
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 678–682
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

678

cs60075 team2 at SemEval-2021 Task 1 : Lexical Complexity Prediction
using Transformer-based Language Models pre-trained on various text

corpora

Abhilash Nandy Sayantan Adak Tanurima Halder Sai Mahesh Pokala
{nandyabhilash, sayantanadak.skni, haldertanurima, pokalasaimahesh}@gmail.com

Indian Institute of Technology, Kharagpur, India

Abstract

This paper describes the performance of the
team cs60075 team2 at SemEval 2021 Task
1 - Lexical Complexity Prediction. The
main contribution of this paper is to fine-
tune transformer-based language models pre-
trained on several text corpora, some being
general (E.g., Wikipedia, BooksCorpus), some
being the corpora from which the CompLex
Dataset was extracted, and others being from
other specific domains such as Finance, Law,
etc. We perform ablation studies on select-
ing the transformer models and how their indi-
vidual complexity scores are aggregated to get
the resulting complexity scores. Our method1

achieves a best Pearson Correlation of 0.784 in
sub-task 1 (single word) and 0.836 in sub-task
2 (multiple word expressions).

1 Introduction

Complex words hinder the readability of a text, as
discussed in (William, 2004). To mitigate this
problem, there is a necessity of lexical simplifica-
tion (Leroy et al., 2013), and predicting the com-
plexity of words is an integral part of this process.

Language Models learn the probability of co-
occurrence of words in a corpus. They have
been used for various sentence completion and
text-based classification tasks. The first language
models were n-gram Markov Models (Rabiner
and Juang, 1986), which performed well for tasks
that did not require very long-range dependen-
cies. Then came RNNs (Cho et al., 2014a),
LSTMs (Hochreiter and Schmidhuber, 1997) and
GRUs (Cho et al., 2014b), which were able to un-
derstand longer contexts, but struggled with long
paragraphs due to the vanishing gradient prob-
lem. Transformers (Vaswani et al., 2017) were
a task-agnostic solution that performed better due

1The code is available at https://github.com/
abhi1nandy2/CS60075-Team-2-Task-1

to the presence of Attention Layers between hid-
den layers of the neural network, which helped
the layers of the neural network to look at the en-
tire input at once. Transformers can perform very
well on a broad suite of tasks by fine-tuning on
a small number of task-specific samples. The in-
tuition behind using such transformer-based lan-
guage models for Lexical Complexity Prediction
(LCP) was - transformer models pre-trained on
different corpora would mimic annotators (of the
CompLex Dataset (com)) having different back-
grounds. Since the final score is an aggregation of
the annotation scores given by annotators, we ag-
gregate the various scores that are given as outputs
by the transformer-based models fine-tuned on the
CompLex Dataset.

The rest of the paper is organized as follows.
Section 2 gives an overview of our solution ap-
proach, Section 3 talks about the corpora used for
pre-training and the dataset used for fine-tuning
for the LCP task, Section 4 discusses the experi-
mental settings, baselines used, and a comparison
and analysis of the results and Section 5 gives a
conclusion.

2 Solution Overview

2.1 Model Architecture

We use several transformer models. The general
block diagram of such a model is shown in Fig. 1.
The input to a model is the tokenized form of a
sentence, and the tokenized form of the word/multi-
word expression whose complexity score is to be
predicted (separated by special tokens), and the
target output is the complexity score. Each model
consists of a transformer encoder, having the ar-
chitecture of either BERT (Devlin et al., 2018) or
RoBERTa (Liu et al., 2019), followed by a linear
layer and a sigmoid activation layer so that the
output is squashed in the range (0, 1). Sigmoid Ac-

https://github.com/abhi1nandy2/CS60075-Team-2-Task-1
https://github.com/abhi1nandy2/CS60075-Team-2-Task-1
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Figure 1: General Block Diagram of the Transformer

tivation Function is applied, as the target complex-
ity score is a value between 0 and 1. To compute
loss for backpropagation, the mean squared error
loss function is used, as the problem is, as such, a
regression problem.

2.2 Pre-training the transformer on text
corpora

In order to initialize the weights and the embed-
dings of the transformer encoder, it is pre-trained
on large text corpora so that it has syntactic, lexical
and semantic knowledge before fine-tuning on the
task-specific data. This is done for two reasons -
(1) To increase the rate of convergence towards the
lexical complexity prediction task (2) To mimic an
annotator from a particular background.

In order to pre-train a transformer, specific pre-
training tasks are performed. If the transformer
being used is RoBERTa, Masked Language Mod-
elling (MLM) is performed, where 15% of all the
tokens are randomly replaced by a < MASK >
token. Such a masked sentence is provided as input
to the transformer language model, and a Softmax
Layer activation Function is applied for the output
corresponding to the masked token to find out the
probabilities of various tokens in the vocabulary be-
ing in the place of the < MASK > in the original,
unmasked sentence. The target is the actual token
that was masked. A cross-entropy loss function is
used to calculate the loss that is backpropagated. In
the case of the BERT Transformer, in addition to
the MLM pre-training task, Next Sentence Predic-
tion (NSP) Task is also performed. Two sentences
are taken from the corpus, where either one sen-

tence follows the other, or the two sentences are far
apart. The output is either 1 corresponding to the
sentences being adjacent to each other, and 0 being
the case when they are far apart. Both the cases
have the same number of samples while training.
The output corresponding to the START (here,
< CLS >) token is passed through a linear layer
to get a 2x1 shaped vector, which is then followed
by a Softmax Layer, thus giving probabilities of
whether the second sentence comes after the first
one or not.

3 Data

3.1 Data used for pre-training

Since we require several transformer language
models pre-trained on a wide variety of cor-
pora, we make it a point that we have trans-
formers pre-trained on text corpora from which
the CompLex Dataset has been extracted. These
corpora are - (1) World English Bible Transla-
tion (Christodouloupoulos and Steedman, 2015)
(We used the data found in this link 2) (2) English
part of the Europian Parliament Proceedings from
europarl (Koehn, 2005) (3) CRAFT corpus (Bada
et al., 2012) of bio-medical domain. We pre-train
three RoBERTa language models on these three
corpora (initialized by weights from (Liu et al.,
2019)) using the MLM pre-training task.

3.2 Data used for fine-tuning

For fine-tuning, we do not use any external data
other than the datasets that have been provided for
both the sub-tasks 3.

4 Experiments and Results

4.1 Transformer Language Models used

We use the predictions from 9 transformer-based
language models, 4 of which have a RoBERTa en-
coder, and the other 5 have a BERT-based encoder.
2 models are pre-trained on general domain cor-
pora like Wikipedia and BooksCorpus, 2 models
on biomedical and clinical data, 2 models on Eu-
roparl data, 1 on Bible, 1 on Financial data, and
1 on scientific papers. Also, 6 of the pre-trained
transformer models were publicly available in the
HuggingFace Models Catalog 4, while the other 3
were pre-trained by us on the three datasets from

2https://www.kaggle.com/oswinrh/bible
3https://github.com/MMU-TDMLab/CompLex
4https://huggingface.co/models

https://www.kaggle.com/oswinrh/bible
https://github.com/MMU-TDMLab/CompLex
https://huggingface.co/models
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Single word MWE
APPROACH PC MSE PC MSE

xgb-A 0.718 0.0078 0.762 0.0103
xgb-B 0.741 0.0073 0.815 0.0083
xgb-C 0.744 0.0072 0.817 0.0082∗

BERT-BASE-UNCASED 0.765 0.007∗ 0.791 0.009
BIBLE+EUROPARL+BIOMED (AVG.) 0.753 0.0075 0.798 0.0096
BIBLE+EUROPARL+BIOMED (MAX.) 0.751 0.0076 0.788 0.0092
BEST COMBINATION (AVG.) 0.784 0.0066 0.836 0.0078
BEST COMBINATION (MAX.) 0.774∗ 0.0071 0.819∗ 0.0091

Table 1: Comparing the Pearson Correlation (PC) and Mean Squared Error (MSE) of our methods and the baselines
(The entries in bold are the best performing according to the respective column’s metrics, while the ones with a ∗

are the next best ones.)

which CompLex Dataset is extracted, as mentioned
in Section 3.1.

4.2 Training, validation and Test Sets

For each sub-task, the training and the test sets
are the same as those provided for the competition.
The trial data given for each sub-task is taken to be
the validation data.

4.3 Hyperparameters

For pre-training, the RoBERTa transformer lan-
guage model, a batch size of 16 is used and is
trained up to 1 epoch. The rest of the parameters
are the same as in (Liu et al., 2019).

When fine-tuning, irrespective of whether the
model has a RoBERTa or a BERT Transformer en-
coder, the input sequence length is set to 256, with
padding or truncation, as is the case. A learning
rate of 2×10−5 is used with a batch size of 32, and
a Weighted Adam Optimizer is used. The network
is fine-tuned for 4 epochs. The Pearson Correlation
on the validation data is calculated for every epoch,
and the checkpoint giving the best Pearson Cor-
relation is regarded as the best checkpoint, which
would later be used for predicting outputs on the
test data.

4.4 Methods of Aggregation used

In order to aggregate the complexity scores of a
particular combination of models, we use the fol-
lowing two strategies - sample-wise average and
sample-wise maximum across all transformer mod-
els. We then do the same across all permutations,

see which combination gives the best test results
and report it as the final result.

4.5 Baselines
We use XGBoost (Chen and Guestrin, 2016) to per-
form a boosting-based regression model, with an
objective of squared error and other default param-
eters and hyperparameters over a set of features.
The different baselines use different feature sets,
which are as follows -

1. xgb-A - word length (sum of word lengths
in the case of MWE), number of sylla-
bles and word frequency (from various text
sources) (Speer et al., 2018) (average of word
frequencies in the case of MWE) of the
word/expression whose complexity is to be
found, and the type of corpus of the sentence
(either Bible, Europarl, or Biomedical).

2. xgb-B - Concatenation of features of xgb-A
and the 50 and 100-dimensional GloVe (Pen-
nington et al., 2014) word vectors of the
word/expression whose complexity is to be
found. For the expression, the sum of the
GloVe Vectors of the individual words would
be taken.

3. xgb-C - Concatenation of features of xgb-B
and the probabilities of the word/expression
whose complexity is to be found given the
sentence with that word/expression that is
masked, where the probabilities are predicted
by different transformer-based masked lan-
guage models pre-trained on different corpora.
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Note: The probability of the word/token
given the masked sentence is approximated as
the product of the probabilities of predicting
each token, given other tokens of the sentence
are masked. E.g., Given a sentence S - ”I just
love mowing the lawn with a lawn mower.”
Let’s say one is required to find out the com-
plexity of the expression - “lawn mower”.
First, ‘lawn’ is masked in S, and the prob-
ability to predict ‘lawn’ using the transformer
model M is found, denoted by P1. Similarly,
‘mower’ is masked in S, and the probability
to predict ‘mower’ using M is found, denoted
by P2. Resultant feature value = P1 ∗ P2

4.6 Results and Discussion

Table 1 compares the Pearson Correlations (higher
the better) and mean squared errors (lower the bet-
ter) of our best (according to Pearson Correlation)
aggregate results (for both average as well as max-
imum aggregation), some ablations, and the base-
lines for both the sub-tasks.

Based on the results, we can infer the following
-

1. xgb-B performs better than xgb-A, suggest-
ing that, GloVe Word Vector features perform
a vital role in complexity prediction, as they
contain some contextual information regard-
ing the word.

2. xgb-C performs the best among the baselines,
as it also considers the probabilities of predict-
ing the masked tokens whose complexity is
found, adding to the contextual information.

3. Fine-tuning BERT-BASE-UNCASED trans-
former model for the LCP task performs better
than the best baseline in case of sub-task 1,
which could be attributed to the reason that,
fine-tuning attention-based transformer mod-
els captures even more contextual information
than the baselines.

4. Fine-tuning and aggregating RoBERTa Trans-
former models pre-trained on the three cor-
pora from which the CompLex Dataset was ex-
tracted (BIBLE+EUROPARL+BIOMED),
still gives better results than the baselines
(except for xgb-B and xgb-C in case of sub-
task 2), but performs inferior as compared to
BERT-BASE-UNCASED model for single

word sub-task, while performing almost sim-
ilar in case of Multi-Word Expressions sub-
task. Also, the average aggregation performs
better than the maximum aggregation.

5. The combination of transformer models that
gives the best results upon aggregation (BEST
COMBINATION), consists of 3-4 differ-
ent transformer models fine-tuned on the
dataset, suggesting that, transformer mod-
els pre-trained on domains related as well
as unrelated to the dataset (such as Fi-
nancial Data, Legal Data), are able to
best mimic annotators coming from vari-
ous backgrounds. Even in this case, average
aggregation performs better than maximum
aggregation.

6. If we consider the evaluation metrics of Pear-
son Correlation (PC) and Mean Squared Er-
ror (MSE), it can be seen (especially in the
single-word sub-task) that they are negatively
correlated, as is expected.

5 Conclusion

We show that aggregating the results of various
fine-tuned transformer models pre-trained on var-
ious corpora from different domains gives high
Pearson Correlation and low mean squared errors
compared to individual transformers and regres-
sion models using attributes such as hand-crafted
features, word embeddings, transformer-based lan-
guage model prediction probabilities, etc. This
shows that transformer-based language models,
each pre-trained on a different text corpus, can
better imitate annotators of the dataset, who come
from diverse backgrounds and prior knowledge.
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