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Abstract

Many existing approaches for interpreting text
classification models focus on providing im-
portance scores for parts of the input text, such
as words, but without a way to test or im-
prove the interpretation method itself. This
has the effect of compounding the problem of
understanding or building trust in the model,
with the interpretation method itself adding to
the opacity of the model. Further, importance
scores on individual examples are usually not
enough to provide a sufficient picture of model
behavior. To address these concerns, we pro-
pose MOXIE (MOdeling conteXt-sensitive In-
fluencE of words) with an aim to enable a
richer interface for a user to interact with
the model being interpreted and to produce
testable predictions. In particular, we aim to
make predictions for importance scores, coun-
terfactuals and learned biases with MOXIE.
In addition, with a global learning objective,
MOXIE provides a clear path for testing and
improving itself. We evaluate the reliability
and efficiency of MOXIE on the task of sen-
timent analysis.

1 Introduction

Interpretability, while under-specified as a goal, is
a crucial requirement for artificial intelligence (AI)
agents (Lipton, 2018). For text classification mod-
els, where much of the recent success has come
from large and opaque neural network models (De-
vlin et al., 2019; Liu et al., 2019; Raffel et al., 2019),
a popular approach to enable interpretability is to
provide importance scores for parts of the input
text, such as words, or phrases. Given only these
numbers, it is difficult for a user to understand or
build trust in the model. Going beyond individual
examples, such as scalable and testable methods

∗Work done during an internship at Amazon AWS AI,
USA.

1No offense is intended towards any particular community
in this or in subsequent sections. Rather, we are interested in
probing for unexpected biases.

Input text: he played a homosexual character
Model prediction: Negative sentiment1

Question 1 (Importance scores): Which words had
the most influence towards the prediction? Is the word
‘homosexual’ among them?
Answer: The word ‘homosexual’ has the highest nega-
tive influence.
Question 2 (Counterfactuals): If so, which words in-
stead would have made the prediction positive?
Answer: If you replace the word ‘homosexual’ with the
word ‘straight’, the model would have made a positive
sentiment prediction.
Question 3 (Biases): Is there a general bias against the
word ‘homosexual’ compared to the word ‘straight’?
Answer: Yes, there are a large number of contexts
where the model predicts negatively with the word ‘ho-
mosexual’, but positively with the word ‘straight’. Here
are some examples:

• the most homosexual thing about this film
• though it’s equally homosexual in tone
• . . .

Table 1: Example questions we aim to answer us-
ing MOXIE. The first question has commonly been ad-
dressed in existing approaches. The ability of an inter-
pretation method to answer the second and third ques-
tions enables a rich and testable interface.

to identify biases at a dataset level, are desired but
currently missing. Questions can be raised about
whether the methods of interpretation themselves
are trustworthy. Recent analyses (Ghorbani et al.,
2019) of such interpretation methods for computer
vision tasks suggest that such skepticism is valid
and important.

A method which aims to elucidate a black-box’s
behavior should not create additional black boxes.
Measuring trustworthiness, or faithfulness2, of in-
terpretation methods, is itself a challenging task
(Jacovi and Goldberg, 2020). Human evaluation
is not only expensive, but as Jacovi and Goldberg
(2020) note human-judgments of quality shouldn’t

2In this work, a faithful interpretation is one which is
aligned with the model’s reasoning process. The focus of
this work is to make predictions testable by the model being
interpreted and thus have a clear measure of faithfulness.
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be used to test the faithfulness of importance scores.
What needs testing is whether these scores reflect
what has been learned by the model being inter-
preted, and not whether they are plausible scores.

We believe the aforementioned issues in existing
methods that produce importance scores can be
circumvented through the following changes.

A global learning objective: Several existing
approaches rely on some heuristic to come up with
importance scores, such as gradients (Wallace et al.,
2019), attentions (Wiegreffe and Pinter, 2019), or
locally valid classifiers (Ribeiro et al., 2016) (see
Atanasova et al. (2020) for a broad survey). In-
stead, we propose to identify a global learning ob-
jective which, when learned, enables prediction
of importance scores, with the assumption that if
the learning objective was learned perfectly, we
would completely trust the predictions. This would
provide a clear path for testing and improving the
interpretation method itself. Quick and automatic
evaluation on a held-out test set allows progress us-
ing standard Machine Learning (ML) techniques.

Going beyond importance scores: Importance
scores, even when generated using a theoretically
inspired framework (Sundararajan et al., 2017), are
generally hard to evaluate. Further, the aim of
the interpretation method shouldn’t be producing
importance scores alone, but to enable a user to ex-
plore and understand model behavior3, potentially
over large datasets. In Table 1, we illustrate a way
to do that through a set of questions that the inter-
pretation method should answer. Here, we provide
more details on the same.

Importance Scores ‘Which parts of the input text
were most influential for the prediction?’
Such importance scores, popular in existing
approaches, can provide useful insights but
are hard to evaluate.

Counterfactuals ‘Can it predict counterfactuals?’
We define a good counterfactual as one with
minimal changes to the input text while caus-
ing the model to change its decision. Such
predictions can be revealing but easy to test.
They can provide insights into model behavior
across a potentially large vocabulary of words.

In this work, we consider counterfactuals ob-
tained by replacing words in the input text

3The need for going beyond importance scores has also
been realized and explored for user-centric explainable AI
interface design (Liao et al., 2020).

with other words in the vocabulary. We limit
to one replacement.

Biases ‘Is the model biased against certain words?’
For example, we could ask if the model is
biased against LGBTQ words, such as the
word ‘homosexual’ compared to the word
‘straight’? One way to provide an answer
to such a question is to evaluate a large num-
ber of contexts, replacing a word in the origi-
nal context with the words‘homosexual’ and
‘straight’. Doing that however is prohibitive
with large text classification models. If an in-
terpretation method can do this in a reasonable
time and accuracy, it enables a user access to
model behavior across a large number of con-
texts.

Considering the preceding requirements, we pro-
pose MOXIE (MOdeling conteXt-sensitive Influ-
encE of words) to enable a reliable interface for
a user to query a neural network based text clas-
sification model beyond model predictions. In
MOXIE, we aim to learn the context-sensitive in-
fluence of words (see Figure 1 for the overall ar-
chitecture). We show that learning this objective
enables answers to the aforementioned questions
(Section 3.2). Further, having a global learning
objective provides an automatic way to test the
interpretation method as a whole and improve it
using the standard ML pipeline (Section 3.3). We
evaluate the reliability and efficiency of MOXIE
on the task of sentiment analysis (Section 4)4.

2 Related Work

Word importance scores have been a popular area
of research for interpreting text classifiers, includ-
ing gradient based methods (Wallace et al., 2019),
using nearest neighbors (Wallace et al., 2018), in-
trinsic model-provided scores such as attention
(Wiegreffe and Pinter, 2019), and scores learned
through perturbations of the test example (Ribeiro
et al., 2016). There has also been effort to expand
the scope to phrases (Murdoch et al., 2018), as well
as provide hierarchical importance scores (Chen
et al., 2020). However these methods tend to de-
rive from an underlying heuristic applicable at the
example level to get the importance scores. With

4Note that we are not claiming to build inherently faithful
mechanisms, but ones which allow inherent testing of their
faithfulness. For example, a counterfactual or a bias prediction
can be tested by the model under interpretation (see Section 4).
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Figure 1: Overall architecture of MOXIE: The model being interpreted (f ) which we call the teacher model is
shown on the left. It processes an input text such as ‘. . . very very slow’ to produce a representation z through
module M and label scores y through a linear classification layer C. When presented with the same input but the
word ‘slow’ masked, it produces outputs z′ and y′ respectively. We learn the difference in the two representations
(z − z′) as a proxy for the context-sensitive influence of the word ‘slow’ in the student model (g). This is done
by processing the masked context and the token masked through arbitrarily complex modules AC and AT which
produce fixed length representations zc and zt respectively. The combine module (AM ) takes these as input to
produce the output r. We learn by minimizing the mean square error between z and z′′ = z′ + r. Keeping the
combine module shallow allows the processing of a large number of tokens for a given context and vice versa in
a reasonable time. Please see Section 3.1 for details on the architecture and Section 3.2 for how this architecture
enables answers to the motivating questions.

perturbation methods, where a locally valid classi-
fier is learned near the test example (Ribeiro et al.,
2016), there is a hyperparameter dependence as
well as stochasticity at the level of test examples.

While it’s not inherently problematic to use such
heuristics, it makes it hard to improve upon the
method, as we need to rely on indirect measures
to evaluate the method. Further, recent work has
shown that the skepticism in the existing methods
is valid and important (Ghorbani et al., 2019). In
this work, we use a global learning objective which
allows us to make predictions of importance scores.

Apart from word importance scores, explanation
by example style method have been studied (Han
et al., 2020). Like word importance based meth-
ods, however, these methods don’t provide a clear
recipe for further analysis of the model. In this
work, we aim to produce testable predictions such
as counterfactuals and potential biases.

Measuring faithfulness of an interpretation

model can be hard. Jacovi and Goldberg (2020)
suggest that human evaluation shouldn’t be used.
In this work, we circumvent the hard problem
of evaluating the faithfulness of an interpretation
method by making it output predictions which can
be tested by the model being interpreted.

3 MOXIE

The overall architecture employed to learn MOXIE
is shown in Figure 1. We introduce the notation
and describe the architecture in detail in Section 3.1.
In Section 3.2, we discuss how MOXIE provides
answers to the motivating questions.

3.1 Notation and Architecture

Let x denote a text sequence x1x2...xn. We
denote by ximask the same sequence but the
ith token xi replaced by a mask token:
x1x2 . . . xi−1〈mask〉xi+1 . . . xn.

In the following, we refer to the model being
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interpreted as the teacher model and the learned
interpretation model as the student model.

Teacher model: The teacher model f is com-
posed of a representation module M and a linear
classification layer C, and produces a representa-
tion z = M(x) and label scores y = C(z) for a
text input x. The label prediction is obtained as
the label with the highest score: l = argmax(y).
We believe this covers a fairly general class of text
classifiers: y = f(x) = C(M(x)) = C(z).

Student model: With mask token maskt for the
teacher model, we create masked input ximaskt

for
which the teacher model outputs z′i = M(ximaskt

).
As a proxy for the context-sensitive influence of

the token xi, we aim to model z − z′i in the student
model. For this, we use the following submodules:

• Context processor AC processes masked text to
produce a context representation. In particular,
with mask token masks for the context processor,
we create the masked input ximasks

for which the
context processor outputs zc,i = AC(x

i
masks

).
Note that the mask token could be different
for the teacher model and the context proces-
sor. We fine-tune a pre-trained roberta-base (Liu
et al., 2019) model to learn the context proces-
sor, where we take the output at the mask token
position as zc,i.

• Token processor AT processes the token which
was masked to produce representation zt,i =
AT (xi). Note that we can mask spans as well
with the same architecture, where xi denotes a
span of tokens instead of one. For all our experi-
ments, we fine-tune a pre-trained RoBERTa-base
model to learn the token processor, where we
take the output at the first token position as zt,i.

• Combine module AM combines the outputs
from the context and token processors to produce
representation r.

In summary, the sub-module h takes the input x
and token location i to produce output ri:

ri = h(x, i) = AM (AC(x
i
masks), AT (xi)) (1)

To get label predictions, we add z′i to ri and feed
it to the teacher model classification layer C. In
summary, the student model g takes as input x and
token location i to make predictions y′′i :

y′′i = g(x, i) = C(z′i+h(x, i)) = C(z′i+ri) (2)

Modules h and g provide token influence and la-
bel scores respectively. We learn the parameters of
the student model by minimizing the mean square
error between z and z′′i .

Keeping the combine module shallow is crucial
as it allows evaluating a large number of tokens in a
given context and vice versa quickly (Section 3.2).
For all our experiments, we first concatenate zc,i +
zt,i, zc,i−zt,i and zc,i�zt,i to obtain zconcat, where
� represents element wise multiplication. zconcat,i
is then processed using two linear layers:

AM (zc,i, zt,i) = W2(tanh(W1zconcat,i+b1))+b2
(3)

where W1, b1, W2, and b2 are learnable parameters.
The parameter sizes are constrained by the input
and output dimensions and assuming W1 to be a
square matrix.

3.2 Using MOXIE
3.2.1 Importance Scores
MOXIE provides two kinds of token-level scores.
Influence scores can be obtained from predictions
of the sub-module h, ri = h(x, i):

ŝi = softmax(C(ri)) (4)

For binary classification, we map the score to the
range [−1, 1] and select the score of the positive
label: si = 2 ∗ ŝi[+ve] + 1. The sign of the score
si can then be interpreted as indicative of the sen-
timent (positive or negative), while its magnitude
indicates the strength of the influence.
Unlike ratios aim to give an estimate of the ratio
of words in the vocabulary which when used to re-
place a token lead to a different prediction. The stu-
dent model architecture allows us to pre-compute
and store token representations through the token
processor (AT ) for a large vocabulary, and evaluate
the impact each token in the vocabulary might have
in a given context. This requires running the con-
text processor and the teacher model only once. Let
V be a vocabulary of words, then for each word wj ,
we can pre-compute and store token embeddings
EV such that Ej

V = AT (w
j). For example x with

label l, teacher model representations z and z′i for
the full and masked input, and context processor
output zc,i, the unlike ratio ui can be computed as:

rV,i = AM (zc,i, EV )

yV,i = C(z + rV,i)

ui =
|{w : w ∈ V, argmax(yV,i) 6= l}|

|V |

(5)
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If the unlike ratio ui for a token xi is 0, it would
imply that the model prediction is completely de-
termined by the rest of the context. On the other
hand, an unlike ratio close to 1.0 would indicate
that the word xi is important for the prediction as
replacing it with any word is likely to change the
decision. In this work we restrict the vocabulary V
using the part-of-speech (POS) tag of the token in
consideration (see Appendix C for details).

Finally, getting phrase-level scores is easy with
MOXIE when the student model is trained by mask-
ing spans and not just words.

Please see Section 4.3 for details and evaluation.

3.2.2 Counterfactuals
As discussed in the preceding section, the student
model allows making predictions for a large num-
ber of token replacements for a given context. As
before, we restrict the vocabulary of possible re-
placements using the POS tag of the token in con-
sideration. To generate potential counterfactuals,
we get predictions from the student model for all
replacements and select the ones with label pre-
dictions different from the teacher model’s label.
Please see Section 4.4 for details and evaluation.

3.2.3 Biases
Modeling the context-sensitive influence of words
in MOXIE enables analyzing the effect of a word
in a large number of contexts. We can pre-compute
and store representations for a large number of con-
texts using the teacher model and the context pro-
cessor of the student model. Given a query word,
we can then analyze how it influences the predic-
tions across different contexts. Pairwise queries,
i.e., queries involving two words can reveal relative
biases against a word compared to the other. Please
see Section 4.5 for details and evaluation.

3.3 Improving the Interpretation Method
The student model g introduced in the preced-
ing section is expected to approximate the teacher
model f , and the accuracy of the same can be mea-
sured easily (see Section 4.2). We expect that as
this accuracy increases, the answers to the preced-
ing questions will become more reliable. Thus,
MOXIE provides a straightforward way to improve
itself. The standard ML pipeline involving testing
on a held-out set can be employed.

4 Experiments

We aim to answer the following questions:

Q1 How well does the student model approximate
the teacher model? (Section 4.2)

Q2 How does MOXIE compare with methods
which access test example neighborhoods to
generate importance scores? (Section 4.3)

Q3 Can MOXIE reliably produce counterfactuals?
(Section 4.4)

Q4 Can MOXIE predict potential biases against
certain words? (Section 4.5)

We use the task of binary sentiment classifica-
tion on the Stanford Sentiment Treebank-2 (SST-2)
dataset (Socher et al., 2013; Wang et al., 2018) for
training and evaluation. In Section 4.1.2, we pro-
vide text preprocessing details. We evaluate the
student model accuracy against the teacher model
(Q1) across four models: bert-base-cased (Devlin
et al., 2019), roberta-base (Liu et al., 2019), xlmr-
base (Conneau et al., 2019), RoBERTa-large (Liu
et al., 2019). For the rest of the evaluation, we use
RoBERTa-base as the teacher model. We use the
Hugging Face transformers library v3.0.2 (Wolf
et al., 2019) for our experiments.

4.1 Experimental Setup
4.1.1 Training Details
As models to be interpreted (teacher models), we
fine-tuned bert-base-cased, RoBERTa-base, xlmr-
base and RoBERTa-large on the SST-2 train set.
We trained each model for 3 epochs.

For the interpretation models (student models),
we initialize the context processor and token pro-
cessor with a pre-trained RoBERTa-base model.
We then train the context processor, token proces-
sor and combine module parameters jointly for 10
epochs with model selection using dev set (using
all-correct accuracy, see Section 4.2 for details).

For both teacher and student models, we use the
AdamW (Loshchilov and Hutter, 2018) optimizer
with an initial learning rate of 2e−5 (see Appendix
A for other training details).

For all experiments, for training, we generate
context-token pairs by masking spans obtained
from a constituency parser (the span masked is fed
to the token processor). For all evaluation, we use
a word tokenizer unless otherwise specified. Train-
ing with spans compared to words didn’t lead to
much difference in the overall results (as measured
in Section 4.2), and we retained the span version to
potentially enable phrase level scores.
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Model Teacher baseline
(Context-only)

Student Model
(Context &Token)

bert-base-cased 73.48 87.64
RoBERTa-base 78.64 89.24
xlmr-base 74.08 86.93
RoBERTa-large 82.37 89.74

Table 2: Evaluation of the student model and a context-
only teacher baseline against teacher model predic-
tions on the test set using the all-correct accuracy met-
ric. The context-only teacher model baseline does bet-
ter than chance but the student model provides gains
across all teacher models. This indicates that the stu-
dent model learns context-token interactions. Please
see Section 4.2 for details.

Text: it ’s a charming and often affecting journey
Prediction: +ve
Top 2 scores: charming (0.38), affecting (0.12)
Text: unflinchingly bleak and desperate
Prediction: -ve
Top 2 scores: bleak (-0.99), desperate (-0.92)
Text: allows us to hope that nolan is posed to embark a
major career as a commercial yet inventive filmmaker .
Prediction: +ve
Top 2 scores: allows (0.97), inventive (0.91)

Table 3: Word importance scores on the first three dev
set examples. Top two scores are shown.

4.1.2 Tokenization and POS Tagging
We use the nltk (Bird et al., 2009) tokenizer for
getting word level tokens. For training by mask-
ing spans, we obtain spans from benepar (Kitaev
and Klein, 2018), a constituency parser plugin for
nltk. We use nltk’s averaged_perceptron_tagger for
obtaining POS tags, and use the universal_tagset.

4.2 Evaluating Student Model on the Test Set
In this section, we measure how well the student
model approximates the teacher model. The stu-
dent model provides a prediction at the token level:
g(x, i). We define an example level all-correct
accuracy metric: the set of predictions for an ex-
ample are considered correct only if all predictions
match the reference label.

As a baseline, we consider token level predic-
tions from the teacher model obtained from masked
contexts: f(ximaskt

). If the student model improves
over this baseline, it would suggest having learned
context-token interactions and not just using the
contexts for making predictions.

In Table 2, we show all-correct accuracies of the
baseline and the student model on the test set. The
baseline does better than chance but the student
model provides significant gains over it. This indi-
cates that the student model learns context-token

Text: in exactly 89 minutes , most of which passed as
slowly as if i ’d been sitting naked on an igloo , formula
51 sank from quirky to jerky to utter turkey . (-ve)
Prediction: -ve
Top 2 word-level scores: quirky (0.26), formula (-0.22)
Top 2 phrase-level scores: to utter turkey (-0.35), quirky
(0.26)

Table 4: Word and Phrase importance scores on an
example selected from the first 10 dev set examples.

interactions and is not relying on the context alone.
A key advantage of MOXIE is providing a way

to improve upon itself. We believe improvements in
the all-correct accuracy of the student model would
lead to improved performance when evaluated as
in the subsequent sections. For completion, we
provide the accuracies of the student model against
gold labels in Appendix B.

4.3 Importance Scores

Table 3 capture the importance scores on the first
three dev set examples. Table 4 shows an exam-
ple selected from the first 10 dev set examples
demonstrating how MOXIE can produce meaning-
ful phrase-level scores.

As discussed before, it’s hard to evaluate im-
portance scores for trustworthiness. We evaluate
the trustworthiness of MOXIE in subsequent sec-
tions. Here, we aim to contrast MOXIE, which
doesn’t learn its parameters using test examples,
with methods which do. We aim to devise a test
which would benefit the latter and see how well
MOXIE performs. We choose LIME (Ribeiro et al.,
2016) which directly incorporates the knowledge
of teacher model predictions when words in the
input text are modified. To test the same, we start
with test examples where the teacher model makes
an error, and successively mask words using im-
portance scores, with an aim to correct the label
prediction. With a masking budget, we compute
the number of tokens that need masking. We re-
port on: Coverage, the % of examples for which
the model decision could be changed, and Aver-
age length masked, the average number of words
that needed masking (see Appendix D for detailed
steps). The test favors LIME as LIME learns using
teacher model predictions on the test example and
its neighborhood while MOXIE learns only on the
train set.

We compare against LIME and a Random base-
line where we assign random importance scores to
the words in the input. From MOXIE, we obtain
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Figure 2: Evaluation of importance scores on examples where the teacher model makes an error. Tokens are
successively masked using importance scores until the masking budget is met or the prediction of the teacher
model changes. We report on the coverage and the average length that needed masking when the decision could be
changed. We note that all methods perform better than the random baseline. MOXIE competes with LIME despite
not seeing the test example and its neighborhood during training. Please see Section 4.3 for details.

influence scores and unlike ratios. We also derive
a hybrid score (Unlike ratio+influence score) by
using unlike ratios with influence scores as back-
off when the former are non-informative (e.g., all
scores are 0). Figure 2 captures the results of this
test on the 49 dev set examples where the teacher
model prediction was wrong.

We note that all scores are better than the random
baseline. Influence scores do worse than LIME but
unlike ratios and the hybrid scores are competitive
with LIME. This is despite never seeing the test ex-
ample neighborhood during training, unlike LIME.
The results support the hypothesis that a global
learning objective can provide effective importance
scores. However, this is not the main contribu-
tion of this paper. Our aim is to enable increased
interaction with the model by providing testable
predictions as discussed in subsequent sections.

4.4 Counterfactuals

As discussed in the Section 3.2.2, MOXIE allows
predictions of counterfactuals using pre-computed
token embeddings. We show examples of gener-
ated counterfactuals in Appendix E.1. We evaluate
the reliability of the generated counterfactuals by
computing the accuracy of the top-10 predictions
using the teacher model. The student model takes a
pre-computed POS-tagged dictionary of token em-
beddings (obtained using token processor AT ) and
a context as input and predicts the top-10 candidate
replacements (see Appendix E.2 for details).

Figure 3 captures the counterfactual accuracies
obtained across contexts (with at least one coun-
terfactual) in the dev set. Out of 872 examples,
580 examples had at least one context for which
the student model made counterfactual predictions.
In total, there were 1823 contexts with counterfac-

Figure 3: Counterfactual prediction accuracies:
across contexts for which at least one counterfactual
was found. The box indicates the range between quar-
tiles 1 & 3. The median accuracy was 90.0% which is
better than chance. This indicates that MOXIE is ca-
pable of reliably predicting counterfactuals. Please see
Section 4.4 for details.

tuals. The median counterfactual accuracy across
contexts with at least one counterfactual was 90%
which is significantly higher than chance.

4.5 Biases

As discussed in the Section 3.2.3, MOXIE can
quickly process a large number of contexts for a
given word. As a case study, we look for potential
biases against LGBTQ words in the teacher model.

We make pairwise queries to the student model,
with a pair of words: a control word and a probe
word, where we expect task specific meaning to
not change between these words. We require the
student model to find contexts from an input dataset
where the control word leads to a positive sentiment
prediction but the probe word leads to a negative
sentiment prediction. We use the training dataset
as the input dataset.

To avoid any negative influence from other parts
of the context, we further require that the original
context (as present in the input dataset) lead to a
positive sentiment by the teacher model. Finally,
we remove negative contexts, e.g., the context ‘The
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Figure 4: Measuring potential biases: using the stu-
dent model. We show the relative sizes of the sets ob-
tained with positive predictions with control word but
negative predictions with the probe word. The results
indicate a potential bias against the word ‘lesbian’ com-
pared to the word ‘straight’ (see Section 4.5)

.

movie is not bad’ would be positive despite ‘bad’
clearly having a negative influence. To ease the bias
analysis by remove such contexts, we can remove
all sentences with words which tend to be negative,
e.g., not, never etc. For adjective contexts, we use
the student model to filter out such contexts using
a list of clearly positive/negative adjectives (see
Appendix F for details on pre-processing contexts).

The output of the preceding steps can be pre-
computed and stored. Next, we find the set of
contexts satisfying the following criteria (e.g., with
control word ‘straight’ and probe word ‘lesbian’):

S1 Teacher model predicts positive on the original
context (pre-computed and stored), e.g., x:‘I
have cool friends’, argmax(f(x)) = +ve.

S2 Student model predicts positive when the
marked token is replaced with the control
word, e.g., xcontrol:‘I have straight friends’,
argmax(g(xcontrol, i)) = +ve.

S3 Student model predicts negative when the
marked token is replaced with the probe
word, e.g., xprobe: ‘I have lesbian friends’,
argmax(g(xprobe, i)) = −ve.

S2 and S3 can be computed efficiently by pre-
computing the output of the context processor AC

for all contexts in the input dataset. If EC denotes
the matrix of output embeddings from the context
processor, S2 and S3 for word w can be computed
by first obtaining the token processor representa-
tion zt = AT (w) and then using the combine mod-
ule yC = C(AM (EC , zt)).

The relative size of the set S1 ∩ S2 ∩ S3 is in-
dicative of a potential bias against the probe word.
Figure 4 shows the size of the set S1∩S2∩S3 with
‘straight’ and ‘lesbian’ interchangeably as control
and probe words. Note that the relative size with
probe word as ‘lesbian’ is much larger than the

almost every lesbian facet of production
gay to its animatronic roots
the bisexual lives of the characters in his film
the most transsexual thing about this film

Table 5: Examples of biased contexts (negative predic-
tion). If the highlighted word were to be swapped by
the word ‘straight’, the prediction would be positive.
See Section 4.5 for details.

Size of
S1 ∩ S2 ∩ S3

(top-100)

Control
word Acc Probe

word Acc

100 straight 67.0 lesbian 90.0
100 straight 61.0 gay 93.0
100 straight 68.0 bisexual 82.0
100 straight 69.0 transsexual 85.0

0 straight - queer -

Table 6: Evaluating student model claims of biases:
Up to 100 confident contexts are selected using student
model predictions where the student model claims a
+ve prediction using the control word and -ve predic-
tion using the probe word. The predictions are tested
using the teacher model and the accuracy reported.
Note that except for ‘queer’ where the set size is zero,
the prediction accuracy of the student model is better
than chance. This indicates the ability of the student
model to predict biases. See Section 4.5 for details.

relative size with probe word as ‘straight’. This
is indicative of a potential bias against the word
‘lesbian’. Table 5 shows some examples of biased
sentences obtained through this procedure.

Next, we aim to evaluate the claim of the stu-
dent model using the teacher model. For this, we
consider the set S1 ∩ S2 ∩ S3 with probe word
as ‘lesbian’ and evaluate the contexts with both
‘straight’ and ‘lesbian’. The student model claims
the model prediction to be positive for the former
and negative for the latter. We process the exam-
ples with the corresponding replacements using the
teacher model to measure the accuracy of this claim
(i.e., teacher model’s outputs serve as the reference
label). The accuracy of the student model claim
with ‘straight’ is 65.16% while with ‘lesbian’, it
is 75.88%. We also evaluate the 100 most con-
fident predictions from the student model (using
softmax scores). The accuracies with ‘straight’ and
‘lesbian’ then increase to 67.0% and 90.0% respec-
tively. In Table 6, we show the results on the 100
most confident predictions for more LGBTQ words.
Note that we don’t claim this to be an exhaustive
set of words reflecting the LGBTQ community, but
as only roughly representative. The results indicate
a similar pattern as with ‘lesbian’, except for the
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word ‘queer’ where the student model doesn’t pre-
dict any biased contexts. This is presumably due
to the word ‘queer’ carrying additional meanings,
unlike the other LGBTQ words.

Finally, the student model provides ~450
speedup when compared to using the teacher model
to probe for biases. It takes less than 1s to test
a control word against a probe word on a single
NVIDIA V100 GPU using the student model, thus
enabling an interactive interface. Unlike using the
teacher model directly, MOXIE allows precomput-
ing large sets of context/token representations and
thus obtain the aforementioned gains.

In summary, the results indicate bias against
LGBTQ words. The evaluation indicates that the
student model can make reliable bias predictions.

5 Conclusion

In summary, we have shown that MOXIE provides
a novel framework for interpreting text classifiers
and a method to draw quick insights about the
model on large datasets. MOXIE can make effi-
cient, testable and reliable predictions beyond im-
portance score, such as counterfactuals and poten-
tial biases. Further, with a global learning objective,
it provides a clear path for improving itself using
the standard ML pipeline. Finally, the principles
and the evaluation methodology should help the
interpretability research overcome the problem of
testing the faithfulness of interpretation methods.

As future work, we identify improving the accu-
racy of the student model. Further analysis of the
nature of counterfactuals selected by the student
model could lead to useful insights towards improv-
ing the interpretation method. Finally, identifying
other learning objectives which enable testable pre-
dictions would be useful and challenging.

6 Broader Impact

In this work, we aim to improve interpretability
of existing text classification systems. More inter-
pretable systems are likely to reveal biases and help
towards a fairer deployment of production systems
built using these systems.

To demonstrate our work, we choose to study
potential biases against words associated with
the LGBTQ community. In particular, we probe
for bias in a learned sentiment classification sys-
tems against the words that make up the acronym
LGBTQ - Lesbian, Gay, Bisexual, Transsexual and
Queer. Note that we don’t use identity informa-

tion of any individual for this. Instead, we probe
whether, in arbitrary contexts, the learned senti-
ment classification model is likely to find these
qualifiers more negative when compared to adjec-
tives in general or adjectives usually associated
with the hegemony. Our work doesn’t aim to dis-
criminate but instead provides a way to measure if
there are intended or unintended biases in a learned
system.

Acknowledgements

We would like to thank the reviewers for their valu-
able feedback.

References
Pepa Atanasova, Jakob Grue Simonsen, Christina Li-

oma, and Isabelle Augenstein. 2020. A diagnostic
study of explainability techniques for text classifi-
cation. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 3256–3274, Online. Associa-
tion for Computational Linguistics.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. " O’Reilly
Media, Inc.".

Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. 2020.
Generating hierarchical explanations on text classi-
fication via feature interaction detection. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5578–
5593, Online. Association for Computational Lin-
guistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Amirata Ghorbani, Abubakar Abid, and James Zou.
2019. Interpretation of neural networks is fragile.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3681–3688.

Xiaochuang Han, Byron C. Wallace, and Yulia
Tsvetkov. 2020. Explaining black box predictions

https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.emnlp-main.263
https://doi.org/10.18653/v1/2020.acl-main.494
https://doi.org/10.18653/v1/2020.acl-main.494
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.492


64

and unveiling data artifacts through influence func-
tions. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5553–5563, Online. Association for Computa-
tional Linguistics.

Alon Jacovi and Yoav Goldberg. 2020. Towards faith-
fully interpretable NLP systems: How should we de-
fine and evaluate faithfulness? In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4198–4205, Online. As-
sociation for Computational Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Q Vera Liao, Daniel Gruen, and Sarah Miller. 2020.
Questioning the ai: informing design practices for
explainable ai user experiences. In Proceedings
of the 2020 CHI Conference on Human Factors in
Computing Systems, pages 1–15.

Zachary C Lipton. 2018. The mythos of model inter-
pretability. Queue, 16(3):31–57.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

W James Murdoch, Peter J Liu, and Bin Yu. 2018. Be-
yond word importance: Contextual decomposition
to extract interactions from lstms. In International
Conference on Learning Representations.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. " why should i trust you?" explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining,
pages 1135–1144.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631–1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017.
Axiomatic attribution for deep networks. In Inter-
national Conference on Machine Learning, pages
3319–3328. PMLR.

Eric Wallace, Shi Feng, and Jordan Boyd-Graber. 2018.
Interpreting neural networks with nearest neighbors.
In Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 136–144, Brussels, Belgium.
Association for Computational Linguistics.

Eric Wallace, Jens Tuyls, Junlin Wang, Sanjay Sub-
ramanian, Matt Gardner, and Sameer Singh. 2019.
AllenNLP interpret: A framework for explaining
predictions of NLP models. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages
7–12, Hong Kong, China. Association for Compu-
tational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In International
Conference on Learning Representations.

Sarah Wiegreffe and Yuval Pinter. 2019. Atten-
tion is not not explanation. arXiv preprint
arXiv:1908.04626.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

A Training Details

A.1 Data

The SST-2 dataset (Socher et al., 2013; Wang et al.,
2018) contains English language movie reviews
from the “Rotten Tomatoes" website. The training
data consists of 67349 examples and is roughly
label-balanced with 56% positive label and 44%
negative label data. The dev and test sets contain
872 and 1821 examples respectively.

A.2 Other Training Details

For the teacher models, we train the models for 3
epochs. For optimization, we use an initial learning
rate of 2e-5, adam epsilon of 1e-8, max gradient
norm of 1.0 and a batch size of 64. The maximum
token length for a text example was set to 128.
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Teacher
Model

(accuracy)

Student
Model

(All-correct
accuracy)

bert-base-cased 91.97 85.09
roberta-base 94.38 86.93
xlmr-base 92.55 83.37
roberta-large 95.64 88.88

Table 7: Accuracy against gold labels on the dev set.
The student model does significantly better than chance
with scope for improvement.

POS tag Size of extracted vocabulary
NOUN 7534
VERB 2749
ADJ 3394
ADV 809
. 15
DET 26
ADP 79
CONJ 12
PRT 19
PRON 28

Table 8: Size of extracted lists of POS-tagged words.

For student models, we train the models for 10
epochs. For optimization, we use an initial learning
rate of 2e-5, adam epsilon of 1e-8, max gradient
norm of 1.0 and a batch size of 64. The maximum
token length for a text example was set to 128. The
maximum token length of the masked span input
to the token processor was set to 50. When trained
on Nvidia’s GeForce GTX 1080 Ti GPUs, each run
took approximately 6 hours to complete.

B Evaluating Student Model against
Gold Labels

In Table 7, we provide the accuracies of the teacher
and student models against gold labels. In this
work, we care about accuracies of the student
model against teacher model predictions and we
show accuracies against gold labels here only for
completion.

C Pre-computing POS-tagged Dictionary
of Token Embeddings

For evaluating importance scores and counterfac-
tual predictions, we use a POS-tagged dictionary
of token embeddings. The token embeddings are
obtained by processing the tokens through the to-
ken processor AT . This is done only once for a
given student model and used for all subsequent
experiments.

We use the training dataset for extracting the

Input: A text sequence x: x1x2...xn

Input: Importance scores s: s1s2...sn
Input: A masking budget m
Output: The number of words that need masking
Initialize: count← −1; a← x
Compute teacher prediction:
prediction← argmax(f(a))

Sort importance scores:
ImportanceOrder← argsort(s)

for k ← 1 to m do
i← ImportanceOrder(k)

Mask the next important word: a← ai
mask_t

Compute teacher prediction: l = argmax(f(a))
if l 6= prediction then

Set count if criterion met: count← k
return count

end
end
return count

Algorithm 1: MASKLENGTH Computes the
number of words that need masking to change
the model prediction

list of open class words. We use nltk’s aver-
aged_perceptron_tagger for obtaining POS tags,
and use the universal_tagset5. The open class
words correspond to the tags — NOUN, VERB,
ADJ, ADV. We assign each word to the POS tag
with which it occurs most commonly in the training
dataset.

For closed class words, we use the Penn Tree-
bank corpus included in the ntlk toolkit (treebank).
Again, we use the universal_tagset from nltk toolkit.
We ignore the NUM and X as well as open class
tags. For the punctuation tag, we remove any token
containing alphanumeric characters.

In Table 8, we show the size of the extracted lists
for each POS tag.

D Importance Scores

D.1 Evaluating Importance Scores

In Algorithm 1, we provide the detailed steps for
computing the mask length as used in the evalua-
tion of importance scores.

Unlike ratios are computed using the pre-
computed POS-tagged dictionary of token embed-
dings obtained as in Section C.

In Table 9, we show the top-3 importance scores
supporting the prediction from the model being
interpreted, obtained from LIME and MOXIE on
the first 4 dev set examples where the model be-
ing interpreted makes an error (wrong label pre-

5The meaning and examples of the tags in the
universal tagset can be found in the nltk book
https://www.nltk.org/book/ch05.html
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Text: the iditarod lasts for days - this just felt like it
did .
Gold label:-ve
Prediction:+ve

LIME: did (0.24), lasts (0.19), it (0.13)
MOXIE influence scores: days (0.88), like (0.82),
the (0.77)
MOXIE unlike ratios: for (78.48), did (63.26),
like (41.77)
Text: holden caulfield did it better .
Gold label:-ve
Prediction:+ve

LIME: better (0.03), it (0.02), holden (0.01)
MOXIE influence scores: better (0.97), . (0.93),
did (0.93)
MOXIE unlike ratios: holden (22.54),
caulfield (17.61), better (12.36)
Text: you wo n’t like roger , but you will quickly
recognize him .
Gold label:-ve
Prediction:+ve

LIME: recognize (0.20), but (0.19), will (0.14)
MOXIE influence scores: quickly (0.98), but (0.93),
n’t (0.68)
MOXIE unlike ratios: recognize (12.62),
quickly (3.58), will (0.54)
Text: if steven soderbergh ’s ‘ solaris ’ is a failurea it is
a glorious failureb .
Gold label:+ve
Prediction:-ve

LIME: failurea (-0.91), failureb (-0.91), if (-0.03)
MOXIE influence scores: failureb (-1.00), a (-0.56),
if (-0.36)
MOXIE unlike ratios: failureb (30.33)

Table 9: Word importance scores when the model to
be interpreted makes a wrong prediction The top three
scores supporting the model prediction obtained using
LIME and MOXIE are shown for the first 4 dev set ex-
amples where the model being interpreted makes an er-
ror. For MOXIE, we show scores obtained using influ-
ence scores as well as unlike ratios. Superscripts are
used to distinguish word positions if required.

diction). For MOXIE, we show importance scores
obtained using both influence scores and unlike ra-
tios. MOXIE scores are position independent and
we assign the same scores to all occurrences of a
word.

E Counterfactuals

E.1 Example Counterfactual Predictions

In Table 10, we show selected examples of coun-
terfactual predictions. The examples have been
picked from the first 10 dev set examples.

Text (Prediction) Replacement
Prediction

unflinchingly bleak and desperate (-
ve)

sensual

it ’s slow – very , very slow . (-ve) enjoyable
a sometimes tedious film (-ve) heart-breaking

Table 10: Example counterfactual predictions selected
from the first 10 examples of the dev set. The high-
lighted words in the left column indicate the words
which are replaced with the words in the right column.

E.2 Computing Counterfactual Accuracy

In Algorithm 2, we provide the detailed steps for
computing counterfactual accuracy for a context
as used in evaluating counterfactual predictions.
Pre-computed POS-tagged dictionary of token em-
beddings are obtained as in Section C.

The median size and median accuracy when se-
lecting top-10 tokens (as done in Algorithm 2) are
90.0 and 10.0 respectively. If we don’t do any se-
lection, the median size and median accuracy are
72.0 and 63.41 respectively.

F Biases

F.1 Filtering Contexts for Analyzing Biases

Here, we detail the steps used to filter the contexts
from the input dataset below when probing with
adjectives as control/probe words:

1. Get teacher model predictions on each exam-
ple.

2. Tokenize and get a POS tag for each example
in the input dataset.

3. Select contexts (an example with a marked
token position) with adjective POS tag. This
could lead to none, one or more contexts per
example.

4. Select contexts for which teacher model pre-
dictions (on the corresponding example) are
positive.

5. Remove contexts for which the student model
predicts negative for at least one replacement
from the set {immense, marvelous, wonderful,
glorious, divine, terrific, sensational, magnifi-
cent, tremendous, colossal} and positive for at
least one replacement from the set {dreadful,
terrible, awful, hideous, horrid, horrible}.

6. Additionally, remove contexts for which the
student model predictions never change when
the marked token is replaced by another word
with the same POS tag.

Again, we use nltk’s aver-
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Input: A text sequence x: x1x2...xn

Input: Location in the sequence i
Input: Precomputed token embeddings EV with

words of the same POS tag as xi

Output: Size and accuracy of generated
counterfactuals

Compute teacher prediction:
prediction← argmax(f(x))

Compute context embedding: zc = AC(x
i
mask_t)

Compute predictions for each token in the vocabulary:
yV = C(AM (zc, EV ))

Sort according to the probability of differing from
teacher prediction, i.e., using (1− yj

V [prediction]),
to get the list Vsorted

Select up to 10 tokens from the top of the list that
differ from teacher prediction:
argmax(yj

V ) 6= prediction, to get the list Vselected

Initialize: size← 0; correct← 0
for k ← 1 to |Vselected| do

size← size + 1
w ← Vselected[k]
a← x Replace the i-th token with word w:
a[i]← w

Compute teacher prediction: l← argmax(f(a))
if l 6= prediction then

correct = correct + 1;
end

end
if count = 0 then

return 0, 0
end
acc← 100.0 ∗ correct/count
return count, acc

Algorithm 2: COUNTERFACTUAL_ACC
Computes the accuracy of generated counter-
factuals

aged_perceptron_tagger for obtaining POS
tags, and use the universal_tagset. For Step 6, we
used the pre-computed POS-tagged dictionary of
token embeddings as obtained in Section C.

There were a total of 81435 adjective contexts
in the training dataset. The size of the filtered set
was 29885.


