
Proceedings of the Sixth Conference on Machine Translation (WMT), pages 639–651
November 10–11, 2021. ©2021 Association for Computational Linguistics

639

Findings of the WMT 2021 Shared Task on Efficient Translation

Kenneth Heafield† Qianqian Zhu† Roman Grundkiewicz†§
†University of Edinburgh

10 Crichton Street
Edinburgh, Scotland EH8 9AB

§Microsoft
1 Microsoft Way

Redmond, WA 98052, USA
{Kenneth.Heafield,Qianqian.Zhu,rgrundki}@ed.ac.uk

Abstract

The machine translation efficiency task chal-
lenges participants to make their systems faster
and smaller with minimal impact on transla-
tion quality. How much quality to sacrifice
for efficiency depends upon the application, so
participants were encouraged to make multi-
ple submissions covering the space of trade-
offs. In total, there were 53 submissions by
4 teams. There were GPU, single-core CPU,
and multi-core CPU hardware tracks as well as
batched throughput or single-sentence latency
conditions. Submissions showed hundreds of
millions of words can be translated for a dollar,
average latency is 5–20 ms, and models fit in
7.5–150 MB.

1 Introduction

The efficiency task complements the collocated
news task by challenging participants to make their
machine translation systems computationally effi-
cient. This is the fourth edition of the task, expand-
ing upon previous editions (Heafield et al., 2020;
Hayashi et al., 2019; Birch et al., 2018).

Participants built English→German machine
translation systems following the constrained data
condition of the 2021 Workshop on Machine Trans-
lation news translation task. For translation qual-
ity measurement, we use the same news-focused
WMT21 test set and human evaluation protocol as
the news task. However, human assessment was
conducted separately from the evaluation of the
news task submissions.

Submissions are made as Docker containers so
we can consistently measure their performance in
terms of quality, speed, memory usage, and disk
space. We run the containers in three different
hardware environments: one GPU, one CPU core,
and multiple CPU cores. Systems were tested for
throughput by providing 1 million sentences up-
front to allow batching and parallelization. We also
tested for latency with a program that drip-feeds

Edinburgh HuaweiTSC NiuTrans TenTrans
GPU Batch ! ! !

GPU Latency !

1 Core Batch !

1 Core Latency ! !

36 Cores Batch ! !

Table 1: Participation in each of the hardware and batch-
ing conditions. Core refers to CPU hardware with 1
core or all 36 cores.

one input sentence, waits for the translation, and
then provides the next input sentence. There were
five conditions in total: GPU Batch (for through-
put), GPU Latency, 1 CPU Core Batch, 1 CPU
Core Latency, and 36 CPU cores Batch. We did
not measure latency in a multi-core CPU setting be-
cause the test hardware has 36 cores and overhead
for 36 threads is larger than the cost of arithmetic
for the small tensors in optimized models.

Participants were free to choose which condi-
tions to participate in. The condition was passed to
the Docker container as command line arguments.
Table 1 shows the four participants and the condi-
tions they submitted to.

Machine translation is used in a range of settings
where users might choose different trade-offs be-
tween quality and efficiency. For example, a high-
frequency trading system might prefer the lowest
latency at the expense of quality given that the out-
put will only be read by a machine. Conversely,
in a post-editing scenario the personnel costs out-
weigh many computational costs. Therefore there
is not a single best system, but a range of options
that trade between quality and efficiency. We em-
phasize the Pareto frontier: the fastest systems at
each level of quality, or the smallest systems at
each level of quality. To explore the Pareto fron-
tier, participants were encouraged to make multiple
submissions covering the range of trade-offs. In
total, 53 combinations of models, hardware, and
batching were benchmarked.



640

2 Hardware

We chose modern hardware to encourage exploit-
ing new hardware features. The GPU is an NVidia
A100 from the Oracle Cloud BM.GPU4.8 in-
stance. The instance has eight GPUs and we limited
Docker to using only one GPU. The GPU machine
has an AMD EPYC 7542 CPU with all cores al-
lowed. In practice, most submissions used only one
core while NiuTrans’s submissions used the CPU
cores to parallelize preprocessing and postprocess-
ing.

The CPU-only condition used a dual-socket
Intel Xeon Gold 6354 from Oracle Cloud
BM.Optimized3.36 with a total of 36 cores.
For the single-core CPU track, we reserved
the entire machine then ran Docker with
-cpuset-cpus=0. In the 36-core CPU track,
participants were free to configure their own CPU
sets and affinities.

The Oracle Cloud machines are bare metal
servers, meaning there was no shared tenancy, no
virtualization, and the test machines were otherwise
quiescent.

3 Input Text

To amoritize loading time, avoid starving highly
parallel submissions, and reduce the ability to cheat,
we benchmark systems on 1 million sentences of
input. The test set is hidden inside these 1 mil-
lion sentences, shuffled with filler sentences. Many
filler sentences are drawn from parallel corpora to
check that systems are in fact translating all sen-
tences, though we do not consider scores on noisy
corpora reliable enough to report. The composition
of this set changes each year and is decided after
the submission deadline.

Filler data was gathered from parallel corpora
and gender bias challenge sets: WMT news test
sets from 2008 through 2021 (Barrault et al., 2020),
the additional test inputs in WMT 2021, Khres-
moi summary test v2 (Dušek et al., 2017), IWSLT
2019 (Jan et al., 2019), SimpleGen (Renduchintala
et al., 2021), WinoMT (Stanovsky et al., 2019),
TED 2020 (Reimers and Gurevych, 2020), and
Tilde RAPID 2019 (Rozis and Skadin, š, 2017). We
capped sentence lengths at 150 space-separated
tokens, except for the WMT 2021 test set to pre-
seve the ability to evaluate with it. Because WMT
2020 includes excessively long segments that are
actually concatenated sentences, we also added
sentence split versions of WMT 2020 and WMT

Corpus Sentences
WMT 08–19 32,477
WMT 20 under 150 tokens 1,416
WMT 20 sentence split 2,048
WMT 21 sentence split 1,096
WMT 21 including additional tests 14,938
Khresmoi Summary Test v2 1,000
IWSLT 2019 2,278
SimpleGen 2,664
WinoMT 3,888
TED 2020 v1 293,562
Tilde RAPID 2019 654,995
Total 1,010,362
Deduplicated 1,000,000

Table 2: Corpora used for input text.

2021, though the difference on WMT 2021 was
minor. Source sentences were concatenated, dedu-
plicated, and shuffled. The Tilde RAPID corpus
was clipped to make a total of 1 million dedupli-
cated lines. Counts are shown in Table 2.

Input text and tools to extract test
sets from system outputs are available at
http://data.statmt.org/heafield/
wmt21-testdata.tar.xz .

The input file has 1,000,000 lines, 19,951,184
space-separated words, and 124,257,215 bytes
(most of which are characters since the file is En-
glish in UTF-8). This is an average of 20 words per
sentence compared to 15 words per sentence the
previous year (Heafield et al., 2020) due to raising
the cap from 100 to 150 tokens per sentence and
the lengthy text in the RAPID corpus.

Teams were responsible for their own tokeniza-
tion and detokenization. We provided raw UTF-8
English input text with one sentence per line.

4 Metrics

4.1 Cost
Time was measured with wall (real) time reported
by time and CPU time reported by the kernel for
the process group. We do not measure loading
time because it is small compared to translating 1
million sentences, some tools load lazily, and it is
easily gamed by padding loading time.

Peak RAM consumption was measured using
memory.max_usage in bytes from the kernel
for the CPU and by polling nvidia-smi for the
GPU. Swap was disabled.

Participants were told to separate their Docker

http://data.statmt.org/heafield/wmt21-testdata.tar.xz
http://data.statmt.org/heafield/wmt21-testdata.tar.xz


641

Edinburgh HuaweiTSC NiuTrans TenTrans
GPU Batch 3/10 4/4 4/4
GPU Latency 0/11
1 Core Batch 0/6
1 Core Latency 3/6 4/4
36 Cores Batch 0/6 0/2
Total 6/39 4/4 4/6 4/4

Table 3: Number of submissions by participant and con-
dition (cores refers to the CPU hardware). The number
after / is all submissions by the participant. The number
before / is how many participants selected for focused
human evaluation based on automatic metrics.

images into model and code files so that models
could be measured separately from the relatively
noisy size of code and libraries. A model was de-
fined as “everything derived from data: all model
parameters, vocabulary files, BPE configuration if
applicable, quantization parameters or lookup ta-
bles where applicable, and hyperparameters like
embedding sizes.” Code could include “simple
rule-based tokenizer scripts and hard-coded model
structure that could plausibly be used for another
language pair.” They were also permitted to use
standard compression tools such as xz to compress
models; decompression time was included in re-
sults but small relative to the cost of translation.
We report size of the model directory captured be-
fore the model ran. We also measured the total
size of the Docker image (after compressing with
xz), though participants were encouraged to priori-
tize shipping one container for multiple hardware
conditions over the size of the container.

4.2 Quality

Translation quality is measured on the
WMT 2021 news test set. The auto-
matic metrics are COMET (Rei et al.,
2020) wmt20-comet-da from version
1.0.0rc6, BLEU from sacrebleu (Post, 2018)
nrefs:3|case:mixed|eff:no|tok:13a
|smooth:exp|version:2.0.0, and chrF
also from sacrebleu. We use references A, C,
and D because the organizers found postedited
DeepL output in reference B. COMET does
not natively support multiple references so we
averaged as recommended by the authors.1 We
also averaged chrF across references. Results were
presented to participants2 who were encouraged
to whittle down systems for a focused human

1https://github.com/Unbabel/COMET/
issues/20

2Only reference A was available at the time.

evaluation. HuaweiTSC and TenTrans included
all of their submissions. NiuTrans included their
GPU submissions but not their CPU submissions
that have lower automatic scores than Edinburgh’s.
This left GPU Batch and 1 Core Latency as the
only conditions with multiple teams. Edinburgh
kept systems that have competitors and are near the
Pareto frontier. The number of submissions evalu-
ated is shown in Table 3. Out of 53 submissions,
we ran direct assessment on 18.

For human evaluation, as a source of the ab-
solute quality measure we used document-level
source-based direct assessments (DA) (Graham
et al., 2013; Cettolo et al., 2017) following the
procedure established at the WMT20 News Trans-
lation Task (Barrault et al., 2020). We also con-
ducted contrastive evaluation using segment-level
pairwise direct assessments (Novikova et al., 2018;
Sakaguchi and Van Durme, 2018), because it can be
a better discriminative tool for measuring relative
quality difference between pairs of systems. We
compared the 18 systems using source-based direct
assessment and 58 pairs of systems with contrastive
direct assessment. In total, we gathered 21,487 and
20,416 direct assessment scores in standard and
contrastive campaigns respectively. All annotations
were made by bilingual native German speakers
with a translation or linguistics background. Anno-
tations were collected using Appraise3 (Federmann,
2018).

5 Results

All submissions are shown in Table 4. Source-
based direct assessment scores appear for the sub-
missions in the focused human evaluation with the
number of wins against other systems (including
those in other conditions), raw direct accessment
score, and z-score after standardizing annotator
scores to mitigate differences in annotator scores.
Scores were averaged (“Ave.”) across sentences.
Rows are sorted by COMET because only some
submissions have human assessment.

The system ranking based on the standard DA
is presented in Table 5. Systems are ordered by
the number of respective wins against other sys-
tems and average DA z-score. Ordering solely by
z-scores would produce three clusters with all sys-
tems within a cluster considered tied according to
Wilcoxon rank-sum test with p < 0.05.

3https://github.com/AppraiseDev/
Appraise

https://github.com/Unbabel/COMET/issues/20
https://github.com/Unbabel/COMET/issues/20
https://github.com/AppraiseDev/Appraise
https://github.com/AppraiseDev/Appraise


642

NVIDIA A100 GPU Batch
Human Automatic Seconds Disk MB RAM MB

Team Variant Win Ave. Ave. z COMET BLEU chrF Wall CPU Model Docker CPU GPU
Edinburgh base 17 90.3 0.352 0.527 55.25 61.54 140 152 150 455 1725 36140
Edinburgh tiny11 14 85.9 0.185 0.492 52.74 60.52 115 120 60 364 1622 36092
Edinburgh 2.12-2.tied.tiny.heads-0.3 0.473 52.36 60.32 126 130 59 363 1618 36090
Edinburgh 2.6-2.tied.tiny.heads-0.3 0.459 51.52 60.00 116 120 53 357 1611 36088
Edinburgh 2.12_1.tiny.heads-0.3 0.445 52.20 60.25 117 121 62 366 1620 36092
Edinburgh 2.12_1.micro.heads-0.3 0.440 51.73 60.02 117 121 60 364 1617 36092
Edinburgh 2.8-4.tied.tiny.4bit 0.432 50.20 59.47 140 144 8 355 1639 29054
NiuTrans 6_1_512 9 83.5 0.057 0.423 50.05 59.96 95 377 73 303 2447 4254
NiuTrans 12_1_512 4 88.8 0.016 0.422 50.50 59.83 124 411 109 335 2458 4356
Edinburgh 2.12_1.tiny.4bit 6 85.6 0.104 0.422 51.78 59.86 118 122 10 357 1659 29062
NiuTrans 6_1_0 4 80.4 -0.019 0.384 49.78 59.71 94 400 72 302 2467 3998
Edinburgh 3.12_1.micro 0.382 50.40 59.29 116 121 66 370 1627 36094
NiuTrans 3_1_512 3 85.6 -0.035 0.354 48.72 59.25 81 380 55 287 2475 4134
Edinburgh 2.12_1.micro.rowcol-0.5 0.352 48.73 58.59 107 110 42 346 1603 36082
TenTrans tea-20_6-h512-ffn4096 3 81.1 -0.046 0.335 46.26 57.19 456 638 643 1804 2380 25318
TenTrans stu-20_1-h512-ffn2048 2 81.8 -0.104 0.291 45.89 57.06 340 528 355 1272 2120 17126
TenTrans stu-10_1-h512-ffn2048 2 82.5 -0.138 0.263 44.88 56.89 280 458 234 1049 2006 17128
TenTrans stu-20_1-h256-ffn1024 2 84.3 -0.091 0.238 44.34 56.68 257 443 114 829 1864 17126

NVIDIA A100 GPU Latency
Human Automatic Seconds Disk MB RAM MB

Team Variant Win Ave. Ave. z COMET BLEU chrF Wall CPU Model Docker CPU GPU
Edinburgh base 0.527 55.25 61.54 16851 16859 150 455 1573 36140
Edinburgh tiny11 0.491 52.80 60.55 15101 15102 60 364 1247 36092
Edinburgh 2.12_1.base.4bit 0.476 53.81 60.86 15239 15243 22 369 1653 38174
Edinburgh 2.12-2.tied.tiny.heads-0.3 0.473 52.39 60.32 18269 18271 59 363 1233 36090
Edinburgh 2.6-2.tied.tiny.heads-0.3 0.460 51.60 59.99 17204 17205 53 357 1216 36088
Edinburgh 2.12_1.tiny.heads-0.3 0.445 52.13 60.22 13839 13841 62 366 1241 36092
Edinburgh 2.12_1.micro.heads-0.3 0.436 51.66 59.99 13952 13952 60 364 1236 36092
Edinburgh 2.8-4.tied.tiny.4bit 0.431 50.26 59.49 26635 26637 8 355 1264 29054
Edinburgh 2.12_1.tiny.4bit 0.419 51.79 59.87 13876 13878 10 357 1299 29062
Edinburgh 3.12_1.micro 0.379 50.40 59.34 13944 13945 66 370 1251 36094
Edinburgh 2.12_1.micro.rowcol-0.5 0.352 48.73 58.61 13665 13665 42 346 1184 36082

1 Core Ice Lake CPU Batch
Human Automatic Seconds Disk MB RAM MB

Team Variant Win Ave. Ave. z COMET BLEU chrF Wall CPU Model Docker CPU
Edinburgh base 0.520 54.72 61.36 11067 11066 45 63 1569
Edinburgh 3.12_1.large 0.485 53.71 60.89 30342 30338 129 386 2428
Edinburgh tiny11 0.464 52.24 60.17 5108 5107 21 468 621
Edinburgh 4.12_1.tiny.rowcol-0.5.ft8 0.328 48.34 58.33 3288 3287 52 302 1040
Edinburgh 4.12_1.micro.rowcol-0.5.ft8 0.326 48.97 58.41 3497 3497 17 302 912
Edinburgh 4.12_1.micro.rowcol-0.5 0.318 47.66 58.01 4046 4045 53 338 781

1 Core Ice Lake CPU Latency
Human Automatic Seconds Disk MB RAM MB

Team Variant Win Ave. Ave. z COMET BLEU chrF Wall CPU Model Docker CPU
Edinburgh base 13 88.3 0.205 0.465 53.53 60.69 16815 16814 45 63 542
HuaweiTSC base 7 90.3 -0.019 0.450 53.00 60.82 14939 14937 37 53 377
Edinburgh 3.12_1.large 0.430 52.95 60.34 40518 40514 129 386 1175
Edinburgh tiny11 3 81.4 -0.008 0.413 51.18 59.63 9272 9272 21 468 241
HuaweiTSC sm9 4 86.1 -0.001 0.391 50.58 59.74 8866 8865 20 36 206
HuaweiTSC sm6 2 77.5 -0.025 0.338 48.75 58.85 7714 7713 17 33 173
Edinburgh 4.12_1.micro.rowcol-0.5 0 84.0 -0.444 0.257 47.56 57.88 6343 6343 53 338 342
HuaweiTSC tiny 0 81.9 -0.363 0.197 44.20 56.84 5138 5138 10 27 107
Edinburgh 4.12_1.tiny.rowcol-0.5.ft8 -0.073 37.43 56.33 8148 8147 52 302 335
Edinburgh 4.12_1.micro.rowcol-0.5.ft8 -0.173 37.67 55.71 7564 7563 17 302 239

36 Core Ice Lake CPU Batch
Human Automatic Seconds Disk MB RAM MB

Team Variant Win Ave. Ave. z COMET BLEU chrF Wall CPU Model Docker CPU
Edinburgh base 0.519 54.69 61.35 500 17790 45 63 28630
Edinburgh 3.12_1.large 0.484 54.02 60.92 1509 53528 129 386 34903
Edinburgh tiny11 0.465 52.17 60.16 237 8434 21 468 15594
NiuTrans 6_1_512 0.430 50.08 60.02 520 36015 146 142 57636
NiuTrans 3_1_512 0.358 48.53 59.34 417 28727 109 126 56415
Edinburgh 4.12_1.tiny.rowcol-0.5.ft8 0.336 48.38 58.37 159 5682 52 302 18606
Edinburgh 4.12_1.micro.rowcol-0.5.ft8 0.329 48.95 58.42 167 5948 17 302 15825
Edinburgh 4.12_1.micro.rowcol-0.5 0.318 47.98 58.16 184 6540 53 338 16469
Table 4: All submissions. Human source-based DA is shown for selected submissions. Total time measured in
seconds is equivalent to microseconds/sentence because the input is 1 million sentences.



643

Team Variant Win Ave. Ave. z Time (s) Condition

Edinburgh base 17 90.3 0.352 140 GPU Batch

Edinburgh tiny11 14 85.9 0.185 115 GPU Batch
Edinburgh base 13 88.3 0.205 16815 1 Core Latency
NiuTrans 6_1_512 9 83.5 0.057 95 GPU Batch
HuaweiTSC base 7 90.3 -0.019 14939 1 Core Latency
Edinburgh 2.12_1.tiny.4bit 6 85.6 0.104 118 GPU Batch
NiuTrans 12_1_512 4 88.8 0.016 124 GPU Batch
HuaweiTSC sm9 4 86.1 -0.001 8866 1 Core Latency
NiuTrans 6_1_0 4 80.4 -0.019 94 GPU Batch
Edinburgh tiny11 3 81.4 -0.008 9272 1 Core Latency
NiuTrans 3_1_512 3 85.6 -0.035 81 GPU Batch
TenTrans tea-20_6-h512-ffn4096 3 81.1 -0.046 456 GPU Batch
HuaweiTSC sm6 2 77.5 -0.025 7714 1 Core Latency
TenTrans stu-20_1-h256-ffn1024 2 84.3 -0.091 257 GPU Batch
TenTrans stu-20_1-h512-ffn2048 2 81.8 -0.104 340 GPU Batch
TenTrans stu-10_1-h512-ffn2048 2 82.5 -0.138 280 GPU Batch

HuaweiTSC tiny 0 81.9 -0.363 5138 1 Core Latency
Edinburgh 4.12_1.micro.rowcol-0.5 0 84.0 -0.444 6343 1 Core Latency

Table 5: System ranking based on the standard direct assessment (DA) human evaluation. The rows are ordered
by the number of respective wins against other systems, followed by the DA z-score. Systems within a cluster are
considered tied according to Wilcoxon rank-sum test p < 0.05 with standard DA.

Figure 1 shows the trade-off between quality and
speed of batched translation submissions. Since
source-based DA is available for select GPU sub-
missions, we include that comparison; the other
plots rely on COMET to approximate quality. Each
plot shows the Pareto frontier as a black staircase
to highlight the best combinations of quality and
speed. In Figure 2, we combine GPU and 36 Core
CPU speed by using Oracle Cloud pricing. The
GPU is cheaper for throughput-oriented tasks that
allow batching.

Latency is shown in Figures 3 and 4.
HuaweiTSC and Edinburgh were the two partic-
ipants and shared the Pareto frontier. While the
GPU is cheaper for throughput, both CPU and GPU
entries appear on the Pareto frontier for latency. In
fact, the lowest latencies are achieved by single-
core CPU submissions, likely due to the overhead
of launching small kernels on a GPU.

Model sizes at rest on disk appear in Figures 5
and 6. Participants were allowed to compress their
models using their own tools and standard tools
like xz. The entire Pareto frontier consists of
Edinburgh submissions, resting partly on 4-bit in-
teger compression. Docker image sizes, which
include model and software, appear in Figure 7.
HuaweiTSC optimized their image size well. Con-
versely, some others opted to optimize other met-
rics and included large Linux installations. We
compressed all docker images with xz before mea-
suring.

Memory (RAM) consumption appears in Fig-
ure 8. GPU memory consumption reflects batch
size and some participants set a large batch size
to maximize speed. Optimizing speed for multi-
socket CPU machines implies having a copy of
the model in RAM close to each socket, so mem-
ory consumption is larger beyond simply having
temporary space for more batches. Finally, partic-
ipants may have sorted the entire 118 MB input
file in RAM to form batches of equal length sen-
tences. NiuTrans is the clear winner on GPU RAM
consumption and curiously the clear loser on CPU
RAM consumption.

Many of the systems tied on standard DA and
contrastive DA helps us pull them apart by directly
comparing system outputs. Table 6 shows detailed
results of contrastive DA including average scores,
respective deltas between two systems and the out-
come of significance testing. For groups of systems
for which we evaluated each system from a group
against each other system from the same group, we
created separate rankings based solely on pairwise
comparisons within the group, presented in Table 7.

6 Conclusion and Future Tasks

Using the highest quality system in this evalua-
tion, translating 124,257,215 characters took 140
seconds on an A100 GPU that costs $3.05/hr in
a cloud. That is $0.001/million characters. By
comparison, Google Translate’s cost is $20/million



644

−0.15
−0.1
−0.05

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 50 100 150 200 250

,base

tiny11

2.12_1.tiny.4bit

12_1_512
3_1_5126_1_0

6_1_512

stu-10_1-h512-ffn2048
stu-20_1-h256-ffn1024stu-20_1-h512-ffn2048

tea-20_6-h512-ffn4096

So
ur

ce
-b

as
ed

D
A
z

-s
co

re

Thousand words per wall second

Edinburgh
NiuTrans
TenTrans

(a) Speed on GPU with source-based direct assessment for select systems

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 50 100 150 200 250

,
2.12_1.micro.he0.3

2.12_1.micro.rc0.5

2.12_1.tiny.he0.3

2.12-2.tied.tiny.he0.3
2.6-2.tied.tiny.he0.3

3.12_1.micro

base

tiny11

2.12_1.tiny.4bit
2.8-4.tied.tiny.4bit

12_1_512

3_1_512
6_1_0

6_1_512

stu-10_1-h512-ffn2048

stu-20_1-h256-ffn1024

stu-20_1-h512-ffn2048

tea-20_6-h512-ffn4096C
O

M
E

T

Thousand words per wall second

Edinburgh
NiuTrans
TenTrans

(b) Speed on GPU with COMET for all systems

0.3

0.35

0.4

0.45

0.5

0.55

0 1 2 3 4 5 6 7

,

4.12_1.micro.rc0.5.ft8

base

3.12_1.large

4.12_1.micro.rc0.5

4.12_1.tiny.rc0.5.ft8

tiny11

C
O

M
E

T

Thousand words per wall second

Edinburgh

(c) Speed on 1 Core with COMET for all systems

0.3

0.35

0.4

0.45

0.5

0.55

0 20 40 60 80 100 120 140

,

4.12_1.micro.rc0.5.ft8

base

3.12_1.large

4.12_1.micro.rc0.5

4.12_1.tiny.rc0.5.ft8

tiny11

3_1_512

6_1_512

C
O

M
E

T

Thousand words per wall second

Edinburgh
NiuTrans

(d) Speed on 36 Cores with COMET for all systems

Figure 1: Speed and quality of batched submissions. The staircase shows the Pareto frontier.



645

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 50 100 150 200 250 300

,

2.12_1.micro.he0.3

2.12_1.micro.rc0.5

2.12_1.tiny.he0.3

2.12-2.tied.tiny.he0.3
2.6-2.tied.tiny.he0.3

3.12_1.micro

base

tiny11

2.12_1.tiny.4bit

2.8-4.tied.tiny.4bit
12_1_512

3_1_512
6_1_0

6_1_512

stu-10_1-h512-ffn2048

stu-20_1-h256-ffn1024

stu-20_1-h512-ffn2048

tea-20_6-h512-ffn4096 4.12_1.micro.rc0.5.ft8

base

3.12_1.large

4.12_1.micro.rc0.5
4.12_1.tiny.rc0.5.ft8

tiny11

3_1_512

6_1_512

C
O

M
E

T

Million words per dollar

Edinburgh: GPU
NiuTrans: GPU
TenTrans: GPU

CPU
CPU

Figure 2: Cost of batched translation for an A100 GPU at $3.05/hr or 36 Cores of CPU at $2.7/hr on Oracle Cloud.

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0 2 4 6 8 10 12 14 16 18

,
base

4.12_1.micro.rc0.5

tiny11 basesm6
sm9

tinySo
ur

ce
-b

as
ed

D
A
z

-s
co

re

Latency (ms)

Edinburgh CPU
HuaweiTSC CPU

Figure 3: Latency of select CPU systems with source-based direct assessment. Contrastive direct assessment
(Table 7) insignificantly ranked HuaweiTSC’s base > Edinburgh’s tiny11 > HuaweiTSC’s sm9.

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 5 10 15 20 25 30 35 40 45

,

2.12_1.micro.he0.3

2.12_1.micro.rc0.5

2.12_1.tiny.he0.3

2.12-2.tied.tiny.he0.3

2.6-2.tied.tiny.he0.3

3.12_1.micro

base

tiny11
2.12_1.base.4bit

2.12_1.tiny.4bit
2.8-4.tied.tiny.4bit

base

3.12_1.large

4.12_1.micro.rc0.5

tiny11

base

sm6

sm9

tiny

C
O

M
E

T

Latency (ms)

Edinburgh GPU
Edinburgh CPU

HuaweiTSC CPU

Figure 4: Latency of combined CPU and GPU systems with COMET scores. To improve the scale of the graph,
low-quality variants 4.12_1.tiny.rowcol-0.5.ft8 and 4.12_1.micro.rowcol-0.5.ft8 from Edinburgh are not shown.
Their respective COMET scores are -0.073 and -0.173.



646

−0.5
−0.4
−0.3
−0.2
−0.1

0

0.1

0.2

0.3

0.4

16 32 64 128 256 512

, base

tiny11

2.12_1.tiny.4bit

base

4.12_1.micro.rc0.5

tiny11 basesm6
sm9

tiny

12_1_512

3_1_512 6_1_0

6_1_512

stu-10_1-h512-ffn2048
stu-20_1-h256-ffn1024 stu-20_1-h512-ffn2048

tea-20_6-h512-ffn4096

So
ur

ce
-b

as
ed

D
A
z

-s
co

re

Model size (MB)

Edinburgh
HuaweiTSC

NiuTrans
TenTrans

Figure 5: Model sizes of select systems in the human evaluation with source-based DA. Because selection for human
evaluation focused on speed (and not model size), this is missing the smallest model, Edinburgh’s 2.8-4.tied.tiny.4bit
and a few other Pareto optimal systems identified by automatic metrics.

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

8 16 32 64 128 256 512

,

2.12_1.micro.he0.3

2.12_1.micro.rc0.5

2.12_1.tiny.he0.3

2.12-2.tied.tiny.he0.3
2.6-2.tied.tiny.he0.3

3.12_1.micro

base

tiny11

2.12_1.tiny.4bit

2.8-4.tied.tiny.4bit 2.12_1.micro.he0.3

2.12_1.micro.rc0.5

2.12_1.tiny.he0.3

2.12-2.tied.tiny.he0.3
2.6-2.tied.tiny.he0.3

3.12_1.micro

base

tiny11
2.12_1.base.4bit

2.12_1.tiny.4bit

2.8-4.tied.tiny.4bit

base
3.12_1.large

4.12_1.micro.rc0.5

tiny11

base
3.12_1.large

4.12_1.micro.rc0.5

tiny11 base
3.12_1.large

4.12_1.micro.rc0.5

tiny11

base

sm6

sm9

tiny

12_1_512

3_1_512

6_1_0

6_1_512

3_1_512

6_1_512

stu-10_1-h512-ffn2048

stu-20_1-h256-ffn1024

stu-20_1-h512-ffn2048

tea-20_6-h512-ffn4096

C
O

M
E

T

Model size (MB)

Edinburgh
HuaweiTSC

NiuTrans
TenTrans

Figure 6: All model sizes with quality by COMET. Because models had slightly different output in different
hardware conditions, the same variant label can appear multiple times like a shadow. Low-quality variants
4.12_1.tiny.rowcol-0.5.ft8 and 4.12_1.micro.rowcol-0.5.ft8 from Edinburgh are omitted for scale.

−0.2
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

32 64 128 256 512 1024

,

C
O

M
E

T

Docker size (MB)

Edinburgh
HuaweiTSC

NiuTrans
TenTrans

Figure 7: Size of all Docker images after compression with xz on a logarithmic scale. Some participants did not
seek to prune image size and included large Linux installations. Labels are not shown due to crowding.



647

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

4 8 16 32

,

2.12_1.micro.he0.3

2.12_1.micro.rc0.5

2.12_1.tiny.he0.3

2.12-2.tied.tiny.he0.3
2.6-2.tied.tiny.he0.3

3.12_1.micro

base

tiny11

2.12_1.tiny.4bit

2.8-4.tied.tiny.4bit
12_1_512

3_1_512

6_1_0

6_1_512

stu-10_1-h512-ffn2048

stu-20_1-h256-ffn1024

stu-20_1-h512-ffn2048

tea-20_6-h512-ffn4096C
O

M
E

T

GPU RAM (GB)

Edinburgh
NiuTrans
TenTrans

(a) GPU memory consumption with batching.

0.34
0.36
0.38
0.4
0.42
0.44
0.46
0.48
0.5
0.52
0.54

29 30 31 32 33 34 35 36 37

,

2.12_1.micro.he0.3

2.12_1.micro.rc0.5

2.12_1.tiny.he0.3

2.12-2.tied.tiny.he0.3
2.6-2.tied.tiny.he0.3

3.12_1.micro

base

tiny112.12_1.base.4bit

2.12_1.tiny.4bit

2.8-4.tied.tiny.4bit

C
O

M
E

T

GPU RAM (GB)

Edinburgh

(b) GPU memory consumption with latency.

0.3

0.35

0.4

0.45

0.5

0.55

1 2

,

4.12_1.micro.rc0.5.ft8

base

3.12_1.large

4.12_1.micro.rc0.5

4.12_1.tiny.rc0.5.ft8

tiny11

C
O

M
E

T

CPU RAM (GB)

Edinburgh

(c) 1 core CPU memory consumption with batching.

−0.2
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.125 0.25 0.5 1

,

4.12_1.micro.rc0.5.ft8

base 3.12_1.large

4.12_1.micro.rc0.5

4.12_1.tiny.rc0.5.ft8

tiny11 base

sm6
sm9

tiny

C
O

M
E

T

CPU RAM (GB)

Edinburgh
HuaweiTSC

(d) 1 core CPU memory consumption with latency.

0.3

0.35

0.4

0.45

0.5

0.55

16 32

,

4.12_1.micro.rc0.5.ft8

base

3.12_1.large

4.12_1.micro.rc0.5

4.12_1.tiny.rc0.5.ft8

tiny11

3_1_512

6_1_512

C
O

M
E

T

CPU RAM (GB)

Edinburgh
NiuTrans

(e) 36 core CPU memory consumption with batching.

Figure 8: RAM consumption of all submissions on a logarithmic scale. Some participants used large batches to
favor speed over memory consumption.



648

Stronger System Weaker System Stronger Weaker
Team Variant Condition Team Variant Condition DA Score DA Score Delta p-val
Edinburgh base GPU Latency Edinburgh base GPU Batch 92.2 92.2 0.0
Edinburgh base GPU Batch Edinburgh tiny11 GPU Batch 74.9 74.7 0.2
Edinburgh tiny11 GPU Batch Edinburgh tiny11 GPU Latency 86.6 86.4 0.2
Edinburgh tiny11 GPU Batch Edinburgh 2.12_1.tiny.4bit GPU Batch 85.6 83.6 1.9
NiuTrans 12_1_512 GPU Batch NiuTrans 6_1_0 GPU Batch 78.1 75.2 2.8 **
NiuTrans 12_1_512 GPU Batch NiuTrans 3_1_512 GPU Batch 67.7 65.1 2.6 *
NiuTrans 12_1_512 GPU Batch NiuTrans 6_1_512 GPU Batch 65.9 65.1 0.8
NiuTrans 6_1_0 GPU Batch NiuTrans 3_1_512 GPU Batch 86.7 85.8 0.9
NiuTrans 6_1_512 GPU Batch NiuTrans 3_1_512 GPU Batch 79.7 78.2 1.4
NiuTrans 6_1_512 GPU Batch NiuTrans 6_1_0 GPU Batch 82.7 82.6 0.0
TenTrans stu-10_1-h512-ffn2048 GPU Batch TenTrans tea-20_6-h512-ffn4096 GPU Batch 85.4 83.3 2.1
TenTrans stu-10_1-h512-ffn2048 GPU Batch TenTrans stu-20_1-h256-ffn1024 GPU Batch 83.6 83.3 0.3
TenTrans stu-10_1-h512-ffn2048 GPU Batch TenTrans stu-20_1-h512-ffn2048 GPU Batch 82.0 79.8 2.2
TenTrans tea-20_6-h512-ffn4096 GPU Batch TenTrans stu-20_1-h256-ffn1024 GPU Batch 73.9 63.2 10.7 ***
TenTrans stu-20_1-h512-ffn2048 GPU Batch TenTrans stu-20_1-h256-ffn1024 GPU Batch 66.9 66.3 0.6
TenTrans tea-20_6-h512-ffn4096 GPU Batch TenTrans stu-20_1-h512-ffn2048 GPU Batch 88.4 88.0 0.4 *
Edinburgh base GPU Batch TenTrans tea-20_6-h512-ffn4096 GPU Batch 84.4 78.9 5.5 **
Edinburgh base GPU Batch TenTrans stu-20_1-h256-ffn1024 GPU Batch 88.7 82.1 6.6 ***
Edinburgh tiny11 GPU Batch TenTrans tea-20_6-h512-ffn4096 GPU Batch 88.0 81.1 6.9 **
Edinburgh tiny11 GPU Batch TenTrans stu-20_1-h256-ffn1024 GPU Batch 72.1 57.6 14.5 ***
Edinburgh base GPU Batch NiuTrans 6_1_512 GPU Batch 87.4 74.7 12.7 ***
Edinburgh base GPU Batch NiuTrans 3_1_512 GPU Batch 83.0 73.7 9.3 ***
Edinburgh tiny11 GPU Batch NiuTrans 6_1_512 GPU Batch 68.6 65.8 2.8
Edinburgh tiny11 GPU Batch NiuTrans 3_1_512 GPU Batch 91.8 87.4 4.4 ***
TenTrans tea-20_6-h512-ffn4096 GPU Batch NiuTrans 6_1_512 GPU Batch 67.2 65.9 1.3
TenTrans tea-20_6-h512-ffn4096 GPU Batch NiuTrans 3_1_512 GPU Batch 89.2 87.3 1.9 ***
NiuTrans 6_1_512 GPU Batch TenTrans stu-20_1-h256-ffn1024 GPU Batch 94.6 93.5 1.1 **
NiuTrans 3_1_512 GPU Batch TenTrans stu-20_1-h256-ffn1024 GPU Batch 84.4 82.3 2.1
Edinburgh base GPU Latency HuaweiTSC base 1 Core Latency 91.4 86.9 4.6 ***
Edinburgh base GPU Latency HuaweiTSC sm9 1 Core Latency 77.3 69.7 7.6 ***
Edinburgh base GPU Latency HuaweiTSC sm6 1 Core Latency 86.0 77.6 8.4 ***
Edinburgh base GPU Latency HuaweiTSC tiny 1 Core Latency 90.8 77.2 13.6 ***
Edinburgh tiny11 GPU Latency HuaweiTSC base 1 Core Latency 89.3 84.2 5.1 **
Edinburgh tiny11 GPU Latency HuaweiTSC sm9 1 Core Latency 88.5 83.2 5.4 ***
Edinburgh tiny11 GPU Latency HuaweiTSC sm6 1 Core Latency 92.9 89.2 3.7 ***
Edinburgh tiny11 GPU Latency HuaweiTSC tiny 1 Core Latency 82.4 73.7 8.7 ***
Edinburgh base 1 Core Latency Edinburgh tiny11 1 Core Latency 67.5 65.0 2.5 **
Edinburgh base 1 Core Latency Edinburgh 4.12_1.micro.rowcol-0.5 1 Core Latency 66.9 62.2 4.8 ***
Edinburgh tiny11 1 Core Latency Edinburgh 4.12_1.micro.rowcol-0.5 1 Core Latency 81.1 74.5 6.7 ***
HuaweiTSC base 1 Core Latency HuaweiTSC sm9 1 Core Latency 87.5 85.0 2.5 *
HuaweiTSC base 1 Core Latency HuaweiTSC sm6 1 Core Latency 89.2 86.0 3.2 **
HuaweiTSC base 1 Core Latency HuaweiTSC tiny 1 Core Latency 94.5 86.4 8.2 ***
HuaweiTSC sm9 1 Core Latency HuaweiTSC sm6 1 Core Latency 68.8 68.0 0.9
HuaweiTSC sm9 1 Core Latency HuaweiTSC tiny 1 Core Latency 90.2 85.8 4.3 ***
HuaweiTSC sm6 1 Core Latency HuaweiTSC tiny 1 Core Latency 79.3 73.2 6.1 ***
HuaweiTSC base 1 Core Latency Edinburgh base 1 Core Latency 84.7 84.6 0.1
Edinburgh base 1 Core Latency HuaweiTSC sm9 1 Core Latency 78.5 74.8 3.7 *
Edinburgh base 1 Core Latency HuaweiTSC sm6 1 Core Latency 89.0 85.7 3.3 **
Edinburgh base 1 Core Latency HuaweiTSC tiny 1 Core Latency 87.9 79.8 8.2 ***
HuaweiTSC base 1 Core Latency Edinburgh tiny11 1 Core Latency 90.7 90.4 0.2
Edinburgh tiny11 1 Core Latency HuaweiTSC sm9 1 Core Latency 81.5 78.9 2.5
Edinburgh tiny11 1 Core Latency HuaweiTSC sm6 1 Core Latency 90.9 90.1 0.7
Edinburgh tiny11 1 Core Latency HuaweiTSC tiny 1 Core Latency 85.9 77.9 8.0 ***
HuaweiTSC base 1 Core Latency Edinburgh 4.12_1.micro.rowcol-0.5 1 Core Latency 89.4 81.9 7.5 ***
HuaweiTSC sm9 1 Core Latency Edinburgh 4.12_1.micro.rowcol-0.5 1 Core Latency 93.4 90.8 2.6
HuaweiTSC sm6 1 Core Latency Edinburgh 4.12_1.micro.rowcol-0.5 1 Core Latency 84.8 82.0 2.8 *
HuaweiTSC tiny 1 Core Latency Edinburgh 4.12_1.micro.rowcol-0.5 1 Core Latency 84.6 82.1 2.4 *

Table 6: Results of the pairwise contrastive direct assessment human evaluation for each evaluated system pair.
The stronger system on the left is considered better than the weaker system on the right according to the Wilcoxon
rank-sum test with p < 0.05 for ∗, p < 0.01 for ∗∗, p < 0.001 for ∗ ∗ ∗.



649

Team Variant Win Ave. Ave. z Time (s)

NiuTrans 12_1_512 1 70.0 0.060 124
NiuTrans 6_1_512 0 77.3 0.017 95
NiuTrans 6_1_0 0 81.6 -0.023 94
NiuTrans 3_1_512 0 78.1 -0.057 81

(a) NiuTrans GPU Throughput

Team Variant Win Ave. Ave. z Time (s)

TenTrans stu-10_1-h512-ffn2048 1 85.9 0.104 280
TenTrans stu-20_1-h512-ffn2048 0 87.7 -0.011 340
TenTrans tea-20_6-h512-ffn4096 0 85.6 -0.069 456

(b) Tentrans GPU Throughput

Team Variant Win Ave. Ave. z Time (s)

HuaweiTSC base 2 91.6 0.181 14939
HuaweiTSC sm9 1 79.5 0.139 8866
HuaweiTSC sm6 1 75.6 0.005 7714

HuaweiTSC tiny 0 81.3 -0.250 5138

(c) HuaweiTSC 1 Core Latency

Team Variant Win Ave. Ave. z Time (s)

Edinburgh base 3 83.8 0.214 140
Edinburgh tiny11 3 75.3 0.106 115
TenTrans tea-20_6-h512-ffn4096 1 76.3 -0.067 456
NiuTrans 3_1_512 0 83.8 -0.064 81
NiuTrans 6_1_512 0 74.7 -0.087 95
TenTrans stu-20_1-h256-ffn1024 0 75.8 -0.210 257

(d) GPU Throughput

Team Variant Win Ave. Ave. z Time (s)

Edinburgh base 4 82.1 0.122 16815
Edinburgh tiny11 2 88.7 0.078 9272
HuaweiTSC sm9 1 85.6 -0.003 8866
HuaweiTSC base 0 85.5 0.051 14939
HuaweiTSC sm6 0 86.8 -0.027 7714
Edinburgh 4.12_1.micro.rowcol-0.5 0 86.9 -0.065 6343
HuaweiTSC tiny 0 78.5 -0.131 5138

(e) Latency on 1 Core CPU. Total wall Time (s) is the same value as µs/sentence because there are 1 million sentences.

Team Variant Win Ave. Ave. z Time (s) Condition

Edinburgh tiny11 4 86.7 0.165 15101 GPU Latency
Edinburgh base 3 89.3 0.238 16851 GPU Latency
HuaweiTSC sm9 2 79.8 -0.146 8866 1 Core Latency
HuaweiTSC sm6 0 89.7 -0.155 7714 1 Core Latency
HuaweiTSC base 0 81.8 -0.161 14939 1 Core Latency
HuaweiTSC tiny 0 72.8 -0.342 5138 1 Core Latency

(f) Latency on GPU vs 1 Core CPU. Total wall Time (s) is the same value as µs/sentence because there are 1 million sentences.

Table 7: System rankings based on contrastive DA human-evaluation within selected groups of systems. Each
system within a group was evaluated against each other system. Systems are ordered by the number of respective
wins against other systems and DA z-score.

characters.4

The GPU latency track had been intended to
attract non-autoregressive machine translation sub-
missions in their ideal condition with a large
GPU and no batch to parallelize. However, non-
autoregressive papers (Libovický and Helcl, 2018;
Gu and Kong, 2021) often rely on unreasonably
poor autoregressive baselines in order to claim
impressive-sounding speedups, when they are in
fact slower than optimized autoregressive models
seen here. While previous editions of the task did
not measure latency, disabling batching is a simple
command line modification to systems that existed
at the time (Birch et al., 2018) but were omitted
as baselines in non-autoregressive literature. All
submissions this year are autoregressive.

4https://cloud.google.com/translate/
pricing

An efficient training task is a natural extension.
The challenge lies in defining proper development
and testing conditions. Otherwise, participants will
overfit by searching for the random seed that trains
the fastest on a particular parallel corpus. Perhaps
a parallel corpus could be halved to form develop-
ment and test sets, but that would reveal the test
set by omission and require trusting all participants.
One participant was already caught cheating in a
past edition of this shared task. Another option is
that the test corpus could be a different surprise
language pair, which would have the potentially
positive effect that it also measures generalizability
across languages. An interesting aspect of efficient
training is that systems relying on backtranslation
(Sennrich et al., 2016) incur substantial inference
costs during their training cycle.

The one-month gap between the news task dead-

https://cloud.google.com/translate/pricing
https://cloud.google.com/translate/pricing


650

line and the efficient task deadline was too short
and some teams noted this reduced the conditions
they participated in. In addition, scaffolding would
reduce the barrier to participation. This could take
the form of providing a trained high-quality model,
providing distilled (Kim and Rush, 2016) train-
ing data, or even optimized models where only
the toolkit code is optimized. Providing this scaf-
folding would effectively require the organizers to
perform the full task before releasing it to partic-
ipants. If the training and test data are renewed
each year as a countermeasure to overfitting and a
participant that cheated, this would require more
time between the news task and release of the news
test set references.

German is a high resource language, which
raises the computational cost of participation. A
medium resource language would generally reduce
training costs and explore whether results apply in
this data condition.

The next task should aim to recruit more partici-
pants and perhaps separate the organization from
one of the participants.

Acknowledgements

This work was conducted within the
scope of the Horizon 2020 Research

and Innovation Action Bergamot, which has re-
ceived funding from the European Union’s Hori-
zon 2020 research and innovation programme
under grant agreement No 825303. GPU effi-
ciency was supported by the European Union’s
Connecting Europe Facility under grant agree-
ment No INEA/CEF/ICT/A2019/1927024, User-
Focused Marian. This paper reflects the authors’
views.

Intel Corporation has supported organization.
The human evaluation was funded by Microsoft.
We would like to thank Christian Federmann and
Hitokazu Matsushita for their help with conducting
human evaluation. Cloud credits were provided by
the Oracle for Research program; we thank Rich
Pitts for timely delivery.

References
Loïc Barrault, Magdalena Biesialska, Ondřej Bo-

jar, Marta R. Costa-jussà, Christian Federmann,
Yvette Graham, Roman Grundkiewicz, Barry Had-
dow, Matthias Huck, Eric Joanis, Tom Kocmi,
Philipp Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof
Monz, Makoto Morishita, Masaaki Nagata, Toshi-

aki Nakazawa, Santanu Pal, Matt Post, and Marcos
Zampieri. 2020. Findings of the 2020 conference on
machine translation (WMT20). In Proceedings of
the Fifth Conference on Machine Translation, pages
1–55, Online. Association for Computational Linguis-
tics.

Alexandra Birch, Andrew Finch, Minh-Thang Luong,
Graham Neubig, and Yusuke Oda. 2018. Findings
of the second workshop on neural machine transla-
tion and generation. In Proceedings of the 2nd Work-
shop on Neural Machine Translation and Generation,
pages 1–10, Melbourne, Australia. Association for
Computational Linguistics.

Mauro Cettolo, Marcello Federico, Luisa Bentivogli,
Niehues Jan, Stüker Sebastian, Sudoh Katsuitho,
Yoshino Koichiro, and Federmann Christian. 2017.
Overview of the IWSLT 2017 evaluation campaign.
In International Workshop on Spoken Language
Translation, pages 2–14.

Ondřej Dušek, Jan Hajič, Jaroslava Hlaváčová, Jindřich
Libovický, Pavel Pecina, Aleš Tamchyna, and
Zdeňka Urešová. 2017. Khresmoi summary trans-
lation test data 2.0. LINDAT/CLARIAH-CZ digital
library at the Institute of Formal and Applied Linguis-
tics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Christian Federmann. 2018. Appraise evaluation frame-
work for machine translation. In Proceedings of the
27th International Conference on Computational Lin-
guistics: System Demonstrations, pages 86–88, Santa
Fe, New Mexico. Association for Computational Lin-
guistics.

Yvette Graham, Timothy Baldwin, Alistair Moffat, and
Justin Zobel. 2013. Continuous measurement scales
in human evaluation of machine translation. In Pro-
ceedings of the 7th Linguistic Annotation Workshop
and Interoperability with Discourse, pages 33–41,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Jiatao Gu and Xiang Kong. 2021. Fully non-
autoregressive neural machine translation: Tricks of
the trade. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
120–133, Online. Association for Computational Lin-
guistics.

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioannis
Konstas, Andrew Finch, Minh-Thang Luong, Gra-
ham Neubig, and Katsuhito Sudoh. 2019. Findings
of the third workshop on neural generation and trans-
lation. In Proceedings of the 3rd Workshop on Neural
Generation and Translation, pages 1–14, Hong Kong.
Association for Computational Linguistics.

Kenneth Heafield, Hiroaki Hayashi, Yusuke Oda, Ioan-
nis Konstas, Andrew Finch, Graham Neubig, Xian Li,
and Alexandra Birch. 2020. Findings of the fourth
workshop on neural generation and translation. In

https://aclanthology.org/2020.wmt-1.1
https://aclanthology.org/2020.wmt-1.1
https://doi.org/10.18653/v1/W18-2701
https://doi.org/10.18653/v1/W18-2701
https://doi.org/10.18653/v1/W18-2701
http://hdl.handle.net/11234/1-2122
http://hdl.handle.net/11234/1-2122
https://aclanthology.org/C18-2019
https://aclanthology.org/C18-2019
https://aclanthology.org/W13-2305
https://aclanthology.org/W13-2305
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/D19-5601
https://doi.org/10.18653/v1/D19-5601
https://doi.org/10.18653/v1/D19-5601
https://doi.org/10.18653/v1/2020.ngt-1.1
https://doi.org/10.18653/v1/2020.ngt-1.1


651

Proceedings of the Fourth Workshop on Neural Gen-
eration and Translation, pages 1–9, Online. Associa-
tion for Computational Linguistics.

Niehues Jan, Roldano Cattoni, Stuker Sebastian, Matteo
Negri, Marco Turchi, Salesky Elizabeth, Sanabria
Ramon, Barrault Loic, Specia Lucia, and Marcello
Federico. 2019. The IWSLT 2019 evaluation cam-
paign. In 16th International Workshop on Spoken
Language Translation 2019.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Jindřich Libovický and Jindřich Helcl. 2018. End-to-
end non-autoregressive neural machine translation
with connectionist temporal classification. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3016–
3021, Brussels, Belgium. Association for Computa-
tional Linguistics.

Jekaterina Novikova, Ondřej Dušek, and Verena Rieser.
2018. RankME: Reliable human ratings for natural
language generation. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 72–78, New Orleans, Louisiana. Association
for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Association
for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4512–4525,
Online. Association for Computational Linguistics.

Adithya Renduchintala, Denise Diaz, Kenneth Heafield,
Xian Li, and Mona Diab. 2021. Gender bias ampli-
fication during speed-quality optimization in neural
machine translation. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 99–109, Online. Association for
Computational Linguistics.

Roberts Rozis and Raivis Skadin, š. 2017. Tilde MODEL
- multilingual open data for EU languages. In Pro-
ceedings of the 21st Nordic Conference on Computa-
tional Linguistics, pages 263–265, Gothenburg, Swe-
den. Association for Computational Linguistics.

Keisuke Sakaguchi and Benjamin Van Durme. 2018. Ef-
ficient online scalar annotation with bounded support.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 208–218, Melbourne, Australia.
Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96,
Berlin, Germany. Association for Computational Lin-
guistics.

Gabriel Stanovsky, Noah A. Smith, and Luke Zettle-
moyer. 2019. Evaluating gender bias in machine
translation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1679–1684, Florence, Italy. Association for
Computational Linguistics.

https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D18-1336
https://doi.org/10.18653/v1/D18-1336
https://doi.org/10.18653/v1/D18-1336
https://doi.org/10.18653/v1/N18-2012
https://doi.org/10.18653/v1/N18-2012
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.213
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2020.emnlp-main.365
https://doi.org/10.18653/v1/2021.acl-short.15
https://doi.org/10.18653/v1/2021.acl-short.15
https://doi.org/10.18653/v1/2021.acl-short.15
https://aclanthology.org/W17-0235
https://aclanthology.org/W17-0235
https://doi.org/10.18653/v1/P18-1020
https://doi.org/10.18653/v1/P18-1020
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P19-1164
https://doi.org/10.18653/v1/P19-1164

