repeated responses, hallucinated facts, and lack of
controllability, grounding and embodiment (See
et al., 2019).

With the availability of these pre-trained lan-
guage enabling models, novel products and applica-
tions are emerging in several domains (Bommasani
et al., 2021). One such accessesibility application
we are exploring is aimed towards leveraging lan-
guage modeling technology to support minority
group of people with certain disabilities 1 to com-
municate with others effectively. One such exam-
ple is Amyotrophic Lateral Sclerosis (ALS) or Mo-
tor Neuron Disease(MND), a progressive, degener-
ative, neurological disorder where people lose their
muscle movement, voice and the ability to carry out
a normal day-to-day communication. There have
been technologies and platforms, one such exam-
ple is Assistive Context-Aware Toolkit (ACAT)2,

1According to WHO, there are more than 1 Billion people
with disabilities

2https://01.org/ACAT
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Figure 1: A dialog system for an assistive use-case can listen to a conversation and provide diverse cues to the user.
These cues, provide human control to the dialog system that can generate relevant responses that can further be
edited.

that enable these users to communicate, but it takes
huge effort and time for these patients to communi-
cate sentences character by character using various
data input mechanisms that suit their situation such
as gaze, fingers or muscle movements.

We want to enable full and faster communica-
tion and provide interaction support tools for peo-
ple with such disabilities by having an intelligent
agent be their voice and content assistent. The sys-
tem should use very limited user input (e.g. gaze,
single muscle movement, facial gesture, etc) and
suggest cues and cue-based responses that can be
interactively chosen and edited for near real time
social interactions. The goal of such a system is to
minimize the effort by minimizing the keystrokes
input required for continued coherent interactions.
Today’s response generation systems suffer from
several issues and are very hard to use as-is for
our usage requirements. The system for our usage
needs to be context-aware, personalized, should
enable minimal user-intervention and most impor-
tantly, be assistive and controllable by the user.
Fast response generation with response cues, edit-
ing and auto complete features can dramatically
reduce the silence gap in the conversation resulting
from users slower keystroke by keystroke input.

Our contributions in this work are, i) Minority
Group Application: We bring forth a novel us-
age for open-domain chatbots/response generation
systems, i.e., designing a reponse generation sys-
tem that will represent users with communication
disabilities and help them fulfill their day-to-day
communication needs. ii) Minimal user effort
and intervention: We show that the keyword pre-
dictor models can speed up communication time by
suggesting cues to the user. We also present a tech-

nique for controllable response generation using
these cues. We present human and automatic eval-
uation for this approach. iii) Demo Interface: We
showcase a demo where a user can interact only
using his/her eyes to control the interface, with
minimum effort and time.

2 Motivation

To enable people with MND and other disabili-
ties to communicate, Intel Labs developed ACAT,
an open source platform that was originally devel-
oped for Professor Stephen Hawking. With ACAT,
users have complete access to the capabitlies of
their computers that they can control using various
modalities and sensors such as proximity sensors,
eye-gaze and further capabilities such as BCI-based
controls are being developed. ACAT also includes
word prediction, speech synthesis capabilities, this
allows users to respond to ongoing conversations,
and a range of tasks such as accessing emails, edit-
ing documents and browsing the web.

In ACAT, users can choose words that appear
from the word predictors, or select letters to cre-
ate words using the input modality that suits their
condition. While this empowers users to communi-
cate, this still involves a lot of effort in terms of the
word/letter selections and involves a huge latency.
With this work, we aim to reduce the user effort
and intervention and also the time in generating a
user response, by using the state of the art language
modeling technology as will be described in the be-
low sections. Our goal is to also integrate this work
into the current ACAT system to enable the user
to select entire responses based on input keywords,
with minimum effort and intervention.
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3 System Architecture

Figure 1 shows the interaction flow of the Cue-bot
system. Consider an ongoing conversation between
an interlocutor and the user. An Automatic Speech
Recognition (ASR) system converts the interlocu-
tor’s current utterance to text. This, in addition to
the dialog context, is input into the cue-generator
model (described below), which outputs the possi-
ble cues or keywords for a potential response to the
input that the user might want to respond with. In
the figure, given the utterance "Hi Peter, what are
you upto this Friday?", the cue-generator generates
"movie", "family", "home" that the user can choose
from. The interface also allows the user to enter
his/her own cue or keyword, if the user needs, in
case none of the suggested words are relevant. The
user uses the Tobii eye-tracker and the OptiKey
mouse controls to make a keyword selection or to
type out a keyword of his/her choice.

Once the user chooses or enters a custom key-
word, this information is sent to the Cue/Keyword-
based Response Generation system (details below)
that generates multiple responses relevant to the
cue/keyword. The user can 1) choose one of these
responses to use as his/her response to the interlocu-
tor, 2) edit one of the responses or 3) type out the
entire response if none of the suggested responses
are relevant. These modules are described in detail
below.

3.1 Models

The main software components of the system in-
clude the cue/keyword generator and the response
generation models which are described in the sec-
tions below.

3.1.1 Cue/Keyword Generator
In order to minimize the keystrokes in the interac-
tion and hence user effort, we build a model that
can generate keywords that could aid in generating
the user’s response in the conversation. We present
two types of keyword generators in this section -
extractive and generative. To train the model, we
obtain the data by extracting ‘key’ terms from the
dataset. This data is generated automatically, hence
enabling end-to-end automatic pipeline, without
the need for any other additional data collection or
labeling efforts. Given a conversation context and
a response output, keywords are extracted from
the response utterance and incorporated into the
model. We use keyBERT (Grootendorst, 2020) to

extract meaningful keywords from the responses.
This technique uses BERT-embeddings and cosine
similarity to find the sub-phrases in a document
that are most similar to the document itself.

Extractive keyword predictor: Given a con-
versation context, we use DialoGPT(Zhang et al.,
2020b) with diverse beam search(Vijayakumar
et al., 2018) to generate multiple responses (we
use 10 beams, 2 groups and diversity_penalty of
5.5). We then use keyBERT(Grootendorst, 2020)
to extract keywords from the beam outputs and
present these as keyword suggestions.

Generative keyword predictor: We fine-tune a
large pretrained language model, GPT2, to gener-
ate keywords for a given context, and present these
as suggestions. We use the training and validation
dataset from DailyDialog (Li et al., 2017a) to build
the keyword predictor. For evaluation of these mod-
els, we use the top keyword prediction. We further
use diverse beam search (same configuration as
above) and generate multiple keyword suggestions.

Cue/Keyword based Response Generation
Given the conversation context, we enable fine-
grained control over the responses generated by
training the model with important keywords auto-
matically generated (as described above). For a
given conversation context, we incorporate key-
words into the model by adding new keyword-
specific-tokens, in addition to dialog-state/speaker
tokens that represent speaker turns in the dialog.
We further extend the dialog-state embeddings to
add ‘keyword-state-embeddings’ with special key-
word separator token to indicate the positions of
the keyword tokens.

In this work, we modify the HuggingFace Trans-
ferTransfo model (Wolf et al., 2019) architecture,
a model is similar to the Transformer based archi-
tecture from (Radford and Narasimhan, 2018) that
uses autoregressive and discriminative fine-tuning
by optimizing a combination of two loss functions
: 1) language modeling loss and 2) next-utterance
classification loss. We incorporate fine-grained
keyword-based control as model inputs and fine-
tune this model on the DailyDialog dataset with
multi-task objective.

3.2 Other Components

Eye-Tracker To support users with severe neuro-
logical disabilities who are unable to move, speak
or type, we enable interaction with the system
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Figure 2: Cue-bot interface

through an additional input modality: eye-gaze
tracking. We use the Tobii eye-tracker 3, (specif-
ically the gaming version to lower the cost of the
system), that works with Windows systems and
can be mounted on the laptop or any other external
monitor. This device needs to be calibrated to work
for a user. This device has already been in use with
the ACAT system supporting users with MND.

Mouse Control While the Tobii eye-tracker
tracks the user’s gaze, we need to translate the gaze
to a mouse-click event. For this, we use OptiKey 4,
which is an on-screen keyboard designed for users
with MND, to interact with Windows systems. Op-
tiKey can be integrated with the Tobii eye-tracker
to allow users to control the system using eye-gaze
only. We modify the OptiKey software to show
the specific buttons needed to control the UI, such
as left-click (single and double), right click, scroll
up-down, finer mouse movement (in pixels).

Automatic Speech Recognition In a real system,
where the user is communicating with an inter-
locutor, we need the cue-bot to be listening to the
conversation in order to make relevant keyword
and response suggestions to the user. To incorpo-
rate this in the web-interface as well, we integrate
Google ASR that converts the interlocutor’s speech
to text that can be input into our models. This is
enabled on a button-click on our user-interface as
shown in Figure 2.

3https://gaming.tobii.com/product/eye-tracker-5/
4https://github.com/OptiKey/OptiKey

User Interface Design Figure 2 shows the user
interface for this system. The top text area shows
the placeholder for the interlocutor’s utterance, that
is obtained by converting speech-to-text using ASR.
The interface is divided into two parts, the top area
is further split into two panes 1) the left pane dis-
plays the generated keywords from the keyword
predictor. The user can also add a custom key-
word by clicking on the ‘Add Custom Keyword’
button. Once a keyword choice is made, 2) the
right pane displays the generated responses from
the keyword-based response generation model. The
bottom area shows the virtual keyboard with but-
tons large enough to enable the gaze-tracker to
detect gaze without ambiguities. Picking one of
the generated responses from the right phrase pane,
populates it into the textarea which can be edited
by the user if needed. The ‘Speak’ button converts
the user’s response to speech. Finally, the chat win-
dow on the bottom-right keeps track of the ongoing
conversation for the user’s reference.

4 Experimental Setup

We initialize the TransferTransfo model with
weights of DialoGPT ‘medium’ model with 345M
parameters. We also use two candidates for the
next utterance prediction task. We use a batch_size
of 64 for training, nucleus sampling for generation
with top_p set to 0.9. We fine-tune the model for 3
epochs. We compare the model trained without any
information with a keyword-context model trained
with keyword as auxillary input information.
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4.1 Datasets

We use the Dailydialog dataset (Li et al., 2017b),
which consists of 13,118 daily conversations in-
volving various topics such as tourism, culture, and
education among others. This dataset serves as a
starting point for AAC applications as it contains
suitable interactions for building applications to
support social communication and daily life inter-
actions. The training set has about 11,000 con-
versations, and the validation and test sets have
1000 conversations each. We use the test set, con-
sisting of 6740 context-response pairs, to evaluate
our models which will be discussed in the results
section.

4.2 Automatic Evaluation

We use several automatic metrics to compute the
performance of our models.

Metrics for Evaluating Keyword Predictor Mod-
els The keyword predictor model should be able
to generate diverse keywords to present varied op-
tions for users to choose from. We evalute the ex-
tractive and generative models based on averaged
cosine similarity between generated keywords as
a measure of diversity; lower the similarity, higher
the diversity. We hypothesize that meaningful key-
words will result in generation of meaningful and
context-relevant responses. Hence, we compute
‘human-like’ and coherence scores for the gener-
ated responses using DialogRPT (Gao et al., 2020),
a model trained to predict human feedback dialogue
responses.

Metrics for Evaluating Controllable Response
Generation Model :

1) Keyword Insertion Accuracy(KIA): To eval-
uate the ability of the response generation model to
induce a keyword into the response, thus enabling
fine-grained control, we compute the keyword-
insertion accuracies of the models.

2) Similarity Based Metrics: Because we in-
tend to generate responses based on keywords, com-
puting measures of similarity between the gener-
ated response and ground truth response (in the
learnt embedding space) gives a good assesment
for the model performance. We use BLEURT (Sel-
lam et al., 2020), BERTScore (Zhang et al., 2020a)
, Sentence-BERT (Reimers and Gurevych, 2019)
to compute similarity between generated response
and ground truth.

3) Response Quality Metrics: For response

quality aspects of fluency and context-coherence,
we perform language model based evaluation. We
also perform n-gram based diversity evaluation. We
also measure the perpelexity (PPL) by employing
a pre-trained GPT-2 "medium" model.

4.3 Human Evaluation

Keystrokes and Typing Time One of the main
focus of this work is minimizing user effort, time
and intervention. With this in mind, we evalu-
ate and compare the number of keystrokes and
typing time taken by a user with and without
our models (keyword prediction+response gener-
ation models). Please note that in absence of our
models, the user will need to type out the en-
tire response character by character. We consider
two scenarios, 1) user picks a suggested keyword
(#keystrokes=1), 2) user enters his/her own key-
word (#keystrokes=#characters entered). We also
consider edited responses (#keystrokes=1) and non-
edited responses (#keystrokes=#edits).

Evaluation of the keyword-based response gen-
eration models We randomly pick 100 dialog
contexts and present the context along with the key-
word and pairs of responses from the models and
ask 3 annotators to rate the responses based on the
following criteria: 1) Fluency: how natural and flu-
ent the responses are, 2) Generic: are the responses
too generic given the dialog context?, 3) Context
relevance: how relevant and coherent is a response
to a given dialog context, 4) Keyword relevance:
how relevant is a response to the input keyword?
We present pairs of responses from the no-keyword
and the keyword-based model, and provide 4 op-
tions for for each of the above criteria: A better
than B, B better than A, Both and, Neither.

5 Results

5.1 Automatic Evaluation Results

Keyword Predictor Models: From Table 2, we
can observe that the generative keyword predictor
tends to generate more diverse keywords (lower
similarity score), which is very important in our
use-case. The responses generated by choosing the
keywords from the generative predictor are more
coherent and human-like.

Cue/Keyword controlled models: Table 1
shows the performance of the response generation
models. From the table, the KIA for the no_kw
model is negligible, given the one to many nature
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KIA Similarity BLEURT BERT Score Context Diversity Fluency PPL↓
no_kw 0.083 0.271 -1.035 0.868/0.836/0.851 0.541 1.592 0.407 39.098
kw_context 0.672 0.539 -0.607 0.844/0.853/0.868 0.568 1.789 0.403 41.752

Table 1: Performance of the keyword-based response generation model

Kw Predictor Coherence Human-like Diversity↓
Generative 0.903 0.641 0.227
Extractive 0.891 0.595 0.265

Table 2: Evaluation of keyword predictor models.

of open domain dialog. By guiding the model with
cues or keywords, the KIA goes up to 67.2%. The
cue/keyword based model outperforms the no_kw
model in all of the similarity-based and response
quality metrics, except perplexity where the no_kw
model is lower.

5.2 Human Evaluation Results

Figure 3: Results from human evaluation. (One-Sample
Wilcoxon Signed Rank Test (mu=0) for the statistical
tests.*** p<0.001, ** p<0.01, * p<0.05.)

Keystrokes & Typing time We compute both
the interaction time and keystrokes to compare the
keyword-based interaction models with typing out
the entire sentences for 2 scenarios: 1) keyword
picked from suggestion and 2) custom keyword
entered. For 1) on average, using our models, it
takes only 10% of the keystrokes taken to type out
the entire sentence, and it takes 30% of the time
to type the entire sentence, i.e., 70% of time is
saved. For case 2) with our system, it takes about
35% of the keystrokes taken to type out the entire
responses (with edits) and saves about 40% of the
time to type the entire sentence.

Keyword-based response generation evaluation
Figure 3 shows the scores for the response qual-
ity metrics for different model. From human rat-
ings, we observe that the kw_context model out-
performs the model without control, on all metrics
significantly. The keyword-based model generates
more fluent and relevant responses while at the

same time, generating less generic responses com-
pared to the no_keyword model.

6 Conclusion and Future Work

In this work, we present a system to support users
with MND and other disabilities to carry out day
to day social interactions with lesser effort, time
and interventions. We use input modalities such as
gaze tracking that allows users to control the entire
interface only using their eyes. We build models
that utilizes the ongoing conversations and suggests
possible cues/keywords that the users can use, and
generate relevant responses based on the selected
keyword. We show through automatic and human
evaluations that our models are better than the mod-
els without control and also save significant time
and effort in interactions. For future work, we aim
to integrate it with the ACAT toolkit that already
supports MND users, to improve their quality of
communication. We also aim to personalize the sys-
tem by using user’s data when available and also
build a system that can continually learn through
user interactions.

7 Ethics

CueBot aims to support users with disabilities and
allow them to communicate while also enabling
them to control the response generation. The sys-
tem has been evaluated with automatic and human
evaluation via AMT, where the AMT workers were
fairly compensated (average >$15 per hour). Our
tasks involved providing responses from humans
and model which were rated by the AMT workers.
We tried to mitigate any bias in the choices made by
turkers by constantly shuffling the responses that
we present. In our experiment we didn’t collect any
additional personal details (other than those collect
by AMT by default) or identities from AMT work-
ers’, hence preserving their privacy. The next steps
is to integrate this system with ACAT to enable user
studies with ALS patients and further gain their
feedback to improve the AI modules. Both the key-
word suggestion and response generation modules
use pre-trained language model DialoGPT (Zhang
et al., 2020c) finetuned on DailyDialog dataset con-
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versations. Given this, the responses generated
could contain improper content or bias (from the
large dataset these models are pre-trained on). This
raises some important ethical questions that we in-
tend to tackle as part of future work. In this current
work we have not explored bias mitigation, which
will also be a part of future work.
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Abstract

M-SENA is an open-sourced platform for Mul-
timodal Sentiment Analysis. It aims to fa-
cilitate advanced research by providing flex-
ible toolkits, reliable benchmarks, and intu-
itive demonstrations. The platform features
a fully modular video sentiment analysis frame-
work consisting of data management, feature
extraction, model training, and result analy-
sis modules. In this paper, we first illustrate
the overall architecture of the M-SENA plat-
form and then introduce features of the core
modules. Reliable baseline results of differ-
ent modality features and MSA benchmarks
are also reported. Moreover, we use model
evaluation and analysis tools provided by M-
SENA to present intermediate representation
visualization, on-the-fly instance test, and gen-
eralization ability test results. The source code
of the platform is publicly available at https:
//github.com/thuiar/M-SENA.

1 Introduction

Multimodal Sentiment Analysis (MSA) aims to
judge the speaker’s sentiment from video segments
(Mihalcea, 2012; Soleymani et al., 2017; Guo et al.,
2019). It has attracted increasing attention due
to the booming of user-generated online content.
Although impressive improvements have been wit-
nessed in recent MSA researches (Tsai et al., 2019;
Rahman et al., 2020; Yu et al., 2021), building
an end-to-end video sentiment analysis system for
real-world scenarios is still full of challenges.

The first challenge lies in effective acoustic
and visual feature extraction. Most previous ap-
proaches (Zadeh et al., 2017a; Hazarika et al., 2020;
Han et al., 2021a) are developed on the provided
modality sequences from CMU-MultimodalSDK1.
However, reproducing exact identical acoustic and
visual feature extraction is almost impossible due

∗ These authors contributed equally to this work.
† Hua Xu is the corresponding author.

1Features provided by CMU

to the the vague description of feature selection and
backbone selection (both COVAREP2 and Facet3

can not be directly used in Python). Moreover, re-
cent literature (Tsai et al., 2019; Gkoumas et al.,
2021; Han et al., 2021b) observe that the text
modality stands in the predominant position while
acoustic and visual modalities have few contribu-
tions to the final sentiment classification. Such
results further arouse the attention on effective fea-
ture extraction of acoustic and visual modalities.

With the awareness of the importance of acoustic
and visual feature extraction, researchers attempt to
develop models based on customized modality se-
quences instead of provided features (Dai et al.,
2021; Hazarika et al., 2020). However, perfor-
mance comparison with different modality features
is unfair. Therefore, the demand for reliable com-
parison of modality features and fusion methods is
increasingly urgent.

Another factor that limits the application of ex-
isting MSA models in real scenarios is the lack
of comprehensive model evaluation and analysis
approaches. Models obtained outstanding perfor-
mance on the given test set might degrade in real-
world scenarios due to the distribution discrepancy
or random modality perturbations (Liang et al.,
2019; Zhao et al., 2021; Yuan et al., 2021). Be-
sides, effective model analysis is also crucial for
researchers to explain the improvements and per-
form model refinement.

The Multimodal SENtiment Analysis platform
(M-SENA) is developed to address the above chal-
lenges. For acoustic and visual features, the
platform integrates Librosa (McFee et al., 2015),
OpenSmile (Eyben et al., 2010), OpenFace (Bal-
trusaitis et al., 2018), MediaPipe (Lugaresi et al.,
2019) and provides a highly customized feature
extraction API in Python. With the modular MSA
pipeline, fair comparison between different features

2https://github.com/covarep/covarep
3https://imotions.com
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Figure 1: The overall framework of the M-SENA platform contains four main modules: data management module,
feature extraction module, model training module and model evaluation module.

and MSA fusion models can be achieved. The re-
sults can be regarded as reliable baselines for future
MSA research. Furthermore, the platform provides
comprehensive model evaluation and analysis tools
to reflect the model performance in real-world sce-
narios, including intermediate result visualization,
on-the-fly instance demonstration, and generaliza-
tion ability test. The contributions of this work are
briefly summarized as follows:

1. By providing a highly customized feature ex-
traction toolkit, the platform familiarizes re-
searchers with the composition of modality
features. Also, the platform bridges the gap
between designing MSA models with pro-
vided, fixed modality features and building
a real-world video sentiment analysis system.

2. The unified MSA pipeline guarantees fair
comparison between different combinations
of modality features and fusion models.

3. To help researchers evaluate and analyze MSA
models, the platform provides tools such as
intermediate result visualization, on-the-fly in-
stance demonstration, and generalization abil-
ity test.

2 Platform Architecture

M-SENA platform features convenient data access,
customized feature extraction, unified model train-
ing pipeline, and comprehensive model evaluation.
It provides a graphical web interface as well as
Python packages for researchers with all features
above. The platform currently supports three popu-
lar MSA datasets across two languages, seven fea-
ture extraction backbones, and fourteen benchmark
MSA models. Figure 1 illustrates the overall archi-
tecture of the M-SENA platform. In the remaining
parts of this section, features of each module in
Figure 1 will be described in detail.

2.1 Data Management Module
The data management module is designed to ease
the access of multimedia data on servers. Besides
providing existing benchmark datasets, the module
also enables researchers to build and manage their
own datasets.
Benchmark Datasets. M-SENA currently sup-
ports three benchmark MSA datasets, including
CMU-MOSI (Zadeh et al., 2016), CMU-MOSEI
(Zadeh et al., 2018b) in English, and CH-SIMS
(Yu et al., 2020) in Chinese. Details of integrated
datasets are shown in Appendix A. Users can filter
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Acoustic Feature Sets

ComParE_2016 (Schuller et al., 2016) Static (HSFs)
eGeMAPS (Eyben et al., 2015) Static (LLDs)
wav2vec2.0 (Baevski et al., 2020) Learnable

Visual Feature Sets

Facial Landmarks (Zadeh et al., 2017b) Static
Eyes Gaze (Wood et al., 2015) Static
Action Unit (Baltrušaitis et al., 2015) Static

Textual Feature Sets

GloVe6B (Pennington et al., 2014) Static
BERT (Devlin et al., 2018) Learnable
RoBerta (Liu et al., 2019) Learnable

Table 1: Some of the supported features in M-SENA.

and view raw videos conveniently without down-
loading them to the local environment.
Building Private Datasets. The M-SENA plat-
form also provides a graphical interface for re-
searchers to construct their own datasets using up-
loaded videos. Following the literature (Yu et al.,
2020), M-SENA supports unimodal sentiment la-
belling along with multimodal sentiment labelling.
The constructed datasets can be directly used for
model training and evaluation on the platform.

2.2 Feature Extraction Module
Emotion-bearing modality feature extraction is still
an open challenge for MSA tasks. To facilitate
effective modality feature extraction for MSA, M-
SENA integrates seven most commonly used fea-
ture extraction tools and provides a unified Python
API as well as a graphical interface. Part of the
supported features for each modality are listed in
Table 1 and described below:
Acoustic Modality. Various acoustic features
have been proven effective for emotion recogni-
tion (El Ayadi et al., 2011; Akçay and Oğuz, 2020).
Hand-crafted acoustic features can be divided into
two classes, low level descriptors (LLDs), and
high level statistics functions (HSFs). LLDs fea-
tures, including prosodies, spectral domain features
and others, are calculated on a frame-basis, while
HSFs features are calculated on an entire utter-
ance level. In addition to the hand-crafted features,
M-SENA also provides pretrained acoustic model
wav2vec2.0 (Baevski et al., 2020) as a learnable
feature extractor. Researchers can also design and
build their own customized acoustic features using
the provided Librosa extractor.
Visual Modality. In existing MSA research, facial
Landmarks, eyes gaze, and facial action units are

Types Scenarios
Films(TV) Variety Show Life(Vlog)

Easy 10 (en:4 ch:6) 8 (en:4 ch:4) 8 (en:4 ch:4)
Common 9 (en:4 ch:5) 11 (en:6 ch:5) 8 (en:4 ch:4)
Difficult 9 (en:4 ch:5) 9 (en:5 ch:4) 8 (en:4 ch:4)

Noise 9 (en:4 ch:5) 8 (en:4 ch:4) 7 (en:2 ch:5)
Missing 9 (en:4 ch:5) 9 (en:5 ch:4) 7 (en:3 ch:4)

Table 2: Statistics of the generalization ability test
dataset, where "en" represents "English", "ch" repre-
sents "Chinese".

commonly used visual features. The M-SENA plat-
form enables researchers to extract visual feature
combinations flexibly using OpenFace and Medi-
aPipe extractors.
Text Modality. Compared with acoustic and vi-
sual features, semantic text embeddings are much
more mature with the rapid development of pre-
trained language models (Qiu et al., 2020). Fol-
lowing previous works (Zadeh et al., 2017a; Rah-
man et al., 2020; Lian et al., 2022), M-SENA sup-
ports GloVe6B (Pennington et al., 2014), pretrained
BERT (Devlin et al., 2018), and pretrained RoBerta
(Liu et al., 2019) as textual feature extractors.

All feature extractors above are available
through both Python API and Graphical User Inter-
face(GUI). Listing 1 shows a simple example of de-
fault acoustic feature extraction using Python API.
The process is similar for other modalities. Ad-
vanced usage and detailed documentation is avail-
able at Github Wiki4.
1 from MSA_FET import

FeatureExtractionTool
2

3 # Extract Audio Feature for MOSI.
4 fet = FeatureExtractionTool("librosa")
5

6 feature = fet.run_dataset(
7 dataset_dir=’~/MOSI’,
8 out_file=’output/feature.pkl’
9 )

Listing 1: An example of acoustic feature extraction
on the MOSI dataset using MMSA.

2.3 Model Training Module

M-SENA provides a unified training module which
currently integrates 14 MSA benchmarks, includ-
ing tensor fusion methods, TFN (Zadeh et al.,
2017a), LMF (Liu et al., 2018), modality factor-
ization methods, MFM (Tsai et al., 2018), MISA
(Hazarika et al., 2020), SELF-MM (Yu et al.,
2021), word-level fusion methods, MulT (Tsai
et al., 2019), BERT-MAG (Rahman et al., 2020),

4https://github.com/thuiar/MMSA-FET/wiki
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Feature Combinations TFN GMFN MISA Bert-MAG
Acc-2 (%) F1 (%) Acc-2 (%) F1 (%) Acc-2 (%) F1 (%) Acc-2 (%) F1 (%)

CMU-SDK† 78.02 78.09 76.98 77.06 82.96 82.98 83.41 83.47
[T1]-[A1]-[V1] 77.41 77.47 77.77 77.84 83.78 83.80 83.38 83.43

[T2]-[A1]-[V1] 70.40 70.51 71.40 71.54 75.22 75.68 - -
[T3]-[A1]-[V1] 80.85 80.79 80.21 80.15 79.57 79.67 - -

[T1]-[A2]-[V1] 76.80 76.82 78.02 78.03 83.72 83.72 82.96 83.04
[T1]-[A3]-[V1] 77.19 77.23 78.44 78.45 82.16 82.23 83.57 83.58

[T1]-[A1]-[V2] 77.38 77.48 78.81 78.71 83.2 83.14 82.13 82.20
[T1]-[A1]-[V3] 76.74 76.81 78.23 78.24 84.06 84.08 83.69 83.75

Table 3: Results for feature selection. For text, [T1] refers to BERT, [T2] refers to GloVe6B, [T3] refers to RoBerta.
For acoustic, [A1] refers to eGeMAPS, [A2] refers to customized feature including 20-dim MFCC, 12-dim CQT,
and f0, [A3] refers to wav2vec2.0. For visual, [V1] refers to action units, [V2] refers to landmarks, [V3] refers to
both landmarks and action units. CMU-SDK† refers to modified CMU-SDK features with BERT for text.

multi-view learning methods: MFN (Zadeh et al.,
2018a), GMFN (Zadeh et al., 2018b), and other
MSA methods. Detailed introduction of the inte-
grated baseline methods is provided in Appendix B.
We will continue following advanced MSA bench-
marks and put our best effort into providing reliable
benchmark results for future MSA research.

2.4 Result Analysis Module

The proposed M-SENA platform provides compre-
hensive model evaluation tools including interme-
diate result visualization, on-the-fly instance test,
and generalization ability test. A brief introduction
of each component is given below, while a detailed
demonstration is shown in Section 4.
Intermediate Result Visualization. The discrimi-
nation of multimodal representations is one of the
crucial metrics for the evaluation of different fusion
methods. The M-SENA platform records the final
multimodal fusion results and illustrates them after
decomposition with Principal Component Analysis
(PCA). Training loss, binary accuracy, F1 score
curves are also provided in M-SENA for detailed
analysis.
Live Demo Module. In the hope of bridging the
gap between MSA research and real-world video
sentiment analysis scenarios, M-SENA provides
a live demo module, which performs on-the-fly
instance tests. Researchers can validate the effec-
tiveness and robustness of the selected MSA model
by uploading or live-feeding videos to the platform.
Generalization Ability Test. Compared to the
provided test set of benchmark MSA datasets, real-
world scenarios are often more complicated. Future
MSA models need to be robust against modality
noise as well as effective on the test set. Driven

by the demand from real-world applications and
observations, the M-SENA platform provides a gen-
eralization ability test dataset (consists of 68 Chi-
nese and 61 English samples), simulating as many
complicated and diverse real-world scenarios as
possible. The statistics of the proposed dataset is
shown in Table 2. In general, the dataset contains
three scenarios and five instance types. Specifically,
the three scenarios refers to films, variety shows,
and user-uploaded vlogs, while the five instance
types refer to easy samples, common samples, diffi-
cult samples, samples with modality noise, samples
with modality missing. In addition, the dataset is
balanced in terms of gender and scenario to avoid
irrelevant factors. Examples of the generalization
ability test dataset are shown in Appendix C.

3 Experiments on M-SENA

In this section, we report experiments conducted
on the M-SENA platform. Comparison of different
modality features are shown in Section 3.1, and
comparison of different fusion models are shown
in Section 3.2. All reported results are the mean
performances of five different seeds.

3.1 Feature Selection Comparison

In the following experiments, we take BERT
[T1], eGeMAPS (LLDs) [A1], and Action Unit
[V1] as default modality features, and compare
them with the other six feature sets. Specifi-
cally, we utilize GloVe6B [T2], RoBerta [T3]
for text modality comparison; customized acous-
tic feature[A2](including 20 dimensional MFCC,
12 dimensional CQT, and 1 dimensional f0),
wav2vec2.0 features [A3] for acoustic modality
comparison; facial landmarks [V2], facial land-
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Model MOSI MOSEI SIMS
Acc-2 F1 MAE Corr Acc-2 F1 MAE Corr Acc-2 F1 MAE Corr

LF_DNN 79.39 79.45 0.945 0.675 82.78 82.38 0.558 0.731 76.68 76.48 0.446 0.567
EF_LSTM 77.35 77.43 0.995 0.644 81.23 81.02 0.588 0.695 69.37 56.82 0.591 0.380

TFN 78.02 78.09 0.971 0.652 82.23 81.47 0.573 0.718 77.07 76.94 0.437 0.582
LMF 78.60 78.61 0.934 0.663 83.83 83.68 0.562 0.735 77.42 77.35 0.438 0.578
MFN 78.78 78.71 0.938 0.665 83.30 83.23 0.570 0.720 78.55 78.23 0.442 0.575

GMFN 76.98 77.06 0.986 0.642 83.48 83.23 0.575 0.713 78.77 78.21 0.445 0.578
MFM 78.63 78.63 0.958 0.649 83.49 83.29 0.581 0.721 75.06 75.58 0.477 0.525
MulT 80.21 80.22 0.912 0.695 84.63 84.52 0.559 0.733 78.56 79.66 0.453 0.564
MISA 82.96 82.98 0.761 0.772 84.79 84.73 0.548 0.759 76.54 76.59 0.447 0.563

BERT_MAG 83.41 83.47 0.761 0.776 84.87 84.85 0.539 0.764 74.44 71.75 0.492 0.399
MLF_DNN - - - - - - - - 80.44 80.28 0.396 0.665

MTFN - - - - - - - - 81.09 81.01 0.395 0.666
MLMF - - - - - - - - 79.34 79.07 0.409 0.639

Self_MM 84.30 84.31 0.720 0.793 84.06 84.12 0.531 0.766 80.04 80.44 0.425 0.595

Table 4: Experiment results for MSA benchmark comparison. All models utilize the Bert embedding and the
provided acoustic and visual features in CMU-MultimodalSDK. Due to the requirement of unimodal labels, multi-
task models, including MLF_DNN, MTFN, and MLMF, are tested on SIMS only.

marks and action units [V3] for visual modality
comparison. Besides, we also report the model per-
formances using the modality features provided in
CMU-MultimodalSDK.

Table 3 shows the experiment results for feature
selection. For Bert-MAG which is designed upon
the Bert backbone, experiments are conducted only
for Bert as text feature. It can be observed that, in
most cases, using appropriate features instead of
original features in CMU-MultimodalSDK helps
to improve model performance. For textual modal-
ity, Roberta feature performs best for TFN and
GMFN model, while Bert feature performs best for
MISA model. For acoustic modality, wav2vec2.0
embeddings (without finetune) perform best for
GMFN and Bert-MAG model. According to lit-
erature (Chen and Rudnicky, 2021; Pepino et al.,
2021), finetuning wav2vec2.0 can further improve
model performance which might provide more ef-
fective acoustic features for future MSA research.
For Visual modality, the combination of facial land-
marks and action units achieves the overall best re-
sult, revealing the effectiveness of both landmarks
and action units for sentiment classification.

3.2 MSA Benchmark Comparison

Experiment results of benchmark MSA models
are shown in Table 4. All models are improved
using Bert as text embeddings while using origi-
nal acoustic and visual features provided in CMU-
MultimodalSDK. Besides recording reliable bench-
mark results, the M-SENA platform also provides
researchers with a convenient approach to repro-
duce the benchmarks. Again, both GUI and Python

API are available. We show an example of the
proposed Python API in Listing 2. Detailed and
Advanced usage is included in our documentation
at Github5. We will continuously catch up on new
MSA approaches and update their performances.

1 from MMSA import MMSA_run
2

3 # Load Default Training Config.
4 config = get_config_regression(
5 model_name=’tfn’,
6 dataset_name=’mosi’
7 )
8

9 # Using User Designed Hyper-parameter.
10 config[’post_fusion_dim’] = 32
11

12 # Modality Feature Selection.
13 config[’featurePath’] = ’feature.pkl’
14

15 # Start Model Training.
16 MMSA_run(
17 model_name=’tfn’,
18 dataset_name=’mosi’,
19 config=config,
20 seeds=[1111]
21 )

Listing 2: An example to train model with M-SENA.

4 Model Analysis Demonstration

This section demonstrates model analysis results
using the M-SENA platform. Intermediate result
analysis is presented in Section 4.1, on-the-fly in-
stance analysis is shown in Section 4.2, and gen-
eralization ability analysis is illustrated in Section
4.3.

5https://github.com/thuiar/MMSA/wiki
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Figure 2: Intermediate Result Analysis for TFN model
trained on MOSI dataset.

4.1 Intermediate Result Analysis

The intermediate result analysis submodule is de-
signed to monitor and visualize the training process.
Figure 2 shows an example of training TFN model
on MOSI dataset. Epoch results of binary accuracy,
f1-score and loss value are plotted. Moreover, the
learned multimodal fusion representations are il-
lustrated in an interactive 3D figure with the aim
of helping users gain a better intuition about the
multimodal feature representations and the fusion
process. Unimodal representations of text, acoustic,
and visual are also shown for models containing
explicit unimodal representations.

4.2 On-the-fly Instance Analysis

M-SENA enables researchers to validate the pro-
posed MSA approaches using uploaded or live-
recorded instances. Figure 3 presents an example
of the live demonstration. Besides model predic-
tion results, the platform also provides feature vi-
sualization, including short-time Fourier transform
(STFT) for acoustic modality and facial landmarks,
eye gaze, head poses for visual modality. We will
continuously update the demonstration to make it
a even more intuitive and playable MSA model
evaluation tool.

4.3 Generalization Ability Analysis

We utilized the model trained on MOSI dataset
with [T1]-[A1]-[V3] modality features in Section
3.1 for generalization ability test. Experimental
results are reported in Table 5. It can be concluded
that all models present a performance gap between

Visual Modality: Landmarks, head pose.

Acoustic Modality: STFT.

Text Modality: Transcript.
this is great news, but i am not happy about it.

Model Predictions:

Figure 3: On-the-fly instance test example. The M-
SENA platform also provides real-time modality feature
visualization along with the model prediction results.

Types TFN GMFN MISA Bert-MAG
Acc-2 / F1 Acc-2 / F1 Acc-2 / F1 Acc-2 / F1

Easy 83.3 / 84.4 75.0 / 76.1 75.0 / 76.7 66.7 / 66.7
Common 71.4 / 74.5 85.7 / 82.3 71.4 / 75.8 78.6 / 78.6
Difficult 69.2 / 69.2 61.5 / 60.5 53.9 / 54.4 84.6 / 84.6

Noise 60.0 / 50.5 50.0 / 44.9 50.0 / 35.7 60.0 / 51.7
Missing 63.6 / 60.6 81.8 / 77.8 63.6 / 60.6 63.6 / 61.5

Avg 70.0 / 68.4 71.7 / 69.3 63.3 / 62.4 71.7 / 69.7

Table 5: Results for English generalization ability test.
Binary accuracy and F1 scores are reported to show the
effectiveness and robustness of the model.

original test set and real-world scenarios, especially
for the instances with noisy or missing modalities.
Another observation is that the noisy instances are
usually more challenging than modality missing for
MSA models, revealing that noisy modality feature
is worse than none at all. In the future, for the de-
mand of real-world applications, MSA researchers
may consider analyzing model robustness as well
as performances on the test set, and design a more
robust MSA model against random modality noise.

5 Related Works

To the best of our knowledge, there are two widely
used open-source repositories from CMU team6

and SUTD team7. Both of them provide tools to
load well-known MSA datasets and implement sev-

6https://github.com/A2Zadeh/CMU-MultimodalSDK
7https://github.com/declare-lab/multimodal-deep-

learning
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eral benchmarks methods. So far, their works have
attracted considerable attention and facilitated the
birth of new MSA models such as MulT (Tsai et al.,
2019) and MMIM (Han et al., 2021b).

In this paper, we propose M-SENA, compared
to previous works, the M-SENA platform is novel
from the following aspects. For data management,
previous work directly loads the extracted features,
while the M-SENA platform focuses on intuitive
raw video demonstration, and provides user with
a convenient means for private dataset construc-
tion. For modality features, M-SENA platform first
provides user-customized feature extraction toolkit
and a transparent feature extraction process. Fol-
lowing the tutorial, Users can easily reproduce the
feature extraction steps and develop their research
on designed feature set. For model training, the M-
SENA platform first utilizes a unified MSA frame-
work and provide an easy-to-reproduce model train-
ing API integrating fourteen MSA benchmarks on
three popular MSA dataset. For model evaluation,
the M-SENA is the first MSA platform consist-
ing of comprehensive evaluation means stressing
model robustness for real-world scenarios, which
aims to bridge the gap between MSA research and
applications.

Conclusion

In this work, we introduce M-SENA, an integrated
platform that contains step-by-step recipes for data
management, feature extraction, model training,
and model analysis for MSA researchers. The
platform evaluates MSA model in an end-to-end
manner and reports reliable benchmark results for
future research. Moreover, we further investi-
gate comprehensive model evaluation and analysis
methods and provide a series of user-friendly vi-
sualization and demonstration tools including in-
termediate representation visualization, on-the-fly
instance test, and generalization ability test. In
the future, we will continuously catch up on ad-
vanced MSA research progress and update new
benchmarks on the M-SENA platform.
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A Integrated Datasets

CMU-MOSI. The MOSI (Zadeh et al., 2016)
dataset is a widely-used dataset that consists of
a collection of 2,199 video segments from 93
YouTube movie review videos.
CMU-MOSEI. The MOSEI (Zadeh et al., 2018b)
dataset expands the MOSI dataset by enlarging the
number of utterances and enriching the variety of
samples, speakers, and topics. For both MOSI
and MOSEI datasets, instances are annotated with
a sentiment intensity score ranging from -3 to 3
(strongly negative to strongly positive).
CH-SIMS. The SIMS dataset (Yu et al., 2020)
is a Chinese unimodal and multimodal sentiment
analysis dataset. It contains 2,281 refined video
segments in the wild with both multimodal and
independent unimodal annotations of a sentiment
intensity score ranging from -1 to 1 (negative to
positive, the score interval is 0.2).

B Integrated Benchmarks

LF-DNN. The Late Fusion Deep Neural Network
(Cambria et al., 2017) first extracts modality fea-
tures separately and performs late fusion strategy
for final predictions.
EF-LSTM. The Early Fusion Long-Short Term
Memory (Cambria et al., 2017) is based on input-
level feature fusion and conducts Long-Short Term
Memory (LSTM) to learn multimodal representa-
tions.
TFN. The Tensor Fusion Network (TFN) (Zadeh
et al., 2017a) calculates a multi-dimensional tensor
(based on outer product) to capture uni-, bi-, and
tri-modal interactions.
LMF. The Low-rank Multimodal Fusion (LMF)
(Liu et al., 2018) is an improvement over TFN,
where the low-rank multimodal tensors fusion tech-
nique is performed to improve efficiency.
MFN. The Memory Fusion Network (MFN)
(Zadeh et al., 2018a) accounts for continuously
modeling the view specific and cross-view interac-
tions and summarizing them through time with a
Multi-view Gated Memory.
Graph-MFN. The Graph Memory Fusion Network
(Zadeh et al., 2018b) is an improvement of MFN,
which can change the fusion structure dynamically
to obtain the interaction between the modalities and
improve the interpretability.
MulT. The Multimodal Transformer (MulT) (Tsai
et al., 2019) extends multimodal transformer ar-
chitecture with directional pairwise cross-modal
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attention which translates one modality to another
using directional pairwise cross-attention.

BERT-MAG. The Multimodal Adaptation Gate
for Bert (MAG-BERT) (Rahman et al., 2020) is an
improvement over RAVEN on aligned data with
applying multimodal adaptation gate at different
layers of the BERT backbone.

MISA. The Modality-Invariant and -Specific Rep-
resentations (Hazarika et al., 2020) is made up of
a combination of losses including similarity loss,
orthogonal loss, reconstruction loss and predic-
tion loss to learn modality-invariant and modality-
specific representation.

MFM. The Multimodal Factorization Model (Tsai
et al., 2018) is a robust model, which can learn
multimodal-discriminative and modality-specific
generative factors, then reconstructs missing recon-
struct missing modalities by adjusting for indepen-
dent factors.

MLF_DNN. The Multi-Task Late Fusion Deep
Neural Network (Yu et al., 2020) first extracts
modality features separately and performs late fu-
sion strategy for final predictions through unimodal
labels training.

MTFN. The Multi-Task Tensor Fusion Network
(Yu et al., 2020) calculates a multi-dimensional
tensor (based on outer product) to capture uni-, bi-,
and tri-modal interactions through unimodal labels
training.

MLMF. The Multi-Task Low-rank Multimodal
Fusion (Yu et al., 2020) is an improvement over
MTFN, where low-rank multimodal tensors fu-
sion technique is performed to improve efficiency
through unimodal labels training.

Self_MM. The Self-Supervised Multi-Task Multi-
modal (Yu et al., 2021) design a label generation
module based on the self-supervised learning strat-
egy to acquire independent unimodal supervisions,
which can balance the learning progress among
different sub-tasks.

C Generalization Ability Test Datasets

The examples of the proposed generalization ability
test dataset are shown in Figure 4.

I really think she just wanted love and to be loved and …
Tag: Difficult 、Vlog、English、Female、Negative 

可是对他来说，我就是不够！
Tag: Video Missing、Variety Show、Chinese、Female、Negative 

 - - - Video missing - - - 

And we have to work through that and understand that 
what we‘re doing is something that.

Tag: Video Missing 、Variety Show、English、Male、Neutral 

 - - - Video missing - - - 

那没有，那我觉得还是跟您比较般配！
Tag: Difficult、Vlog、Chinese、Male、Negative

I already lost my family once!
Tag: Environment Noise 、TV、English、Female、Negative 

Environmental noise

站在原地这样的伤亡是最少的，你清楚吗？
Tag: Background music Noise 、TV、Chinese、Male、Negative 

Background music noise

Figure 4: Examples of the constructed generalization
ability test dataset.
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Abstract
We investigate the usage of entity linking (EL)
in downstream tasks and present the first mod-
ularized EL toolkit for easy task adaptation.
Different from the existing EL methods that
deal with all the features simultaneously, we
modularize the whole model into separate parts
with each feature. This decoupled design en-
ables flexibly adding new features without re-
training the whole model as well as flow visu-
alization with better interpretability of the EL
result. We release the corresponding toolkit,
HOSMEL, for Chinese, with three flexible us-
age modes1, a live demo2, and a demonstration
video3. Experiments on two benchmarks for
the question answering task demonstrate that
HOSMEL achieves much less time and space
consumption as well as significantly better ac-
curacy performance compared with existing
SOTA EL methods. We hope the release of
HOSMEL will call for more attention to study
EL for downstream tasks in non-English lan-
guages.

1 Introduction

Entity linking (EL) is to extract the candidate men-
tions in the sentences and link them to their corre-
sponding entities in the knowledge bases (KB) such
as Freebase, Wikidata, and DBPedia. The linked
entities encode rich knowledge from the KB, which
can enhance many downstream tasks such as infor-
mation retrieval (Raviv et al., 2016), recommenda-
tion (Guo et al., 2020), question answering (Feng
et al., 2021; Zhang et al., 2021a), and language
model pre-training (Zhang et al., 2019). As EL is
usually deployed in the pre-processing stages of
these tasks, an urgent demand for EL models is to
guarantee a high accuracy to prevent potential error
propagation.

∗Corresponding author.
1https://github.com/THUDM/HOSMEL
2https://www.aminer.cn/el/#/
3https://drive.google.com/drive/folders/1eh-

dJnKWJulPuZGsORii4fPW-zCmWS5k?usp=sharing

Existing researches have fully explored the EL
problem. From the matching-based methods (Chen
et al., 2020, 2022; Logeswaran et al., 2019; Yamada
et al., 2019; Wu et al., 2020; Zhang et al., 2021c)
to the generation-based methods (Nicola De et al.,
2020; De Cao et al., 2021), the SOTA models such
as BLINK (Wu et al., 2020), GENRE (Nicola De
et al., 2020), and EntQA (Zhang et al., 2021c),
have considered different features such as mention,
entity subtitle, and entity description, resulting in
outstanding performances on various published EL
benchmarks.

However, the existing advanced models usually
aggregate all the features for training. Despite
their excellent performance, they are difficult to be
adapted to specific downstream tasks. Figure 2 il-
lustrates an EL example for answering the question
“What religion does Luke’s master believe in?”, by
which multiple mentions are detected and linked
to the entities in XLore4 (Jin et al., 2019a) — one
of the largest Chinese KBs. Depending only on
the subtitle description of an entity, the mention,
“Luke”, can be highly probably linked to both the en-
tity “Luke Skywalker” and “Luke Cage”5. Whereas
in this scenario, we can accurately find that the for-
mer better matches because it has a relation “mas-
ter” in XLore which is exactly the questioned as-
pect. This case presents a common phenomenon
that downstream tasks usually require additional
information invocation such as relation for better
EL results.

Generally, developers need to annotate specific
data and perform after treatments for EL model
adaption. (For the above example, we need to anno-
tate a new dataset such as the one including relation
as the additional feature for question answering and
retrain the EL model on the new dataset). However,
in the era of advanced large EL models, such data

4https://xlore.org/
5Luke Skywalker is a character in Star Wars and Luke Cage

is a Marvel superhero.
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annotation and model retraining is quite costly and
inefficient, which raises a natural question: Can
we develop an effective EL tool that can be easily
adapted to downstream tasks?

Presented work. We propose a HOt-Swappable
Modularized Entity Linking toolkit (HOSMEL) to
solve the above problem. Compared with existing
EL methods or toolkits, HOSMEL is more suitable
for the downstream tasks because of its following
characteristics:

• Low coupled modules. We modularize mention
filtering, mention detection, and entity disam-
biguation by each entity attribute, ensuring each
module can be trained separately and combined
freely.

• Incremental development. The decoupled
design turns the module of each step into a
hot-swappable module, which enables flexibly
adding the new features that were not previously
considered without retraining the whole model.

• Flexible to use (three usage modes). We de-
velop a corresponding toolkit for Chinese EL as
Chinese has gained less attention than English.
For flexible usage, we release three usage meth-
ods. The first one is a ready-to-use release for
directly invoking the API or accessing the web
application. The second one is a partial release
for users who prefer to include parts of the re-
lease as a pre-step to improve the recall of their
model. The third one is an easy-to-change re-
lease that enables adding additional features or
training with self-defined data.

• Flow visualization. The decoupled design also
enables a more explainable way for visualizing
the results of each module, which provides user
engineers a more effortless experience in decid-
ing the useful features for optimizing the best
outcome.

We select question answering as the downstream
task to evaluate the proposed HOSMEL. We con-
duct extensive experiments on two question answer-
ing benchmarks. The results reveal three major
advantages: (1) the training time of the lightweight
HOSMEL is reduced by 4-5 times compared with
two SOTA EL models, GENRE (Nicola De et al.,
2020) and EntQA (Zhang et al., 2021c), in advance,
the storage occupancy rate is also reduced by 78%
compared with EntQA. (2) HOSMEL can achieve

much better performance (+8.49-17.06% accuracy)
than the best baseline EntQA on less training data.
(3) We additionally evaluate the hot-swappable abil-
ity of HOSMEL and find that when adding a new
feature relation, HOSMEL can be quickly updated
and further improves 3.71-5.02% of accuracy.

Contributions. (1) We investigate the usage of
EL in downstream tasks and raise the problem of
adaptation for EL in downstream tasks. (2) We
design a hot-swappable modularized EL system
and release the corresponding toolkit in Chinese1

and a live demo2.

2 Problem Definition

A knowledge base (KB) E contains n entities de-
noted by E = {ei}ni=1. Each entity ei is associated
with a set of attributes denoted by Ai = {At

i}Tt=1

where At
i is the attributes of type t and T is the to-

tal number of attribute types. At
i is further denoted

by {atij}
nt
i

j=1 with atij as the j-th attribute of type t

and nt
i as the total number of attributes with type

t. For example, an entity usually contains a title, a
subtitle, a description, and multiple relations.

Problem 1. Entity Linking (EL): Given an input
text d = {w1, · · · , wn} and a KB E , the output of
EL is a list of mention-entity pairs {(mi, ei)}Ki=1,
where each mention mi is a text span extracted
from d, and each entity ei is included in E .

We assume each mention has a valid gold entity
in the KB and leave the out-of-KB prediction (i.e.,
nil prediction) to future works.

3 The Proposed HOSMEL

HOSMEL modularizes mention filtering, mention
detection, and entity disambiguation by each entity
attribute separately. Generally, given an input text,
HOSMEL first selects all the possible mentions
and then detects the useful ones, whose candidate
entities are then measured by each attribute of them
independently. Apart from mention filtering, each
subsequent step aggregates the scores of all the
previous steps and outputs a new top-K result to its
next. Figure 1 illustrates the overall framework of
the proposed HOSMEL, each step explained below.

3.1 Mention Filtering
Mention filtering is to filter out the possible men-
tions that can be linked to certain entities in KB. For
example, in Figure 2, the input contains mentions
“卢克(Luke)”, “信仰(religion)”, “师父(master)”,
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Mention Filtering
(Trie Tree)

Text

All
Mentions

Mention Detection
(Cross-encoder)

s(mention)

Text and mention

Top-K
mentions

Entity Disambiguation by Subtitle
(Cross-encoder)

s(mention)+s(subtitle)

Text, mention, and subtitle

Top-K
(mention,

entity) pairs

Entity Disambiguation by Relation
(Cross-encoder)

s(mention)+s(relation)

Text, mention, and relation

Top-1
(mention,

entity) pairs

克, ⽗, 克的, 

信, 仰, 师, 什么, 

的, 卢, 师⽗, 卢克, 

信仰

卢克师⽗的信仰是
什么?

(What religion does 
Luke's master 

believe in)

Module

Input

Example

 1. 卢克 (Luke)
       0.626
2. 师⽗ (master)
     -2.201
3. 信仰 (religion)
     -3.013

 1. 卢克·沃顿     (Luke Walton)       No Subtitle 
     0.626+(-2.030)=- 1 .404
2. 卢克·天⾏者  (Luke Skywalker) A character in Star Wars
     0.626+(-2.932)=-2.306
3. 卢克·凯奇     (Luke Cage)           Marvel Superhero
     0.626+(-3.5 1 9)=-2.893

 1 . 卢克·天⾏者  (Luke Skywalker) Master 
     -2.306+(  9.080)=  6.774
2. 卢克·凯奇     (Luke Cage)           Spouse
     -2.893+(-5.445)=-8.338
3. 卢克·沃顿     (Luke Walton)       Nationality
     - 1 .404+(-8.245)=-9.649

Figure 1: Illustration of the overall framework, where mention filtering, mention detection, entity disambiguation
by subtitle, and disambiguation by relation are modularized. Each module aggregates the scores of all the previous
modules and outputs a new top-K result to the next step.

etc. For this purpose, we build a Trie tree (Wilkes,
1974) with all the possible mentions, collected us-
ing titles and available alias names (Cf. Section A.2
for collecting details.) of all the entities in the
KB. Previous works usually omit the steps of men-
tion filtering and mention detection under the as-
sumption that the mentions in an input text are
known (Logeswaran et al., 2019; Yamada et al.,
2019; Wu et al., 2020). Without this assumption,
we can simply resort to the above Trie tree to find
the mentions, because in our two EL benchmarks
for question answering, by this kind of mention
filtering, we can obtain an exceptionally high recall
of the ground truth entities (Cf. Section A.2 in Ap-
pendix for details). For the datasets with mentions
not exactly the same with the titles or alias names of
the entities, users can change this Trie tree to other
more suitable methods such as bi-encoder (Zhang
et al., 2021c).

3.2 Mention Detection
Mention detection determines the top-K important
mentions from all the possible mentions returned
by the previous step. For example, in Figure 2,
“卢克(Luke)” is more crucial to answer the ques-
tion than the other mentions. For this purpose,
we concatenate the input text d and a mention mi

into “d; [SEP ];mi” as the input of a cross encoder,
which is instantiated as MacBERT(Cui et al., 2020)
in this and the subsequent steps. Then we apply a
MLP layer on the CLS embedding of MacBERT
to obtain the probability of mi given d. We take
the logarithm of the probability as the mention’s
score s(mi) = log(P (mi|d)) and output the top-K
ranked mentions by s(mi) to the next step.

3.3 Entity Disambiguation
Entity disambiguation is to seek the correct entities
from the KB for the detected mentions. Thanks
to the Trie tree, we can quickly obtain the entity

candidates stored as (title/alias, entity identifier)
pairs with their title or aliases. For disambiguat-
ing an entity candidate, we match the input text
and the mention with each type of attribute inde-
pendently in the same way. Specifically, given an
attribute type t, we concatenate the input text d,
the mention mi, and an attribute atij of entity ei
into “d; [SEP ];mi; a

t
ij” as the input of MacBERT.

We also apply a MLP layer on the CLS embedding
to obtain the probability of attribute atij given d
and mi. We take the logarithm of the probability
as atij’s score and get the maximal score from all
the attributes At

i as the pooling score of At
i, i.e.,

s(At
i) = maxj log(P (atij |d,mi)). When a type

only has one attribute, such as a single subtitle, the
maximal score is the score of the single attribute.

Then we rank the entities by the score of each
(mi, ei) pair, which is computed by the logarithm
of the joint probability of mi and all the processed
attributes of ei given the input text d, i.e.,

s(mi, ei)=logP (A1
i , A

2
i , · · · , At

i,mi|d),

=s(mi) +
t∑

τ=1

s(Aτ
i ), (1)

where s(mi) and s(Aτ
i ) are the scores of the men-

tion mi and attributes Aτ
i respectively. The second

equation is obtained according to the assumption
of the independence of the mention and different
attributes. The derivation details can be referred
to Eq.(2) in Appendix. We return top-K ranked
(mention,entity) pairs by s(mi, ei) to the next step.

3.4 Training Strategy
The parameters of MacBERT are learned via op-
timizing the cross-entropy between the predicted
scores and the ground truth mentions or the en-
tity attributes. We train a separate MacBERT for
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computing each score, including the score of the
mention and the score of each attribute type respec-
tively. The training data is organized following the
setting of multiple-choice question answering. For
example, a data instance for training the mention
detection model needs to include the input text and
four candidate mentions, with one labeled as the
ground truth. While for training the entity disam-
biguation model by an attribute such as the subtitle,
it needs to include the input text, the mention to be
linked, and four candidate subtitles with the ground
truth label. Thanks to this separate training, we can
adjust each module without influencing other mod-
ules. A new feature can be easily added as we only
need to annotate a small amount of the training data
about the new feature rather than re-annotate a new
one with both the old and the new features.

4 The Usage of HOSMEL

We consider three different usage scenarios of the
proposed HOSMEL and release the corresponding
toolkit usage scripts with a live demo.

4.1 Ready-to-Use Release

The ready-to-use release is for users who need to
link the input text to the general Chinese open do-
main KB. For this purpose, we train HOSMEL on
XLore with the mention and entities’ title, subti-
tle, and relations as features and release the model
checkpoints. Users can download all the check-
points and use them by the following scripts:

1 t e x t = "卢克的师父信仰什么"
2 u r l = " h t t p : / / l o c a l h o s t : 9 8 9 9 /

readyToUse / "
3 d a t a = rq . u r l o p e n ( u r l + u r l l i b . p a r s e .

q u o t e ( t e x t ) ) . r e a d ( )
4 d a t a = j s o n . l o a d s ( d a t a . decode ( "UTF−8 "

) )
5 # {" d a t a " : [ "卢克 " , " bdi9202050 " ,
6 # 6 . 7 7 4 , "卢克的师父 " ] }

Live Demo. For this ready-to-use release, we also
provide a live demonstration to observe each step’s
outputs in our pipeline, including mention filtering,
mention detection, entity disambiguation by subti-
tle, and disambiguation by relation. In addition, it
also comes with clickable links to XLore for closer
observation of the entity. This could be useful for
users who prefer a visualized front-end webpage
for interpretability.

4.2 Partial Release

The partial release is for users interested in com-
pleting the EL process inside their downstream
models or using parts of our release for entity can-
didate retrieval from XLore instead of the whole
release. In this scenario, we expose each pipeline
step for users to determine where to stop according
to their needs. For example, if users only want to
use mention filtering, mention detection, and dis-
ambiguation by subtitle, they can use the following
scripts:

1 t e x t = "卢克的师父信仰什么"
2 f i l t e r e d _ m = f i l t e r _ m e n t i o n ( t e x t )
3 # [ "卢 " , "卢克 " , "什么 " , e t c . ]
4 d e t e c t e d _ m = d e t e c t _ m e n t i o n ( t e x t ,

f i l t e r e d _ m ,K=3)
5 # [ "卢克 " , "师父 " , "信仰 " ]
6 e n t i t i e s = d i s a m b i g u a t e _ b y _ s u b t i t l e (

t e x t , de tec ted_m ,K=3)
7 # [ [ "卢克 " , " bdi9203099 " , − 1 . 4 0 4 ] ,
8 # [ "卢克 " , " bdi9202050 " , − 2 . 3 0 6 ] ,
9 # [ "卢克 " , " bdi9201727 " , − 2 . 8 9 3 ] ]

Since loading the Trie tree into memory is time-
consuming, which would bring a poor experience
when debugging, we encapsulate the Trie tree into
a web service using flask.

4.3 Easy-to-Change Release

As we illustrated in Figure 2, using specific features
such as the relations of entities can potentially ben-
efit the EL for downstream tasks. We provide a
training script and a sample model usage imple-
mentation for users who have such a demand. In
order to add a new feature, HOSMEL requires the
users to: (1) format their training data into our for-
mat and (2) make a copy of the sample relation
usage, and re-write the generatePair method in
it to retrieve the required feature. If the users prefer
to change XLore into other KBs, they only need
to rebuild the Trie tree. More usage details can be
found in the released code and readme documents6.

5 Experiment

In this section, we use two question answering
benchmarks to evaluate the EL capacity of the pro-
posed HOSMEL and also show its ability to easily
add task-relevant features that can benefit the EL
performance.

6https://github.com/THUDM/HOSMEL
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Figure 2: Illustration of the live demonstration. The input example “卢克的师父信仰什么？(What religion does
Luke’s master believe in?)” contains the mention “卢克(Luke)” that can be linked to the entity “卢克·天行者(Luke
Skywalker)” with a relation “师父(master)”.

5.1 Experimental Settings

Datasets.
KB. Since the 26,146,618 entities in XLore con-
tain many uncommon entities, we create a subset of
16,095,248 entities from it for better usage and eval-
uation. To ensure precision, we consider various
ways, such as ranking by edit times or removing
certain entity types, during filtering.
Test set. We choose KgCLUE(Xu et al., 2020) and
a hand-crafted dataset labeled by us as the test sets.
Both of them are for one-hop question answering
from the general Chinese open domain KB, each
containing 1, 673 and 1, 597 questions labeled with
the topic entities. We transfer KgCLUE’s questions
to our KB to increase ambiguity in order to chal-
lenge the EL model as our KB is much larger than
KgCLUE’s original KB (16M vs. 3M). Our dataset
provides various formats of questions for the same
answer, which also increases the EL difficulty.
Basic Training data. Unlike using hyperlinks and
anchor texts in previous works (Logeswaran et al.,
2019; Wu et al., 2020), we use the entity descrip-
tions to construct a weak-supervised EL training
dataset because hyperlinks are not always available
in some KBs. Specifically, the description for each
entity is parsed for its title or alias name to compose

the training data, because the title or alias name oc-
curred in its own description is highly possible to
mention the entity, yielding a basic training data of
16 million (text, mention, entity subtitle) tuples.

Additional Training data for Question Answering.
Since relation name is commonly used in question
answering, we choose it as the additional feature.
KgCLUE’s training data, including 18,000 (ques-
tion, mention, entity relation) tuples, allows us to
train a model based on relation.

Baselines. We choose GENRE (Nicola De et al.,
2020) and EntQA (Zhang et al., 2021c), the repre-
sentations of the generative-based and matching-
based methods, to be compared with our HOSMEL,
as none of them need the pre-defined mentions,
which is the same as the proposed HOSMEL.

Evaluation Metrics. We use the topic entities’ top-
1 accuracy as the evaluation metric for EntQA and
HOSMEL. Since GENRE is different by returning
zero or multiple entities without scores, we use
recall for it instead of top-1 accuracy.

The details of the experimental settings can be
found in Section A.2 in Appendix.
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Table 1: Performance of all the models on the two
benchmarks, where EntQA and HOSMEL report the
top-1 accuracy and GENRE reports the recall rate.

KgCLUE Hand-crafted

GENRE 25.28 14.97
EntQA 80.99 60.34
HOSMEL 89.48 77.40
HOSMEL + Relation 94.50 81.15

Table 2: The recall rate of the mention detection result
by HOSMEL and the bi-encoder result by EntQA.

KgCLUE Hand-crafted

EntQA 89.36 82.02
HOSMEL 99.46 95.12

5.2 Experimental Results

Time and Space Efficiency. Figure 3 shows the
time and space cost of GENRE, EntQA, and HOS-
MEL. GENRE needs a full training of the entire
16 million training data to memorize the knowl-
edge of all the entities in its parameters. EntQA
also needs a full training of the dataset because
of its bi-encoder. Besides, EntQA needs an addi-
tional 60GB storage space for the learned entity
embeddings for quick retrieval while HOSMEL
and GENRE only need 3.5GB for the Trie tree. The
results demonstrate that HOSMEL is quite efficient
in both time and space. In advance, we measured
the average time used for inference. GENRE takes
21.39 seconds to process each test case, whereas
EntQA and HOSMEL respectively only need 0.32
seconds and 0.26 seconds to output the results.

Accuracy Performance. Table 1 shows the perfor-
mance of all the models on the two benchmarks,
KgCLUE and hand-crafted. EntQA, GENRE, and
HOSMEL are all trained on the basic training data
with only the (text, mention, entity subtitle) tuples.
GENRE presents a particularly poor performance,
as the search space of the decoder in character-
based languages like Chinese is much larger than
the word-based languages like English. EntQA also
performs worse than HOSMEL because the dense
bi-encoder in EntQA is proved to remember the ro-
bust representations for common entities but strug-
gles to differentiate rarer entities (Sciavolino et al.,
2021). On the contrary, the proposed HOSMEL
builds on a sparse Trie tree and a dense mention
detection model for retrieving the entity candidates,
which can attend to both the common and rare en-

Figure 3: Time and space cost.

tities. The top-45 recall rates of HOSMEL and
EntQA are also reported in Table 2.

Additional Feature’s Performance. We addition-
ally evaluate the hot-swappable ability of HOS-
MEL. We find that when adding a new feature, we
can easily train an additional MacBERT on rela-
tions and the resultant HOSMEL+Relation further
improves 3.71− 5.02% accuracy. On the contrary,
GENRE is unable to leverage the relation features.
EntQA is also prevented as it needs to be retrained
on the new training data where both the entity sub-
title and relation are annotated.

6 Related Work

EL has attracted lots of attention, and many meth-
ods have been studied. Among them, matching-
based methods (Logeswaran et al., 2019; Yamada
et al., 2019; Wu et al., 2020; Jin et al., 2019b; Fer-
ragina and Scaiella, 2012) and generation-based
methods (Nicola De et al., 2020; De Cao et al.,
2021) are two mainstreams. The former ones usu-
ally use a dense retriever based on the maximum
inner-product search (MIPS) to retrieve entity can-
didates, followed by a cross-encoder to re-rank
them. The later ones frame EL as a seq2seq model
to autoregressively generate the text annotated with
the entities’ identifiers, such as their subtitles. How-
ever, both put all the features together for training,
increasing the difficulty of adjusting for specific
downstream tasks. Since the downstream tasks
usually require specific filtering or additional in-
formation invocation for better EL results, these
EL models need the newly annotated dataset for
retraining, which is costly and inefficient. In addi-
tion, most of them are designed for English, and
only a few (Jin et al., 2019b; Ferragina and Scaiella,
2012) have been released as a ready-to-use toolkit.
HOSMEL is an EL toolkit for Chinese that can
easily adjust to downstream tasks.

7 Conclusion and Future Work

We release a Chinese EL toolkit HOSMEL, which
has shown to be an effective, efficient, and inter-
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pretable method due to the hot-swappable mod-
ulized structure. Moreover, for adapting to the
downstream tasks, HOSMEL can be easily im-
proved by training on additional features with lim-
ited training data. Experiments on two question an-
swering benchmarks have demonstrated the time/s-
pace efficiency and the effectiveness compared
with the SOTA EL models, as well as the easy
task adaptation ability. An English version of the
toolkit is planned to be released in the future.
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A Appendix

A.1 Proof of Eq.(1)

s(mi, ei) (2)

= logP (A1
i , A

2
i , · · · , At

i,mi|d),
= log(P (A1

i |A2
i , · · · , At

i, d,mi)P (A2
i , · · · , At

i,mi|d)),
= log(P (A1

i |d,mi)P (A2
i , · · · , At

i,mi|d)),

= logP (mi|d)
t∏

τ=1

P (Aτ
i |d,mi),

= logP (mi|d) +
t∑

τ=1

logP (Aτ
i |d,mi),

= s(mi) +
t∑

τ=1

s(Aτ
i ).

As shown above, the second equation is obtained
according to the Bayes Theorem. The third equa-
tion is derived based on the assumption that the
probability of attribute A1

i is independent against
the other attributes. Then we achieve the fourth
equation according to the general assumption

that the probabilities of attributes are independent
against each other. Finally, by changing the log-
product to sum-log, we show the score of a (men-
tion, entity) pair is equal to the sum of the men-
tion’s score and all the attributes’ scores.

A.2 Experimental Settings

Dataset
KB. For creating a concise KB from XLore, We
filter out the entities that explain the Chinese char-
acters and select the top 10% popular entities by
the edit times. Since we filter the mentions based
on the Trie tree created by the titles and alias names
of all the entities in XLore, to ensure the recall of
unseen mentions in the above popular entities, we
keep the top 15 popular entities for each of these
unseen mentions. The title, subtitle, and the re-
lations except for the alias name of an entity are
available in XLore. To improve the mention’s cov-
erage of the Trie tree, we collect the alias name
of an entity from its relation named “alias” or the
similar meaning.

Test Set. We choose KgCLUE(Xu et al., 2020) and
a hand-crafted dataset, which contains real world
questions with entities we collected from daily life
conversations, as the test sets. Both of them are for
one-hop question answering from the general Chi-
nese open domain KB, which respectively contains
1,673 and 1,597 questions labeled with the topic
entities. Note the fact that, instead of using classic
entity linking data sets, question answering data
sets are selected for evaluation because most previ-
ous entity linking data sets are closer to hyperlink
labels, which makes it easier to achieve a better
performance but lacks the connection to real-world
applications, which is often less similar to the hy-
perlink labels. Although KgCLUE contains its own
KB, a large number of useful entities are filtered
out, and some important features such as the sub-
title are unavailable. Thus we replace its KB with
our created KB from XLore and align the topic en-
tities in the questions to our KB. The hand-crafted
test set contains the questions involving more com-
mon entities, which raises the difficulty of EL, as
common entities are more likely to have ambiguity.
We also provide several formats of the same ques-
tion to increase the question answering difficulty
as well as the topic entity linking difficulty.

Basic Training Data. Instead of collecting the
hyperlinks and the corresponding anchor texts as
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the training data of EL (Logeswaran et al., 2019;
Wu et al., 2020), we use the descriptions of the
entities to construct a weak-supervised EL training
dataset, as the hyperlinks are not always available
in some KBs. Specifically, for each entity, we
extract the first sentence from its description that
explicitly mentions the entity’s title or alias name
to compose the training data because the title or
alias name that occurred in the description is highly
probably to mention the entity itself. As a result,
we obtain about 16 million (text, mention, entity
subtitle) tuples as the basic training data.
Additional Training Data for Question Answering.
Since a commonly used feature for question an-
swering is the relation name of an entity, we choose
it as the additional feature. For training an addi-
tional model based on relations, we need to know
the correct relation the input text mentions. Kg-
CLUE’s training data, including 18,000 (question,
mention, entity relation) tuples, exactly satisfy this
demand.
Additional Training Data for Question Answering.
Since a commonly used feature for question an-
swering is the relation name of an entity, we choose
it as the additional feature. For training an addi-
tional model based on relations, we need to know
the correct relation the input text mentions. Kg-
CLUE’s training data, including 18,000 (question,
mention, entity relation) tuples, exactly satisfy this
demand.

Baselines. GENRE trains a seq2seq model to trans-
late the input text into the text annotated with the
mentions and entity subtitles based on a pre-built
Trie tree the same as HOSMEL. EntQA first trains
a bi-encoder to retrieve the entity candidates and
then trains a machine comprehensive model to ex-
tract the mention spans from the input text given
the entity candidates. The scores of the two models
are summed as the final score of a (mention, entity)
pair.

For a fair comparison, all the models are trained
on the basic training data. GENRE needs a full
training of the entire 16 million training data to
encode all the entity information into its parame-
ters. EntQA also requires the use of the full data
to improve the recall for the bi-encoder. HOS-
MEL doesn’t suffer the need to train a bi-encoder,
thus only needs a small amount of the training
data. For training efficiency, we sample and cre-
ate a multiple-choice-like training dataset from the
basic training data with 406,420 (text, mention)

pairs for training the mention detection model and
111,648 (text, mention, entity subtitle) tuples for
training entity disambiguation by subtitle in our
model. Only the proposed HOSMEL is trained
on the additional training data because of its adap-
tation ability. Based on the KgCLUE’s training
data, we create an additional multiple-choice-like
training data with 47,870 (text, mention, entity re-
lation) tuples for training entity disambiguation by
relation.

B Ethical Considerations

For years the press has been arguing the use of AI
and its pros and cons. One advance could be used
in various ways and thus lead to different outcomes.
To take a cultural look at how this work and other
works in similar tracks will take effect, we would
like first to take a brief on how might our work
be used in both good and bad ways, then move
on to applying our advance and ethical reasons for
developing our toolkit, along with privacy issues.

For our demo, the outcome can shift in between
justice and harmful outcomes. EL could be viewed
as having an expert to extract key concepts from
a given text, which means that it could be used in
education to help the students find a related term
in their reading before they fully understand the
field. This could also be used in specialized do-
mains such as biological and pharmaceutical for
fast retrieval of useful concepts (Marrone, 2020).
However, this could also be used in harmful ways.
The chance of EL being used for detecting particu-
lar views in social media might be further applied
to ban a specific group from expressing opinions,
harming freedom of speech and equality. But if we
look at it from a different perspective, if such use
could be controlled by the users of the social media,
potentially people who have difficulties can filter
out the harmful languages to them (Thuraisingham,
2020) and find what they wanted faster.

To ensure our work could be used in the right
way, we extracted our domain from XLore, where
it’s only a general KB without the worry of having
harmful potential entities. We also separated the
features. This raises the challenge to train the rank-
ing model to favor a specific semantic pattern and
thus makes it harder to be used against free speech.
Our work purely ranks the similarity in context
rather than learning the complete set of all entities,
this could prevent the linking result from being
biased to only popular entities (Sciavolino et al.,
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2021), yet we still worry that specific context might
lead to the linking of only popular entities. As a
result, we strongly call for more work conducted
to study the context and candidate similarity in re-
trievals instead of joining the popularity into final
performance for better equality. We noticed that in
recent years the protection for minor languages has
finally drawn more attention (Zhang et al., 2021b),
and one of the reasons for conducting our demon-
stration is the attempt in calling both English and
Chinese, the two most popular languages, speakers
to better consider the difference in languages and
robustness while developing methods not only for
the sake of equality between languages but also for
better protection of the minor languages because
not all languages are like English.

On the other hand, privacy has raised a signifi-
cant portion of attention (Tucker, 2019). It is essen-
tial to discuss how our tool might relate to privacy.
Our demo is based on XLore, which means it only
uses data publicly available on the internet, but the
risk of privacy leakage still remains while being
applied to the downstream tasks. During usage, a
level of caution to prevent privacy issues should
still be kept for the sake of respect. In advance, we
suggest usages of our method to be checked before
actual deployment in a downstream system.

One overall solution to resolve the release of
methods in data science is to discuss and consider
the caution of ethics and respect during education.
Some might argue the key is to take extra care dur-
ing the development of such tools but to notice
critical factors in a system that might lead to harm-
ful usage requires strong integrity and respect to
others. It is only with high ethical standards one
could better consider the design and take better con-
sideration of one’s system during the design and
before releasing.
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Abstract
In recent years, large-scale pre-trained lan-
guage models (PLMs) containing billions of
parameters have achieved promising results
on various NLP tasks. Although we can pre-
train these big models by stacking computing
clusters at any cost, it is impractical to use
such huge computing resources to apply big
models for each downstream task. To address
the computation bottleneck encountered in de-
ploying big models in real-world scenarios,
we introduce an open-source toolkit for Big
Model Inference and tuning (BMInf), which
can support big model inference and tuning at
extremely low computation cost. More specif-
ically, at the algorithm level, we introduce
model quantization and parameter-efficient tun-
ing for efficient model inference and tuning. At
the implementation level, we apply model of-
floading, model checkpointing, and CPU-GPU
scheduling optimization to further reduce the
computation and memory cost of big models.
Based on above efforts, we can efficiently per-
form big model inference and tuning with a sin-
gle GPU (even a consumer-level GPU like GTX
1060) instead of computing clusters, which is
difficult for existing distributed learning toolk-
its for PLMs. BMInf is publicly released at
https://github.com/OpenBMB/BMInf.

1 Introduction

Recent years have witnessed the great success of
pre-trained language models (PLMs) (Han et al.,
2021) in the NLP community. Various techniques
of PLMs enable us to train big models containing
billions of parameters from large-scale unlabeled
corpora in a self-supervised fashion. Up to now,
these big models (with billions of parameters like
GPT-3 (Brown et al., 2020)) have achieved promis-
ing results on various NLP tasks and gained exten-
sive attention from researchers. Despite the success
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Figure 1: The overall framework of BMInf. To make
BMInf convenient for users, the underlying implementa-
tion and the hardware adaptation will not be exposed to
users, and these modules can be automatically executed.

of big models, the massive parameters of these big
models also bring challenges to their inference and
tuning. Since the pre-training process of big mod-
els usually requires to be completed once, the cost
caused by massive parameters can be handled by
stacking computing resources. However, the in-
ference and tuning process of PLMs depends on
specific application scenarios and will frequently
use big models for computation. If we still stack
devices to speed up the inference and tuning of
big models, the cost of time, memory, and even
money would become unbearable. In this paper,
we introduce a toolkit BMInf, aiming at efficiently
performing big model inference and tuning.

As shown in Figure 1, BMInf is built based on
a four-level framework, the most important part of
which lies in its algorithm level and implementation
level. At the algorithm level, we introduce model
quantization to compress big models from high-
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bit floating-point parameters to low-bit fixed-point
ones, which can significantly reduce the memory
cost of big models. The faster computation speed
of low-bit numbers can also accelerate the compu-
tation of big models. Besides model quantization,
we also introduce parameter-efficient tuning meth-
ods (Ding et al., 2022), which freeze the parameters
of big models to reduce the computation and mem-
ory cost. By inserting additional learnable mod-
ules into big models, parameter-efficient tuning can
tune these additional modules to help big models
handle specific tasks. Some recent works (Lester
et al., 2021; Gu et al., 2021; Hu et al., 2021) have
shown that applying parameter-efficient tuning on
big models can achieve results comparable to fine-
tuning all model weights.

At the implementation level, we implement
model offloading and model checkpointing, which
can make full use of CPU memory to store mas-
sive parameters of big models. Moreover, model
offloading and checkpointing can drop parame-
ters and computation graphs during both the for-
ward and backward propagation, which can further
save GPU memory to operate more data. For the
underlying arithmetic operators, we reimplement
the mixed-precision CUDA arithmetic operators,
which can better utilize the tensor cores of GPUs
to further speed up the computation, especially
accelerating the mixed-precision computation in
model quantization. Considering model offloading
and model checkpointing bring extra CPU-GPU
communication to load offloaded model weights,
we perform CPU-GPU scheduling optimization to
synchronously execute weight loading and model
computation. This CPU-GPU scheduling optimiza-
tion can alleviate the time waiting for weight load-
ing. All of model offloading, model checkpointing,
and parameter-efficient tuning can benefit from the
scheduling optimization.

Due to the algorithm-level and implementation-
level efficiencies, BMInf can work on various
GPUs at the hardware level, including both pow-
erful GPUs (e.g. Tesla V100 and Tesla A100) and
consumer GPUs (e.g. GTX 1060 and GTX 1080Ti).
In Section 4, we will show that BMInf can run
models with more than 10 billion parameters on
a consumer GPU GTX 1060, which is quite diffi-
cult for existing PLM-related distributed toolkits
such as Megatron (Shoeybi et al., 2019) and Deep-
Speed (Rasley et al., 2020). At the model level,
BMInf supports various possible architectures of
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Figure 2: The illustration of model quantization. To
balance both efficiency and effectiveness, we use 8-bit
fixed-point numbers to represent the weights of all linear
layers and higher-bit floating-point numbers (16-bit or
32-bit numbers) to represent hidden states. Here we use
32-bit floating-point numbers as an example. The dotted
parts are only used for the low-bit adaptation training.

Transformer-based PLMs, and users can choose
their own model architectures for inference and
tuning. To make BMInf more convenient for users,
the underlying implementation and the hardware
adaptation are automatically executed and will not
be exposed to users. In the following sections, we
will show more details about BMInf, especially at
the algorithm level and implementation level.

2 Algorithms to Support the Efficient
Inference and Tuning of Big Models

In this section, we briefly introduce how BMInf
supports big model inference and tuning in an ef-
ficient manner at the algorithm level, including
model quantization and parameter-efficient tuning.

2.1 Model Quantization

The massive parameters of big models not only
bring a huge amount of computation but also re-
quire a lot of memory to store parameters and com-
putation graphs. Therefore, applying model com-
pression is crucial to reduce the computation and
memory cost of big models. Since we want big
models to maintain generality after model com-
pression, we choose model quantization rather than
model pruning and model distillation for our toolkit.
The latter two compression approaches are usually
used to compress big models for specific tasks and
will significantly change the model structure.

Model quantization aims to compress model
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weights from high-bit floating-point numbers to
low-bit fixed-point ones. Typically, PLMs are usu-
ally represented with 32-bit or 16-bit floating-point
numbers, while their quantized models can be rep-
resented with 8-bit, 4-bit, or even 1-bit fixed-point
numbers, saving much memory usage. In addi-
tion, GPUs have tensor cores specially designed for
low-bit numbers, and thus model quantization can
also speed up the computation. For Transformer-
based PLMs, Zafrir et al. (2019) show that the 8-bit
quantization has little impact on the model perfor-
mance. To further alleviate the performance degra-
dation, Shen et al. (2020) apply mixed-bit quanti-
zation where only those parameters with low Hes-
sian spectrum are required to be quantized. Zhang
et al. (2020) further utilize knowledge distillation
to force low-bit models to imitate high-bit models.

Considering that training a 1-bit or 2-bit Trans-
former is still challenging due to the significant
decrease in model capacity, our toolkit primarily
quantizes high-bit (16-bit or 32-bit) models to 8-
bit fixed-point ones. The performance of low-bit
quantization is highly hardware-related, and those
complex quantization mechanisms may only serve
specific devices. Therefore, as shown in Figure 2,
we apply a simple and effective mixed-bit quanti-
zation method, where hidden states are represented
with high-bit numbers, while the weights of all lin-
ear layers are represented with 8-bit numbers. Dur-
ing the computation, we first quantize the input into
8-bit hidden states and perform computation opera-
tions, and then dequantize the output into high-bit
states. To make the quantization less impactful on
models, we use a small amount of pre-trained data
for additional low-bit adaptation training. Specifi-
cally, in the low-bit adaptation stage, we still use
high-bit numbers to represent model weights, but
quantize these weights into low-bit forms for com-
putation (the dotted parts in Figure 2). After the
low-bit-adaptation stage, high-bit weights are dis-
carded, and their corresponding low-bit weights are
left for inference and tuning.

2.2 Parameter-Efficient Tuning

Vanilla fine-tuning (Radford and Narasimhan,
2018; Devlin et al., 2019) needs to tune all model
weights, a mixed-precision PLM with N parame-
ters (Model weights are 16-bit numbers and opti-
mizer states are 32-bit numbers) under this setting
would require: (1) N 16-bit weight states and N
16-bit gradient states; (2) N 32-bit master model
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Figure 3: The illustration of parameter-efficient tuning.
Here we take prompt tuning and adapter tuning as exam-
ples to show how to perform parameter-efficient tuning.

weights; (3) N 32-bit momentum states and N 32-
bit variance states for the optimizer. These add
up to a total of 16N bytes memory consumption.
Since a big model has massive parameters, this
consumption is too large to compute.

To efficiently tune big models for specific tasks,
parameter-efficient tuning (Ding et al., 2022) has
been proposed. As shown in Figure 3, the main
idea of parameter-efficient tuning is to insert new
modules into PLMs and only tune these additional
modules, i.e. all PLM weights do not need to be
tuned anymore. Under the setting of parameter-
efficient tuning, we only need to store the forward
and backward information of those tuned modules,
which is significantly smaller than tuning all PLM
weights. Prompt tuning (Lester et al., 2021; Gu
et al., 2021) and adapter tuning (Stickland and
Murray, 2019; Houlsby et al., 2019) are two typi-
cal parameter-efficient tuning approaches. Prompt
tuning aims to better trigger the potential capa-
bilities inside PLMs by only modifying the input.
Since PLMs are mostly pre-trained on cloze-style
tasks, prompt tuning first inserts several prompt
embeddings into the input to adapt all downstream
tasks to cloze-style tasks, which can bridge the pre-
training and fine-tuning objectives, and then tunes
the prompt embeddings to adapt PLMs to specific
tasks. Adapter tuning mainly focuses on inserting
extra adapter layers into PLMs to help adapt PLMs
to handle downstream tasks.

Although freezing all PLM weights has been
shown to perform moderately on downstream
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tasks (Lester et al., 2021), it is still one way
to balance time efficiency, memory consump-
tion, and model effectiveness. In fact, some re-
cent parameter-efficient tuning methods (Hu et al.,
2021) have achieved comparable results to fine-
tuning all model weights. In our toolkit, we provide
a unified interface to freeze all weights of big mod-
els and compute gradients for those additional mod-
ules, which can support various parameter-efficient
tuning methods.

3 Implementations to Reduce the
Computation and Memory Cost

In this section, we briefly introduce how BMInf
reduces the computation and memory cost at the
implementation level, including model offloading
and model checkpointing, as well as CPU-GPU
scheduling optimization. In fact, we also reimple-
ment efficient mixed-precision arithmetic operators
to better utilize GPU tensor cores. Since the reim-
plementation of CUDA operators is too detailed to
be described in words, we will not show it here and
recommend our readers refer to the source code.

3.1 Offloading and Checkpointing

Although we can exponentially compress big mod-
els through model quantization, it is still difficult
for the GPU memory to support the storage of
model weights and computation graphs. There-
fore, we apply model offloading to utilize the CPU
memory, which is often very large and cheap. As
shown in Figure 4, the main idea of model offload-
ing is to place model weights on the CPU. When
the model is computed layer by layer, we load the
offloaded weights from the CPU to the GPU for
computation. After the computation is completed,
we free the loaded weights and computation graphs
to save the GPU memory. Since model weights can
be divided into small pieces (such a piece is called
a phase) to load, model offloading is quite impor-
tant for running big models using low computing
resources.

Although model offloading can well solve the
forward propagation of big models, it cannot work
for the back propagation, since much of the infor-
mation used for the backward propagation needs to
be computed and preserved in the forward propa-
gation. The consumption of this memory is usually
hidden behind the computation graph and often
overlooked. In fact, the memory required for the
back propagation is also quite huge. Take the ma-
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Figure 4: The illustration of model offloading and model
checkpointing. All blue parts are stored in the CPU and
all yellow ones are in the GPU. The dotted parts are
temporary units, whose data and computation graphs
will be freed from memory after computation.

trix multiplication y = Wx as an example, it is
used almost everywhere in neural networks. As-
suming that the gradient of y has been obtained
and denoted as dL

dy = y, we have dL
dx = W⊤y and

dL
dW = yx⊤, where L is the final loss score. That
is to say, the memory used for the matrix multi-
plication cannot be freed immediately after being
used, leading to a conflict with model offloading.

To address the issue, we apply model check-
pointing, which is also used by existing distributed
frameworks such as Megatron and DeepSpeed to
accelerate the pre-training of big models. The core
of checkpointing is that it allows some of the infor-
mation used in the back propagation not to be saved
in the forward propagation, but to be recomputed
in the back propagation. As shown in Figure 4,
some hidden states are reserved for the back propa-
gation and all other intermediate results are imme-
diately freed. The reserved information is named
“checkpoint”. By dividing big models into several
checkpoint-separated phases, freed intermediate re-
sults and computation graphs are recomputed as
the back propagation passes through these phases,
and then released immediately again after obtain-
ing gradient states. Assuming the checkpointing
is performed every K operations, this approach
reduces the memory footprint to at least 1

K of the
original one, while only affecting the efficiency by
one extra forward propagation time. Generally, of-
floading phases are consistent with checkpointing
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Figure 6: The decoding speed (tokens/s) when perform-
ing big model inference with different GPUs.

phases to avoid conflicts.

3.2 CPU-GPU Scheduling Optimization
One negative effect of offloading and checkpoint-
ing is that they lead to fragmented memory. In
some widely-used deep learning frameworks such
as PyTorch and TensorFlow, the GPU memory is
allocated dynamically. However, checkpoints are
long-lived while those freed and recomputed ten-
sors are short-lived. Suppose the memory alloca-
tion is performed in an alternating pattern: long-
lived, short-lived, long-lived, short-lived, · · ·, this
may allow those long-lived tensors to be located
in some fragmented regions of the GPU memory,
which may affect the efficiency. In the worst case,
when a block of M bytes is required, the GPU
memory indeed has more than M bytes in total, but
a contiguous block of M bytes can never be found
for allocation. Meanwhile, model offloading and
model checkpointing require frequent communica-

北 京 环 球 影 城 指 定 单 日 门 票 将 采
用价格滚动制度，即推出淡季日、平季
日、旺季日和特定日门票。淡季日门票价
格 为418元 ，平季日门票价 格
为528元 ，旺季日门票价 格
为638元，特定日门票价格为688元。

Universal Studios Beijing will adopt
a price rolling system, and the prices of low
season tickets, mid-season tickets, high season
tickets, and special season tickets will be dif-
ferent. The price of low season tickets is 418
RMB, the price of mid-season tickets is 528
RMB, the price of high season tickets is 638
RMB, and the price of special season tickets
is 688 RMB.

Table 1: The Chinese text is an inference example of
the CPM-2 implemented with BMInf. The underlined
tokens are all generated by CPM-2. In this table, we
also give the translated English text corresponding to
the Chinese text.

tion between CPU and GPU to load model weights,
which also brings lots of extra time overhead.

To address these issues, we perform a CPU-GPU
scheduling optimization. More specifically, we first
pre-allocate those long-lived blocks into a contigu-
ous section of the GPU memory (“Fixed” in Fig-
ure 5). Then, we pre-allocate two extra memory
pools in the GPU to perform weight loading and
model computation alternately (“Pool 1” and “Pool
2” in Figure 5). With these two pre-allocated pools,
the CPU-GPU communication and the model com-
putation can be synchronously executed, and the
CPU-GPU communication time can be completely
overlapped in the computation time. Owing to
synchronously execution, the time cost of weight
loading can be negligible.

4 Evaluation

In this section, we present some evaluation results
of big model inference and tuning to show the effi-
ciency of our toolkit BMInf. The following results
are based on the model CPM-2 (Zhang et al., 2022).
CPM-2 is a Chinese PLM with over 10 billion pa-
rameters. Since CPM-2 has an encoder-decoder
architecture, it can be used for both text under-
standing and text generation. The original CPM-2
is implemented with the distributed toolkits Deep-
Speed and Megatron, which are currently the most
efficient open-source tools for running big models.
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Figure 7: The minimum number of GPUs (Tesla V100)
required for prompt tuning (batch size = 32) and the
learning speed per GPU (samples/s) when taking mini-
mum GPUs for tuning. Here, the model implemented us-
ing Megatron and DeepSpeed has 16-bit floating-point
parameters, while the model based on BMInf has 8-bit
fixed-point parameters.

4.1 The Results of Big Model Inference

As shown in Figure 6, we can find that models im-
plemented with DeepSpeed and Megatron cannot
perform model inference on some consumer GPUs
with limited GPU memory, such as GTX 1060 and
GTX 1080Ti. For BMInf, even on a GTX 1060
with only 6GB memory units can infer a big model
with over 10 billion parameters.

On some powerful GPUs like Tesla V100 and
Tesla A100, BMInf achieves 4 ∼ 6 times speedup.
In addition to the decoding speed, we also give a
case in Table 1, which can intuitively reflect the
inference quality of the model implemented with
BMInf.

4.2 The Results of Big Model Tuning

In order to evaluate the performance of BMInf on
big model tuning, we follow the setting of CPM-
2, use CCPM and LCQMC for experiments, and
apply prompt tuning to adapt CPM-2 to these two
datasets. CCPM is a text classification dataset re-
lated to Chinese poems, and LCQMC is a classifi-
cation dataset of intent similarity.

From Figure 7, we can find that when perform-
ing prompt tuning (batch size = 32), the CPM-2
version implemented with DeepSpeed and Mega-
tron requires 16 GPUs, while the version based on
BMInf requires only one GPU. For the speed of
processing samples, BMInf has achieved nearly 10
times speedup.

Dataset Model ACC GPU

CCPM
FT∗ 91.6 32
PT(FP16)∗ 90.9 16(↓ 50%)
PT(INT8) 87.4 1(↓ 97%)

LCQMC
FT∗ 89.2 32
PT(FP16)∗ 88.4 16(↓ 50%)
PT(INT8) 85.3 1(↓ 97%)

Table 2: The comparison between fine-tuning (FT) and
prompt tuning (PT). “PT(INT8)” is implemented based
on the model quantization of BMInf. “∗” means the
result is from the CPM-2 paper (Zhang et al., 2022).
“ACC” means the accuracy of models (%) and “GPU”
means the minimum GPU number required for tuning.
“↓” indicates a percentage decrease in the minimum
number of GPUs required for tuning.

From Table 2 we can find that model quantiza-
tion still affects the model performance to a cer-
tain extent. The reason is that the models with
more parameters are more susceptible to the low-
bit variance brought by the quantization methods.
Although 8-bit quantization has been demonstrated
the little impact on those models with millions of
parameters, how to robustly quantify those big mod-
els with billions of parameters remains us an future
work.

5 Conclusion and Future Work

In this paper, we introduce an efficient toolkit
BMInf to provide a way to use large-scale
PLMs. By applying model quantization, parameter-
efficient tuning, model offloading, model check-
pointing, CPU-GPU scheduling optimization, as
well as the reimplementation of mixed-precision
arithmetic operators, BMInf can perform big model
inference and tuning with less than 1/30 of the GPU
memory and 10 times speedup, as compared with
existing open-source distributed toolkits for pre-
training and fine-tuning PLMs.

In the future, our work to improve BMInf will
focus on the following three directions:

(1) At the model level, we will gradually support
more models;

(2) At the algorithm level, we will continue to im-
prove our model quantization methods to achieve
better performance, and work with other toolkits
such as OpenPrompt (Ding et al., 2021) to explore
more effective ways to tune big models;

(3) At the implementation level, we will provide
long-term maintenance for this toolkit.
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We hope this toolkit can help researchers utilize
big models for their own works and advance the
adaption of big models in the NLP community.
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Abstract

Events are fundamental building blocks of real-
world happenings. In this paper, we present
a large-scale, multi-modal event knowledge
graph named MMEKG. MMEKG unifies dif-
ferent modalities of knowledge via events,
which complement and disambiguate each
other. Specifically, MMEKG incorporates (i)
over 990 thousand concept events with 644 re-
lation types to cover most types of happenings,
and (ii) over 863 million instance events con-
nected through 934 million relations, which
provide rich contextual information in texts
and/or images. To collect billion-scale instance
events and relations among them, we addition-
ally develop an efficient yet effective pipeline
for textual/visual knowledge extraction system.
We also develop an induction strategy to create
million-scale concept events and a schema orga-
nizing all events and relations in MMEKG. To
this end, we also provide a pipeline1 enabling
our system to seamlessly parse texts/images to
event graphs and to retrieve multi-modal knowl-
edge at both concept- and instance-levels.

1 Introduction

Recently, many Knowledge Graphs (KGs) have
been curated (e.g., Wikidata (Vrandečić and
Krötzsch, 2014)) and successfully applied to vari-
ous applications, ranging from information extrac-
tion (Lai et al., 2021) to information retrieval (Dong
et al., 2014). KGs typically store billions of world
facts in a directed graph, where nodes denote en-
tities and edges denote their relations. Although
simple yet effective, the expression ability of such
entity-centric KGs is limited (Liu et al., 2020).
How we can represent more complex knowledge,
such as events, situations, or different modalities,
becomes a key question for broader applications.

*Equal Contribution.
†Work was done when Yubo, Zehao, Mukai and Meiqi

were intern researchers at SenseTime Research.
‡Corresponding Author.
1System page: https:www.mmekg.com.

Figure 1: Examples of visual and textual events, and
their relations. CO-REF denotes co-reference.

In this paper, we present a large-scale Multi-
Modal Event Knowledge Graph (MMEKG) that
bridges, complements, and disambiguates different
modalities of knowledge, for better understanding
or reasoning. Similar to real-world happenings,
MMEKG takes events as its basic building blocks.
Each event is defined by a concept, several argu-
ments, and corresponding roles. Among events are
various types of relations, such as causal, temporal,
or sub-event relations. Thus eneities can be argu-
ments in KGs. Figure 1 shows two example events:
a visual sleep event with arguments cat (sleeper)
and sofa (place), and a textual dressing event with
arguments cat (wearer) and scarf (clothing), where
argument roles are in brackets. The two events not
only bridge the text and image with complementary
arguments but also offer underlying commonsense
knowledge — covering with a scarf usually hap-
pens when sleeping.

Compared with existing event KGs (Speer et al.,
2016; Zhang et al., 2020; Hwang et al., 2021),
MMEKG advances this field in the following three
aspects: (1) A large-scale ontology contains 990
thousand concept events and 644 relation types,
which covers most types of real-world happenings.
(2) Multi-modal knowledge is naturally fused. To
our best knowledge, it is the first event KG that
bridges different modalities of data through fine-
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MMEKG with Cross-modal event ontology

Visual Knowledge Extraction

MMEKG with Cross-modal event ontology

Textual Knowledge Extraction

Figure 2: Illustration of Demo System. Any input texts/images can be parsed into event graphs, where nodes denote
instance events and edges denote event-event relations. Each instance event also refers to detailed information:
concept event, synset, arguments with corresponding roles, and the linked neighbors in MMEKG (blue tables). Note
that a single image mainly contains one event.

grained alignments of events and arguments. (3)
The integration of concept and instance events
not only makes it possible to enlarge the ontology
from instance events but also provides concept-
level commonsense knowledge with contextual in-
stances for comprehensive reasoning.

There are mainly two steps to build MMEKG. (1)
To construct a schema and acquire concept events,
we first manually combine FrameNet (Baker et al.,
1998) and WordNet (Fellbaum, 1998) to initialize
a high-quality event ontology; we then expand it
automatically via ontology induction from instance
events. For flexibility and exchangeability, we ex-
tend the Simple Event Model (SEM) (Van Hage
et al., 2011) to define our ontology in Resource
Description Framework (RDF). (2) To extract in-
stance events from either texts or images, we devel-
oped a knowledge extraction system to support fast
and massive extraction under the practical scenario.
This system consists of event extraction and event
relation extraction in both modalities, as well as the
alignment between them. In addition, this system
can parse any input texts/images to event graphs
and seamlessly retrieve multi-modal knowledge
from MMEKG.

To cover a variety of events, we apply our
extraction system into multiple sources, includ-
ing C4 News2, Wikipedia3, Bookcorpus4, and
CC3M&12M (Sharma et al., 2018; Changpinyo
et al., 2021). These data sources result in 863 mil-
lion instance events and 934 million relations. To
ensure its quality, we evaluate both our extraction
system and the constructed MMEKG. Compared

2https://www.tensorflow.org/datasets/catalog/c4
3https://dumps.wikimedia.org/enwiki/
4https://www.gutenberg.org/

with state-of-the-art models of each sub-tasks, our
methods achieve comparable or better performance
on standard benchmarks. The adaptation to prac-
tical corpus led to no significant degradation. We
sample thousands of events and relations from
MMEKG for manual evaluation. The precision
is acceptable at both concept and instance levels.

2 Overview of MMEKG

2.1 Definitions

Our proposed MMEKG, as shown in Figure 3, is
different from traditional event-centric KGs and
has four types of nodes and four types of relations.
Nodes include concept events, instance events, enti-
ties, and non-entity arguments e.g., literals. Among
them, concept events (color in purple in Figure 3)
are modality agnostic and provide high-level sum-
marization of instance events (color in yellow), and
entities/literals (color in blue) could be event argu-
ments. The four types of relations contain (1) rela-
tion between instance events. Such type of relation
can be further categorized into more fine-grained
sub-types, such as temporal, causal, co-occur, and
other semantic relations, (2) relation between con-
cept events, named as subclassOf which denotes a
hierarchical relation, (3) relation between concept
events and instance events, named as instanceOf
relation that integrates concept and instance events,
and (4) role relations that reflect the roles of argu-
ments (entities or non-entities) to the linked events.
Different concept events have different roles. For-
mally, we have:

Definition 1 MMEKG = {(h, r, t)|h, t ∈
E , r ∈ R}. E = Ecpt

⋃ Eins
⋃ Eent

⋃ Enent,
where Ecpt, Eins, Eent, and Enent represent
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Figure 3: Three levels of MMEKG are illustrated from left to right. The left part is extracted multimodal context.
The middle part shows the instance events aggregated from raw context. The right part are inducted concept events.

the set of concept event, instance event, en-
tities, and non-entities, respectively. R =
Rins−ins

⋃Rcpt−cpt
⋃Rcpt−ins

⋃Rrole, where
Rins−ins and Rcpt−cpt represent the set of rela-
tions between instance events or between concept
events, Rcpt−ins represents the set of relations
between instance events and concept events, and
Rrole denotes the set of argument roles. w(h, r, t)
denotes the relation weight of the triple (h, r, t) in
MMEKG, i.e., the confidence score of being true.

2.2 User Interface and System Architecture

As shown in Figure 2, based on MMEKG and the
extraction system, we have developed a prototype
system that can parse arbitrary texts or images to
an event graph, where the nodes denote instance
events and the edges denote their relations. For
each instance event, we link it to a concept event
in MMEKG by identifying the trigger word and its
synset (Event Detection). According to the concept
event and corresponding roles, we also extract argu-
ments, either a span in texts or a region in images
(Argument Extraction). These modules consist of
two main components: Textual Knowledge Ex-
traction and Visual Knowledge Extraction (no
trigger word). Another main component is Event
Relation Extraction which extracts various rela-
tions among events, including the fusion of tex-
tual and visual events. Note that concept events,
synsets, and relation types, are defined by our cross-
modal event ontology. The linked neighbors in
MMEKG are also shown below for better under-
standing. The detailed architectures behind the
demo system, MMEKG and the extraction system,
are shown in Figure 3 and Figure 5 respectively.

3 Cross-modal Event Ontology

Ontology is critical because it not only confines
what types of knowledge are concerned but also
offers a reasoning ability — only the induction
from instances to concepts brings new knowledge,
i.e., from the special to the general. The deduction
from concepts to instances has no uncertainty but
provides additional information. In this section,
we introduce our RDF Schema to model ontology
data (Section 3.1), an initial ontology by combin-
ing external resources (Section 3.2), and ontology
induction for continuous expansion (Section 3.3).

3.1 Schema
Following prior work (Gottschalk and Demidova,
2019), we inherit and extend the basic Simple
Event Model (SEM) (Van Hage et al., 2011;
McBride, 2004) as a knowledge representation ba-
sis. An example schema is shown in Figure 4.

Single event representation is extended from
SEM and FrameNet. (1) Each role has an associ-
ated ekg:[role] connecting instance event e ∈ Eins
and argument a ∈ Eent

⋃ Enent. (2) We addition-
ally add virtual nodes connecting instance events
with edge ekg:contextOf to represent a source
of such event. Edges from the virtual node like
ekg:trigger, ekg:modality and ekg:content indicate
the trigger word, modality and sentence/image in-
dex of this source respectively.

Event-event Relation mainly includes (1)
rdf:instanceOf to integrate instance and concept
events, (2) rdf:subclassOf that indicates the hier-
archy of concept events, and (3) other relations
among instance events, such as temporal or causal
relations. For such relations, we design a link-
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Figure 4: Illustration of Schema designed in MMEKG. Dashed boxes indicate literals and solid boxes indicate
events, entities, and relations. We use different colors to represent different types of schema. Blue: Event-related.
Green: Relation-related. Yellow: Information of related texts/images from which the system extracts instance
events. The uncolored circle is a virtual node connecting an instance event and its source information.

ing node marked by [EventRel_id]. There are two
advantages to this design: (a) Good extensibility.
For possible N-to-1 event relations, multiple sub-
jects and objects can be organized through the link-
ing nodes. Conventional subj-rel-obj tuples cannot
handle this case. (b) Integration of informative
statistics and supplements. For example, we add
the frequency and confidence score (obtained from
ontology induction in Section 3.3) as prior to the
events for reasoning with uncertainty.

3.2 Ontology Initialization

Based on schema, we initialize the ontol-
ogy by merging WordNet (Fellbaum, 1998),
FrameNet (Baker et al., 1998), and imSitu (Yatskar
et al., 2016) Ontology. In specific, we map
each verb and adjective synset in WordNet to a
frame in FrameNet (for example, roast.v.01 −→
Apply_heat). The frames are high-level concept
events, and the aligned synsets become fine-grained
concept events. Moreover, the WordNet taxon-
omy brings hierarchical information. For mapping,
we first jointly consider the result from structural
mapping (Leseva and Stoyanova, 2019) and cosine-
similarity score between definitions about synsets
and frames given by Sentence-BERT (Reimers and
Gurevych, 2019). We randomly sample 100 synset-
frame pairs to check whether the definitions of
mapped synset and frame align well, and find 89%
pairs are reasonable. Then we extend the ontology
from imSitu dataset by manually aligning WordNet
synset to annotated frame as our visual ontology.

3.3 Ontology Induction

This section details how to expand the initial ontol-
ogy from the perspectives of hierarchical taxonomy
and relation types.
Taxonomy Induction finds more fine-grained
concept events hierarchically. For exam-
ple, both complete, complete a tour and
complete a tour in fall belong to the initial-
ized concept event Activity_finish:complete.v.01,
while they represent events with different granular-
ity. Therefore we hope to discriminate them with
a more hierarchical and fine-grained taxonomy
structure.

Given an initialized concept event o and one of
its specific roles r, we first select all arguments con-
nected by role r with an instance event categorized
to o. Then we cluster these arguments heuristically
by lemmatizing the headword of each phrase. We
further name each cluster by that lemmatized head-
word and calculate a salience score for each cluster
by jointly considering (1) the confidence score w
of each event-role-argument triple clustered in and
(2) how much information each cluster name pro-
vides. Finally, we select K clusters with the highest
salience scores and create new concept events by
combining role r and these names with their trigger
words. Corresponding instance events are also cat-
egorized into these newly derived concept events.
As shown in Figure 3, we derive new concept
events such as complete.v.01__Activity:tour and
complete.v.01__Activity:tour__Time:fall. These
fine-grained concept events summarize instance
events via instanceOf relations and are summa-
rized by complete.v.01 with subclassOf relations.
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Figure 5: The architecture of Extraction System. There
are four main components: Cross-modal Event Ontol-
ogy, Textual Knowledge Extraction, Visual Knowledge
Extraction, and Event Relation Extraction. We use
the same ontology introduced in Section 3 for both
MMEKG and this extraction system. Another three
components are introduced in Section 4 respectively.

Relation Induction aims to discover common-
sense relations between concept events, based on
the relations between instance events. Similar to
taxonomy induction, we calculate a salience score
sr(oh, ot) for each pair of concept events (oh, ot)
on relation r. The score considers (1) the con-
fidence score of relation r between the children
instance events. (2) the commonality of ot w.r.t. r.
We add (oh, r, ot) with a salience score exceeding
a threshold to MMEKG. For example in Figure 3,
since the salience score of the triple (talk.v.01, co-
occur, sit.v.01) exceeds the threshold, we expand
such relation from instance-level to concept-level.

4 Knowledge Extraction System

This section briefly introduces our knowledge
extraction system collecting large-scale instance
events and relations for MMEKG, which is shown
in Figure 5. We follow the overall framework
of previous knowledge extraction systems like
GAIA (Li et al., 2020b) and RESIN (Wen et al.,
2021), but extends and optimizes event-related
components to enable it extracting billion-scale,
high-quality events efficiently. With more ad-
vanced models, tuning strategy and component
architectures, our system achieves comparable if
not better performance on each component using a
common benchmark. We also substitute all Cross-
encoder in the system to Bi-encoder if possible and
conduct a joint model of multi-task training during
event relation extraction for efficiency.

4.1 Textual Knowledge Extraction

This component extracts nodes of the event graph
from unstructured texts via event detection and ar-
gument extraction. (1) We pre-process the corpus
as follows. First, we identify document bound-
aries using BERT-base Next Sentence Prediction
(NSP) model and heuristic rules (5-10 sentences
per document). Then, we obtain POS-tag and de-
pendency tree via Stanza (Qi et al., 2020). Verbs
and adjectives are regarded as candidate words
triggering events. (2) Thanks to the synsets in
our ontology, we convert Event Detection as an
unsupervised word sense disambiguation (WSD)
task to avoid costly training data. We apply a Bi-
encoder model (Blevins and Zettlemoyer, 2020) to
predict the most possible synset for candidate trig-
ger words. Each synset refers to a concept event.
We thus can link the texts with MMEKG. (3) We
propose an efficient and effective method named
PAIE (Ma et al., 2022) for Event Argument Ex-
traction. The basic idea is to extend QA-based
models (Du and Cardie, 2020) to predict all roles
for a target event simultaneously. We propose to
prompt PLMs for extraction tasks and design a role
interaction prompt template for each concept event.
All role embeddings serve as query vectors to iden-
tify argument spans as the answer. We train the
model on annotations provided by FrameNet.

4.2 Visual Knowledge Extraction

For visual knowledge extraction, we design a
two-stage extraction network. Both models are
trained using the largest visual situation recogni-
tion dataset (Yatskar et al., 2016; Pratt et al., 2020).
(1) For event detection, we leverage pre-trained
ViT (Dosovitskiy et al., 2021) to obtain patched
image features. Then, another layer of transformer
is finetuned to classify images into our visual con-
cept events. (2) Following Pratt et al. (2020), we
use pre-trained ResNet-50 (He et al., 2016) as the
backbone of Faster R-CNN (Ren et al., 2015), and
conditional LSTM decoder to aggregate role infor-
mation to extract arguments from images.

4.3 Event Relation Extraction

This component aims to extract temporal, causal,
co-occur, and semantic relations between instance
events. Co-occur includes text/image alignments.
Temporal and Causal Relation. For temporal and
causal relations, we propose a novel method that
builds a document-level graph to infer the relations
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Component Sub-task Benchmark Metric Our score SOTA

Text Event Extraction WSD SemEval-2007 Accuracy 74.5 77.4 (Barba et al., 2021)
EAE ACE-05 F1 67.0 65.4 (Du and Cardie, 2020)

Visual Event Extraction VerbD imSitu Accuracy 46.8 43.2 (Suhail and Sigal, 2019)
EAE imSitu Accuracy 23.8 19.5 (Suhail and Sigal, 2019)

Event Relation Extraction ECI Causal-TimeBank F1 61.7 53.2 (Zuo et al., 2021)

Table 1: Performance of each component. Abbreviation in column Sub-task: EAE: Event Argument Extraction.
VerbD: Verb Detection. ECI: Event Causality Identification.

#Instance #Concept # Relation # Relation
Event Event Type

ConceptNet _ 74,989 116,097 4
ATOMIC _ 309,515 877,108 8

ASER (core) 52,940,258 _ 52,296,498 14
ASER (full) 438,648,952 _ 648,514,465 14

MMEKG-core 12,310,716 990,123 48,599,695 644
MMEKG-full 863,428,946 990,123 934,413,371 644

Table 2: Statistics of MMEKG and existing event KG.

Table 3: Taxonomy induction.

#Sample Positive Negative

1000 80.1% 19.9%

Modality Precision

Event Textual 84.0%
Visual 64.6%

Triple Textual 66.9%
Cross-modal 63.8%

Table 4: Instance-level evaluation.

among events globally. Our method could con-
duct across-sentence reasoning without clear tem-
poral/causal indicators and complicated heuristic
rules. This enables us to identify all temporal and
causal relations of a document simultaneously and
efficiently. We jointly predict temporal and causal
relations as multi-label multi-task classification and
train the model based on Causal-TimeBank (Mirza,
2014). There are six relation types in total: Before,
After, During, Includes, Included, and Causal.

Co-occurrence Relation. For textual co-
occurrence, we identify it via dependency pars-
ing if the trigger words have a conj relation. For
cross-modal co-occurrence, we extract events from
paired image-caption respectively and assume they
co-occur. We also observe semantic shifts between
different modalities. As shown in Figure 1, the
textual dressing event may be a sub-event of the
visual sleeping event. We will investigate it soon.

Semantic Relation. We claim that when an
argument of event A is a gerund phrase B, B
could also be viewed as a sub-event of A trig-
gered by the gerund functioning as its seman-
tic component. For example, we extract two
events from sentence Eating too much fried chicken
cause overweight: cause overweight (event A)
and eat too much chicken (event B). Since A is
also an argument of role influencing_entity for B,
event eat too much chicken and cause overweight
are connected with relation influencing_entity.
Based on such assumption, we expand the relation

types by exploiting the frame elements in FrameNet.
We capture all event pairs in sentences satisfy-
ing (1) the trigger words are connected by acl or
acl:relcl in dependency parsing, or (2) the trigger
of one event is extracted as an argument of another
event. Then we identify these two events having a
relation labeled by the argument role.

5 Evaluation

5.1 MMEKG Statistics

Table 2 presents the statistics of MMEKG and other
Event KGs. We build a full version, MMEKG-
full, and MMEKG-core which filters out infrequent
events (< 3 times), leading to a denser and more
accurate version. MMEKG involves not only a
much larger ontology but also more instance events.

5.2 Extraction System Performance

Table 1 shows the results of our components trained
on publicly available datasets, since there is no uni-
fied benchmark to evaluate the entire extraction
process. We can see that all of our knowledge ex-
traction components, except WSD, achieve better
performance. Our WSD model performs compara-
bly and efficiently for massive event detection.

5.3 Instance-level Evaluation

Considering the different data distribution between
training data and extracted corpus, we manually
evaluate the instance-level quality of MMEKG. We
randomly select 1,000 instance events in texts and
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Type #Sample Positive Similar Negative

Temporal 134 65.7% 15.7% 18.6%
Co-occur 139 57.6% 20.1% 22.3%
Semantic 137 46.0% 36.5% 17.5%

All 550 58.5% 22.4% 19.1%

Table 5: Relation induction.

500 from images. Along with original contexts,
we invite six colleagues to label whether the ex-
tracted event represents the semantic meaning of
the original source or not. For instance event rela-
tions, we consider: (1) causal/temporal relations
from texts and (2) cross-modal co-occurrence from
image-caption pairs. We sample 200 textual rela-
tions and 300 cross-modality relations. Along with
the contexts, we provide these extracted relations
to the same six colleagues and ask them whether
the relation extracted matches the original resource.
Results in Table 4 demonstrate little performance
degradation in precision5 and an acceptable quality
of our proposed MMEKG, considering the com-
plexity of the entire pipeline.

5.4 Ontology-level Evaluation

Large-scale ontology is critical for knowledge rea-
soning. We further evaluate the quality of inferred
taxonomy and relations. The difference from the
instance-level evaluation is that no context is pro-
vided for reference in ontology evaluation. We
construct pairs with one positive and one negative
sample for comparison convenience, as illustrated
in Figure 6, and ask the same six colleagues which
sample agrees with our commonsense more. The
results are shown in Tables 3 and 5. Both nega-
tives are around 20%. In particular, for relation
induction, some similar pairs are hard to tell which
one is better. We attribute this to the low recall
and random negative sampling, which may bring
in false negatives. This also provides insights for
future improvements.

6 Related Work

Event Knowledge Graph Existing event knowl-
edge graphs (Speer et al., 2016; Sap et al., 2019;
Zhang et al., 2020) usually face a dilemma about
quality and quantity. ATOMIC (Sap et al., 2019)
annotates manually and constructs high-quality

5We do not report recall here because (1) there is no an-
notated ground truth of instance events in extracted corpus.
(2) precision is much more important since we extract events
from large corpus to construct KG.

Taxonomy Induction:

positive: eat.v.01__Ingestibles:apple

negative: eat.v.01__Ingestibles:table

Relation Induction:

positive: (
destroy.v.02__Patient:building, include,
kill.v.01___Victim:people )

negative: (
destroy.v.02__Patient:building, include,
invalidate.v.01__Phenomenon:subpoena )

Figure 6: Examples of pair constructed for taxonomy
(top) and relation induction (bottom). Each pair includes
one positive and one negative sample. Positive ones are
sampled from induced concept events or relations. Neg-
ative ones are generated by substituting the arguments
(taxonomy) or tail events (relation) in positive samples.

knowledge bases, while ASER (Zhang et al., 2020)
leverages defined patterns and automatic pipeline
to build a large-scale graph. Compared with ASER,
we not only develop a larger KG by larger cor-
pus and advanced extraction system but also derive
complicated ontology and incorporate information
across modalities to control the quality of KG.

Knowledge Extraction System Previous multi-
modal knowledge extraction systems, such as
GAIA (Li et al., 2020b) and RESIN (Wen et al.,
2021), jointly extract information of a small do-
main from relatively small-scale resource. Our sys-
tem inherits their overall framework but is applied
for extracting billion-scale and universal events.
Therefore we optimize event-related modules tar-
getedly for both efficiency and effectiveness.

Cross-media Event Argument Alignment Some
previous works (Li et al., 2020a; Fung et al., 2021)
also bridge texts and images through fine-grained
alignments of event arguments for various tasks,
such as multi-modal event extraction and fake news
detection. Instead, we fuse knowledge from differ-
ent modalities to construct such a large-scale KG.

7 Conclusion

We present the first Multi-modal Event KG
(MMEKG) with a large-scale event ontology. It
not only bridges and complements different modal-
ities of knowledge via more expressive events but
also benefits comprehensive reasoning with rich
cross-modal contexts. Additionally, we provide a
demo system that can seamlessly parse and link any
texts/images via our knowledge extraction system.
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Abstract

SOCIOFILLMORE is a multilingual tool which
helps to bring to the fore the focus or the per-
spective that a text expresses in depicting an
event. Our tool, whose rationale we also sup-
port through a large collection of human judge-
ments, is theoretically grounded on frame se-
mantics and cognitive linguistics, and imple-
mented using the LOME frame semantic parser.
We describe SOCIOFILLMORE’s development
and functionalities, show how non-NLP re-
searchers can easily interact with the tool, and
present some example case studies which are
already incorporated in the system, together
with the kind of analysis that can be visualised.

1 Introduction

Descriptions of the very same event can vary
widely. Sometimes completely different versions of
a situation can be reported, while other times more
subtle differences emerge by the way in which such
situations or episodes are depicted by choosing
specific natural language expressions. Figure 1 il-
lustrates this: in the first sentence the car crash
is lexicalized by the noun “collision” leaving
the entire dynamic unknown and suggesting that
the cyclist may have some responsibility. On the
contrary, the second sentence uses the verb “hit”
with a subject (the agent) and an object (the patient)
making more transparent how the event happened
and who is responsible for it.

This phenomenon is known as framing or per-
spsectivization, and can happen in any discourse
either in full awareness or, more often, uncon-
sciously (Horst, 2020). Politics, for instance, is the
prime arena where intentional and biased framing
takes place (Iyengar, 1994; Semetko and Valken-
burg, 2000; Entman, 1993; Matthes, 2012), but
this occurs also in other domains, such as sports.
Indeed, representation alternatives, namely the dif-
ferent choices that language allows to describe the
same event (not only at the lexical but also at the

same event, two 
perspectives

perspective change 1
lexical causativity

perspective change 2
active syntax 

perspective change 3
agent semantic role 

Figure 1: Analysis from SOCIOFILLMORE showing
linguistic markers indicating the perspective changes
in two descriptions of the same event. Words in boxes
indicate triggers of semantic frames in the sentence.

syntactic and pragmatic level), are key to express-
ing and understanding the ideological power of
discourse (Haynes, 1989).

Different theoretical frameworks can guide the
study of framing and perspectivization in discourse,
such as Critical Discourse Analysis (CDA) (Fair-
clough, 2010; Van Dijk, 1995) and Frame Seman-
tics (Fillmore, 1985; Baker et al., 2003). While
NLP tools based on some of such frameworks do
exist to potentially support large-scale text analy-
sis of perspectivization, and more specifically of
Fillmore’s frame semantics (Xia et al., 2021), they
are (i) recent, thus not yet established as analysis
tools for specific perspectivization problems out-
side of the NLP community; (ii) technical, so that
their adoption is basically impossible for the non-
experts, who would though benefit from them. On
the other hand, cognitive linguists have carried out
cognitive linguistic analyses on the discourse re-
garding social issues and events (e.g. Pinelli and
Zanchi (2021)), but these analyses usually imply
manual scrutiny of data and, accordingly, deal with
small datasets.

We fill this gap with the development of
SOCIOFILLMORE, a user-friendly multilingual
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tool based on frame semantics which allows users
to conduct large-scale analyses of text by highlight-
ing the perspectivization strategies they adopt.1

2 Context & Evidence

In this section, we highlight the theoretical
frameworks that have guided the design of
SOCIOFILLMORE and the empirical evidence we
have collected to support its application to written
corpora.

2.1 Frames, Constructions, & Perspectives

Being able to depict or report about events is part
of the broader human ability of storytelling (Boyd,
2009; Gottschall, 2012). One of the key properties
of telling a story is the presence of a focus, or a
perspective (Bal, 1997), which is embedded and
intrinsic into every communication act, as shown
in Figure 1. Furthermore, the lexical units in a dis-
course are powerful access points to complex con-
ceptual structures of encyclopedic knowledge and
perspectives. This vision is at the core of Fillmore’s
frame semantics (Fillmore, 1971, 1985, 2006), and
encoded into the FrameNet project (Baker et al.,
2003). The availability of a computational resource
and the strong linguistic orientation of Frame Se-
mantics are the major driving reasons for preferring
this framework over other existing ones.

Frames are powerful devices that express per-
spectives and they strongly interact with linguis-
tic constructions (Langacker, 2006). In some
cases, the construction used to present the events
can even lead the evocation of different frames.
This is clearly illustrated in Figure 1: the noun
collision evokes the frame IMPACT, while the
verb hit in an active voice evokes the frame
CAUSE_IMPACT. The change of frames associ-
ated with different constructions triggers different
perspectives and, in this case, also different respon-
sibilities of the participants of the event.

In cognitive linguistic terms, these different con-
structional options are named construals (Lan-
gacker, 1991). Frames and construals are socially,
culturally, and discursively constructed and consti-
tutive (Dirven et al., 2007): they mirror our ideol-
ogy, beliefs, and stereotypes and in turn contribute
to building and enhancing them. Magnifying the
connections between these two elements is a way
to support users (e.g., social scientists, journalists,

1An online demo and docker images of the app are avail-
able at https://osf.io/8kh3d/.

linguists, media studies scholars, among others) to
identify and study the perpetration of biases and
power structures in discourse.

2.2 Empirical Evidence

As a rationale for the validity of our tool two pieces
of evidence are needed. The first concerns the
feasibility and accuracy of (multilingual) frame se-
mantic parsing, since any reasoning over the signif-
icance of finding one frame activated rather than an
alternative one is meaningful only if frames can be
accurately detected. For this, we ran an evaluation
of LOME (Xia et al., 2021), a multilingual end-to-
end frame parsing system which is the backbone of
our tool, and found that it indeed produces reliable
analyses. Details of the fine-tuning procedure and
the evaluation are in Section 3.1.

The second piece of evidence concerns the rela-
tionship between frames and perspectives from a
cognitive viewpoint, and more specifically on the
human perception of semantic frames and/or of the
interaction between syntactic and lexical seman-
tic expressions of agentivity. Is it true that certain
frames and/or constructions are associated with
agentivity more than others? To test this, we ran
a questionnaire where participants had to express
judgements about their perception of the focus (i.e.,
on which participant or entity is the main focus
on the sentence?) on a set of 400 sentences ex-
tracted from a large corpus on femicides in Ital-
ian (details in §4.1 and Appendix A). Judgements
are expressed on a 5 point Likert-scale for four di-
mensions, namely focus on: ‘the murderer’, ‘the
victim’, ‘an object’ (e.g., a weapon), or ‘an ab-
stract concept or emotion’ (e.g., jealousy). The
selected frames are reported in Table 1, together
with the results, i.e., perception scores for each
frame-construction pair (averaged over participants
and sentences; every pair had approximately the
same number of ratings). The highest level of fo-
cus on the murderer is found with the KILLING

frame evoked by an active transitive construction;
this makes sense, since this is the only situation
in which the presence of a Killer role is required
both syntactically and semantically.2 On the other
hand, constructions perceived as placing a high
focus on the victim are found across all frames ex-

2Note that its syntactic realization appears to have a large
influence on the perceived focus placed on the agent: on aver-
age, passive constructions evoking KILLING have a ‘murderer’
score of almost two points lower than their active counterparts.
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frame/construction murderer** victim** object concept /
emotion*

CATASTROPHE

nonverbal 1.319 2.713 0.760 2.190
DEAD_OR_ALIVE

nonverbal 1.195 3.387 1.386 1.993
vrb:unaccusative 1.983 3.529 1.566 1.539

DEATH

nonverbal 0.967 3.247 1.507 1.914
vrb:unaccusative 1.867 3.921 1.690 1.286

EVENT

nonverbal 1.431 1.503 1.186 2.339
vrb:impersonal 1.169 2.201 1.309 1.949

KILLING

nonverbal 2.007 2.387 1.032 1.673
other 2.410 2.345 1.198 1.663
vrb:active 3.897 2.659 1.570 1.651
vrb:passive 1.947 3.425 1.491 1.315

Table 1: Average scores for survey question “the main
focus is on X”. Legend: ‘vrb’ = verbal construction;
‘*’ = differences between frame-construction pairs are
significant at α = 0.05, ‘**’ = significant at α = 0.001
(Kruskal-Wallis non-parametric H-test). Cells with a
value > 2.5 are highlighted in green.

cept EVENT.3 While the analysis presented here
is limited to a specific domain, there is a clear
pattern in the perception scores of frames and con-
struals, granting sufficient ground for treating their
automatically detected presence as a good proxy
for how sentences perspectivize events in terms of
foregrounding and backgrounding participants.

3 SocioFillmore

SOCIOFILLMORE consists of two parts: on the
back-end side, there is a series of linguistic analysis
components, and on the front-end side, there is a
number of components for interacting with the user.

3.1 Linguistic Analysis Components
The linguistic analysis components are a combina-
tion of existing models and resources, linked by a
set of rule-based bridging components.

LOME At the core of SOCIOFILLMORE is a
frame semantic parser for annotating texts with
FrameNet-based semantic frames and roles. While
the rest of our architecture is agnostic as to what
specific model is used, we decided to use LOME
(Xia et al., 2021) as this is (i) one of very few avail-
able models capable of producing end-to-end frame
analyses (i.e., taking raw text as input, without pre-
specifying predicates to annotate), and (ii) based on

3This is consistent with the fact that, in FrameNet, the
EVENT frame does not include any ‘core’ semantic roles apart
from Place and Time, whereas all the other included frames
include a Patient-like role that likely corresponds to the victim.

XLM-R, it is the only model we are aware of that
supports zero-shot multilingual FrameNet analysis.
Zero-shot multilingual predictions (given English-
only annotated) data are very useful given the com-
plexities of Multilingual FrameNet and the lim-
ited availability of training data in languages other
than English. In an effort to evaluate and improve
LOME’s multilingual capabilities, in Minnema
et al. (2021), we tested LOME against an existing
benchmark for Italian (the 2011 Frame Labeling
over Italian Texts Task [FLAIT], Basili et al. 2013),
and experimented with several methods for exploit-
ing the limited available training data for Italian for
improving on this. Interestingly, in a zero-shot set-
ting, LOME underperformed versus the previous
state-of-the-art SVM-based model, (Croce et al.,
2013) by 24 percentage points (57% vs 81%) on
the benchmark’s frame detection task (i.e., predict
semantic frames given gold predicates), but out-
performed it on the frame boundary and argument
classification tasks (i.e. predicting role spans and
labels given predicates and frames). In our cross-
lingual training experiments, we achieved best re-
sults training LOME on the concatenation of the
available corpora for English and Italian, with a
frame detection score much closer to the previous
state of the art (77%). However, in a small-scale
manual annotation experiment on texts from the
RAI femicides corpus (see §4.1) focusing on a
limited set of frames, we found that the zero-shot
LOME model performed substantially better than
the cross-lingually trained version, which seems
to be largely due to a drop in predicate detection
performance (i.e., given raw text, find all predicates
that evoke frames); this can be explained by the
nature of the available Italian annotations, which
cover only one frame per sentence, making it hard
for the model to learn which lexical units evoke
frames. Thus, while being far from perfect, zero-
shot LOME seems to be the best currently available
option in practice for automatic frame annotation.

Syntactic Analysis The second main step of the
SOCIOFILLMORE analysis pipeline is syntactic
analysis. For each frame structure (i.e., a semantic
frame together with its semantic roles) identified by
LOME, we extract three types of syntactic informa-
tion through a combination of a UD parse obtained
with spaCy (Honnibal et al., 2020), the FrameNet
database, and a set of hand-written rules: (i) syn-
tactic construction, (ii) role-dependency links, and
(iii) predicate-root status. We distinguish between
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several types of syntactic constructions; Table 2
lists these constructions in increasing order of par-
ticipant foregrounding (nonverbal and impersonal
constructions do not require any event participant to
be syntactically expressed, unaccusatives and pas-
sives require only a Patient-like argument, while
actives also require an Agent-like role).

Constructions are classified based on three cri-
teria. First, we look at the part-of-speech tags pro-
duced by the UD parser, in order to separate non-
verbal from verbal constructions. Second, if the
construction is verbal, we use FrameNet for deter-
mining which core semantic roles are required for
the construction: if the triggered frame is EVENT,
the construction is classified as impersonal; all
other frames in FrameNet have been manually
annotated as being either ‘active’ or ‘non-active’
based on the presence or absence of an Agent-like
participant in the definition of the frame. This in-
formation is used to classify verbal constructions
associated with non-active frames as unaccusative.
Finally, semantically active frames are classified as
instantiating either passive or active constructions
based on the syntactic features taken from the de-
pendency parse (e.g., finite or infinitive verb form,
presence of passive auxiliary, etc.).

Two additional types of extracted syntactic in-
formation are role-dependency links and predicate-
root status. The former are labels that indicate
how a semantic role label is expressed syntacti-
cally relative to the frame trigger, and are extracted
from the dependency tree by a rule-based algo-
rithm that traverses the dependency tree, starting
from the frame trigger, until it encounters a token
that is included in the role argument span, or un-
til a pre-set number of maximum traversal steps
has been reached. Some possible role-dependency
links are “Event:nsubj↓” (nominal subject,
e.g. in the [event] happened), “Killer:*” (self-
referring link, e.g. in the [assassin] of JFK), and
“Suspect:↑-nsubj↓” (subject of an interme-
diate node, e.g. in the [prisoner] remains in deten-
tion). For the purposes of perspective analysis, role-
dependency links can provide a useful extra layer
on top of construction information: for example, it
can help us distinguish between agent-centered and
event-centered nonverbal constructions (e.g. assas-
sin, with a self-referential Killer role, vs. homicide,
without a Killer role) or detect active constructions
in which the main focus is on an inanimate cause
rather than on an animate agent (the [accident]

Construction Semantic Roles Examples

non-verbal none
The *murder* of MLK
A *deadly* accident

vrb:impersonal
none
[Event-like]

It *rained*
The event *occurred*

vrb:unaccusative Patient-like
The victim *died*
He *fell* off the stairs

vrb:passive Patient-like
She *was found* in her house
The cyclist *was hit* by a car

vrb:active
Agent-like
[Patient-like]

The girl *walked* to school
The police *arrested* the man

Table 2: Syntactic construction types used by
SOCIOFILLMORE. Semantic roles between square
braces are mandatory in a subset of constructions within
the type. ‘vrb’=verb-based constructions

Figure 2: Explorer mode: visualize sentences matching
specific linguistic features

killed him vs. The [murderer] killed him). On the
other hand, predicate-root status refers to the posi-
tion of the frame trigger in the syntactic tree, and
serves as a proxy for how ‘central’ the construc-
tion is within the sentence. Verbal constructions
are classified as ‘roots’ only if they are the root
nodes of the dependency tree (i.e. are the main
verb in the sentence), and nonverbal constructions
are classified as ‘roots’ only if they are the the sub-
ject of the root node. The intuition behind this is
that the main verbal construction in a sentence, or
nonverbal constructions closely related to it, are
more under focus than other constructions. For
example, in the homicide happened (root) versus
he was arrested for homicide ten years later (non-
root), homicide is foregrounded in the former but
backgrounded in the latter.
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3.2 User Interaction
SOCIOFILLMORE has two usage modes: one for
exploring and analyzing existing, pre-processed
corpora, and one for interactively exploring frame-
based perspective analysis. The former mode is
targeted towards domain experts interested in in-
depth analysis of specific phenomena, while the
latter is targeted to a broader community of (social)
scientists who are unfamiliar with frame semantics
but would like to learn about using linguistic frames
and constructions for analyzing how events can be
framed through language.

Corpus Explorer The corpus explorer is illus-
trated in Figure 2. It consists of three parts: first,
the user can select relevant semantic frames from
a pre-defined set (or add additional frames) that
correspond to the perspective-taking phenomena
that they want to investigate. Second, the user can
specify which subset of the corpus they would like
to analyze by adding document-based and event-
based filters. Document-based filters (e.g. publica-
tion date, news outlet) can be added for any kind
of corpus, while event-based filters (e.g. location
of event, participants involved) can only be used
for corpora that provide event-level metadata (i.e.,
each document is linked to some structured event
representation). This second type of corpus is es-
pecially attractive for perspective analysis because
it allows for investigating how similar real-world
events are conceptualized in different documents
that reference these events. Finally, having selected
frames and filtered the corpus, the user can analyze
the corpus in two ways: one can get global descrip-
tive statistics over the selected part of the corpus, or
visualize annotated sentences from the corpus. A
wide range of descriptive statistics are available, for
example, simple frequencies of semantic frames
and constructions, frequencies of role dependen-
cies per frame, and frame frequencies plotted as a
function of time elapsed between the event occur-
rence and publication of the documents referencing
it. On the other hand, when visualizing annotations
from the corpus, there are two options: the user can
either select specific documents from the corpus
and analyze them sentence-by-sentence, or make
a selection of linguistic features of interest (e.g. a
combination of frames, constructions, and role de-
pendencies) and request to see randomly sampled
sentences matching these features.

As of now, we have implemented the corpus ex-
plorer for four different corpora on three domains

Figure 3: Interactive mode: keyword search interface

in two languages (femicides and migration in Ital-
ian, and traffic crashes in Dutch). We are planning
to add additional corpora in the future, and also
welcome contributed corpora from others. Adding
an additional corpus requires some amount of ex-
pertise in NLP and FrameNet as well as in the
domain of interest, and involves pre-processing
the corpus and its metadata, running LOME and
the SOCIOFILLMORE linguistic pipeline over the
corpus, and adding corpus-specific logic (e.g. doc-
ument/event filters) to the explorer interface. For
future work, we are planning to develop a graphical
UI to streamline this process and make it more ac-
cessible for users without a technical background.

Interactive Mode The interactive mode of
SOCIOFILLMORE aims to make frame-based per-
spective analysis more accessible to people without
a specific background in frame semantics. To this
end, we provide three main features, as shown in
Figure 3: a step-by-step interface with examples
guiding the user through the stages of perspective
analysis (event definition, frame selection, and doc-
ument visualization), an interactive frame selection
tool, and an on-demand version of LOME and the
SOCIOFILLMORE linguistic pipeline with simpli-
fied annotation visualization. The most novel of
these features is the interactive frame selection tool,
which is meant to help users who are not familiar
with the FrameNet database to find frames that are
relevant for the event type that they would like
to analyze. The frame selection tool consists of
two components: an embedding-based keyword
search function, and a rule-based algorithm for
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automatically finding frames that provide alterna-
tive perspectives on selected frames. The former
of these makes use of ‘bag-of-LU’ frame embed-
dings that are computed using a similar method to
that proposed in Alhoshan et al. (2019). Keyword
searches are performed by retrieving GloVe vectors
for the specified keywords, and then finding the
frame embeddings with the top-N closest cosine
distance to the centroid of the set of keyword em-
beddings. The suggested frames are then displayed
to the user along with their definition and exam-
ple sentences retrieved using the NLTK FrameNet
API (Bird et al., 2009). Alternative representations
for the creation of the frame and keyword embed-
dings (e.g., BERT embeddings) could be easily in-
tegrated in the tool. Complementary to the keyword
search system, we use frame-to-frame relations to
automatically add additional frames that provide
alternative perspectives on the frames that the user
specified.

4 Case studies

SOCIOFILLMORE has been applied (so far) to three
case studies: Italian news reporting on femicides,
Italian news reporting on migration, and Dutch
news reporting on traffic crashes. In each of these
cases, we target events where there is a potential
imbalance of power between the actors involved
and the attribution of responsibility for the hap-
pening to (at least) one of the participants of the
event. This makes the study of the perspectives
associated with the reporting of these events very
suitable to investigate how responsibility is framed
in news reports of such events, and where potential
representation biases may emerge.

4.1 Femicides

For femicides, the domain of SOCIOFILLMORE de-
veloped most extensively to date, two corpora are
currently available in the exploration tool. The first
has been compiled by the CRITS research team
at RAI (Radiotelevisione Italiana), composed by
2,734 news articles from 31 different Italian news
sources, reporting on 937 femicides perpetrated
between 2015 and 2017 (Belluati, 2021). The cor-
pus is enriched with metadata (time, news source,
etc.) and for each femicide event multiple news ar-
ticles are available. For our analysis we selected 15
frames based on the examples in Pinelli and Zanchi
(2021) - see Appendix B.

In Minnema et al. (2021), we applied

Figure 4: Femicides analysis: frequency of frames
split by syntactic construction. Figure exported from
SOCIOFILLMORE.

SOCIOFILLMORE on a randomly chosen 200K
word subcorpus (10% of all events) of the RAI
corpus. The main findings are shown in Figure 4.
As expected, KILLING is by far the most frequent
typical frame, followed by EMOTION_DIRECTED

and DEATH. Concerning syntax, the nonverbal
constructions (i.e., the predicate is either a noun
or an adjective) are dominant across many frames,
while verbal:active constructions are much rarer,
as well as verbal:passive and verbal:unaccusative.

The combination of syntactic constructions and
semantic frames is the key to magnifying perspec-
tives. In particular, we observe that 60% of the
instances of the frame KILLING are associated with
constructions that foreground the victims and back-
ground the perpetrators. This reaches 79% of cases
when the frame used to present the event is DEATH.
In terms of perspective analysis, this indicates a
bias in framing femicides as events where a killing
takes place but no one is actually responsible for it.

4.2 Other domains

SOCIOFILLMORE has been productively used as
well for studying the framing of traffic crashes and
migrations in the Dutch and Italian media, respec-
tively. Zanchi et al. (2021) used the tool for auto-
matically identifying frames contributing to either
dehumanizing or humanizing migrants in newspa-
per headlines (e.g. reporting on ‘waves’ of mi-
grants, and thus collectively conceptualizing them
as a non-human mass entity, vs. reporting on mi-
grants as single and intentional individuals), and
also compared the change in these frames over time
relative to statistics about newly arrived migrants
in Italy. We are also involved in ongoing work,
in collaboration with the author of the original pa-
per, aiming at reproducing the findings on traffic
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framing reported in Te Brömmelstroet (2020).

5 Conclusions

SOCIOFILLMORE is a multilingual tool that we
have developed for studying perspectives in writ-
ten text, grounded in Frame Semantics and Cogni-
tive Linguistics. Through an interactive mode, the
tool is easily accessible to non-experts, too. We
support the rationale for the validity of our tool
through a rigorous evaluation of the frame seman-
tic parser at the core of our tool and a collection
of human judgement on the connection between
frames and perspectivization. The tool is available
as a web interface (and as a docker release), it sup-
ports multiple languages, and already integrates a
few large-scale case studies which can be browsed
for research, but also for further understanding of
the tool’s functionalities.

Ethical Statement

One of the key properties of SOCIOFILLMORE is
its being agnostic on whether a perspective should
be considered “good” or “bad”. In this respect
SOCIOFILLMORE is not a prescriptive tool on
how news should be reported but rather a support
tool that helps to magnify misuse of frames and
biases that may mirror and strengthen asymmetric
power dynamics existing in our societies.

SOCIOFILLMORE is based on state-of-the-art
NLP technologies. While these tools achieve very
good performances (also in zero-shot multilingual
settings), none of them can be considered to reach
nor mimic humans. The tools are based on pow-
erful machine learning algorithms but they are far
away from being artificial intelligent agents. We
recommend caution when using SocioFillmore
since margins of errors are present. At the same
time, additional tests are needed before deploying
SOCIOFILLMORE as an integrated tool or service
that citizens or professionals may use for purposes
other than research.

One of the services of SOCIOFILLMORE is
corpus-assisted language analysis. The outcome
of this service is highly sensitive to the data that
are feeded to the tool. This requires users to pay
particular attention to the curation of the data that
will compose their corpus. Results on the presence
of frames and bias are a direct consequence of what
is input to the tool. The case studies we have illus-
trated are based on carefully curated corpus collec-
tions conducted by experts. We thus recommend

that users of SOCIOFILLMORE should accompany
the presentation of their results with a documen-
tation of their data collections using tools such
as data statements (Bender and Friedman, 2018) or
data sheets (Gebru et al., 2021).
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A Questionnaire

The questionnaire has been conducted using the
platform Qualtrics.

Participants have been recruited from several
universities in Italy (N = 239; Male = 86; Fe-
male = 153). Each participant was presented with
50 sentences and was asked to express a judge-
ments on Likert-type scale from 0 to 5 for the per-
ceived “amount” of focus placed on four dimen-
sions, namely: ‘the murderer’, ‘the victim’, ‘an
object’ (e.g., a weapon), or ‘an abstract concept or
emotion’ (e.g., jealousy).

The sentences were selected by first automati-
cally annotating the corpus with semantic frames
and construals, determining a set of semantic
frames that correspond to different ways of concep-
tualizing the femicides, selecting the set of most
frequent construals for each frame, and then, for
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each frame-construal pair, randomly sampling sen-
tences containing at least one instance of the pair
from the corpus.

The frames that we selected were, in order of
increasing level of detail and presence of event
participants:

• EVENT, e.g., the incident occurred;

• CATASTROPHE, e.g., the tragedy cost the life
of ...;

• DEAD_OR_ALIVE, e.g., the victim was found
dead;

• DEATH, e.g., the victim died at the hands of...;
and

• KILLING, e.g., the man murdered his wife.

Each of these frames can occur in various syntac-
tic configurations, but only KILLING can be evoked
by a transitive verbal construction (actively or tran-
sitively used).

While it is possible that, in some cases, instances
of these frames refer to another event referenced
in the texts (e.g. KILLING could also refer to the
perpetrator committing suicide, or to some other
type of secondary murder; EVENT could also refer
to other type of ‘events’ or ‘incidents’ mentioned
in the text), but, from a manual inspection of the
data, this seems to be fairly rare. We informed par-
ticipants of the possibility of anomalous sentences
occurring in the survey and instructed them to mark
these as ‘irrelevant’ and to not assign any points to
them.

The questionnaire has been approved by the Eth-
ical Board of the University of Groningen. Partici-
pants were compensated with 5 euro. Each partici-
pant was asked to provide judgments on a set of 50
sentences. Participation is anonymized (there is no
link between the questionnaire answers and the par-
ticipants.) and we limit the collection of personal
data to last name, initials, bank account and address
only for payment purposes. After the payment, all
personal data of the participant is deleted.

A screenshot of the original instructions pro-
vided to the participants is presented in Figure A.1.
Translations in English of the instructions is given
below:

INSTRUCTIONS:
Dear participant,
the following questionnaire

is part of a project related to

Figure A.1: Original instruction given to the participant
in the questionnaire for validating SOCIOFILLMORE.

the representation of femicides
in the italian media. You
will read sentences extracted
from newspaper articles about
femicides, i.e. murders in which
a man kills a woman. The real
names un the sentences have been
changed.

In each page you will be
presented with a series of 12
or 13 sentences; there are four
different "stacks" of sentences,
one for each page. For each
sentence you will be asked a
question (the same of every
sentence in that page) followed
by different variables. You will
be asked to rate every variable
on a scale from 0 to 5.

While doing the task, try to
consider just what the sentence
explicitly expresses. There is
no need to think for too long,
try to answer fast according to
what you perceive reading the
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sentences. Example: The woman
was killed by her husband at home.
Question: The sentence focuses
on...

• the murder: 3/5

• the victim: 5/5

• nobody in particular: 0/5

After the data analysis, the
participants will receive an
e-mail with a link to an online
meeting in which we will briefly
present the outcomes of the
research.
Warning: the topics in the

questionnaire could make you feel
uncomfortable; please continue
only if you feel at ease. Thank
you for your time!
By filling in the following

questionnaire I consent to
participate voluntarily in the
study conducted by the Center
for Language and Cognition of
the University of Groningen,
supervised by prof. dr. Malvina
Nissim. I can withdraw my
participation at any time and
have the data obtained through
this study returned to me,
removed from the database or
deleted. The data obtained
during this study will be
processed anonymously and will
therefore not be able to be
traced back to me.

B Frames and semantic roles

In Tables B.1, we provide the set of semantic
frames and a mapping between their associated
semantic roles and the main participants in the
femicides.
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frame role:perpetrator_like role:victim_like role:cause_like

Abusing Abuser Victim -
Attack Assailant Victim -
Causation Causer Affected Cause
Cause_harm Agent Victim Cause
Cause_motion - - -
Dead_or_alive - Protagonist Explanation
Death - Protagonist Cause
Emotion_directed - - -
Event - - -
Experience_bodily_harm Experiencer|Body_part - -
Hit_target Agent Target -
Killing Killer Victim Cause
Quarreling - - -
Rape Perpetrator Victim -
Use_firearm Agent Goal -

Table B.1: Femicides: mapping frames, participants, and roles
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Abstract

Despite its importance, the time variable has
been largely neglected in the NLP and language
model literature. In this paper, we present
TimeLMs, a set of language models specialized
on diachronic Twitter data. We show that a con-
tinual learning strategy contributes to enhanc-
ing Twitter-based language models’ capacity to
deal with future and out-of-distribution tweets,
while making them competitive with standard-
ized and more monolithic benchmarks. We also
perform a number of qualitative analyses show-
ing how they cope with trends and peaks in ac-
tivity involving specific named entities or con-
cept drift. TimeLMs is available at https://
github.com/cardiffnlp/timelms.

1 Introduction

Neural language models (LMs) (Devlin et al., 2019;
Radford et al., 2019; Liu et al., 2019) are today a
key enabler in NLP. They have contributed to a
general uplift in downstream performance across
many applications, even sometimes rivaling human
judgement (Wang et al., 2018, 2019), while also
bringing about a new paradigm of knowledge ac-
quisition through pre-training. However, currently,
both from model development and evaluation stand-
points, this paradigm is essentially static, which
affects both the ability to generalize to future data
and the reliability of experimental results, since
it is not uncommon that evaluation benchmarks
overlap with pre-training corpora (Lazaridou et al.,
2021). As an example, neither the original ver-
sions of BERT and RoBERTa are up to date with
the current coronavirus pandemic. This is clearly
troublesome, as most of the communication in re-
cent years has been affected by it, yet these models
would barely know what we are referring to when
we talk about COVID-19 or lockdown, to name just
a few examples. The lack of diachronic special-
ization is especially concerning in contexts such

Authors marked with an asterisk (*) contributed equally.

as social media, where topics of discussion change
often and rapidly (Del Tredici et al., 2019).

In this paper, we address this issue by sharing
with the community a series of time-specific LMs
specialized to Twitter data (TimeLMs). Our initia-
tive goes beyond the initial release, analysis and ex-
perimental results reported in this paper, as models
will periodically continue to be trained, improved
and released.

2 Related Work

There exists a significant body of work on deal-
ing with the time variable in NLP. For instance,
by specializing language representations derived
from word embedding models or neural networks
(Hamilton et al., 2016; Szymanski, 2017; Rosen-
feld and Erk, 2018; Del Tredici et al., 2019; Hof-
mann et al., 2021). Concerning the particular case
of LMs, exposing them to new data and updating
their parameters accordingly, also known as contin-
ual learning, is a promising direction, with an es-
tablished tradition in machine learning (Lopez-Paz
and Ranzato, 2017; Lewis et al., 2020; Lazaridou
et al., 2021; Jang et al., 2021). Other works, how-
ever, have proposed to enhance BERT-based topic
models with the time variable (Grootendorst, 2020).
With regards to in-domain specialization, there are
numerous approaches that perform domain adap-
tation by pre-training a generic LM on specialized
corpora. A well-known case is the biomedical do-
main, e.g., BioBERT (Lee et al., 2020), SciBERT
(Beltagy et al., 2019) or PubMedBERT (Gu et al.,
2021). In addition to these approaches to specialize
language models, there have been similar temporal
adaptation analyses to the one presented in our pa-
per (Agarwal and Nenkova, 2021; Jin et al., 2021).
In particular, these works showed that training lan-
guage models in recent data can be beneficial, an
improvement that was found to be marginal in Luu
et al. (2021) in a different setting. In terms of con-
tinual lifelong learning, which is tangential to our
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main goal, Biesialska et al. (2020) provide a de-
tailed survey on the main techniques proposed in
the NLP literature.

More relevant to this paper, on the other hand,
are LMs specialized to social media data, specifi-
cally Twitter, with BERTweet (Nguyen et al., 2020),
TweetEval (Barbieri et al., 2020) and XLM-T (Bar-
bieri et al., 2021) being, to the best of our knowl-
edge, the most prominent examples. However, the
above efforts barely address the diachronic nature
of language. Crucially, they do not address the
problem of specializing LMs to social media and
putting the time variable at the core of the frame-
work. Moreover, it is desirable that such time-
aware models are released alongside usable soft-
ware and a reliable infrastructure. Our TimeLMs
initiative, detailed in Section 3, aims to address the
above challenges.

3 TimeLMs: Diachronic Language
Models from Twitter

In this section, we present our approach to train
language models for different time periods.

3.1 Twitter corpus
For the training and evaluation of language models,
we first collect a large corpus of tweets. In the
following we explain both the data collection and
cleaning processes.
Data collection. We use the Twitter Academic API
to obtain a large sample of tweets evenly distributed
across time. In order to obtain a sample which
is representative of general conversation on that
social platform, we query the API using the most
frequent stopwords1, for a set number of tweets at
timestamps distanced by 5 minutes - for every hour
of every day constituting a particular yearly quarter.
We also use specific flags supported by the API to
retrieve only tweets in English and ignore retweets,
quotes, links, media posts and ads.

For our initial base model (2019-90M hence-
forth), we used an evenly time-distributed corpus
from the API, for the period between 2018 and
2019, supplemented with additional tweets from
Archive.org which cover the same period but are
not evenly distributed.
Data cleaning. Before training any model, we fil-
ter each model’s training set of tweets using the
procedure detailed in this section. Starting with the
assumption that bots are amongst the most active

1We use the top 10 entries from: google-10000-english.txt

users, we remove tweets from the top one percent
of users that have posted most frequently. Addi-
tionally, following the recommendation of Lee et al.
(2021), we remove duplicates and near-duplicates.
We find near-duplicates by hashing the texts of
tweets after lowercasing and stripping punctua-
tion. Hashing is performed using MinHash (Broder,
1997), with 16 permutations. Finally, user mentions
are replaced with a generic placeholder (@user),
except for verified users.

3.2 Language model training
Once the Twitter corpus has been collected and
cleaned, we proceed to the language model pre-
training. This consists of two phases: (1) training
of a base model consisting of data until the end
of 2019; and (2) continual training of language
models every three months since the date of the
base model.
Base model training. Our base model is trained
with data until 2019 (included). Following Barbieri
et al. (2020), we start from the original RoBERTa-
base model (Liu et al., 2019) and continue training
the masked language model on Twitter data. The
model is trained using the same settings as Barbieri
et al. (2020), namely early stopping on the valida-
tion split and a learning rate of 1.0e−5. This initial
2019-90M base model converged after around fif-
teen days on 8 NVIDIA V100 GPUs.
Continuous training. After training our base
model, our goal is to continue training this lan-
guage model with recent Twitter corpora. At the
time of writing, for practical and logistical reasons,
the decision is to train a new version of each lan-
guage model every three months. The process to
train this updated language model is simple, as it
follows the same training procedure as the initial
pre-training of the language model explained above.
Our commitment is to keep updating and releasing
a new model every three months, effectively en-
abling the community to make use of an up-to-date
language model at any period in time.

3.3 TimeLMs release summary
In Table 1 we include a summary of the Twitter
corpora collected and models trained until the date
of writing. Models are split in four three-month
quarters (Q1, Q2, Q3 and Q4). Our base 2019-
90M model consists of 90 million tweets until the
end of 2019. Then, every quarter (i.e., every three
months) 4.2M additional tweets are added, and the
model gets updated as described above. Our latest
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released models, which are 2021-Q4 and 2021-
124M (the latter was re-trained only once with
all the data from 2020 and 2021), are trained on
124M tweets on top of the original RoBERTa-base
model (Liu et al., 2019). All models are currently
available through the Hugging Face hub at https:
//huggingface.co/cardiffnlp.

Models Additional Total

2019-90M - 90.26M

2020-Q1 4.20M 94.46M
2020-Q2 4.20M 98.66M
2020-Q3 4.20M 102.86M
2020-Q4 4.20M 107.06M
2021-Q1 4.20M 111.26M
2021-Q2 4.20M 115.46M
2021-Q3 4.20M 119.66M
2021-Q4 4.20M 123.86M

2021-124M 33.60M 123.86M

Table 1: Number of tweets used to train each model.
Showing number of tweets used to update models, and
total starting from RoBERTa-base by Liu et al. (2019).

In addition to these corpora for training language
models, we set apart a number of tweets for each
quarter (independent from the training set, with no
overlap). These sets are used as test sets on our
perplexity evaluation (see Section 4.2), and consist
of 300K tweets per quarter, which were sampled
and cleaned in the same way as the original corpus.

4 Evaluation

In this section, we aim at evaluating the effective-
ness of time-specific language models (see Section
3) on time-specific tasks. In other words, our goal
is to test the possible degradation of older mod-
els over time and, accordingly, test if this can be
mitigated by continuous training.
Evaluation tasks. We evaluated the released lan-
guage models in two tasks: (1) TweetEval (Bar-
bieri et al., 2020), which consists of seven down-
stream tweet classification tasks; and (2) Pseudo-
perplexity on corpora sampled from different time
periods. While the first evaluation is merely aimed
at validating the training procedure of the base lan-
guage model, the second evaluation is the core
contribution of this paper in terms of evaluation,
where different models can be tested in different
time periods.

4.1 TweetEval
TweetEval (Barbieri et al., 2020) is a unified Twit-
ter benchmark composed of seven heterogeneous
tweet classification tasks. It is commonly used to
evaluate the performance of language models (or
task-agnostic models more generally) on Twitter
data. With this evaluation, our goal is simply to
show the general competitiveness of the models re-
leased with our package, irrespective of their time
periods.
Evaluation tasks. The seven tweet classification
tasks in TweetEval are emoji prediction (Barbi-
eri et al., 2018), emotion recognition (Mohammad
et al., 2018), hate speech detection (Basile et al.,
2019), irony detection (Van Hee et al., 2018), offen-
sive language identification (Zampieri et al., 2019),
sentiment analysis (Rosenthal et al., 2017) and
stance detection (Mohammad et al., 2016).
Experimental setting. Similarly to the TweetE-
val original baselines, only a moderate parameter
search was conducted. The only hyper-parameter
fine-tuned was the learning rate (1.0e−3, 1.0e−4,
1.0e−5). The number of epochs each model is
trained is variable, as we used early stopping mon-
itoring the validation loss. The validation loss is
also used to select the best model in each task.
Comparison systems. The comparison systems
(SVM, FastText, BLSTM, RoBERTa-base and
TweetEval) are those taken from the original
TweetEval paper, as well as the state-of-the-art
BERTweet model (Nguyen et al., 2020), which
is trained over 900M tweets (posted between 2013
and 2019). All the language models compared are
based on the RoBERTa-base architecture.
Results. TweetEval results are summarized in Ta-
ble 2. BERTweet, which was trained on substan-
tially more data, attains the best averaged results.
However, when looking at single tasks, BERTweet
outperforms both our latest released models, i.e.,
TimeLM-19 and TimeLM-21, on the irony detec-
tion task2 only. It is also important to highlight that
TweetEval tasks include tweets dated until 2018 at
the latest (with most tasks being considerably ear-
lier). This suggests that our latest released model
(i.e. TimeLM-21), even if trained up to 2021 tweets,
is generally competitive even on past tweets. In-
deed, TimeLM-21 outperforms the most similar
TweetEval model, which was trained following a

2We note that the irony dataset was created via distant
supervision using the #irony hashtag, and there could be a
“labels” leak since BERTweet was the only model trained on
tweets of the time period (2014/15) of the irony dataset.
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Emoji Emotion Hate Irony Offensive Sentiment Stance ALL
SVM 29.3 64.7 36.7 61.7 52.3 62.9 67.3 53.5

FastText 25.8 65.2 50.6 63.1 73.4 62.9 65.4 58.1
BLSTM 24.7 66.0 52.6 62.8 71.7 58.3 59.4 56.5

RoBERTa-Base 30.8 76.6 44.9 55.2 78.7 72.0 70.9 61.3
TweetEval 31.6 79.8 55.5 62.5 81.6 72.9 72.6 65.2
BERTweet 33.4 79.3 56.4 82.1 79.5 73.4 71.2 67.9

TimeLM-19 33.4 81.0 58.1 48.0 82.4 73.2 70.7 63.8
TimeLM-21 34.0 80.2 55.1 64.5 82.2 73.7 72.9 66.2

Metric M-F1 M-F1 M-F1 F(i) M-F1 M-Rec AVG (F1) TE

Table 2: TweetEval test results of all comparison systems.

similar strategy (in this case trained on fewer tweets
until 2019), in most tasks.

4.2 Time-aware language model evaluation

Once the effectiveness of the base and subsequent
models have been tested in downstream tasks, our
goal is to measure to what extent the various mod-
els released are sensitive to a more time-aware eval-
uation. To this end, we rely on the pseudo perplex-
ity measure (Salazar et al., 2020).
Evaluation metric: Pseudo-perplexity (PPPL).
The pseudo log-likelihood (PLL) score introduced
by Salazar et al. (2020) is computed by iteratively
replacing each token in a sequence with a mask,
and summing the corresponding conditional log
probabilities. This approach is specially suited to
masked language models, rather than traditional
left-to-right models. Pseudo-perplexity (PPPL) fol-
lows analogously from the standard perplexity for-
mula, using PLL for conditional probability.
Results. Table 3 shows the pseudo-perplexity re-
sults in all test sets. As the main conclusion, the
table shows how more recent models tend to out-
perform models trained when evaluated older data
in most test sets (especially those contemporane-
ous). This can be appreciated by simply observing
the decreasing values in the columns of the Table
3. There are a few interesting exceptions, how-
ever. For instance, the 2020-Q1 and 2020-Q2 test
sets, which corresponding to the global start of the
coronavirus pandemic, are generally better suited
for models trained until that periods. Nonetheless,
models trained on more contemporary data appear
to converge to the optimal results.
Degradation over time. How long does it take for
a model to be outdated? Overall, PPPL scores tend
to increase almost 10% after one year. In general,

PPPL appears to decrease consistently every quar-
terly update. This result reinforces the need for
updated language models even for short time peri-
ods such as three-month quarters. In most cases,
degradation on future data is usually larger than
on older data. This result is not completely un-
expected since newer models are also trained on
more data for more time periods. In Section 6.1
we expand on this by including a table detailing
the relative performance degradation over language
models over time.

5 Python Interface
In this section we present an integrated Python
interface that we release along with the data and
language models presented in this paper. As men-
tioned in Section 3.3, all language models will be
available from the Hugging Face hub and our code
is designed to be used with this platform.

Our interface, based on the Transformers pack-
age (Wolf et al., 2020), is focused on providing easy
single-line access to language models trained for
specific periods and related use cases. The choice
of language models to be used with our interface is
determined using one of four modes of operation:
(1) ‘latest’: using our most recently trained Twitter
model; (2) ‘corresponding’: using the model that
was trained only until each tweet’s date (i.e., its
specific quarter); (3) custom: providing the pre-
ferred date or quarter (e.g., ‘2021-Q3’); and (4)
‘quarterly’: using all available models trained over
time in quarterly intervals. Having specified the
preferred language models, there are three main
functionalities within the code, namely: (1) com-
puting pseudo-perplexity scores, (2) evaluating lan-
guage models in our released or customized test
sets, and (3) obtaining masked predictions.

Users can measure the extent to which the cho-
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Models 2020-Q1 2020-Q2 2020-Q3 2020-Q4 2021-Q1 2021-Q2 2021-Q3 2021-Q4 Change

Barbieri et al., 2020 9.420 9.602 9.631 9.651 9.832 9.924 10.073 10.247 N/A

2019-90M 4.823 4.936 4.936 4.928 5.093 5.179 5.273 5.362 N/A

2020-Q1 4.521 4.625 4.699 4.692 4.862 4.952 5.043 5.140 -
2020-Q2 4.441 4.439 4.548 4.554 4.716 4.801 4.902 5.005 -4.01%
2020-Q3 4.534 4.525 4.450 4.487 4.652 4.738 4.831 4.945 -2.15%
2020-Q4 4.533 4.524 4.429 4.361 4.571 4.672 4.763 4.859 -2.81%
2021-Q1 4.509 4.499 4.399 4.334 4.439 4.574 4.668 4.767 -2.89%
2021-Q2 4.499 4.481 4.376 4.319 4.411 4.445 4.570 4.675 -2.83%
2021-Q3 4.471 4.455 4.335 4.280 4.366 4.394 4.422 4.565 -3.26%
2021-Q4 4.467 4.455 4.330 4.263 4.351 4.381 4.402 4.463 -2.24%

2021-124M 4.319 4.297 4.279 4.219 4.322 4.361 4.404 4.489 N/A

Table 3: Pseudo-perplexity results (lower is better) of all models in the Twitter test sets sampled from different
quarters (each quarter correspond to three months. Q1: Jan-Mar; Q2: Apr-Jun; Q3: Jul-Sep; Q4: Oct-Dec). The last
column reports difference in pseudo-perplexity, comparing the value obtained for each quarter’s test set, between
the model trained on the previous quarter and the model updated with data from that same quarter.

sen pretrained language models are aligned (i.e.,
familiar) with a given list of tweets (or any text)
using pseudo-perplexity (see Section 4.2 for more
details), computed as shown in Code 1.
from timelms import TimeLMs
tlms = TimeLMs(device=’cuda’)

tweets = [{’text’: ’Looking forward to watching
Squid Game tonight !’}]

pseudo_ppls = tlms.get_pseudo_ppl(tweets,
mode=’latest’) # loads 2021-Q4 model

Code 1: Computing Pseudo-PPL on a given tweet using
the most recently available model.

For a more extensive evaluation of language
models using pseudo-perplexity, we provide a ran-
dom subset of our test data across 2020 and 2021.3

To evaluate other models from the Transformers
package, we provide the ‘eval_model’ method
(tlms.eval_model()) to compute pseudo-
perplexity on any given set of tweets or texts (e.g.,
the subset we provide) using other language models
supported by the Transformers package. Both scor-
ing methods not only provide the pseudo-perplexity
scores specific to each model (depending on spec-
ified model name, or TimeLMs specified mode),
but also the PLL scores assigned to each tweet by
the different models.

Finally, predictions for masked tokens of any
given tweet or text may be easily obtained as
demonstrated in Code 2.
tweets = [{"text": "So glad I’m <mask> vaccinated.",

"created_at": "2021-02-01T23:14:26.000Z"}]

preds = tlms.get_masked_predictions(tweets, top_k=3,

3Limited to 50K tweets, the maximum allowed by Twitter.
IDs for all test tweets are available on the repository.

mode=’corresponding’) # loads 2021-Q1 model

Code 2: Obtaining masked predictions using model
corresponding to the tweet’s date. Requires tweets or
texts with a <mask> token.

Note that while the examples included in this
paper are associated with specific dates (i.e., the
created_at field), these are only required for
the ‘corresponding’ mode.

6 Analysis

To complement the evaluation in the previous sec-
tion, we perform a more detailed analysis in three
important aspects: (1) a quantitative analysis on
the degradation suffered by language models over
time; (2) the relation between time and size (Sec-
tion 6.2); and (3) a qualitative analysis where we
show the influence of time in language models for
specific examples (Section 6.3).

6.1 Degradation analysis
Table 4 displays the relative performance degra-
dation (or improvement) of TimeLMs language
models with respect to the test sets whose time
period is the latest where they have been trained
on (diagonals in the table). The table shows how
models tend to perform worse in newer data sets,
with a degradation of performance up to 13.68% of
the earlier 2020-Q1 model on the latest 2021-Q4
model (with data almost two years later than the
latest data the language model was trained on).

In order to compare the effect of continuous
training with respect to single training, Figure
1 shows the PPPL performances of 2021-124M
(trained on all 2020-2021 data at once) and the
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Models 2020-Q1 2020-Q2 2020-Q3 2020-Q4 2021-Q1 2021-Q2 2021-Q3 2021-Q4

2020-Q1 0.00% 2.29% 3.94% 3.78% 7.52% 9.52% 11.53% 13.68%
2020-Q2 0.04% 0.00% 2.46% 2.59% 6.24% 8.16% 10.42% 12.75%
2020-Q3 1.87% 1.67% 0.00% 0.82% 4.53% 6.47% 8.54% 11.10%
2020-Q4 3.95% 3.74% 1.57% 0.00% 4.82% 7.14% 9.22% 11.43%
2021-Q1 1.58% 1.37% -0.89% -2.36% 0.00% 3.05% 5.16% 7.39%
2021-Q2 1.21% 0.82% -1.55% -2.83% -0.77% 0.00% 2.83% 5.19%
2021-Q3 1.12% 0.75% -1.95% -3.20% -1.26% -0.61% 0.00% 3.25%
2021-Q4 0.10% -0.17% -2.97% -4.47% -2.51% -1.83% -1.37% 0.00%

Table 4: Difference across quarterly models and test sets comparing the pseudo-perplexity observed at the quarter
corresponding to each model, against the pseudo-perplexity observed for that same model on both previous and
future test sets. Highlights model degradation on future data, as well as how models fare on past data.

4.20

4.30

4.40

4.50

2020-Q1 2020-Q2 2020-Q3 2020-Q4 2021-Q1 2021-Q2 2021-Q3 2021-Q4

2021-Q4 2021-124M

Figure 1: Performance (PPPL) of 2021-124M and 2021-Q4 models across the test sets.

2021-Q4 (updating 2021-Q3) models. Note how
2021-124M shows improved performance gener-
ally, with the largest differences being attained on
the first two quarters of 2020, but not for the latest
quarters where continuous training seems to work
slightly better. While more analysis would be re-
quired, this result suggests that a single training
is beneficial for earlier periods, while a quarterly
training seems to be better adapted to the most re-
cent data. However, there does not seem to be any
meaningful catastrophic forgetting in the quarterly-
updated model, as the differences are relative small.

6.2 Time and size control experiment

Given the results presented earlier, one may natu-
rally wonder whether the improvement may be due
to the increase in training size or the recency of ad-
ditional data. While this question is not easy to an-
swer (and probably the answer will be in-between
these two reasons), we perform a simple control
experiment as an initial attempt. To this end, we
trained an additional language model with twice
the training data of the third quarter of 2021 (2021-
Q3). This way, the total number of training tweets

Models 2021-Q2 2021-Q3 2021-Q4

2021-Q2 4.445 4.570 4.675

2021-Q3 4.394 4.422 4.565
2021-Q3-2x 4.380 4.380 4.534

2021-Q4 4.381 4.402 4.463

Table 5: Results of the control experiment comparing
quarterly models where the 2021-Q3 model is trained
with twice the data from that quarter (2021-Q3-2x).

is exactly the same as the model trained until the
fourth quarter of 2021 (2021-Q4).

Considering the results on Table 5, we find that
the model trained on twice the data for Q3 outper-
forms the model trained with the default Q3 data
in all tested quarters. This confirms the assump-
tion that increasing training data leads to improved
language model performance. When comparing
with the model trained until 2021-Q4, results show
this 2021-Q3-2x model is only slightly better in the
2021-Q2 and 2021-Q3 test sets. However, as we
could expect, the model trained in more recent data
(i.e., until 2021-Q4) gets the best overall results on
the more recent test set (i.e., 2021-Q4).
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Model

So glad
I’m <mask>
vaccinated.

I keep
forgetting to

bring a <mask>.

Looking forward
to watching <mask>

Game tonight!

2020-Q1
not bag the

getting purse The
self charger this

2020-Q2
not mask The

getting bag the
fully purse End

2020-Q3
not mask the

getting bag The
fully purse End

2020-Q4
not bag the

getting purse The
fully charger End

2021-Q1
getting purse the

not charger The
fully bag End

2021-Q2
fully bag the

getting charger The
not lighter this

2021-Q3
fully charger the

getting bag The
not purse This

2021-Q4
fully bag Squid

getting lighter the
not charger The

Table 6: Masked token prediction over time using three
example tweets as input (using mode=‘quarterly’). For
each quarterly model, the table displays the top-3 pre-
dictions ranked by their prediction probability.

6.3 Qualitative analysis

In this section we illustrate, in practice, how mod-
els trained on different quarters perceive specific
tweets. First, we use their masked language model-
ing head to predict a <mask> token in context. Ta-
ble 6 shows three tweets and associated predictions
from each of our quarterly models. The model
belonging to the most pertinent quarter exhibits
background knowledge more aligned to the trends
of that period. In the two COVID-related examples,
we observe increasing awareness of the general no-
tion of being fully vaccinated (as opposed to not
vaccinated, the top prediction from the 2020-Q1
model) in the former, and, in the latter, two in-
stances where forgetting a mask is more likely than
forgetting other apparel less related to a particu-
lar period, such as a charger, a lighter or a purse.
Finally, note how, in the last example, “Looking
forward to watching <mask> Game tonight!", it
is only in 2021-Q4 that predictions change sub-
stantially, when the model has been exposed to
reactions to the "Squid Game" show, overlapping
in time with its global release.

Our second piece of analysis involves the visu-

Figure 2: PLL scores of TimeLMs language models
trained over different periods for three selected tweets.

alization of pseudo log-likehood (PLL) scores for
tweets requiring awareness of a trend or event tied
to a specific period (Figure 2). Indeed, more recent
models are better at predicting tweets involving
popular events, such as NFTs or, again, the show
"Squid Game". Conversely, we observe a stagna-
tion (or even degradation) of the PLL scores for a
tweet about a contestant of an older reality show.

7 Conclusion

In this paper we presented TimeLMs, language
models trained on Twitter over different time peri-
ods. The initiative also includes the future training
of language models every three months, thus pro-
viding free-to-use and up-to-date language models
for NLP practitioners. These language models are
released together with a simple Python interface
which facilitates loading and working with these
models, including time-aware evaluation. In our
evaluation in this paper, we have shown how time-
aware training is relevant, not only from the theoret-
ical point of view, but also the practical one, as the
results demonstrate a clear degradation in perfor-
mance when models are used for future data, which
is one of the most common settings in practice.

As future work, we are planning to explicitly in-
tegrate the time span variable in the language mod-
els, i.e., introducing string prefixes, along the lines
of Dhingra et al. (2022) and Rosin et al. (2022).
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Abstract

Progress in natural language processing re-
search is catalyzed by the possibilities given
by the widespread software frameworks. This
paper introduces the AdaptOr library1 that trans-
poses the traditional model-centric approach
composed of pre-training + fine-tuning steps
to objective-centric approach, composing the
training process by applications of selected ob-
jectives. We survey research directions that
can benefit from enhanced objective-centric ex-
perimentation in multi-task training, custom
objectives development, dynamic training cur-
ricula, or domain adaptation. AdaptOr aims to
ease the reproducibility of these research direc-
tions in practice. Finally, we demonstrate the
practical applicability of AdaptOr in selected
unsupervised domain adaptation scenarios.

“The measure of intelligence is the ability to change.”
— Albert Einstein

1 Introduction

Recent development in Natural Language Pro-
cessing (NLP) heavily benefits from a high level
of maturity of open-source frameworks, such
as Fairseq (Ott et al., 2019) or HuggingFace
Transformers (Wolf et al., 2020). Thanks to
the standardized interfaces, these libraries allow
for immediate experimentation with the most
recent research results, practically fostering the
speed of further progress in the area. While
their use is seamless for countless conventional
use-cases of transformer models and fine-tuning
to a specific end-task (Devlin et al., 2019; Radford
and Narasimhan, 2018), divergence from this
framework requires feasible, but elaborate and
complex customizations, increasing the risk of
logical errors and complicating the reproducibility
of experiments. A characteristic group of problems

1github.com/gaussalgo/adaptor
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Figure 1: Overview of AdaptOr’s objective-centric train-
ing framework: Objective 1) registers its compatible
head on top of the shared model, 2) performs specific
input encoding, and 3) compute loss value based on
its output. A Schedule implements a specific sampling
curricula and AdaptOr aggregates and propagates objec-
tives’ losses and performs optimization.

requiring significant changes to the standard
pipeline are multi-step and multi-task adaptations.

This paper introduces the AdaptOr library, which
aims to simplify the more complex training pro-
cesses that their training objectives can easier de-
scribe. AdaptOr challenges the conventional model-
centric framework, where data and task selection
are constrained by the requirements of the selected
language model architecture. Instead, it introduces
an objective-centric training pipeline, with Objec-
tive as the central abstraction of the process.

The AdaptOr framework aims to help NLP re-
searchers and practicioners engage in projects that
include any of the following:

• Multi-objective training: when training a
language model on more than one task or data
set, including languages, AdaptOr can signif-
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icantly simplify the custom code base that
needs to be implemented. Even if the objec-
tive is custom, the user can avoid adjustments
to other parts of the training pipeline.

• Custom data schedule: when users need to
perform dynamic data sampling, AdaptOr al-
lows them to implement a custom Schedule
(see Figure 2), leaving the data and model
adjustment logic intact. This simplifies sys-
tematic experimentation and reproducibility,
and minimizes the risk of errors.

• Objectives design & evaluation: AdaptOr
exposes top-level declaration of training ob-
jectives, which enables easy experimentation
with custom objectives. Objective-level mon-
itoring can provide custom behavioural in-
sights and allows for pruning less promising
experiments earlier in the lengthy training pro-
cess, saving computational costs.

• Robustness evaluation: The objective-
centric paradigm provides an easy robust-
ness estimation by evaluating on out-of-
distribution samples. In the standard sequen-
tial adaptation scenario, objective-centric eval-
uation exposes characteristic flaws of adapta-
tion, like exposure bias or catastrophic forget-
ting.

This paper is structured as follows: Section 2
provides an overview of recent work demonstrat-
ing the potential of multi-objective training in do-
main and task adaptation. Section 2.4 also de-
scribes other software frameworks applicable for
similar use cases. Section 3 describes the design of
AdaptOr, showing the users how to confidently inte-
grate novel objectives and schedules. In Section 4,
we describe and implement a set of non-trivial,
yet promising domain adaptation experiments us-
ing AdaptOr and collect their results. As AdaptOr
remains under active development, we close in Sec-
tion 5 with an outline of the upcoming features.
We welcome contributions of novel objectives and
schedules.

2 Background

This section provides an overview of recent work
that demonstrates the potential of multi-objective
training and schedules that motivated the design
of AdaptOr. Our overview consists of a non-
exhaustive list of applications that AdaptOr aims

to make more accessible for practical use and in
future research.

2.1 Multi-Task Training

Multi-task training has a long history in both tra-
ditional machine learning (Caruana, 1997) and in
deep learning (Crawshaw, 2020). This section de-
scribes examples of multi-task (i.e. multi-objective)
training, outlining its benefits and potential.

Under some circumstances, multi-task training
enhances distributional robustness of neural mod-
els. Tu et al. (2020) demonstrate this on adversarial
data sets, exposing common heuristic biases of the
language models (McCoy et al., 2019). Enhanced
model generalization can also be achieved by intro-
ducing one or more latent tasks that do not directly
correspond to the end task but reflect specific de-
sired properties of the model. One of a few studies
in this direction is Sharpness-Aware Minimisation
of Foret et al. (2021), performing multi-objective
training on image classification using cross-entropy
and a novel, sharpness-aware objective, reflecting
the model’s monotonicity on the local neighbor-
hood. In context of Neural Machine Translation
(NMT), Wang and Sennrich (2020) incorporate
Minimum Risk Training (MRT) objective (Ranzato
et al., 2016), optimising an arbitrary sequence-level
measure of outputs. In composition with the tra-
ditional token-level cross-entropy objective, MRT
improves distributional robustness.

By aggregating multiple objectives, Xie et al.
(2019) show that combining sentence classification
objective with maximizing representation consis-
tency to augmented samples fosters data efficiency.

The intuition on the benefits of multi-task train-
ing presumes that by optimizing the training by
multiple cost functions, the final model is less
prone to the weaknesses of a specific task (Col-
lobert et al., 2011), possibly reflecting on higher-
level, task-invariant properties of language (Bengio
et al., 2013).

2.2 Data-Sampling Schedules

Exposing a model to training samples in a sys-
tematic schedule, also referred to as a curriculum,
can lead to an improvement of the accuracy of the
final model (Bengio et al., 2009). While the pos-
itive effects of more complex schedules based on
sample “difficulty” with transformers remain to be
explored, multiple studies show the potential of
confidence-based sampling to improve accuracy
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and generalization. Biased samples can be identi-
fied, according to model’s confidence (Pleiss et al.,
2020; Swayamdipta et al., 2020) or using Bayesian
methods such as the Product of Experts (Hinton,
2002). Then, they can be either eliminated (Bras
et al., 2020) or downweighted (Utama et al., 2020).

More complex scheduling methods are applied
in training NMT models. Bengio et al. (2015) use
decay schedule to sample from both references and
the previous outputs of a NMT model, minimiz-
ing the discrepancy between training and inference.
Zhang et al. (2019) successfully use the same sam-
pling strategy in a sequence-level objective. The
results of Lu et al. (2020) underline the potential of
sampling in NMT training, suggesting that the ac-
curacy of transformers on reported MT benchmarks
can be outperformed by simpler RNN models by
combining objectives in decay schedule.

Despite the reported improvements, we find that
custom scheduling strategies are rarely used. We
attribute this to their complicated integration into
the standard training process. To foster the research
and applicability of scheduling methods, AdaptOr
makes the implementation of custom scheduling
strategies easy, comprehensible, and reproducible.

2.3 Domain Adaptation

Objective-centric frameworks are well-suited for
domain adaptation techniques, where AdaptOr pro-
vides support for combining traditional end-task ob-
jectives with unsupervised adaptation or auxiliary-
task objectives in a user-selected schedule. The
goal of domain adaptation is to maximize perfor-
mance on a specific data domain, often denoted as
the adapted or target domain (Saunders, 2021).

Perhaps the most common adaptation approach
using pre-trained language models is to con-
tinue pre-training on unsupervised samples of the
adapted domain (Luong and Manning, 2015; Lee
et al., 2019; Beltagy et al., 2019). This approach
has been successfully extended in various direc-
tions. For instance, Gururangan et al. (2020) show
that adapting to a shared task on different domain
can enhance accuracy of the eventual application.
If supervised data is sparse, other auxiliary tasks,
described earlier in Section 2.1, can be used as
concurrent objectives (Xie et al., 2019).

In cases where larger volumes of data of given
task is available in a different language, adaptation
using cross-lingual transfer can be considered. Pre-
trained language models show that cross-lingual

transfer works well with large-data unsupervised
objectives (Conneau and Lample, 2019), but it can
also be applied for low-resource supervised objec-
tive, such as very low-resource translation (Neubig
and Hu, 2018).

If even unsupervised target-domain data is
sparse, another option is to subset arbitrary un-
supervised sources to automatically identify sam-
ples of adapted domain, by applying domain clas-
sifier (Jiang and Zhai, 2007; Elsahar and Gallé,
2019). If the boundary between the training and
the adapted domain is known, an auxiliary objec-
tive can minimise a discrepancy of representations
between the training and possibly low-resource tar-
get domain (Chadha and Andreopoulos, 2018).

Despite the possibilities, adaptation can also in-
troduce undesired biases. In the scope of NMT,
adaptation can cause problems of “catastrophic for-
getting”, when the model experiences performance
degradation on the originally well-performing do-
mains (Saunders, 2021), or “exposure bias”, when
the model overfits the non-representative specifics
of the target domain, such as the artifacts of data
collection (Ranzato et al., 2016). Additionally, by
normalizing a single type of bias, such as lexical
overlap (McCoy et al., 2019), the model might
degrade its accuracy on other domains (Utama
et al., 2020). Addressing multiple biases concur-
rently (Wu et al., 2020) can mitigate this problem.

AdaptOr allows the knowledgeable user to con-
struct a reproducible and robust adaptation pipeline
using native multi-objective evaluation. Covering
multiple domains in separate objectives, AdaptOr
can expose the above pitfalls, without the need to
implement complex separate evaluation routines.

2.4 Related Software Frameworks

The Adapters architecture (Houlsby et al., 2019),
having only a small set of parameters, might be
a good fit when performing adaptation of trans-
former with modest hardware or data. Recently, the
AdapterHub library (Pfeiffer et al., 2020) makes
training and sharing of Adapters convenient. Com-
pared to AdaptOr, AdapterHub does not provide
support for more complex adaptation cases, such as
using multiple objectives, scheduling, or extended
evaluation. However, since both libraries build
upon the HuggingFace Transformers library (Wolf
et al., 2020), their close integration is feasible.

If the robustness of models to heuristic short-
cuts (McCoy et al., 2019) is the primary goal, the
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1 class ParallelSchedule(Schedule):
2 def _sample_objectives(self, split: str) -> Iterator[Objective]:
3 while True:
4 for objective in self.objectives[split].values():
5 yield objective

Figure 2: AdaptOr provides a convenient base for implementing custom sampling schedules. ParallelSchedule in
the figure demonstrates an implementation of the schedule sampling the update objectives in rotation. Further, the
sampling can be easily conditioned on the state of Objectives such as the recent outputs, loss, or metrics evaluations.

Robustness Gym library (Goel et al., 2021) pro-
vides a comprehensive evaluation over an extend-
able set of different kinds of heuristic biases. Ro-
bustness Gym provides much deeper evaluation
compared to AdaptOr Evaluators, and could be
integrated as an AdaptOr Evaluator. Unlike Ro-
bustness Gym, AdaptOr enables an evaluation of
robustness also on generative tasks, with specified
out-of-domain data sets.

3 AdaptOr Design
This section describes the structure and functions of
the AdaptOr framework. We introduce its primary
components bottom-up. Figure 3 depicts the rela-
tions of these components and compares user inter-
action with the traditional model-centric pipeline.

3.1 LangModule

A LangModule instance provides a management
of inputs, outputs and objective-specific model
components, referred to as heads. Once an ob-
jective with given LangModule is instantiated, an
objective-compatible model is either initialised, or
given by the user (see Section 3.2) and the parame-
ters of this model are merged with the parameters
of the previously-registered objectives.

The merge works as follows: If no previous ob-
jective was registered, then the model of the given
objective is considered a base model. The models
of the second- and later-registered objectives are
then merged with the base model: first, pairs of
PyTorch modules of the same name in the base and
the new model are identified. If the dimensions
and weights of these modules match, the respective
module of the newly-adding model is replaced with
a module of the base model.

In the case of pre-trained transformers, the
weights of heads are initialized randomly by de-
fault, resulting in a registration of a distinct head
for each objective and sharing the remaining param-
eters. Users can control which parameters (not) to
merge by explicitly setting their respective weights
as (non-)equal.

It is possible to use LangModule with any Py-
Torch module that uses a HuggingFace tokenizer,
compatible with the given neural module. There-
fore, LangModule is also suitable for other models
such as recurrent networks.

3.2 Objective

Objectives are the primary component of AdaptOr’s
training pipeline. Most importantly, an Objective
serves two functions: sample encoding and loss
computation. By implementing these and choosing
the type of a model’s head, AdaptOr users can de-
fine and experiment with novel training objectives.
If they additionally provide an explicit definition of
the Objective’s model (the objective_module
attribute), the new objective does not even have to
comply with common model heads; shared param-
eters of the given objective_module would
still be merged with the given lang_module.

If no objective_module is given, the Ob-
jective will request that a LangModule assigns
the Objective a module of the Objective’s default
compatible_head (see Section 3.1).

Additionally, every Objective instance performs
its own logging, evaluation, and state updates,
such as its convergence, based on a valuation of
given val_evaluators, or draws a progress
bar, based on the state of its sample iteration. How-
ever, the training flow is guided by a Schedule (see
Section 3.3). Objectives can implement custom
data sampling, but if possible, we recommended to
do so in a custom Schedule instance.

Since data encoding is also objective-specific,
Objectives expose a higher-level user interface
of data inputs than other frameworks: instead
of encodings, users provide an Objective with
a texts_or_path and a labels_or_path
containing raw texts and respective labels. AdaptOr
provides an implementation of standard Objectives
for sequence and token classification and sequence-
to-sequence tasks. When implementing a custom
Objective, note that sampling and encoding are per-
formance bottlenecks on current high-end GPUs.
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Figure 3: A comparison of interaction with a model-centric HuggingFace Trainer (left) and objective-centric AdaptOr
(right): While in model-centric approach, user resolves text processing, sampling and encoding compatible with
selected model of specific objective, objective-centric approach delegates these functionalities to Objective instances.
Explicit definition of Objectives and Schedule on AdaptOr’s user side makes otherwise complex multi-objective and
custom-schedule experiments transparent and reproducible.

3.3 Schedule

Schedules control the training flow through the
interfaces provided by HuggingFace Transform-
ers library. Primarily, they deliver 1) a set of
standard stopping strategies based on the state
of the Objectives and 2) an IterableDataset in-
stance, constructed by sampling Objectives ac-
cording to a sampling strategy implemented in
its _sample_objectives. A Schedule also
ensures that outputs of distinct lang_modules’
heads are delivered to the respective Objectives for
loss computation.

This relatively complex sampling framework
provides a very simple interface for custom Sched-
ule implementations (see Section 2.2). For in-
stance, a pre-defined ParallelSchedule is im-
plemented with three lines of code (see Figure 2).

3.4 Adapter

An Adapter is customization of the HuggingFace
Trainer with only minor adjustments. Specif-
ically, Adapter redirects loss computation to
a Schedule, which further distributes outputs
to corresponding Objectives and extends na-
tive training logs with logs of Objectives’ Eval-
uators. Furthermore, Adapter adjusts persis-
tence of the models so that a model of ev-
ery head can be reloaded without the use of
AdaptOr, by simply using HuggingFace Transform-
ers’ AutoModelForXY.from_pretrained.

Based on the actively-developed HuggingFace
Transformers library, the AdaptOr allows its users
to benefit from all other native features of Hugging-
Face Transformers, such as the support for the most
recent models, custom logging platforms, or dis-

tributed parallel training. Furthermore, it can sim-
plify integration with other custom libraries (see
Section 2.4).

4 Experiments

We use AdaptOr in a set of domain adaptation exper-
iments for a machine translation use-case, aiming
to answer the following research question: How
well can unsupervised objective(s) substitute la-
beled parallel data. In our methodology, we per-
mute the easily-configurable parts of AdaptOr’s
training configuration2 and compare the results of
the resulting model to a baseline adaptation sce-
nario. We experiment with an architecture identical
to the base model of Vaswani et al. (2017), with a
configuration of Junczys-Dowmunt et al. (2018).

Data. We train the model on English-to-Czech
translations on different domains of OPUS (Tiede-
mann, 2012) chosen for their significant distinctive-
ness: we use Wikimedia as a large-scale, supervised
domain (denoted as in-domain, i.e. ID), OpenSub-
titles as an Adapted Domain (AD) and Bible for
the evaluation of a model’s robustness on Out-Of-
Domain (OOD) samples.

Pre-training vs. fine-tuning. We simulate two
basic scenarios: training the model from a random
initialization and fine-tuning the existing transla-
tion model with no control over its pre-training data.
In the latter cases, we perform fine-tuning from the
checkpoint of Tiedemann and Thottingal (2020).

Schedules. We implement and experiment with
two objective schedules: i) Sequential schedule,
sampling and differentiating the model sequentially

2Our code is available on https://github.com/
gaussalgo/adaptor/tree/reprod/demo.py
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Schedule Objectives BLEUID BLEUAD BLEUOOD BERTSID BERTSAD BERTSOOD
Pre-training 1) Seq2SeqID 28.18 5.34 0.91 0.833 0.738 0.671

Sequent. 2) Seq2SeqID+ BackTrAD 5.10 15.01 2.57 0.740 0.805 0.733
*3) Seq2SeqID+ Seq2SeqAD 4.96 17.37 2.64 0.756 0.816 0.726

Parallel 4) Seq2SeqID+ BackTrAD 31.06 16.99 2.46 0.852 0.817 0.722
*5) Seq2SeqID+ Seq2SeqAD 29.72 18.55 2.98 0.843 0.813 0.732

Fine-tuning 6) Seq2SeqID 37.97 17.62 6.50 0.875 0.808 0.758
7) BackTrAD 30.34 22.98 11.08 0.869 0.834 0.799

Parallel 8) Seq2SeqID+ DenoisAD 38.96 13.37 6.87 0.876 0.782 0.761
9) Seq2SeqID+ BackTrAD 38.25 21.47 9.03 0.873 0.831 0.791

*10) Seq2SeqID+ Seq2SeqAD 40.72 23.35 6.97 0.880 0.836 0.772

Table 1: We evaluate the features of AdaptOr on multi-objective domain adaptation in machine translation: our
experiments compare the BLEU score and BERTScore of unsupervised adaptation (Seq2seq + Denoising or
Back-Translation) applied in different schedules, to no adaptation (1, 6) and a hypothetical supervised adaptation
(*3, *5, *10). Results show that the Parallel schedule eliminates catastrophic forgetting and that unsupervised
Back-translation is able to reach performance that is close to the supervised adaptation.

by each objective until convergence by evalua-
tion loss, or for a maximum of 100,000 updates.
ii) Parallel schedule, concurrently sampling train-
ing batches uniformly from every given objective.
Using gradient accumulation, we differentiate the
model based on all given objectives. We perform
updates until the convergence of all objectives, or
for a maximum of 50,000 updates for each objec-
tive.

Objectives selection. We implement and experi-
ment with the following AdaptOr objectives:

• Sequence-to-sequence (seq2seq) objective,
as introduced by Vaswani et al. (2017), maps
a combination of encoder inputs in the source
language and previously-generated outputs as
decoder inputs to a distribution over the next-
predicted tokens.

• Denoising objective introduced by Lewis et al.
(2020) is an unsupervised instance of the
seq2seq objective that performs random to-
ken permutation on the input and trains the
model to map such ‘noisy‘ text to the original
version of the input. We use this objective on
the target-data domain to enhance its compre-
hension by the model.

• Back-translation objective, as used e.g. by
Sennrich et al. (2016) is also an unsuper-
vised seq2seq objective, which uses an ex-
ternal translator in reverse direction to obtain
pseudo-inputs. This objective is profitable
when we have unlabeled data of the target
domain.

Using these components, we construct the fol-
lowing experiments:

• Baselines: pre-training (1) and fine-tuning
(6) on ID data from a domain different from
the Application Domain (AD) using a single
traditional seq2seq objective.

• Sequential adaptation: we pre-train using
seq2seq on ID and afterwards adapt using ei-
ther unsupervised Back-translation (2), or su-
pervised seq2seq (3) on AD to quantify the
unsupervised adaptation gap.

• Parallel adaptation: we concurrently train
on both seq2seq and another unsupervised ob-
jective: Back-translation (4, 9) and Denoising
(8). Again, we compare the gap to the super-
vised situation (5, 10).

4.1 Results
Table 1 evaluates the base transformer after the
given number of updates on held-out dedupli-
cated validation splits of In-Domain (ID), Adapted-
Domain (AD), and the third Out-Of-Domain
(OOD) data. Note that the results for the BLEU
score are properly comparable only within the same
domain.

We observe that the model trained on a single
domain (1, 6) degrades on all other domains. In a
pre-training scenario, domain robustness improves
when incorporating data of adapted domain in any
objective. However, in a sequential schedule, we
observe catastrophic forgetting towards any most-
recent domain of adaptation (2, 3). This is im-
proved by using the Parallel schedule for a negligi-
ble price of in-domain accuracy (4, 5).
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In the fine-tuning scenario, we show that incor-
porating unsupervised Back-translation to AD (7,
9) improves ID BLEU comparably to supervised
adaptation (10). Interestingly, Denoising on AD (8)
improves in-domain performance but seems less
efficient than Back-translation.

4.2 AdaptOr Usage Complexity

To give an idea about the relative complexity of
using AdaptOr as compared to model-centric frame-
works, we compare selected measurable code fea-
tures of the complexity of our experimental imple-
mentation to an example implementation using the
HuggingFace Trainer3. We pick the experiment of
supervised pre-training + unsupervised fine-tuning,
including evaluation, in the sequential schedule (2),
as this can still be addressed using HuggingFace
Transformers relatively easily; Implementing the
parallel multi-objective schedule in the Transform-
ers framework would require major customisations
of selected model and Trainer objects.

The training script using HuggingFace Trainer
contains 654 lines of code, 135 variable assign-
ments, 186 method calls and the initialisation of
9 custom objects. Additionally, in the pre-training
+ fine-tuning framework, this script has to be run
twice, initialising the second training from the se-
lected checkpoint of the first one, with updated
configurations. Back-translated pseudo-labels are
generated by a different script, not included in this
assessment.

Using AdaptOr, we construct an equivalent rou-
tine from the provided demo script. Our imple-
mentation contains 124 lines of code, 31 variable
assignments, 37 method calls and the initialisation
of 14 custom objects. Despite its brevity, our script
wraps the whole training process, and hence, to-
gether with the associated version of AdaptOr or its
fork, it provides a reproducible fingerprint of the
experiment.

5 Conclusion and Future Work

This paper introduces the AdaptOr library, which
provides objective-centric training framework well-
suitable for multi-task and multi-domain training
scenarios, and the development of novel objec-
tives and sampling schedules. We find that even in
the conventional single-objective training routines,
AdaptOr can reduce volumes of custom implemen-

3For reference, we use run_translation.py example script
on HuggingFace Transformers GitHub, version 4.17.0.

tation and increases readability and reproducibility.
Having used AdaptOr already for several produc-
tion use cases, we are happy to share it with the
NLP community.

Our future work aims to further enhance
AdaptOr’s user comfort with existing and novel
unsupervised objectives, dynamic schedules, and
demonstrations on novel use cases.

6 Broader Impact

Thanks to the ubiquity of objective-centric train-
ing, AdaptOr can accelerate the applicability of the
most recent research in multi-task and multilingual
modeling and enrich the research with the practical
experience of the industry.

We further identify the benefits of AdaptOr’s
definite training pipelines in saving unnecessary fi-
nancial and environmental expenses of reproducing
the reported results of large language models, oth-
erwise often including expensive hyperparameter
optimization over unreported parameters. Due to
these aspects, AdaptOr could also ease the spread
of state-of-the-art language technologies to under-
resourced languages and more specialized domains
with a sufficient amount of unsupervised sources.

Finally, objective-centric training might help ex-
pose the potential of unsupervised objectives to
the generalization and interpretability of models.
AdaptOr can foster the research in unsupervised
learning by lowering the relatively high entry level
of technical proficiency needed for experimentation
with novel language objectives.
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Abstract

Acquiring high-quality annotated corpora for
complex multi-task information extraction (MT-
IE) is an arduous and costly process for human-
annotators. Adoption of unsupervised tech-
niques for automated annotation have thus be-
come popular. However, these techniques rely
heavily on dictionaries, gazetteers, and knowl-
edge bases. While such resources are abundant
for general domains, they are scarce for spe-
cialised technical domains. To tackle this chal-
lenge, we present QuickGraph1, the first col-
laborative MT-IE annotation tool built with in-
direct weak supervision and clustering to max-
imise annotator productivity.

QuickGraph’s main contribution is a set of
novel features that enable knowledge graph ex-
traction through rapid and consistent complex
multi-task entity and relation annotation. In
this paper, we discuss these key features and
qualitatively compare QuickGraph to existing
annotation tools. A demonstration of our sys-
tem is available at: https://youtu.be/
ZlzH-AAoGXs.

1 Introduction

Hand-labelling is still the most reliable means
to obtain quality training data to support deep
learning applications; however, it is time-
consuming and resource-intensive (Pustejovsky
and Stubbs, 2012). Unsupervised approaches
such as weak/distant supervision (Craven and
Kumlien, 1999; Mintz et al., 2009) and data
programming (Ratner et al., 2017) thus are usu-
ally attractive alternatives or starting points to
human-annotation.

Leveraging unsupervised techniques, however,
is predicated on the availability of relevant ex-
ternal resources such as semantically aligned
knowledge bases, and a priori knowledge of
phenomena/concepts in the corpus of interest.

1QuickGraph. https://quickgraph.nlp-tlp.
org

In general domains, these are widely available,
e.g. YAGO (Suchanek et al., 2007), Freebase
(Bollacker et al., 2008), Wikidata (Vrandečić
and Krötzsch, 2014), DBPedia (Lehmann et al.,
2015), whereas they remain scarce for emerg-
ing and specialised domains, such as engineer-
ing, industrial, medical, biological, law en-
forcement (Neves and Leser, 2012; Dima et al.,
2021) which we refer to as technical domains.
Due to their close real-world applications, tech-
nical domains are often more impactful and
likely to have formal ontologies of engineered
knowledge. Consequently, human-annotation
remains critical and essential for obtaining qual-
ity training data for technical information ex-
traction and instance population.

Numerous annotation tools exist, supporting
many NLP tasks (Neves and Ševa, 2019). How-
ever, few tools support large-scale, hierarchical,
multi-task, multi-label, entity and relation an-
notation that is required for translating NLP
research to real-world industry applications in
technical domains (Stenetorp et al., 2012; Yi-
mam et al., 2013; Klie et al., 2018; Stewart
et al., 2019; Abrami et al., 2019; Islamaj et al.,
2020; Tang et al., 2020). Moreover, these tools
lack features to optimise annotator productivity
and return-on-time-invested. Such features are
particularly essential for technical domains, as
annotators are frequently subject matter experts,
who are typically time-poor and costly.

Weak/distant supervision (Craven and Kum-
lien, 1999; Mintz et al., 2009) is a power-
ful paradigm for large-scale (potentially low-
quality) automatic annotation. Surprisingly, the
integration of this paradigm into annotation
tools to accelerate labelled sample acquisition
for deep learning applications remains unex-
plored.

To fill these gaps, we introduce QuickGraph,
the first collaborative annotation tool for multi-
task IE that is designed to be:

• Fast: Accelerates annotation via entity
and relation propagation, and semantic
clustering.
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• Powerful: Supports complex multi-task
entity and open/closed relation annotation
and knowledge graph extraction.

• Intuitive: Simple to set-up and use.
• Efficient: Optimises annotation through

easily-configurable relation constraints.
• Insightful: Builds real-time knowledge

graphs from annotations2, and provides
three dimensions of inter-annotator agree-
ment.

2 Related work

Many NLP annotation tools have been devel-
oped in recent years (Neves and Ševa, 2019),
however few support entity and relation annota-
tion as a single integrated task, nor do they con-
tain purposely designed features to enhance an-
notator productivity. Here we discuss the most
notable entity and relation annotation tools.

Historically, brat (Stenetorp et al., 2012) has
been the most popular but routinely receives
criticism for it’s antiquated technology and set-
up difficulty (Kummerfeld, 2019; Neves and
Ševa, 2019). Similarly, WebAnno (Yimam et al.,
2013), INCEpTION (Klie et al., 2018) and Tex-
tAnnotator (Abrami et al., 2019) are feature-
rich and multi-purpose tools, but are challeng-
ing to use. SLATE (Kummerfeld, 2019) is
a command-line-based tool, but lacks multi-
task functionality and is restricted to technical
end users because of its command-line design.
TeamTat (Islamaj et al., 2020) is a powerful
tool, but is oriented for small-batch complex
annotation of large documents such as schol-
arly articles. Redcoat (Stewart et al., 2019) is
an feature-rich entity typing tool and has been
demonstrated to support MT-IE (Stewart and
Liu, 2020), but is not purpose-built for relation
annotation. SALKG (Tang et al., 2020) is a
unique knowledge-graph annotation tool, yet
lacks features for collaborative annotation and
adjudication. Despite this, each of the afore-
mentioned tools contain powerful elements, but
universally lack features to support rapid large-
scale, complex, annotation.

Recent tools enhance annotator productivity
using active and proactive learning, including
APLenty (Nghiem and Ananiadou, 2018), Pal-
adin (Nghiem et al., 2021), FitAnnotator (Li
et al., 2021) and ActiveAnno (Wiechmann et al.,
2021). Inadequately, these tools cannot per-
form multi-task entity and relation annotation.
Moreover, their performance using large on-
tologies remains unproven (Nghiem and Ana-
niadou, 2018; Li et al., 2021). Reliance on

2When both entity and relation annotation is performed.

active learning may also result in unsatisfac-
tory corpus quality due to sample acquisition
and reliability concerns (Attenberg and Provost,
2011; Lowell et al., 2019).

3 System highlights

3.1 Key capabilities

QuickGraph is a multi-task document-level hi-
erarchical entity and relation annotation tool.
Our tool supports annotations that are: i) hier-
archical, ii) multi-label, iii) multi-class, and iv)
nested. These attributes enable annotation of
tasks such as named entity recognition, coref-
erence resolution, entity typing, part-of-speech
tagging, relation extraction, semantic role la-
belling, and triple annotation. One of Quick-
Graph’s novelties is its support for open3 and
closed4 relation annotation, permitting open
relation extraction tasks (Niklaus et al., 2018;
Stanovsky et al., 2018).

Additional key contributions of QuickGraph
are its novel features for indirect weak supervi-
sion through annotation propagation (Section
3.2.2), semantic clustering of documents to pro-
mote annotator consistency (Section 3.4.1), and
real-time knowledge graph construction from
text (Section 3.6.1). Each of these contributions
enable rapid annotation of corpora to support
deep learning applications without the need of
external resources such as knowledge bases,
dictionaries, or gazetteers.

3.2 Why is QuickGraph fast?

3.2.1 Get started - quick

QuickGraph is available for free online and
takes only minutes to create an account and set-
up a project for rapid annotation. Our tool pro-
vides preset ontologies for popular entity and
relation annotation tasks including ConceptNet-
5.5 (Speer et al., 2017), CoNLL03 (Tjong
Kim Sang and De Meulder, 2003), FIGER
(Ling and Weld, 2021), SemEval-2007 Task
04 (Girju et al., 2007), and SemEval-2010 Task
8 (Hendrickx et al., 2010).

3.2.2 Entity and relation propagation

QuickGraph’s novel entity and relation propa-
gation features enable annotators to make a
click worth a thousand annotations (Figure
1B-D), analogous to the adage a picture is

3Relations are unbounded surface form linguistic expres-
sions.

4Relations are bounded and predefined.
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Figure 1: QuickGraph’s annotation interface - A) main interface: i. hierarchical label palette, ii. annotation mode
toggle, iii. cluster navigation, vi. document status tray, and v. cluster tray, B) accepted entity tooltip: buttons
left-right: apply all, delete one, delete all, quick search, C) suggested entity tooltip: buttons left-right: accept one,
accept all, reject one, reject all, quick search, and D) relation annotation: i. relation popover, and ii. applied relation.

worth a thousand words. Entity propagation is
performed through case-insensitive sub-string
matching, and relation propagation is imple-
mented through a deterministic token/phrase
offset matching algorithm. For unambigu-
ous and consistently offset tokens and phrases,
propagation can massively speed up annotation
without compromising precision (Figure 1B-D).
For example, users of QuickGraph can apply
thousands of entities or hundreds or relations
in a single click. As a result, these features
enhance productivity and contribute to quickly
capturing diverse contextual annotations to sup-
port deep learning applications.

The process of propagation involves cascading
suggested (weak) annotations across the entire
corpus, emulating weak supervision, but with-
out the need for external resources. Through-
out the annotation process, suggested annota-
tions can be viewed and individually or bulk
accepted, converting them into accepted (sil-
ver) annotations. At any point throughout the
project, all created annotations can be down-
loaded. The presence of weakly labelled docu-
ments can be used in a similar fashion to their

treatment in unsupervised learning methods
(Ratner et al., 2017). Gold annotations are auto-
matically generated by aggregating entity men-
tions and/or triples with respect to a desired
inter-annotator agreement threshold.

3.2.3 Pre-annotation

Like other tools, our tool permits pre-
annotation of corpora at project creation. Pre-
annotation reduces annotation effort by pre-
applying labels based on external resources
such as gazetteers. A novel feature of Quick-
Graph is its ability to pre-annotate both entities
and relations through sets of pre-labelled arte-
facts5.

3.2.4 Built-in corpus pre-processing

QuickGraph supports corpus pre-processing as
part of the project creation process rather than
requiring external solutions. Consequently,
corpora can be annotated end-to-end without
external steps or dependencies, simplifying

5In the format of ⟨sspan, stype, rtype, tspan, ttype, stoffset⟩ where
s - source, r - relation, and t - target.
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and speeding up the annotation process. Pre-
processing stages currently consists of: i) char-
acter casing, ii) character removal, and iii) doc-
ument deduplication.

3.3 Why is QuickGraph powerful?

3.3.1 Thousands of documents - at
once

Unlike other tools, QuickGraph prospers with
large-scale corpora. We have loaded and si-
multaneously annotated corpora consisting of
100,000 short user-generated texts with the tool
whilst maintaining performance. While other
tools limit annotators to a view small group
of documents (Nghiem and Ananiadou, 2018;
Kummerfeld, 2019; Islamaj et al., 2020; Li
et al., 2021), QuickGraph users can view up
to 100 documents simultaneously. Support for
large document groups promotes quick iden-
tification of cross-document information, aid-
ing annotators by viewing concepts in different
contexts.Overview Knowledge Graph Annotators (1) Adjudicator Downloads Settings

Downloads

Filter
Filter and review project annotations before downloading.

Download Annotations

Minimum IAA Threshold

80

Annotation Quality

Select quality

Saved

Select option

Annotators

Select annotator(s)

Annotation Type

Select type Filter

Triples Entities

T 3
Total

0
Saved

10
Total

0
Saved

4
Gold

6
Weak

G 3
Total

0
Saved

10
Total

0
Saved

4
Gold

6
Weak

© UWA NLP-TLP Group 2022.
Developed by Tyler Bikaun (4theKnowledge)

Figure 2: QuickGraph’s flexible downloads component.

3.3.2 Annotation export flexibility

Exporting annotations to support deep learn-
ing applications is easy in QuickGraph (Figure
2). At any time, downloads can be filtered
and exported. Our tool allows users to filter
annotations based on their: i) inter-annotator
agreement score, ii) quality (e.g. gold, silver or
weak), iii) saved state, iv) annotator(s), and v)
annotation type (e.g. entity mentions or triples).

3.4 How does QuickGraph help
consistency?

3.4.1 Semantic clustering

An overlooked feature of current tools is docu-
ment clustering to promote annotator productiv-
ity. Clustering is a core feature of QuickGraph,

and has two primary benefits. First, annotators
maintain a consistent mental model whilst an-
notating as clustered documents are likely to
share semantic and express similar phenomena.
Second, user actions are simplified as similar
documents likely share similar concepts reduc-
ing the need to repetitively navigate through
large hierarchical entity label spaces. Our tool
implements agglomerative clustering of docu-
ments embedded with SBERT (Reimers and
Gurevych, 2019) sentence embeddings.

3.4.2 Powerful ontology editor and
relation constraints

Applying relation annotations consistently is
difficult and time-consuming (Mintz et al.,
2009). Besides preset ontologies available
within QuickGraph, custom entity and relation
ontologies can easily be created. Unlike other
IE tools, our tool supports hierarchical entities
and is the first to permit relation constraints
through entity domain and ranges.

Relation constraints are made possible as
QuickGraph applies relations between entities
(associated with token spans) rather than on
token spans directly (see Figure 1D). Conse-
quently, this feature can enhance annotator pro-
ductivity and consistency through restrained
relation selection. For annotators using large
formal ontologies, such as those found in tech-
nical domains, this can significantly reduce the
search space of relations by using pre-defined
domains and ranges.

3.5 Why is QuickGraph intuitive?

1-3

1

Person

Coref Person Coref Person

2

3

Person

There was nothing so very remarkable in that; nor did Alice think it so very much out of the way to hear the Rabbit say to itself, “Oh

dear! Oh dear! I shall be late!” (when she thought it over afterwards, it occurred to her that she ought to have wondered

at this, but at the time it all seemed quite natural); but when the Rabbit actually took a watch out of its waistcoat-pocket, and looked

at it, and then hurried on, Alice started to her feet, for it flashed across her mind that she had never before seen a rabbit with either

a waistcoat-pocket, or a watch to take out of it, and burning with curiosity, she ran across the field after it, and fortunately was just in

time to see it pop down a large rabbit-hole under the hedge.

Either the well was very deep, or she fell very slowly, for she had plenty of time as she went down to look about her and to wonder

what was going to happen next. First, she tried to look down and make out what she was coming to, but it was too dark to see

anything; then she looked at the sides of the well, and noticed that they were filled with cupboards and book-shelves; here and there

she saw maps and pictures hung upon pegs. She took down a jar from one of the shelves as she passed; it was labelled “ORANGE

MARMALADE”, but to her great disappointment it was empty: she did not like to drop the jar for fear of killing somebody underneath,

so managed to put it into one of the cupboards as she fell past it.

Down, down, down. Would the fall never come to an end? “I wonder how many miles I’ve fallen by this time?” she said aloud. “I must

be getting somewhere near the centre of the earth. Let me see: that would be four thousand miles down, I think—” (for, you see, Alice

had learnt several things of this sort in her lessons in the schoolroom, and though this was not a very good opportunity for showing off

her knowledge, as there was no one to listen to her, still it was good practice to say it over) “—yes, that’s about the right

distance—but then I wonder what Latitude or Longitude I’ve got to?” (Alice had no idea what Latitude was, or Longitude either, but

thought they were nice grand words to say.)

1

© UWA NLP-TLP Group 2022.
Developed by Tyler Bikaun (4theKnowledge)

Figure 3: Example of relation annotation mode. Alice is
the source entity.

3.5.1 Minimalistic interface

Instead of providing annotators with everything
but the kitchen sink, akin to the current gener-
ation of annotation tools (Abrami et al., 2019,
2020), our tool has been designed with the tenet
of minimalism. Significantly, this has been ap-
plied to the presentation of relations. Instead
of rendering dependencies between entities and
relations as free-flowing arrows, QuickGraph
renders only what annotators choose to see, as
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means of promoting focused annotation (Fig-
ure 3). Additionally, toggling between entity
and relation annotation is seamless, requiring
only a single click or key press (Figure 1A.ii).

3.5.2 Cluster annotation and
navigation

At any time6, QuickGraph users can drill in
and out of document clusters with a single click
(Figure 1A.v). Navigation between clusters is
also trivial owing to interpretable cluster de-
scriptions, each derived from their document
sets top-n terms (Figure 1A.iii)

3.6 Why is QuickGraph insightful?

3.6.1 Real-time knowledge graphs

Novel to QuickGraph is its real-time knowl-
edge graph construction from annotations7.
This feature enables annotators to gain insight
into, and improve understanding of, their anno-
tations. Two graph types are available for an-
notated documents: i) aggregated; documents
are aggregated together, and ii) separated; doc-
uments are represented as sub-graphs.

Figure 4: Example of three dimension adjudication for
a terse document with two annotators.

3.6.2 Multi-dimensional adjudication

Adjudication in our tool (Figure 4) is supported
by three dimensions of inter-annotator agree-
ment (IAA) : i) triples (referred to as over-
all), ii) entities, and iii) relations. Inspired by
SemBLEU (Song and Gildea, 2019), pair-wise
IAA is calculated through a modified-BLEU
score (Papineni et al., 2002). Currently, IAA is

6If clustering was selected upon project creation.
7If entity and relation annotation was selected upon project

creation.

strictly enforced on directionality and hierarchi-
cal entities and relation types. Adding relaxed
IAA will be the focus of future development.

4 System architecture

QuickGraph is a multi-user tool built using the
modern full-stack framework MERN8, Python
and Docker. Our tool consists of four container-
ised components (Figure 5): i) web client, ii)
NoSQL database, iii) server, and iv) cluster
server. Using Docker, our tool can be built and
ready to annotate in minutes9.
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Figure 5: QuickGraph’s system architecture and tech-
nology stack.

QuickGraph’s NoSQL database consists of the
three collections: Projects, Texts and
Users. Projects contain information per-
tinent to the project’s: manager, name, de-
scription, assigned annotators, settings, details
of tasks, pre-processing operations, uploaded
texts, clustering details, and entity and relation
ontology information. Texts consist of all
texts including details of their: original value,
tokens, entity and relation markup, annotator
saved states, weight, rank, and cluster designa-
tion. Lastly, the Users collection contains in-
formation such as the users: username, hashed
and salted password, email, personalisation set-
tings, and assigned and invited projects.

5 Comparison with existing tools

A qualitative comparison between QuickGraph
and existing open-source annotation tools that
support entity and relation annotation, or have

8MongoDB-Express-React-Node. https:
//www.mongodb.com/mern-stack

9QuickGraph GitHub. https://github.com/
nlp-tlp/quickgraph
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Tool Annotation
Type

Multi-
label

Pre-
annotation

Auto-
annotation

Relation
Constraints

Annotation
Propagation

Document
Clustering

QuickGraph E/HE/R ✓ ✓ - ✓ ✓ ✓
ActiveAnno D ✓ ✓ ✓ - - -

APLenty E - - ✓ - - -
brat E/R ✓ - - - - -

FITAnnotator E/R - - ✓ - - -
INCEpTION E/R ✓ - ✓ ✓ - -

Paladin D ✓ - ✓ - - -
RedCoat E/HE ✓ ✓ - - - -
SALKG T - ✓ - - - -
SLATE E/R ✓ - - - - -

TeamTat E/R ✓ ✓ - - ✓ -
TextAnnotator E/R ✓ ✓ ✓ - - -

WebAnno E/R ✓ ✓ - - - -

Table 1: Comparison of QuickGraph’s features to 12 popular, existing open-source annotation tools. Annotation
type abbreviations: E - entity, HE - hierarchical entity, R - relation, T - triple, D - document.

design features to enhance annotator productiv-
ity, is provided in Table 1.

Annotation type: 75% of the reviewed tools sup-
port entity annotation, with most also allowing
relation annotation. Only RedCoat (and Quick-
Graph) permit hierarchical entity annotation.

Multi-label: 75% of the reviewed tools support
multi-label annotation. Of these, ActiveAnno
and Paladin permit multi-labels, but are re-
stricted to document classification tasks.

Pre-annotation: 50% of the reviewed tools al-
low pre-annotation of corpora prior to manual-
labelling. These tools are limited to enti-
ties, while QuickGraph also supports relations
through triples.

Automatic annotation: Less than 50% of
the reviewed tools support automatic annota-
tion. This feature is implemented through AI-
assistance, typically using active learning, and
is limited to entity annotation. QuickGraph pur-
posely does not have this feature, as we believe
uncontrolled automatic annotation for complex
MT-IE can be unproductive.

Relation constraints: Of the reviewed tools,
only INCEpTION allows for relation con-
straints. However, INCEpTION’s constraints
need to be expressed in a bespoke constraint
language. In contrast, this feature of Quick-
Graph requires users to simply specify entity
domain and ranges on relations.

Annotation propagation: Of the reviewed tools,
only TextAnnotator provides annotation prop-
agation via ‘entity cascading’. However, this
feature is restricted to entities, and the tool’s
interface is cumbersome and challenging to use.
In contrast, QuickGraph allows easy and intu-
itive entity and relation propagation.

Document clustering: No reviewed tool offer

document clustering. Only QuickGraph en-
ables document clustering to improve annotator
productivity and consistency.

6 Conclusion and future work

We introduced QuickGraph, a collaborative
annotation tool for multi-task information ex-
traction that accelerates annotator productivity.
Distinguishing features of QuickGraph are its
support for diverse information extraction tasks
through hierarchical entity and open/closed re-
lation annotation, annotation propagation, and
semantic clustering.

Whilst QuickGraph is ready to use, there are
features still under development, including:
i) expanding available semantic embedding
and clustering options, ii) improving annota-
tion propagation processes, iii) relaxing inter-
annotator agreement metrics, and iv) adding
support for cross-document annotation.
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