
Proceedings of the Sixth Conference on Machine Translation (WMT), pages 787–794
November 10–11, 2021. ©2021 Association for Computational Linguistics

787

The NiuTrans System for the WMT21 Efficiency Task

Chenglong Wang1, Chi Hu1, Yongyu Mu1, Zhongxiang Yan1, Siming Wu1,
Yimin Hu1, Hang Cao1, Bei Li1, Ye Lin1, Tong Xiao1,2 and Jingbo Zhu1,2

1NLP Lab, School of Computer Science and Engineering, Northeastern University
2NiuTrans Research, Shenyang, China

clwang1119@gmail.com,huchinlp@gmail.com
{xiaotong,zhujingbo}@mail.neu.edu.cn

Abstract

This paper describes the NiuTrans system for
the WMT21 translation efficiency task1. Fol-
lowing last year’s work, we explore various
techniques to improve the efficiency while
maintaining translation quality. We investigate
the combinations of lightweight Transformer
architectures and knowledge distillation strate-
gies. Also, we improve the translation ef-
ficiency with graph optimization, low preci-
sion, dynamic batching, and parallel pre/post-
processing. Putting these together, our system
can translate 247,000 words per second on an
NVIDIA A100, being 3× faster than our last
year’s system. Our system is the fastest and
has the lowest memory consumption on the
GPU-throughput track. The code, model, and
pipeline will be available at NiuTrans.NMT2.

1 Introduction

Large and deep Transformer models have dom-
inated machine translation (MT) tasks in recent
years (Vaswani et al., 2017; Edunov et al., 2018;
Wang et al., 2019; Raffel et al., 2020). Despite their
high accuracy, these models are inefficient and dif-
ficult to deploy (Wang et al., 2020a; Hu et al., 2021;
Lin et al., 2021b). Many efforts have been made
to improve the translation efficiency, including effi-
cient architectures (Li et al., 2021a,b), quantization
(Bhandare et al., 2019; Lin et al., 2020), and knowl-
edge distillation (Li et al., 2020; Lin et al., 2021a).

This work investigates efficient Transformers
architectures and optimizations specialized for dif-
ferent hardware platforms. In particular, we study
deep encoder and shallow decoder Transformer
models and optimize them for both GPUs and
CPUs. Starting from an ensemble of three deep
Transformer teacher models, we train various stu-
dent models via sequence-level knowledge distil-

1http://statmt.org/wmt21/
efficiency-task.html

2https://github.com/NiuTrans/NiuTrans.
NMT

lation (SKD) (Hinton et al., 2015; Li et al., 2021a;
Kim and Rush, 2016) and data augmentation (Shen
et al., 2020). We find that using a deep encoder
(6 layers) and a shallow decoder (1 layer) gives
reasonable improvements in speed while maintain-
ing high translation quality. We improve the stu-
dent model’s efficiency by removing unimportant
components, including the FFN sub-layers and
multi-head mechanism. We also explore other
model-agnostic optimizations, including graph op-
timization, dynamic batching, parallel pre/post-
processing, 8-bit matrix multiplication on CPUs,
and 16-bit computation on GPUs.

Section 2 describes the training procedures of
the deep teacher models. Then, Section 3 presents
various optimizations for reducing the model size,
improving model performance and efficiency. Fi-
nally, Section 4 details the accuracy and efficiency
results of our submissions for the shared efficiency
task.

2 Model Overview

Following Hu et al. (2020), Li et al. (2021a) and
Lin et al. (2021a), we use the SKD method to train
our models. Our experiments also show that the
SKD method can obtain better performance than the
word-level knowledge distillation (WKD) method,
similar to Kim and Rush (2016). Therefore, all of
student models are optimized by using the inter-
polated SKD method (Kim and Rush, 2016), and
trained on data generated from the teacher models.

2.1 Deep Transformer Teacher Models

Recently, researchers have explored deeper mod-
els to improve the translation quality (Wang et al.,
2019; Li et al., 2020; Dehghani et al., 2019; Wang
et al., 2020b). Inspired by them, we employ deep
Transformers as the teacher models. More specifi-
cally, we train three teachers with different configu-
rations, including Deep-30, Deep-12-768, and Skip-
ping Sublayer-40. We also utilize Li et al. (2019)’s

http://statmt.org/wmt21/efficiency-task.html
http://statmt.org/wmt21/efficiency-task.html
https://github.com/NiuTrans/NiuTrans.NMT
https://github.com/NiuTrans/NiuTrans.NMT


788

Student Model Param. BLEU
Student-6-6-8 96M 33.2
Student-6-1-8 42M 33.0
Student-6-1-1 42M 32.9

Table 1: Reference BLEU scores for the student mod-
els on newstest20. 6-6-8 means that the model con-
tains 6 encoder layers and 6 decoder layers with 8 at-
tention heads. Other hyper-parameters are the same as
the vanilla Transformer.

ensemble strategy to boost the teachers.

Deep-30 Transformer Model: We set the num-
ber of encoder layers to 30 in the Transformer
model. Other hyper-parameters are identical to
the vanilla Transformer.

Deep-12-768 Transformer Model: This model
modifies the number of encoder layers, hidden sizes
and embedding sizes to 12, 3072 and 768. Such a
setting makes the Transformer model deeper and
wider. Other hyper-parameters are the same as
vanilla Transformer.

Skipping Sublayer-40 Transformer Model:
This model uses a simple training procedure that
samples one streaming configuration in each
iteration (Li et al., 2021a). The number of encoder
layers is 40 and model’s other setups are same as
Li et al. (2021a).

We adopt the relative position representation
(RPR) (Shaw et al., 2018) to further improve the
teacher models and set the key’s relative length to
8.

2.2 Lightweight Transformer Student Models

Although the ensemble teacher model delivers ex-
cellent performance, our goal is to learn lightweight
models. The natural idea is to compress knowledge
from an ensemble into the lightweight model using
knowledge distillation (Hinton et al., 2015). We
employ sequence-level knowledge distillation on
the ensemble teacher model described in Section
2.1.

Seqence-level Knowledge Distillation The
SKD will make a student model mimic the
teacher’s behaviors at the sequence level. More-
over, the method considers the sequence-level
distribution specified by the model over all possible
sequences t ∈ T . Following Kim and Rush (2016),
the loss function of SKD method for training

students is

LSKD ≈ −
∑
t∈T

1{t = ŷ} log p(t | s) (1)

= − log p(t = ŷ | s) (2)

where 1{·}is the indicator function, ŷ is the output
of teacher model using beam search, s symbolizes
the source sentence and p(·|·) denotes the condi-
tional probability. We use the ensemble teacher
model to generate multiple translations of the raw
English sentences. In particular, we collect the 5-
best list for each sentence against the original target
to create the synthetic training data. However, we
select only 12 million synthetic data to train our stu-
dent models to reduce training costs. We find that
student models will not have better performance
when increasing the number of training data.

Fast Student Models As suggested in Hu et al.
(2020), the bottleneck of translation efficiency is
the decoder part. Hence, we accelerate the de-
coding by reducing the number of decoder layers
and removing multi-head mechanism3. Inspired by
Hu et al. (2021), we design the lightweight Trans-
former student model with one decoder layer. We
further remove the multi-head mechanism in the
decoder’s attention modules. Table 1 shows that
the Transformer student model with one decoder
layer and one decoder attention head can achieve
similar translation quality to the baseline. There-
fore, we train four different student models based
on the Transformer architecture with one decoder
layer and one decoder attention head. Those stu-
dent models are described in detail in the Table 2.
Besides, experiments show that adding more en-
coder layers cannot improve the performance when
the student model has 12 encoder layers. Therefore,
our submissions have 12 encoder layers at most.

2.3 Data and Training Details
Our data is constrained by the condition of the
WMT 2021 English-German news translation task4,
and we use the same data filtering method as Zhang
et al. (2020). We select 20 million pairs to train
our teacher models after filtering all official re-
leased parallel datasets (without official synthetic
datasets). The data is tokenized with Moses tok-
enizer (Koehn et al., 2007), and jointly Byte-Pair

3Although the multi-head mechanism does not increase the
parameter of the model, it brings non-negligible computational
costs.

4https://www.statmt.org/wmt21/
translation-task.html

https://www.statmt.org/wmt21/translation-task.html
https://www.statmt.org/wmt21/translation-task.html


789

Student Model N-Enc Dim-FFN Param. Speedup newstest18 newstest19 newstest20
Student-12-1-512 12 512 56M 2.0× 45.3 41.7 33.2
Student-6-1-512 6 512 38M 2.3× 44.5 41.0 32.7
Student-6-1-0 6 0 37M 2.4× 43.9 40.6 32.4
Student-3-1-512 3 512 28M 2.6× 42.8 40.0 31.5

Table 2: N-Enc is the number of encoder layers and Dim-FFN denotes the feed-forward network (FFN) size. The
Speedup and BLEU results are measured on a TITAN V GPU. The Speedup is calculated comparing with our
ensemble teacher model. The student model has not FFN component in the decoder when the Dim-FFN is 0.
Evaluation is performed without inference optimizations and with a beam size of 1.

Teacher Model Param. BLEU
Deep-30 138M 32.8
Deep-12-768 170M 33.3
Skipping Sublayer-40 171M 33.1
Ensemble 479M 33.4

Table 3: Results on newstest20-Teacher Models. We
train our teacher models with the RPR and back-
translation.

Encoded (BPE) (Sennrich et al., 2016) with 32K
merge operations using a shared vocabulary. After
decoding, we remove the BPE separators and de-
tokenize all tokens with Moses detokenizer (Koehn
et al., 2007).

Teacher Models Training We train three
teacher models using newstest19 as the develop-
ment set with Fairseq (Ott et al., 2019). We
share the source-side and target-side embeddings
with the decoder output weights. We use the Adam
optimizer (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.997 and ε = 10−8 as well as gradient accu-
mulation due to the high GPU memory footprints.
Each model is trained on 8 TITAN V GPUs for up
to 11 epochs. The learning rate is decayed based on
the inverse square root of the update number after
1,6000 warm-up steps, and the maximum learning
rate is 0.002. After training, we average the last
five checkpoints in the training process for all mod-
els. Similar to Zhang et al. (2020), we train our
teacher models with a round of back-translation
with 12 million monolingual data selected from the
News crawl and News Commentary. We train three
De→En models with the same method and model
setup to generate pseudo-data. Table 3 shows the
results of all teacher models and their ensemble,
where we report SacreBLEU (Post, 2018) and the
model size. Our final ensemble teacher model can
achieve a BLEU score of 33.4 on newstest20.

Student Models Training The training settings
for student models are the same for the teacher mod-
els, except its learning rate is 0.0007 and warmup-
updates is 8000. In addition, we also use the cutoff
method (Shen et al., 2020) to boost our student
models5 and we train our student model with 21
epochs. Table 2 shows the results of all student
models. Our student model yields a significant
speedup (2×-2.6×) with modest sacrifice in terms
of BLEU (0.2-0.9 on newstest20).

2.4 Interpretation of Results
After training the final student models, we eval-
uate their BLEU scores on the English-German
newstest20, newstest19, and newstest18 before any
inference optimization. Results show that the stu-
dent models can achieve very similar performance
to the teachers. For instance, the Student-12-1-512
model delivers a loss of 0.2 BLEU score compared
to the ensemble of teacher models.

3 Optimizations for Decoding

Our optimizations for decoding are implemented
with NiuTensor 6. The optimizations can be divided
into three parts, including optimizations for CPUs,
GPUs, and device-independent techniques.

3.1 Optimizations for GPUs
For the GPU-based decoding, we mainly explore
dynamic batching and FP16 inference.

Dynamic Batching Unlike the CPU version, the
easiest way to reduce the translation time on GPUs
is to increase the batch size within a specific range.
We implement a dynamic batching scheme that
maximizes the number of sentences in the batch
while limiting the number of tokens. This strategy

5https://github.com/stevezheng23/
fairseq_extension/tree/master/examples/
translation/augmentation

6https://github.com/NiuTrans/NiuTensor

https://github.com/stevezheng23/fairseq_extension/tree/master/examples/translation/augmentation
https://github.com/stevezheng23/fairseq_extension/tree/master/examples/translation/augmentation
https://github.com/stevezheng23/fairseq_extension/tree/master/examples/translation/augmentation
https://github.com/NiuTrans/NiuTensor


790

1000 1500 2000 2500 3000 3500 4000
Number of Sentences

102.5

105.0

107.5

110.0

112.5

115.0

117.5
T

im
e 

C
os

t (
se

c)

Figure 1: Results on Student-6-1-512 model. The time
cost is measured on an Intel Xeon Gold 6240 CPU with
100,000 lines of raw English sentences with an aver-
aged length of 18 words.

significantly accelerates the inference compared
to a fixed batch size when the sequence length is
short.

FP16 Inference Since the Tesla A100 GPU sup-
ports calculations under FP16, our systems execute
almost all operations in 16-bit floating-point. To es-
cape overflow, we convert the data type before and
after the softmax operation in the attention modules.
We also reorder some operations for numerical sta-
bility. For instance, we apply the scaling operation
(dived by

√
dk) to the query instead of the atten-

tion weights. To accelerate our systems further,
we replace the vanilla layer normalization with the
L1-norm (Lin et al., 2020). Also, we find that re-
moving the multi-head mechanism (by setting the
head to 1) in the student models significantly im-
proves the throughput without performance loss.

3.2 Optimizations for CPUs
We employ the Student-6-1-512 and Student-3-1-
512 models as our CPU submissions. Two methods
are discussed to speed up the decoding for our CPU
systems.

The Use of MKL We use the Intel Math Kernel
Library (Wang et al., 2014) to optimize our NiuTen-
sor framework, which helps our systems to make
the full use of the Intel architecture and to extract
the maximum performance.

8-bit Matrix Multiplication with Packing We
implement 8-bit matrix multiplication using the
open-source library FBGEMM (Khudia et al.,
2021). Following Kim et al. (2019), we quantize
each column of the weight matrix separately with

different scales and offsets. Scale and offsets for
weight matrix are calculated by:

bscale[j] =
14σj
255

(3)

bzeropoint[j] =
127− (x̄j + 7σj)

bscale[j]
(4)

where σj and x̄j refers to average and standard
deviation for the j-th column. The quantization
parameters for the input matrix is calculated by:

ascale =
xmax − xmin

255
(5)

azeropoint =
255− xmax

ascale
(6)

where xmax and xmin are the maximum and min-
imum values of the matrix respectively. With
FBGEMM API, we also execute the packing op-
eration to change the layout of the matrices into a
form that uses the CPU more efficiently. We pre-
quantize and pre-pack all the weight matrices to
avoid repeated operation during inference.

where xmax and xmin are the maximum and
minimum values of the matrix, respectively. We
also execute the packing operation to change the
layout of the matrices into a form that uses the CPU
more efficiently. We pre-quantize and pre-pack all
the weight matrices to avoid repeated operation
during inference.

3.3 Other Optimizations
Furthermore, we explore other device-independent
methods to optimize our systems. Those methods
help our systems to achieve obvious speed-up with-
out translation precision loss.

Graph Optimization A neural net can be repre-
sented by a directed acyclic graph (DAG), where
the nodes represent tensors and the connections
represent operations. We optimize our system by
simplifying the computational graph of the mod-
els. The optimizations for the graph are detailed as
follows:

• Computation optimization. We prune all re-
dundant operations and reorder some opera-
tions in the computational graph. For instance,
we remove the log-softmax operation in the
output layer when using greedy search. We
also extract the transpose operations from ma-
trix multiplications to the begin of decoding.



791

Base FP16 Graph
Optimization

Dynamic
Batching

0

20000

40000

60000

80000

100000

120000

W
or

ds
/s

46345

85421

113472

124735

20.0

25.0

30.0

35.0

40.0

45.0

B
L

E
U32.7 32.7 32.7 32.7

Speed
BLEU

(a) Performance of our GPU system

MKL 32-bit FBGEMM 8-bit FBGEMM 8-bit
+MKL 32-bit

0

250

500

750

1000

1250

1500

1750

2000

W
or

ds
/s

1426

1749

2028

20.0

25.0

30.0

35.0

40.0

45.0

B
L

E
U32.7 32.8 32.7

Speed
BLEU

(b) Performance of our CPU system

Figure 2: BLEU on newstest20 versus words per second (Words/s) with different optimizations on a TITAN V
GPU and Intel Xeon Gold 5118 CPUs. Result of decoding speed is measured with 0.1 M sentences (average
length is 18). When the GPU system is running, it will use all free CPUs on the device.

• Memory optimization. We reuse all possi-
ble nodes to minimize the memory consump-
tion. We also reduce the memory allocation
or movement with an efficient memory pool.
Moreover, we sort the source sentences in de-
scending order of length and detect the peak
memory footprint before decoding.

Parallel Execution We use the GNU Parallel
(Tange, 2011) for our systems to perform tasks
in parallel. More specifically, we split the stan-
dard input into several lines and deliver them via
the pipeline. The method is used to accelerate
pre-processing, post-processing, and decoding on
CPUs. We also find that the system decoding
speed/memory is strongly correlated with the num-
ber of lines per task. To find the best number of
lines for each run, we measure the time cost in dif-
ferent setups against the number of lines. Figure
1 shows that 2000 is a relatively good choice, and
the Student-6-1-512 model can translate 100,000
sentences in 102.6s on CPUs under this setup.

Better Decoding Configurations As aforemen-
tioned, our GPU versions use a large batch size,
but the batch size on the CPU is much smaller. To
be more clear, there is sentence batch (sbatch) and
word batch (wbatch) in our systems, and they re-
strict the number of sentences and number of words
in a mini-batch to not be greater than sbatch and
wbatch, respectively. In our GPU systems, we set
the sbatch/wbatch to 3072/64000. For our CPU
systems, the number of processes is managed by
the Parallel tool, which is more efficient and accu-
rate. Moreover, We use one MKL thread for each

process and set the sbatch/wbatch to 128/2048.

Greedy Search In the practice of knowledge dis-
tillation, we find that our systems are insensitive to
the beam size. It means that the translation qual-
ity is good enough even using greedy search in all
submissions.

Fast Data Preparation We use the fastBPE7,
a faster C++ version of subword-nmt8, to speed
the BPE process. Moreover, we also use the fast-
mosestokenizer9 for tokenization.

3.4 Results after Optimizations
Figure 2 plots the Student-6-1-512 model’s per-
formance with different decoding optimizations.
All results show that our optimizations can signifi-
cantly speed up our system without losing BLEU.
What is interesting about the BLEU is that we can
achieve additional improvements of 0.4/0.1 BLEU
points on the GPU/CPU through decoding opti-
mizations in all our experiments. We also measure
other models after decoding optimizations and find
their performance is similar to the Student-6-1-512
model.

4 Submissions and Results

4.1 Submissions
For the GPU track submissions, our GPU systems
are compiled with CUDA 11.2. We set the num-

7https://github.com/glample/fastBPE
8https://github.com/rsennrich/

subword-nmt
9https://github.com/mingruimingrui/

fast-mosestokenizer

https://github.com/glample/fastBPE
https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
https://github.com/mingruimingrui/fast-mosestokenizer
https://github.com/mingruimingrui/fast-mosestokenizer


792

ber of decoder layers and the number of our de-
coder attention head to 1 as described in Section
2.2 for all our GPU systems. We see a speedup
of more than 6× on the GPU system created by
Student-12-1-512 model and a slight decrease of
only 0.2 BLEU on the newstest20 compared to the
deep ensemble model. The system is named as
Base-GPU-System in following part. We continue
to reduce the number of encoder layers for more
accelerations, and the GPU system with Student-6-
1-512 model reduces the translation time by one-
four with only six encoder layers compared to the
Base-GPU-System. Our fastest GPU system con-
sists of three encoder layers and one decoder layer,
which achieves 31.5 BLEU on the newstest20 with
GPU and 1.6× speedup compared to the Base-
GPU-System. We also employ the Student-6-1-0
model to create a GPU system that can achieve the
1.3× speedup compared to Base-GPU-System. Our
systems are compiled in the 11.2.1-devel-centos7
docker image, an NVIDIA open-source image10.
We copy the executables, dependence tools, and
model files to the 11.2.1-base-centos7 docker im-
age (final submission). In this way, we ensure all
of our system docker images can be executed by
the organizers successfully and reduce the docker
images size.

For the CPU track submissions, we use the test
machine, which has 18 virtual cores. Our CPU
version is compiled with MKL static library, and
the executable file is 23MiB. Also, we use the 8-
bit matrix multiplication with packing to speed the
matrix multiplication in the network. We use the
Student-3-1-512 and Student-6-1-512 models in
our CPU systems, and they respectively achieve
31.5 and 32.8 BLEU on newstest20. For our CPU
docker images, we use the base-centos7 docker
image11 to deploy our CPU MT systems.

Furthermore, all submissions are tested with dif-
ferent cases, including dirty data, empty input, and
very long sentences. The test results show that
our systems can run successfully with exceptional
inputs.

4.2 Results

Our systems for the GPU-throughput track are
the fastest overall submissions. Specifically, the
Student-3-1-512 system can translate about 250
thousand words per second and achieve 25.5 BLEU

10https://hub.docker.com/r/nvidia/cuda
11https://hub.docker.com/_/centos

on newstest21. We attribute this to the compari-
son of the performance of our teacher model on
WMT21. In the CPU track, our system also has
competitive performance. Our fastest CPU sys-
tem created by Student-3-1-512 model can trans-
late about 48 thousand words per real second via
36 CPU cores and can achieve 25.5 BLEU. We
find that reducing the number of encoder layers for
student model achieves lower BLEU scores at a
similar speed for our CPU systems. Moreover, we
compare the cost-effective of GPU and CPU decod-
ing in terms of millions of words translated per dol-
lar according to the official evaluation results. We
find that highly-effective GPU decoding is about
to out-compete CPU-bound decoding in terms of
cost-effective. Noteworthy, our GPU system with
Student-3-1-512 model can translate 300M words
per dollar with acceptable quality. Also, all of our
GPU systems have the lowest RAM consumption
(about 4 GB) to official test compared with the
submissions of other participants.

5 Conclusion

We have described our systems for the WMT21
shared efficiency task. We have explored various
efficient Transformer architectures and optimiza-
tions specialized for both CPUs and GPUs. We
have shown that a lightweight decoder and proper
optimizations for different hardware can signifi-
cantly accelerate the translation process with slight
or no loss of translation quality. Our fastest GPU
system with three encoder layers and one decoder
layer is 11× faster than the deep ensemble model
and lose 1.9 BLEU points.

Acknowledgements

This work was supported in part by the National
Science Foundation of China (Nos. 61876035
and 61732005), the National Key R&D Program
of China (No.2019QY1801), and the Ministry
of Science and Technology of the PRC (Nos.
2019YFF0303002 and 2020AAA0107900). The
authors would like to thank the anonymous review-
ers for their comments and suggestions.

References
Aishwarya Bhandare, Vamsi Sripathi, Deepthi

Karkada, Vivek Menon, Sun Choi, Kushal Datta,
and Vikram Saletore. 2019. Efficient 8-bit quan-
tization of transformer neural machine language
translation model.

https://hub.docker.com/r/nvidia/cuda
https://hub.docker.com/_/centos
http://arxiv.org/abs/1906.00532
http://arxiv.org/abs/1906.00532
http://arxiv.org/abs/1906.00532


793

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Univer-
sal transformers. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at
scale.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Chi Hu, Bei Li, Yinqiao Li, Ye Lin, Yanyang Li, Chen-
glong Wang, Tong Xiao, and Jingbo Zhu. 2020. The
NiuTrans system for WNGT 2020 efficiency task. In
Proceedings of the Fourth Workshop on Neural Gen-
eration and Translation, pages 204–210, Online. As-
sociation for Computational Linguistics.

Chi Hu, Chenglong Wang, Xiangnan Ma, Xia Meng,
Yinqiao Li, Tong Xiao, Jingbo Zhu, and Changliang
Li. 2021. Ranknas: Efficient neural architecture
search by pairwise ranking.

Daya Khudia, Jianyu Huang, Protonu Basu, Sum-
mer Deng, Haixin Liu, Jongsoo Park, and Mikhail
Smelyanskiy. 2021. Fbgemm: Enabling high-
performance low-precision deep learning inference.
arXiv preprint arXiv:2101.05615.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Has-
san, Alham Fikri Aji, Kenneth Heafield, Roman
Grundkiewicz, and Nikolay Bogoychev. 2019. From
research to production and back: Ludicrously fast
neural machine translation. In Proceedings of the
3rd Workshop on Neural Generation and Transla-
tion, pages 280–288, Hong Kong. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Ses-
sions, pages 177–180, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Bei Li, Yinqiao Li, Chen Xu, Ye Lin, Jiqiang Liu, Hui
Liu, Ziyang Wang, Yuhao Zhang, Nuo Xu, Zeyang
Wang, et al. 2019. The niutrans machine trans-
lation systems for wmt19. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), pages 257–266.

Bei Li, Ziyang Wang, Hui Liu, Quan Du, Tong Xiao,
Chunliang Zhang, and Jingbo Zhu. 2021a. Learn-
ing light-weight translation models from deep trans-
former. In Thirty-Fifth AAAI Conference on Artifi-
cial Intelligence, AAAI 2021, Thirty-Third Confer-
ence on Innovative Applications of Artificial Intelli-
gence, IAAI 2021, The Eleventh Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021, pages
13217–13225. AAAI Press.

Bei Li, Ziyang Wang, Hui Liu, Yufan Jiang, Quan Du,
Tong Xiao, Huizhen Wang, and Jingbo Zhu. 2020.
Shallow-to-deep training for neural machine trans-
lation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 995–1005, Online. Association for
Computational Linguistics.

Yanyang Li, Ye Lin, Tong Xiao, and Jingbo Zhu. 2021b.
An efficient transformer decoder with compressed
sub-layers. CoRR, abs/2101.00542.

Ye Lin, Yanyang Li, Tengbo Liu, Tong Xiao, Tongran
Liu, and Jingbo Zhu. 2020. Towards fully 8-bit inte-
ger inference for the transformer model. In Proceed-
ings of the Twenty-Ninth International Joint Confer-
ence on Artificial Intelligence, IJCAI 2020, pages
3759–3765. ijcai.org.

Ye Lin, Yanyang Li, Ziyang Wang, Bei Li, Quan Du,
Tong Xiao, and Jingbo Zhu. 2021a. Weight distilla-
tion: Transferring the knowledge in neural network
parameters. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing, ACL/IJCNLP 2021, (Vol-
ume 1: Long Papers), Virtual Event, August 1-6,
2021, pages 2076–2088. Association for Computa-
tional Linguistics.

Ye Lin, Yanyang Li, Tong Xiao, and Jingbo Zhu. 2021b.
Bag of tricks for optimizing transformer efficiency.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
http://arxiv.org/abs/1808.09381
http://arxiv.org/abs/1808.09381
https://doi.org/10.18653/v1/2020.ngt-1.24
https://doi.org/10.18653/v1/2020.ngt-1.24
http://arxiv.org/abs/2109.07383
http://arxiv.org/abs/2109.07383
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D19-5632
https://doi.org/10.18653/v1/D19-5632
https://doi.org/10.18653/v1/D19-5632
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.aclweb.org/anthology/P07-2045
https://www.aclweb.org/anthology/P07-2045
https://ojs.aaai.org/index.php/AAAI/article/view/17561
https://ojs.aaai.org/index.php/AAAI/article/view/17561
https://ojs.aaai.org/index.php/AAAI/article/view/17561
https://doi.org/10.18653/v1/2020.emnlp-main.72
https://doi.org/10.18653/v1/2020.emnlp-main.72
http://arxiv.org/abs/2101.00542
http://arxiv.org/abs/2101.00542
https://doi.org/10.24963/ijcai.2020/520
https://doi.org/10.24963/ijcai.2020/520
https://doi.org/10.18653/v1/2021.acl-long.162
https://doi.org/10.18653/v1/2021.acl-long.162
https://doi.org/10.18653/v1/2021.acl-long.162
http://arxiv.org/abs/2109.04030
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319


794

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations.

Dinghan Shen, Mingzhi Zheng, Yelong Shen, Yanru
Qu, and Weizhu Chen. 2020. A simple but tough-
to-beat data augmentation approach for natural lan-
guage understanding and generation. arXiv preprint
arXiv:2009.13818.

O. Tange. 2011. Gnu parallel - the command-
line power tool. ;login: The USENIX Magazine,
36(1):42–47.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Endong Wang, Qing Zhang, Bo Shen, Guangyong
Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang.
2014. Intel math kernel library. In High-
Performance Computing on the Intel® Xeon Phi™,
pages 167–188. Springer.

Hanrui Wang, Zhanghao Wu, Zhijian Liu, Han Cai,
Ligeng Zhu, Chuang Gan, and Song Han. 2020a.
Hat: Hardware-aware transformers for efficient nat-
ural language processing.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1810–1822, Florence, Italy. Associa-
tion for Computational Linguistics.

Qiang Wang, Tong Xiao, and Jingbo Zhu. 2020b.
Training flexible depth model by multi-task learning
for neural machine translation. In Findings of the
Association for Computational Linguistics: EMNLP
2020, pages 4307–4312, Online. Association for
Computational Linguistics.

Yuhao Zhang, Ziyang Wang, Runzhe Cao, Binghao
Wei, Weiqiao Shan, Shuhan Zhou, Abudurexiti Re-
heman, Tao Zhou, Xin Zeng, Laohu Wang, et al.
2020. The niutrans machine translation systems for

wmt20. In Proceedings of the Fifth Conference on
Machine Translation, pages 338–345.

http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
http://arxiv.org/abs/1803.02155
http://arxiv.org/abs/1803.02155
https://doi.org/10.5281/zenodo.16303
https://doi.org/10.5281/zenodo.16303
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/2005.14187
http://arxiv.org/abs/2005.14187
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/2020.findings-emnlp.385
https://doi.org/10.18653/v1/2020.findings-emnlp.385

