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Abstract

We participated in all tracks of the WMT 2021
efficient machine translation task: single-core
CPU, multi-core CPU, and GPU hardware
with throughput and latency conditions. Our
submissions combine several efficiency strate-
gies: knowledge distillation, a simpler simple
recurrent unit (SSRU) decoder with one or two
layers, lexical shortlists, smaller numerical for-
mats, and pruning. For the CPU track, we used
quantized 8-bit models. For the GPU track,
we experimented with FP16 and 8-bit integers
in tensorcores. Some of our submissions op-
timize for size via 4-bit log quantization and
omitting a lexical shortlist. We have extended
pruning to more parts of the network, em-
phasizing component- and block-level pruning
that actually improves speed unlike coefficient-
wise pruning.

1 Introduction

This paper describes the University of Edinburgh’s
submission to Sixth Conference on Machine Trans-
lation (WMT2021) Efficiency Task1, which mea-
sures performance on latency and throughput on
both CPU and GPU, in addition to translation qual-
ity. Our submission focused on the trade-off be-
tween these metrics and quality.

Our submission builds upon the work of last
year’s submission (Bogoychev et al., 2020). We
trained our models in a teacher-student setting
(Kim and Rush, 2016), using Edinburgh’s En-De
system submitted to the WMT2021 news transla-
tion task as the teacher model. For the students,
we used a Simpler Simple Recurrent Unit (SSRU)
(Kim et al., 2019) decoder, used a target vocabu-
lary shortlist, and experimented with pruning the
student models by removing component- and block-
level parameters to improve speed. We further ex-
perimented with quantizing into smaller numerical

1http://statmt.org/wmt21/
efficiency-task.html

formats, including fixed point 8-bit quantization on
the CPU, and both 8-bit and log based 4-bit quan-
tization on the GPU, as well as post-quantization
fine-tuning of 4-bit quantized models.

For running our experiments, we improved upon
the Marian (Junczys-Dowmunt et al., 2018) ma-
chine translation framework by incorporating speed
ups for 8-bit matrix multiplication operations, opti-
mizations for pruning neural network parameters
on Intel CPUs, and exploring tensorcores on the
GPU.

1.1 Efficiency Shared Task

The WMT21 efficiency shared task consists of two
sub-tasks: throughput and latency. Systems should
translate English to German under the constrained
conditions of the WMT21 news task. For each task,
systems are provided 1 million lines of raw English
input with at most 150 space-separated words. The
throughput task receives this input directly. The
latency task, introduced this year, is fed input one
sentence at a time, waiting for the translation output
before providing the next sentence.

Throughput is measured on multi-core CPU or
GPU system, and latency is measured on single-
core CPU or GPU systems. The CPU-based eval-
uations use an Intel Ice Lake system via Oracle
Cloud BM.Optimized3.36, while the GPU-based
use a single A100 via Oracle Cloud BM.GPU4.8.

Entries to both tasks are measured on quality, ap-
proximated via BLEU score (Papineni et al., 2002),
speed, model size, Docker image size, and memory
consumption. We did not optimise specifically for
the latency task beyond configuring the relevant
batch sizes to one. We used Ubuntu 20.04 based
images for our systems, with standard Ubuntu
for CPU-only systems and NVIDIA’s Ubuntu-
based CUDA-11.4 docker for GPU-capable sys-
tems. Docker images were created using multi-
stage builds, with model disk size reduced by com-
pression with xzip.

http://statmt.org/wmt21/efficiency-task.html
http://statmt.org/wmt21/efficiency-task.html
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2 Training teacher models

We used Edinburgh’s En↔De systems submitted
to the WMT 2021 news translation task as teacher
models (Chen et al., 2021). We trained transformer-
big models (Vaswani et al., 2017), using a shared
32K SentencePiece (Kudo and Richardson, 2018)
vocabulary, built in three stages: corpus filter-
ing, back-translation and fine-tuning. The models
achieved 29.90 and 51.78 BLEU on En→De and
De→En WMT 2021 test respectively (scored by
the task organizers, with multiple references).

We used sequence-level knowledge distillation
(Kim and Rush, 2016) to synthesize forward, back-
ward, and backward-forward translations using the
teachers. We filtered the synthesized parallel data
using handcrafted rules2, followed by removing
bottom 5% according to cross-entropy per word on
the generated side using KenLM (Heafield et al.,
2013).

3 Knowledge distillation

We ran experiments using different combinations
of teacher-synthesized corpora. One variant in-
cluded all of the synthesized data: parallel, mono-
lingual backward and forward as well as backward-
forward (Aji and Heafield, 2020b). Another vari-
ant excludes only the fully-synthetic monolingual
backward-forward data, while the final variant used
parallel data only. All student models were trained
using a validation set consisting of the subset of
sentences in the English-German WMT test sets
from 2015–2019 that were originally in English.
Training concluded after reaching 20 consecutive
validations without an improvement in BLEU score.
The student models used the same shared vocabu-
lary as the teacher ensemble. During decoding, we
used a lexical shortlist (Schwenk et al., 2007; Le
et al., 2012; Devlin et al., 2014) of the top 50 most
probable alignments, combined through a union
with the top 50 most frequent vocabulary items.
Other than this, we used the default training hyper-
parameters from Marian for the transformer-base
model.

Each of the student models used transformer
encoders (Vaswani et al., 2017) and RNN-based de-
coders with Simpler Simple Recurrent Unit (SSRU)
(Kim et al., 2019). Several different architectures
were explored; these differ in the number of en-
coder and decoder blocks as well as in the sizes

2https://github.com/browsermt/
students/tree/master/train-student/clean

of the embedding and FFN layers. Further to this,
some of our transformer architectures use a modi-
fied attention matrix of shape (demb, nhead×dhead)
rather than the typical (demb, demb). In all cases
we use 8 transformer heads per layer, and set
dhead = 32 across all modified attention models.

The student architectures are summarized in Ta-
ble 1. A baseline comparison of student models
trained on all synthesized data can be seen in Ta-
ble 1.

3.1 Pruning

Attention is a crucial part of the transformer ar-
chitecture, but it is also computationally expensive.
Research has shown that many heads can be pruned
after training; with further work suggesting that
pruning during training can be less damaging to
quality. Feedforward layers are also expensive and
could be reduced.

Among many experiments, we applied group
lasso regularisation to sparsify and prune 12–1.tiny
and 12–1.micro architectures. We follow the di-
rections set by Behnke and Heafield (2021). We
tried two pruning settings: rowcol-lasso and head-
lasso. Both prune feedforward and attention layers
in the encoder. rowcol-lasso regularised individ-
ual connections (rows and columns) and removed
an entire attention head if at least half of its con-
nections are dead. head-lasso applied lasso to a
whole head submatrix. Due to the scale of the task,
we had no opportunity to grid-search for the best
pruning hyperparameters, thus the experiments are
as close to ’out-of-the-box’ usage as they can be.
We control pruning with λ = 0.5 for both methods.
The models were pretrained for 50k updates and
regularised for 150k, after which the models were
sliced and trained until convergence. The results
are presented in Tab. 2.

head-lasso left attention layers almost com-
pletely unpruned, focusing on removing connec-
tions from feedforward layers instead. rowcol-
lasso was much more aggressive in both layers at
the cost of quality. Behnke and Heafield (2021)
have shown that group lasso pruning results in
a better quality model than training the same ex-
act architecture from scratch. To further optimise
the models, they were quantised to work within
8bit representation. However, we observe that the
smaller a model is, the larger the quality drop after
its quantisation. Additional finetuning allows us
to recover at least partially from the quantisation

https://github.com/browsermt/students/tree/master/train-student/clean
https://github.com/browsermt/students/tree/master/train-student/clean
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Depth Dimensions BLEU COMET
Model Enc Dec Emb. FFN Att. Heads Params. Size WMT20 WMT21 WMT20 WMT21 Speed (s)

teacher x 3 6 6/6/8 1024 4096 1024 16 619.0M 1.59GB 38.3 28.8 56.8 50.8 -
12-1.large 12 1 1024 3072 256 8 130.5M 498MB 37.6 28.7 54.0 47.7 92.2
12-1.base 12 1 512 2048 256 8 51.1M 195MB 36.7 28.2 50.7 44.1 38.9
12-1.tiny 12 1 256 1536 256 8 22.0M 85MB 36.1 27.6 48.2 41.9 19.2
12-1.micro 12 1 256 1024 256 8 18.6M 72MB 35.4 27.6 46.2 40.2 17.1

8-4.tied.tiny 8 4 256 1536 256 8 17.8M 69MB 35.7 27.8 50.3 43.9 30.4
6-2.tied.tiny 6 2 256 1536 256 8 15.7M 61MB 34.9 27.4 47.4 42.1 18.6

6-2.base 6 2 512 2048 512 8 42.7M 163MB 37.7 28.7 54.3 48.5 56.2
6-2.tiny 6 2 256 1536 256 8 16.9M 65MB 35.8 27.4 50.2 44.5 19.2

Table 1: Architectures for the different student models. The number of encoder/decoder layers are reported with the
size of the embedding, attention and FFN layers, the total number of parameters, the model size on disk, quality in
both BLEU and COMET as well as speed on WMT21 testset. The first and second groups use a modified attention
matrix shape, with second group consisting of tied models. The third group uses the typical shape attention
matrices.

damage. Evaluating on the latest testset WMT21,
our pruned models are 1.2–1.7× faster at the cost
of 0.6–1.3 BLEU. With quantisation, those models
are 1.9–2.7× faster losing 0.9–1.7 BLEU in com-
parison to the unpruned and unquantised baselines.

3.2 Fixed Point 8-bit Quantization

Quantizing fp32 models into 8-bit integers is a
known strategy to reduce decoding time, specifi-
cally on CPU, with a minimal impact on quality
(Kim et al., 2019; Bhandare et al., 2019; Rodriguez
et al., 2018). This year’s submission closely fol-
lows the quantization scheme of last year’s work
(Bogoychev et al., 2020).

Quantization entails computing a scaling fac-
tor to collapse the range of values to [−127, 127].
For parameters, this scaling factor is computed of-
fline using the maximum absolute value but acti-
vation tensors change at runtime. This year, we
changed from computing a dynamic scaling fac-
tor on the fly for activations to computing a static
scaling factor offline. We decoded the WMT16-20
datasets and recorded the scaling factor α(Ai) =
127/max(|Ai|) for each instance Ai of an acti-
vation tensor A. Then, for production, we fixed
the scaling factor for activation tensor A to the
mean scaling factor plus 1.1 standard deviation:
α(A) = µ({α(Ai)}) + 1.1 ∗ σ({α(Ai)}). These
scaling factors were baked into the model file so
that statistics were not computed at runtime.

Quantization does not extend to the attention
layer, which is still computed in fp32. The reason
being is that in the attention layer, both theA andB
matrices of the GEMM operation would need to be
quantized at runtime, which makes the quantization

too expensive. We note that we only perform the
GEMM operations in 8-bit integers.

3.3 Log 4-bit Quantization

We further quantize the models with log based 4-
bit quantization (Aji and Heafield, 2020a). In this
case, model weights are represented in a 16 unique
quantization centers in a form of S ∗2k. S is a scal-
ing factor that is optimized to minimize the MSE
of the quantized weight to the actual weight. Fol-
lowing Aji and Heafield (2020a), we only perform
4-bit quantization on non-bias layers.

Unfortunately, the hardware used is not designed
to perform native 4-bit operations. Therefore, our
4-bit quantization experiment is used solely for
model compression purposes, in which we can re-
duce the model size to be 8x smaller. To perform
inference, we de-quantize the 4-bit model back to
fp32 representation, therefore does not achieve any
speed up over the vanilla fp32 models.

3.4 Quantization fine-tuning

Quantizing models degrades the quality, especially
on smaller architectures. Therefore, after apply-
ing quantization, we fine-tune the model under
the quantized weight. We find that lowering the
learning rate to 0.0001 yields better model qual-
ity. Moreover, for 4-bit models, we also find that
doubling the warm-up duration helps.

Our 8-bit quantization models mainly aim for
speed improvement. Therefore, we apply 8-bit
quantization to pruned models to further boost
the speed. As shown in Table 2, 8-bit inference
achieves significant speedup. However, fine-tuning
is necessary to restore the quality degradation.
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BLEU COMET Sparsity
WMT20 WMT21 WMT20 WMT21 Att. FFN Speed (s)

12-1.tiny 36.1 27.6 48.2 41.9 0% 0% 19.2
+ head-lasso pruning 34.7 27.0 42.9 38.8 3% 75% 14.5

+ 8bit quantisation 33.9 26.2 38.8 33.6 3% 75% 9.3
+ finetuning 34.1 26.7 39.8 33.0 3% 75% 9.3

+ rowcol-lasso pruning 33.8 26.3 39.3 34.2 68% 73% 11.6
+ 8bit quantisation 32.9 25.6 33.7 28.7 68% 73% 6.9

+ finetuning 32.9 26.0 35.7 31.3 68% 73% 7.1

12-1.micro 35.4 27.6 46.2 40.2 0% 0% 17.1
+ head-lasso pruning 34.6 26.7 43.0 35.4 3% 72% 14.1

+ 8bit quantisation 33.4 26.0 36.7 31.2 3% 72% 9.2
+ finetuning 33.7 26.5 38.3 33.3 3% 72% 9.2

+ rowcol-lasso pruning 34.3 26.4 40.7 35.1 60% 59% 12.0
+ 8bit quantisation 32.7 25.5 34.2 29.1 60% 59% 7.5

+ finetuning 33.3 25.9 35.2 30.5 60% 59% 7.5

Table 2: 8-bit model performance. BLEU score is calculated from WMT20. Speed is measured on a single core
CPU with a mini-batch of 32. We experimented with two types of pruning. Head pruning removes entire heads.
Row and column pruning removes entire rows or columns of matrices, resulting in a smaller matrix.

BLEU COMET
WMT20 WMT21 WMT20 WMT21 Size

12-1.base 37.1 28.3 51.5 45.1 195MB
+ 4bit 36.3 27.7 50.0 43.2 25MB

12-1.tiny 36.0 28.0 47.5 42.5 85MB
+ 4bit 35.0 27.6 42.4 38.3 11MB

8-4.tied.tiny 35.7 27.5 49.4 43.6 69MB
+ 4bit 34.2 26.4 44.4 38.2 9MB

Table 3: 4-bit model performance. BLEU score is cal-
culated from WMT20. All the quantized models in-
clude fine-tuning. The inference is done in 32fp, there-
fore their speed are comparable.

We apply 4-bit quantization solely for size effi-
ciency. Therefore, we quantize non-pruned models
since they give better size to quality trade-off, com-
pared to pruned models. The performance of 4-bit
models can be seen in Table 3.

4 Software improvements

4.1 CPU

We built our work using the Marian machine trans-
lation framework, making some improvements on
top of the submission from last year: We used
predominantly intgemm3 for our 8-bit GEMM op-
erations, including for the shortlisted output layer.
All parameter matrices are quantized to 8-bit of-
fline and the activations get quantized dynamically
before a GEMM operation. We only perform the
GEMM operation and the following activation in

3https://github.com/kpu/intgemm

8-bit integer mode. Right after a GEMM operation,
the output is de-quantized back to fp32. More for-
mally we perform dequantize(σ(A ∗B + bias)),
where the addition of the bias, the activation func-
tion4 σ, and the de-quantization are applied in a
streaming fashion to prevent a round trip to mem-
ory.

Furthermore we make use of Intel’s DNNL5 for
our pruned models, as it performs better than int-
gemm for irregular sized matrices. Unfortunately,
DNNL doesn’t support streaming de-quantization,
bias addition or activation function application.

For the CPU_ALL throughput track, we swept
configurations of multiple processes and threads on
the platform, settling on 4 processes with 9 threads
each. The input text is simply split into 4 pieces
and parallelized (Tange, 2011) over processes. The
mini-batch sizes did not impact performance sub-
stantially and 32 was chosen as the mini-batch size.
The Hyperthreads available on the platform were
not put into use as the compute on each was sat-
urated by the efficient threads. Each process is
bound to 9 cores assigned sequentially and to the
memory domain corresponding to the socket with
those cores using numactl. Output from the data
parallel run is then stitched together to produce the
final translation.

4We only support ReLU activation for now
5https://github.com/oneapi-src/oneDNN

https://github.com/kpu/intgemm
https://github.com/oneapi-src/oneDNN
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mini-batch master fp32 master fp16 ours fp32 ours fp16 ours 8-bit

32 1160s 1151s 740s 731s 732s
64 696s 636s 426s 400s 416s

128 475s 430s 261s 246s 261s
256 320s 296s 181s 160s 169s
512 282s 241s 147s 127s 133s
768 285s 225s 139s 120s 123s

1024 277s 218s 136s 117s 120s
1132 277s 216s 135s 116s 119s

BLEU 33.47 33.43 33.48 33.42 33.26

Table 4: Comparison between the master branch of marian-dev, our branch and our best 8-bit integer tensorcore
work for GPU decoding. For grid search we used last year’s submission model and tested on 1 million sentences
from last year’s WNGT competition (Heafield et al., 2020).

4.2 GPU

For our GPU submission we built up on top of last
year’s submission, applying experimental GPU op-
timisations on top of the marian-dev master tree6

and exploring tensorcore7 applicability using CUT-
LASS.8

Tensorcores can in theory drastically increase
the performance of our computations and were en-
abled for all of our fp16 experiments. Tensorcores
can also improve speed when doing 8-bit integer
operations, so we implemented 8-bit integer GPU
decoding similar to our CPU scheme. We found
that shortlisting doesn’t improve the performance,
so we didn’t use it.

We found that while fp16 decoding works fairly
well and delivers good performance improvements
for decoding, especially when using a really large
mini-batch size. We performed a large parameter
sweep on a RTX 3090, as shown on Table 4. Unfor-
tunately, we found no setting in which tensorcore
8-bit integer decoding outperforms the fp16 base-
line, likely due to the overhead of quantisating the
activations beforehand.

5 Conclusion

We participated in all tracks of the WMT 2021 effi-
ciency tracks and we submitted multiple systems
that have different trade-offs between speed and
translation quality. We performed ample hyper-
parameter tuning and exploration in order to take
advantage of GPU tensorcores for decoding, but
unfortunately we couldn’t beat our optimised fp16
baseline. For the CPU submission we used 8bit

6https://github.com/marian-nmt/
marian-dev/pull/743

7https://developer.nvidia.com/blog/
programming-tensor-cores-cuda-9/

8https://github.com/NVIDIA/cutlass

integer decoding and a combination of pruned and
non-pruned system, together with a lexical shortlist
in order to reduce the computational cost of the
largest GEMM in decoding – the output layer.
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