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Abstract 

In this paper, we propose a knowledge 
infusion mechanism to incorporate domain 
knowledge into language transformers. 
Weakly supervised data is regarded as the 
main source for knowledge acquisition. We 
pre-train the language models to capture 
masked knowledge of focuses and aspects 
and then fine-tune them to obtain better 
performance on the downstream tasks. Due 
to the lack of publicly available datasets for 
multi-label classification of Chinese 
medical questions, we crawled questions 
from medical question/answer forums and 
manually annotated them using eight 
predefined classes: persons and 
organizations, symptom, cause, 
examination, disease, information, 

ingredient, and treatment. Finally, a total of 
1,814 questions with 2,340 labels. Each 
question contains an average of 1.29 labels. 
We used Baidu Medical Encyclopedia as 
the knowledge resource. Two transformers 
BERT and RoBERTa were implemented to 
compare performance on our constructed 
datasets. Experimental results showed that 
our proposed model with knowledge 
infusion mechanism can achieve better 
performance, no matter which evaluation 
metric including Macro F1, Micro F1, 
Weighted F1 or Subset Accuracy were 
considered. 

 
Keywords: text classification, domain knowledge 
extraction, pretrained language models, biomedical 
informatics. 
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