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Abstract

In this paper, we tackle the Nuanced Ara-
bic Dialect Identification (NADI) shared task
(Abdul-Mageed et al., 2021) and demonstrate
state-of-the-art results on all of its four sub-
tasks. Tasks are to identify the geographic ori-
gin of short Dialectal (DA) and Modern Stan-
dard Arabic (MSA) utterances at the levels of
both country and province. Our final model is
an ensemble of variants built on top of MAR-
BERT that achieves an F1-score of 34.03% for
DA at the country-level development set—an
improvement of 7.63% from previous work.

1 Introduction

The Arab World is a vast geographical region that
covers North Africa and Southwest Asia, boasting
a population of around 400M that speak different
derivatives of a common language. However, by
virtue of its size and cultural variety, there exists
a dialect continuum across the region wherein the
language varieties of neighboring peoples may dif-
fer slightly, but distant regions can become mutu-
ally unintelligible. This continuum is referred to
as Dialectal Arabic (DA) and is the “Low” variety
of modern Arabic diglossia. On the other hand,
the “High” variety is referred to as Modern Stan-
dard Arabic (MSA) and is used in formal settings
such as academia, mass media, and legislation—
and is taught through the formal education sys-
tem in most Arab countries. This standard variant
emerged gradually, but most notably with the ad-
vent of the printing press in the 19th century. It
diverged from Classical Arabic (CA) into a more
simple version that is now used across the Arab
World.

The modern vernacular dialects (DA) differ
along several dimensions, including pronunciation,

∗ Equal contribution.

syntax, morphology, vocabulary, and even orthog-
raphy. Dialects may be heavily influenced by pre-
viously dominant local languages. For example,
Egyptian variants are influenced by the Coptic lan-
guage, while Sudanese variants are influenced by
the Nubian language.

In this paper, we study the classification of such
variants and describe our model that achieves state-
of-the-art results on all of the four Nuanced Ara-
bic Dialect Identification (NADI) subtasks (Abdul-
Mageed et al., 2021). The task focuses on distin-
guishing both MSA and DA by their geographi-
cal origin at both the country and province levels.
The data is a collection of tweets covering 100
provinces from 21 Arab countries. The code has
been made open-source and available on GitHub1.

2 Related Work

The first efforts to collect and label dialectal Arabic
data goes back to 1997 (Gadalla, 1997). However,
studying DA in NLP started to gain traction in re-
cent years as more digital Arabic data became avail-
able, especially with the rise of online chatting plat-
forms that place no restrictions on the syntax, style,
or formality of the writing. Zaidan and Callison-
Burch (2014) labelled the Arabic Online Commen-
tary Dataset (AOC) through crowd-sourcing, then
built a model to classify even more crawled data.
Abdelali et al. (2020) provided the QADI dataset
by automatically collecting dialectal Arabic tweets
and labelling them based on descriptions of the au-
thor accounts, while trying to reduce the recall of
written MSA and inappropriate tweets. Abu Farha
and Magdy (2020) provided ArSarcasm: a dataset
of labelled tweets. Originally for sarcasm detec-
tion, it also contains labels for sentiment and dialect
detection. Labelled dialectal Arabic challenges

1https://github.com/mohamedgabr96/
NeuralDialectDetector

https://github.com/mohamedgabr96/NeuralDialectDetector
https://github.com/mohamedgabr96/NeuralDialectDetector
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such as MADAR (Bouamor et al., 2019) and NADI
(Abdul-Mageed et al., 2020b, 2021) (which started
in 2020) shed light on the underlying challenges of
the task. Both comprise labelled Arabic tweets but
with class sets of different granularities.

Talafha et al. (2020) presents a solution that won
the 2020 NADI shared task (Subtask 1.2) by con-
tinuing training AraBERT (Antoun et al., 2020)
using Masked Language Modelling (MLM) on
10M unlabelled tweets, then fine-tuning on the di-
alect identification task. On the other hand, the
solution that won Subtask 2.2 uses a hierarchical
classifier that takes as input a weighted combina-
tion of TF-IDF and AraBERT features to first clas-
sify the country, then invokes an ArabBERT-based,
country-specific, province-level classifier to detect
the province (El Mekki et al., 2020).

The large size of pretrained Transformer models
hinders their applicability in many use cases. The
usual number of parameters in such a model lies be-
tween 150M and 300M and needs between 500MB
and 1GB of space to be stored. A novel technique
to address these issues is proposed by Houlsby
et al. (2019)—bottleneck layers (“adapters”) are
added to each transformer layer as an alternative
to fine-tuning the entire pre-trained model when
optimizing for downstream tasks (Houlsby et al.,
2019; Bapna and Firat, 2019; Pfeiffer et al., 2021).
Only these additional parameters (which can be 1%
or less of the size of the main model) need to be
stored per downstream task, given that they are the
only layers changing. Besides being light-weight
and scalable, adapters offer several advantages
over traditional approaches of transfer-learning: (1)
They learn modular representations that are com-
patible with other layers of the transformer, (2)
They avoid interfering with pre-trained knowledge,
mitigating catastrophic forgetting and catastrophic
inference—two common downsides of multi-task
learning (Pfeiffer et al., 2020).

3 Datasets & Subtasks

Dataset Country Province
MSA Subtask 1.1 Subtask 2.1
DA Subtask 1.2 Subtask 2.2

Table 1: Subtask ID per Dataset and Granularity Level

The second NADI shared task consists of four
subtasks on two datasets (see Table 1). Each con-
sists of 21k tweets for training, 5k for development

Figure 1: Train/Dev Corpora Sizes per Country (DA)

and 5k for testing collected from a disjoint set of
users (Abdul-Mageed et al., 2021). Both datasets
are labelled at two levels of granularity: country,
and province. The NADI task is the first to fo-
cus on sub-country level dialects. However, the
data is extremely unbalanced, even at the country-
level (see Figure 1), with the most frequent class
being Egypt (4283 instances), and the least com-
mon class being Somalia (172 instances). The data
comes preprocessed with URLs replaced with the
token ‘URL’ and Twitter mentions replaced with
the token ‘USER’. One of the main challenges of
Arabic Dialect Identification is the high similarity
of dialects in short utterances; many short phrases
are commonly used in all dialects. Since the tweets
are collected “in the wild” and DA is not formally
defined (the same word can be written in a variety
of ways), this makes it even more challenging to
capture the meaning of a logical word unit across
its different forms.

4 System Description

Our model builds on MARBERT—a publicly
available transformer model trained on 1B multi-
dialectal Arabic tweets (Abdul-Mageed et al.,
2020a). It follows the BERTBASE architecture (De-
vlin et al., 2019) with 163M parameters and simi-
larly uses WordPiece tokenization (Wu et al., 2016).
To optimize it for the task at hand, we introduce
changes to the architecture and training regimen
as described below. Note that, due to time and
compute constraints, all hyperparameters were op-
timized on the development set of Subtask 1.2 then
applied as-is to the other three subtasks. We report
the result of the best ensemble for each subtask.

General The experiments described below all
use the following configuration: The classification
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head is a softmax layer over the CLS vector of the
last layer zL (with a dropout rate of 30% during
training). The base learning rate of the classifi-
cation head is set higher (1e−2) than the rest of
the trainable parameters (5e−6). The LR sched-
ule is warmed up linearly over 250 steps, then
decayed once every 10 gradient updates follow-
ing an inverse-square-root scheme to the minimum
0.01 · LRbase. We use the Adam optimizer with
decoupled weight regularization (Loshchilov and
Hutter, 2019). During training, we evaluate the
model every 100 mini-batches of size 32, and halt
if the dev macro-F1 score does not improve for 10
consecutive evaluations. The maximum sequence
length is 90 for the DA dataset and 110 for the
MSA dataset.

Fine-tuning We fine-tune the full MARBERT
transformer using the base configuration.

Adapters Here we embed two additional layers
at each transformer block (one after the Multi-Head
Attention module and one after the FFN module)
following the Houlsby et al. (2019) architecture.
This allows us to preserve the pre-trained embed-
ded knowledge in the MARBERT layers, which
are trained on a rich corpus with less bias towards
specific dialects. The final architecture of a trans-
former block is illustrated in Figure 5.

Transformer Layer 

Transformer Layer 

Transformer Layer 

Dot Product 
Attention

Figure 2: Vertical Attention

Vertical Attention (VAtt) The MARBERT
model has L = 12 transformer layers. For each
n ∈ L, let zn be the CLS token at level n (after
the adapter). Let kn be a static learned positional
embedding for level n. Apply a scaled dot-product
based attention module where: query is Q(zL),
keys are {K(kn)}Ln , and values are {Vn (zn)}Ln .

This attends over the layers’ sentence representa-
tions by content-to-level (depth) addressing. We
introduce this to allow choice of the abstraction
level. See Figure 2.

Ensembling We create an ensemble of multiple
models on combinations of the following architec-
tural variables:

• Whether Vertical Attention is used.

• Training adapters or fine-tuning full model.

The soft-max outputs of the models are aggre-
gated together by doing an element-wise multipli-
cation. The best ensemble provide 1.13% F1 boost
over the best solo model (see Table 2).

5 Results

Models DEV TEST
Acc. F1 Acc. F1

Adapters 52.48 32.10 50.62 30.78
+VAtt 52.28 31.73 51.08 30.09
Fine-tuning 51.02 32.23 50.28 30.41
+VAtt 50.07 32.90 49.42 31.30
Ensemble 53.42 34.03 51.66 32.26

Table 2: Ablation study (Subtask 1.2)

The results table shows that the best F1 score is
obtained by ensembling the following list of model
configurations (all of which use a maximum se-
quence length of 90): (1) Fine-tuning, (2) Adapters
+ VAtt, (3) Fine-tuning + VAtt, and (4) Fine-tuning
using a linear learning rate schedule instead of the
inverse-square-root scheme. Among solo models,
the best performer is the fully fine-tuned variant
with Vertical Attention, with an F1 score of 32.90
on the development set.

6 Discussion

The confusion matrix of the Ensemble in Subtask
1.2 (Table 2) shows over-prediction of Egyptian and
Saudi Arabian, reflecting their over-representation
in training (Figure 1). The matrix suggests that the
dialects most confused together are often from ge-
ographically close countries. For example: Tunisia
and Libya, and Qatar and Bahrain. Gulf countries
also show high confusion.

Considering the sequence length in words for
correct and wrong predictions, we find that cor-
rectly predicted sentences tend to be longer than
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Subtask Models DEV TEST
Acc. F1 Acc. F1

1.1 Ours 39.06 23.52 35.72 22.38

1.2 MARBERT 48.86 26.40 48.40 29.14
Ours 53.42 34.03 51.66 32.26

2.1 Ours 7.04 6.73 6.66 6.43

2.2 MARBERT 7.91 5.23 8.48 6.28
Ours 10.74 10.02 9.46 8.60

Table 3: Results compared to previous SOTA. MARBERT taken from Abdul-Mageed et al. (2020a).
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38.2% 0.6% 0.0% 1.9% 0.0% 0.0% 1.9% 1.9% 5.1% 0.6% 0.0% 2.5% 0.0% 22.9% 15.3% 8.3% 0.0% 0.0% 0.0% 0.0% 0.6%

3.2% 22.7% 0.0% 6.1% 1.4% 1.8% 0.0% 0.4% 2.2% 4.0% 0.0% 0.7% 0.0% 22.7% 11.9% 16.2% 0.4% 0.4% 0.4% 1.4% 4.3%

0.0% 3.5% 27.7% 5.8% 1.2% 22.5% 1.2% 0.0% 0.6% 0.6% 0.0% 0.0% 0.0% 0.6% 2.9% 6.9% 1.2% 0.0% 2.3% 2.9% 20.2%

2.1% 4.4% 0.8% 61.9% 0.8% 1.7% 1.1% 0.0% 1.2% 1.1% 0.3% 0.0% 0.0% 8.7% 7.2% 2.7% 1.5% 0.0% 0.0% 0.8% 3.9%

1.0% 11.5% 0.0% 12.5% 21.2% 3.8% 0.0% 1.0% 1.9% 18.3% 0.0% 1.0% 0.0% 2.9% 4.8% 16.3% 0.0% 0.0% 0.0% 1.0% 2.9%

0.3% 4.5% 1.9% 5.7% 0.6% 52.5% 0.3% 0.0% 0.3% 3.5% 0.0% 0.3% 0.0% 3.8% 6.1% 9.6% 0.3% 0.0% 2.5% 1.3% 6.4%

3.4% 1.4% 5.3% 7.2% 1.4% 1.0% 23.2% 0.0% 0.5% 1.0% 1.0% 0.0% 0.0% 11.6% 12.1% 21.7% 0.5% 0.0% 1.0% 0.0% 7.7%

5.8% 0.0% 0.0% 3.8% 1.9% 0.0% 1.9% 5.8% 21.2% 0.0% 0.0% 0.0% 0.0% 26.9% 23.1% 5.8% 0.0% 0.0% 0.0% 0.0% 3.8%

20.0% 0.0% 0.0% 1.9% 0.0% 0.0% 3.8% 2.9% 23.8% 0.0% 0.0% 0.0% 0.0% 31.4% 10.5% 4.8% 1.0% 0.0% 0.0% 0.0% 0.0%

0.0% 8.7% 3.8% 8.7% 10.6% 0.0% 5.8% 0.0% 1.0% 35.6% 0.0% 0.0% 0.0% 1.9% 2.9% 15.4% 1.0% 1.0% 0.0% 3.8% 0.0%

1.9% 0.0% 5.7% 20.8% 0.0% 5.7% 1.9% 0.0% 1.9% 0.0% 34.0% 0.0% 0.0% 5.7% 3.8% 0.0% 1.9% 0.0% 0.0% 1.9% 15.1%

0.0% 3.8% 0.0% 1.9% 0.0% 7.5% 0.0% 0.0% 0.0% 0.0% 0.0% 35.8% 0.0% 3.8% 5.7% 5.7% 34.0% 0.0% 0.0% 0.0% 1.9%

2.0% 2.0% 0.0% 10.2% 2.0% 0.0% 2.0% 0.0% 0.0% 4.1% 0.0% 0.0% 0.0% 57.1% 2.0% 10.2% 0.0% 0.0% 0.0% 0.0% 8.2%

7.1% 0.8% 0.2% 6.5% 0.4% 1.7% 0.6% 0.4% 2.3% 0.2% 0.0% 0.0% 0.2% 62.1% 10.6% 4.4% 1.3% 0.2% 0.0% 0.0% 1.0%

3.9% 1.7% 0.0% 11.3% 0.3% 0.6% 0.6% 1.1% 1.4% 0.6% 0.0% 0.0% 0.0% 18.9% 52.4% 4.5% 0.3% 0.3% 0.0% 0.0% 2.3%

0.3% 0.7% 0.5% 1.2% 0.1% 1.4% 0.0% 0.1% 0.0% 1.0% 0.0% 0.2% 0.0% 1.3% 0.8% 91.4% 0.4% 0.0% 0.0% 0.2% 0.5%

0.0% 2.9% 0.0% 4.8% 0.0% 1.9% 0.0% 0.0% 0.0% 1.9% 1.0% 20.0% 0.0% 20.0% 4.8% 6.7% 33.3% 1.0% 0.0% 1.0% 1.0%

1.9% 3.8% 0.0% 7.7% 0.0% 0.0% 3.8% 7.7% 21.2% 0.0% 0.0% 0.0% 0.0% 11.5% 32.7% 5.8% 0.0% 0.0% 0.0% 0.0% 3.8%

0.0% 7.4% 0.0% 14.8% 3.7% 0.0% 3.7% 0.0% 3.7% 0.0% 7.4% 0.0% 0.0% 3.7% 3.7% 40.7% 3.7% 0.0% 0.0% 0.0% 7.4%

0.0% 5.7% 0.0% 5.7% 0.0% 0.6% 1.3% 0.0% 1.3% 0.6% 0.6% 0.0% 0.0% 17.8% 7.0% 38.9% 0.0% 0.0% 0.6% 16.6% 3.2%

0.5% 4.9% 3.7% 10.5% 0.0% 4.7% 3.0% 0.0% 0.0% 0.5% 0.7% 0.2% 0.0% 5.1% 3.5% 6.3% 1.4% 0.0% 0.7% 0.7% 53.7%

Figure 3: Confusion matrix of the predictions of the
best performing model in subtask 1.2.

Mean/Variance (λ) Median
Correct 7.16 5.45
Wrong 4.22 3.40

All 4.10 3.26

Table 4: Sequence length (fitted to an Erlang distribu-
tion)

the means of all and of wrongly predicted sentences
(fit as an Erlang distribution). The numbers were
computed after removing the special USER and
URL tokens.

7 Conclusion

In this paper, we present a solution that provides
a new state-of-the-art on all of the NADI subtasks.
Inserting adapters at each of the MARBERT trans-
former layers preserved the original pre-trained
knowledge, stemming from a rich corpus of tweets,
while still embedding task knowledge. To further
improve the model’s performance, we vertically at-
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Figure 4: Distribution of length for correct and wrong
classifications in subtask 1.2 trimmed at the tail after
length > 30.

tend on all of the CLS token hidden-states coming
out of each of the transformer layers instead of just
using the top layer’s output. We ensemble models
on two design variables: Whether fine-tuning is full
or through adapters, and whether Vertical Attention
is used. The bias towards dominating classes in the
task dataset remains a significant issue that is still
not mitigated. As a future work, we would like
to employ adapter fusion (Pfeiffer et al., 2021) to
attenuate this bias.
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A Appendices

A.1 System Architecture

FFN Block

Transformer
Layer 

To Transformer
layer 

From Transformer
layer 

Activation

Up-Projection
Adapter Layer

Adapter Layer

Normalize

Activation

Down-Projection

Normalize

Multi-Head Attention Block

Figure 5: Details of the used model’s architecture,
specifically looking at one transformer layer. All lay-
ers are of the same architecture.2

2Diagrams generated using diagrams.net (draw.io).
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