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Abstract

Recent advances in NLP systems, notably
the pretraining-and-finetuning paradigm, have
achieved great success in predictive accu-
racy. However, these systems are usually not
well calibrated for uncertainty out-of-the-box.
Many recalibration methods have been pro-
posed in the literature for quantifying predic-
tive uncertainty and calibrating model outputs,
with varying degrees of complexity. In this
work, we present a systematic study of a few
of these methods. Focusing on the text clas-
sification task and finetuned large pretrained
language models, we first show that many of
the finetuned models are not well calibrated
out-of-the-box, especially when the data come
from out-of-domain settings. Next, we com-
pare the effectiveness of a few widely-used re-
calibration methods (such as ensembles, tem-
perature scaling). Then, we empirically il-
lustrate a connection between distillation and
calibration. We view distillation as a regu-
larization term encouraging the student model
to output uncertainties that match those of
a teacher model. With this insight, we de-
velop simple recalibration methods based on
distillation with no additional inference-time
cost. We show on the GLUE benchmark
that our simple methods can achieve compet-
itive out-of-domain (OOD) calibration perfor-
mance w.r.t. more expensive approaches. Fi-
nally, we include ablations to understand the
usefulness of components of our proposed
method and examine the transferability of cal-
ibration via distillation.

1 Introduction

The recent success of NLP systems, notably the
pretraining-and-finetuning paradigm has led to
widespread applications (Peters et al., 2018; Devlin
et al., 2019; Radford et al., 2019). However, these
systems are not always well-calibrated; in many
high-stake decision-making scenarios such as med-

ical diagnosis, even small errors would have large
damage. Suppose an ML system predicts a 20%
probability a patient has cancer whereas the reality
is 40%, diagnosis relying on inaccurate estimates
could lead to devastating consequences (Kumar
et al., 2019). Further, interpreting and communi-
cating these uncertainties facilitates better trust be-
tween humans and ML systems (Bansal et al., 2020;
Wilder et al., 2020; Ribeiro et al., 2016, 2018).

Hence, it is increasingly important for users to
understand not only when the systems would suc-
ceed, but also when they could fail. One seemingly
straightforward approach is to have the systems
output predictions and some measure of their con-
fidence/uncertainty. Users could then use both the
predictions and associated uncertainties to decide
how much they would trust the prediction. For
example, one might decide to take an umbrella to
work only if the confidence of the rain prediction
is more than 50%. For many statistical methods,
confidence/uncertainty is either part of the system
by design (e.g., Bayesian methods) or could be
efficiently estimated (e.g., linear regressions). Un-
fortunately, for large-scale DNNs, estimating un-
certainty becomes a challenge (Gal, 2016): e.g.,
nominal probabilities from the softmax function
are shown to be uncalibrated estimates of model
uncertainty (Platt, 1999; Niculescu-Mizil and Caru-
ana, 2005; Guo et al., 2017; Ovadia et al., 2019).

In this work, we present a systematic study on
recalibrating current NLP systems, particularly
those that fall in the recent popular pretraining-and-
finetuning paradigm (Hendrycks et al., 2020; Desai
and Durrett, 2020), as they are widely deployed
in recent state-of-the-art systems and hence it is
important that they are well calibrated for safety
and transparency. However, the methods discussed
in this work could generalize to a broader range of
systems. We focus on the calibration not only of
the task itself, but also under dataset distributional



290

shift (Ovadia et al., 2019).
We start by introducing uncertainty and calibra-

tion, and cover related advances in the deep learn-
ing literature. In addition to widely-used maximum
calibration error and expected calibration error, we
follow previous works (Ovadia et al., 2019; Kumar
et al., 2019) and include additional calibration eval-
uation metrics for better comparisons (e.g., Brier
scores and `p calibration error).

We conduct experiments on GLUE classifica-
tion tasks (Wang et al., 2019) and show that fine-
tuned language models are usually not calibrated
out-of-the-box, especially when the data comes
from a distribution different from the training
data. We use the term “out-of-domain” (or “out-of-
distribution”, OOD) to refer to the setting where
the train and evaluation data come from different
“distributions”. Related works in NLP have con-
sidered data from similar tasks but from different
datasets as OOD (Ovadia et al., 2019; Hendrycks
and Gimpel, 2017). Next, in order to make mod-
els more calibrated, we study some of the widely-
used recalibration methods, with various degrees
of effectiveness and computational cost. For ex-
ample, ensembling models has been shown to be
very effective in out-of-domain settings (Ovadia
et al., 2019), but the cost of computation scales
with the size of ensembles. On the other hand, dis-
tillation (Hinton et al., 2015) is a widely-known
method for improving the system’s performance
by learning from a stronger teacher model. In this
work, we empirically examine the connection be-
tween distillation and calibration. Notably, we view
the objective function of distillation as a regular-
ization term that encourages the student model to
match the predictive uncertainty of a stronger, more
calibrated teacher model.

We conduct analysis experiments to show that
the teacher’s calibration performance could be dis-
tilled into the student model, even when the teacher
model’s accuracy remains similar. With this insight,
we show that simple methods based on distillation
could achieve competitive performance in out-of-
domain calibration, without introducing extra com-
putation at inference time. Finally, we also conduct
ablation experiments to understand the usefulness
of components of the method. In summary, our
contributions are listed as follows:

• We present a systematic study on the perfor-
mance of various recalibration methods on
finetuned language models for both in-domain

and out-of-domain settings.

• We empirically examine the connection be-
tween distillation and calibration, and conduct
experiments showing that distillation can dis-
till calibration performance.

• We describe two simple recalibration methods,
and experimental results demonstrate their
competitiveness in the out-of-domain settings;
finally, we also ablate method’s components
and measure the extent to which distillation
transfers teachers’ calibration improvement.

2 Background and Related Works

Due to space constraints, we present some of the
most relevant materials in the main paper. Please
see the appendix (Sec. A) for extended background
and related works.

The quality of the uncertainty measurement is
usually measured via calibration (Kendall and Gal,
2017). In the context of calibration, the uncer-
tainties often refer to predictive probabilities. The
model is calibrated if the predictive probabilities
match the empirical frequency of the data (Gal,
2016). Let Ŷ and P̂ be the predicted class and
its associated confidence of a neural network. We
would like the confidence estimates P̂ to be cali-
brated, which intuitively means that we want P̂ to
represent true probabilities (Guo et al., 2017):

P(Ŷ = Y |P̂ = p) = p,∀p ∈ [0, 1]. (1)

Suppose a classification model is given N input
examples, and made predictions ŷ1, ..., ŷN , each
with p̂ = 0.35. We would expect 35% of the pre-
dictions would be correct. The problem of uncer-
tainty/confidence calibration and confidence scores
have been studied and applied in various settings
such as structured prediction problems (Kuleshov
and Liang, 2015), online recalibration (with po-
tentially adversarial/OOD input) (Kuleshov and
Ermon, 2017), model regularization (Pereyra et al.,
2017), and misclassified/OOD examples detec-
tion (Hendrycks and Gimpel, 2017). In practice,
however, perfect calibration is almost impossi-
ble (Guo et al., 2017), and estimating the first term
in Eq. 1 is not straightforward using finite samples,
because in most cases P̂ is a continuous random
variable (Guo et al., 2017; Kumar et al., 2019). In
Sec. 3, we describe ways to estimate the calibration
performance.
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It has been widely observed that modern neu-
ral networks are usually not calibrated out of
the box (Platt, 1999; Zadrozny and Elkan, 2001;
Guo et al., 2017; Ovadia et al., 2019). Recal-
ibration methods improve calibration by trans-
forming un-calibrated outputs into calibrated out-
puts/probabilities, and they include scaling-based
methods (Platt, 1999; Guo et al., 2017), histogram-
binning-based methods (Guo et al., 2017; Zadrozny
and Elkan, 2001), and ensembles (Lakshmi-
narayanan et al., 2017). Recently, Kumar et al.
(2019) proposed the scaling-binning calibrator and
a more sample-efficient estimator of calibration er-
ror. In our work, we describe simple approaches
that combine the strength of ensembles and temper-
ature scaling without introducing computation at in-
ference time; we further apply the scaling-binning
calibrator to ensure calibration.

Ensemble-based methods work by aggregating
multiple networks trained independently on the en-
tire dataset, and has been shown to achieve strong
performance in out-of-domain calibration (Ovadia
et al., 2019; Lakshminarayanan et al., 2017). More
generally, there are randomization-based ensem-
bles and boosting-based ensembles. Within the
randomization-based ensembles, we use the entire
training dataset to train each model instead of dif-
ferent bootstrap samples of the original training
set (Lakshminarayanan et al., 2017).

Temperature scaling is an extension of Platt scal-
ing (Guo et al., 2017). It uses a single scalar pa-
rameter T > 0 for all classes. Given output zi, the
confidence prediction is:

p̂i = max
k

σ(zi,k/T ). (2)

An extension, called heteroscedastic regression,
is used in our work, which replaces the constant
scalar with learned values (Kendall and Gal, 2017;
Kendall et al., 2018).

Knowledge distillation (Hinton et al., 2015) is a
compression technique in which a compact model
(usually referred to as the student model) is trained
to mimic the behavior of a more powerful teacher
model. In the context of classification, knowledge
distillation works by augmenting the loss function
with an additional term DKL(pi‖pj) where pi =
softmax(zi/T ) and pj = softmax(zj/T ) with zi
and zj the logits from two models, and T controls
the smoothness of the output distribution. In this
work, we show that distillation can also be used to
distill calibration performance, and use it to build

simple yet competitive recalibration methods.
Concurrently, Desai and Durrett (2020) studied

the calibration of pretrained transformers when
finetuned to downstream tasks, and Hendrycks et al.
(2020) studied the out-of-distribution robustness
of pretrained transformers. We are different from
them in that first we present a systematic study
on the out-of-distribution calibration; second we
draw insights from the connection between distil-
lation and temperature scaling to design simple
yet competitive recalibration methods; third, we
conduct experiments to understand the connection
between them empirically; finally, we also include
a more comprehensive set of calibration evalua-
tions following Ovadia et al. (2019) and Kumar
et al. (2019).

3 Measuring Calibration Errors

3.1 Calibration Error Metrics

Let X be the input space, and Y = {1, ...,K}
be the label space, and X ∈ X and Y ∈ Y be
random variables denoting the input and the label,
respectively. Further, let f : X → [0, 1]K be a
neural network that outputs the model’s confidence
for each class. For simplicity of notation, we define
Ŷ = argmaxj f(X)j , and P̂ = maxj f(X)j .

Expected Calibration Error. One notion of mis-
calibration is the expected difference between con-
fidence and accuracy,

ECE(f) = E
[∣∣∣∣P(Y=Ŷ |P=P̂

)
− P̂

∣∣∣∣]. (3)

As mentioned in Sec. 2, this cannot be estimated us-
ing finitely many samples if P̂ is a continuous ran-
dom variable. Expected Calibration Error (Naeini
et al., 2015; Guo et al., 2017), or ECE, approxi-
mates this via partitioning predictions into multiple
bins and computing the weighted average.

Maximum Calibration Error. In high-risk sce-
narios, we might be interested in measuring the
worst-case performance. Maximum Calibration Er-
ror (Naeini et al., 2015; Guo et al., 2017), or MCE,
estimates the following quantity via binning,

MCE(f) = max

∣∣∣∣P(Ŷ=Y |P=P̂
)
− P̂

∣∣∣∣. (4)

Brier Score. Calibration alone is not sufficient.
We could construct cases in which the outputs of
the model are calibrated but not useful. An example
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includes always outputting 50% in a binary classi-
fication task containing 50% of both labels (Kumar
et al., 2019). An alternative measure is the Brier
score (Brier, 1950), E[(f(X)−Y )2]. Note that the
Brier Score is a proper scoring rule, thus the opti-
mum score corresponds to a system with perfect
calibration. We refer a more detailed discussion
on proper scoring rule to Lakshminarayanan et al.
(2017) (Sec 2.2). An extension of Brier Score is
Brier Skill Scores (BSS). BSS is favored when the
classes are imbalanced. In our early experiments,
we did not observe significant ranking changes be-
tween these two measures, so we report Brier Score
for simplicity.1

`p Calibration Error. A generalized notion of
the calibration error is described in Kumar et al.
(2019),

CE(f) =
(
E
[∣∣P(Y=Ŷ |P=P̂ )− P̂

∣∣p])1/p. (5)

This recovers the MCE when p = ∞ and ECE
when p = 1 (Kumar et al., 2019). When p = 2,
we refer to it as Squared Calibration Error (SCE).2

This is estimated via binning the outputs and labels
in practice similar to ECE and MCE. The plugin
estimate for each term in the calibration error has
been shown to be a biased estimate in Kumar et al.
(2019), and the authors encouraged the use of a
debiased estimator for the calibration error. We
refer to this as the debiased Squared Calibration
Error.

3.2 Underestimation of Calibration Errors
for Model with Continuous Outputs

As noted in Sec. 2, the key to estimating the calibra-
tion error is estimating the conditional expectation
E[Y |f(X)]. However, if f(X) is continuous, with-
out smoothness assumptions on E[Y |f(X)], this is
impossible (Kumar et al., 2019). An approximation
could be made via binning the outputs into B in-
tervals, as is done in most of the metrics aforemen-
tioned. However, Kumar et al. (2019) showed that
the binned version always has a lower calibration
error. The authors introduced the scaling-binning
calibrator, which first fits a parametric function

1One can further include negative log-likelihood score.
However, we want to avoid overcrowding the results table
with too many numbers (which is already large, please see the
supplementary materials Table 3-6). Since both Brier Score
and NLL are proper-scoring rules (see Sec.3 in Ovadia et al.
(2019)), we believe the results would be qualitatively similar.

2Technically, this is 2-norm Calibration Error. But we refer
to this as the Squared Calibration Error for notation simplicity.

and then bins the function values to ensure calibra-
tion. Thus, in addition to reporting results using
the metrics described in Sec. 3.1, we report results
by running the scaling-binning calibrator on top of
each method that we considered.3 We further in-
clude ECE results with multiple bin-values in order
to reduce the gap.

4 Methods

4.1 Baseline Model

Our baseline model follows the general finetuning
of large pretrained language models on downstream
tasks: we finetune RoBERTa-base (Liu et al., 2019)
on downstream tasks.

4.2 Distillation and Uncertainty

Despite the strong empirical performance of many
calibration methods (e.g., ensembles), their useful-
ness in practice is limited due to increased computa-
tion and/or memory costs at inference time (Ovadia
et al., 2019). In Sec. 4.3, we describe a simple base-
line: recalibrate, ensemble, and distill.

Distillation has been shown to mostly “pre-
serve” performance in terms of accuracy – stronger
teacher models tend to translate to stronger stu-
dents (Hinton et al., 2015). However, whether dis-
tillation could also “preserve” calibration perfor-
mance is less studied. A model with better per-
formance does not necessarily translate to better
calibration (Guo et al., 2017). Here, we briefly look
at the distillation’s objective from an angle of un-
certainty matching, and show that they are related
intuitively. Sec. 6.1 provides empirical evidence
showing that the teacher model’s calibration perfor-
mance could be distilled into the student model.

There are two ways to see the connection. First,
note that distillation tries to minimize the KL-
divergence between the teacher output distribution
and the student output distribution. This intuitively
regularizes the student model to output confidence
values that would be close to the confidence val-
ues from the teacher model. Later in Sec. 6.1, ex-
perimental results show that the confidences from
two models indeed correlate positively. Another
perspective, which we elaborate below, considers
distillation as encouraging the students to output
uncertainty close to that of teacher models.

3The top-label variant of scaling-binning calibrator we use
outputs calibrated probabilities of the top predictions, whereas
Brier Scores require full probability vectors. Thus we exclude
Brier Scores when using the scaling-binning calibrator.
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Figure 1: Left-most Figure: Visualization of calibration performance, measured by SCEs (debiased), between
teacher and student models, trained on RTE and evaluated on QNLI. The n in the legend refers to the size of ensem-
ble(s). One metric/task, emphasizing different ensemble sizes. The Other Three Figures: These are zoomed-out
versions of the left-most figure, along with other tasks. Instead of using color to imply the ensemble size, here
the color refers to the task in which the models are evaluated, and points of different ensemble sizes but the same
evaluation task are aggregated and represented by the same color. Each sub-figure represents the evaluation metric.
More tasks/metrics, less emphasis on ensemble sizes. All Figures: The X-axis refers to the teacher model perfor-
mance, and the Y-axis refers to the student model performance. Each dot represents a different configuration used
in the teacher model. The P/S in the legends refer to the Pearson/Spearman correlations.

We start by defining a loss function as a weighted
combination of the regular cross entropy loss func-
tion and a regularization term that measures the
difference in the uncertainty between the student
model, θ, and the teacher model, θ?,

L(θ) = (1−α)LXE(θ)+α|H(θ)−H(θ?)|, (6)

where H refers to predictive entropy (Gal, 2016),
and is defined as (θ is ignored for simplicity),

H(y|x,D)=−
∑
c

p(y=c|x,D) log p(y=c|x,D).

(7)
Gal (2016) showed that H(y|x,D) could be ap-
proximated using samples from the (approximate)
posterior distribution of the parameters. In prac-
tice, this could be satisfied, for example, if the
student model is trained using dropout, and the
teacher model uses either MC-dropout or ensem-
bles.4 Next, suppose we approximate one of the
predictive entropy terms using cross entropy. This
turns the second term in Eq. 6 into KL-divergence,
and hence recovers the distillation objective.5

4.3 Recalibrate, Ensemble, and Distill

This simple algebraic manipulation shows that dis-
tillation has the effect of encouraging the student
model to match the teacher model’s uncertainty,
and motivates us to build a simple recalibration

4Note that the samples from a model using dropout (MC-
dropout) or ensemble could be used to approximate the poste-
rior distribution (Gal, 2016; Lakshminarayanan et al., 2017).

5Note that the approximation error equals the KL diver-
gence, the term that the objective function seeks to minimize.
As KL-divergence decreases, the approximation error also
decreases.

method “recalibrate, ensemble, and distill” by
first building an expensive yet calibrated teacher
model (an ensemble of models each of which is re-
calibrated using temperature scaling),6 and then dis-
tilling the expensive teacher model into a cheaper
student model.

The training cost is roughly (N + 1)C0 + C1,
where N is the ensemble size, C0 the cost of train-
ing the baseline, +1 comes from distillation, and
C1 comes from training the temperature scaling
model (which is relatively cheap). However, the
inference cost is almost the same as a single model
(i.e., small overhead), which is very useful when in-
ference is the primary concern (e.g., deployment).

4.4 Choosing the Distillation Temperature

The distillation term is often written as:

DKL

(
P (x; θ?, T ) || P (x; θ, T )

)
, (8)

where P (x; θ, T ) = softmax(f(x; θ)/T ) and T is
usually a hyperparameter to be tuned. One might
notice that this is similar to the equation of tem-
perature scaling (Eq. 2). This, together with the
uncertainty matching viewpoint, motivates a small
change to the distillation: we can remove the T
from the student, and choose the constant T̂ for the
teacher that minimizes the calibration error,

DKL

(
P (x; θ?, argmin

T̂

CE(θ?, T̂ )) || P (x; θ)
)
,

(9)
6There are many ways to construct a powerful/expensive

teacher model, and we choose the popular ensemble method
for simplicity. Alternatives includes MC-dropout (with multi-
ple forward passes) and SWA (Izmailov et al., 2018).
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which is similar to performing another temperature
scaling. The motivation is that we want the student
model to produce calibrated probabilities rather
than the scaled version of the student. If we simul-
taneously scale the student by T , then f(x; θ)/T
would be calibrated, but the student model itself
would not. We want to emphasize here that we
are not the first ones to describe the connection
between distillation and calibration, related find-
ings have been presented in previous works (Tang
et al., 2020; Müller et al., 2019). However, we
believe our view from the angle of predictive en-
tropy is novel. More importantly, we conduct ex-
tensive experiments and analyses in the context of
finetuned language models for several text classifi-
cation tasks, to empirically verify that calibration
performance between student and teacher model is
correlated.

5 Setup

We include additional details in the supplementary
materials. Also included are expanded experiment
results, such as figures evaluated on more tasks
using more evaluation metrics (Sec. 6.1), and de-
tailed/expanded results tables as well as accuracy
and ECEs with multiple bin-sizes (Sec. 6.2).

Model. Our codebase is largely based on Hug-
gingFace Transformers (Wolf et al., 2019).
When applicable, we use an ensemble size 2, and
choose T̂ (Eq. 9) based on the Brier Scores on the
validation dataset. The baseline model has 125.2M
parameters, the temperature-scaling model (het-
eroscedastic variant) has 125.8M, and our method
has 125.2M (same as the baseline model).

Data. We perform experiments on the classifi-
cation tasks from the GLUE Benchmark (Wang
et al., 2019), and we refer readers to Wang et al.
(2019) regarding dataset statistics. Because the
calculation of calibration errors requires access to
the ground truth data, which is not available for
GLUE data, we split the validation dataset into two
halves, one for validation and the other for test,
following Desai and Durrett (2020). For MultiNLI,
we merge the results for both MultiNLI matched
and mismatched sections. When computing the
out-of-domain performance between the 3-label
MultiNLI and other 2-label NLI tasks, we follow
jiant (Pruksachatkun et al., 2020) and merge the
predictions/labels that correspond to “neutral” and
“contradiction” into a single category.

Evaluation. Our evaluation follows Guo et al.
(2017), Ovadia et al. (2019), and Kumar et al.
(2019). The train and evaluation data come from
the same task for in-domain evaluations, but they
come from different tasks of the same type for
out-of-domain evaluations. We group MRPC and
QQP (paraphrase tasks), and group MNLI (2-label
version), QNLI, RTE, and WNLI (NLI tasks). We
leave SST-2 (sentiment), CoLA (acceptability), and
MNLI (3-label version, NLI) as separate groups.
We use the in-domain validation data to train the
scaling-binning calibrator.7

Analysis Experiments Details. We conduct ex-
periments on RTE, in which we distill teacher mod-
els with different ensemble-sizes (from 1 to 6) and
the temperature scaling constant (from 0.50 to 2.00
with a step size of 0.02) to student models. Each
model is then evaluated on both in-domain task
(RTE) and out-of-domain tasks (MNLI-2, QNLI,
WNLI) using confidence, ECE, MCE, Brier Scores,
SCE (debiased) and SCE (biased). The numbers
represent performances on the validation dataset.

6 Experiments

6.1 Analysis Experiments
Sec. 4.2 shows the connection between distillation
and uncertainty regularization. In this section, we
perform analysis experiments examining the corre-
lation between the calibration performance of the
teacher models and student models. We conduct
experiments on RTE, in which we distill teacher
models with different ensemble-sizes and the tem-
perature scaling constant to student models. Each
model is then evaluated on both in-domain and
out-of-domain tasks. Numbers here represent per-
formances on the validation dataset.

We start by examining the calibration perfor-
mances of teacher and student models, where we
vary the calibration performance of the teacher
model while holding the accuracy almost the
same.8 Fig. 1 (left) shows the debiased Squared
Calibration Error of models trained on RTE and

7We only use the 2-label version of MNLI for evaluation.
We use accuracy for CoLA evaluation so that calibration error
computations would be more consistent across tasks.

8Note the accuracy of teacher models with the same ensem-
ble size but different temperature scaling constants would be
almost the same, as for each model, temperature scaling con-
stant sharpens/flattens the probabilities but usually does not
change their relative ranking. The motivation here is to reduce
external influences, as comparing calibration performance
might not be very meaningful if the predictions/accuracies
change significantly.
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Without Scaling-Binning Calibrator With Scaling-Binning Calibrator

MCE ECE Brier Score SCE (d) SCE (b) MCE ECE SCE (d) SCE (b)

In Domain

Baseline 24.51 5.80 12.20 6.28 12.18 9.11 3.78 1.71 5.95
Ensemble 23.96 6.10 11.83 7.81 12.03 11.81 2.94 4.36 7.46
TempScale 23.49 4.39 11.87 7.31 10.75 8.81 3.91 0.93 5.41
Ours 17.19 5.66 12.19 8.18 12.28 12.94 3.24 4.39 7.51
Ours (T̂ ) 16.21 4.93 12.09 8.58 11.91 10.78 3.43 4.66 8.11

Out of Domain

Baseline 29.66 19.30 29.00 20.06 23.92 30.16 17.83 19.44 21.40
Ensemble 30.71 16.61 27.60 18.95 22.95 23.77 14.39 13.45 17.17
TempScale 26.45 16.35 27.53 18.71 22.35 33.60 17.55 18.61 20.65
Ours 28.26 17.17 28.08 17.63 22.15 25.11 14.50 15.55 17.92
Ours (T̂ ) 29.79 15.52 27.21 17.20 21.28 28.95 14.62 15.97 18.82

Table 1: In-domain and out-of-domain experiment results averaged across tasks. SCE(d)/SCE(b): Squared Cal-
ibration Errors (debiased/biased). Lower scores indicate better calibration. Bold/underscored numbers are the
best/second-best among comparisons, respectively.

evaluated on QNLI. We can observe that, by vary-
ing the teacher model’s calibration performance,
the calibration performance of the student model
also changes in similar directions.

Next, Fig. 1(right) depicts the calibration perfor-
mances of each teacher-student pair across multiple
calibration metrics. Similarly, these figures indicate
that correlation of calibration performance between
teacher/student models are in general positive. This
confirms the intuition described in Sec. 4.2 that cal-
ibration performance of the teacher model could be
distilled into the student model.

6.2 Main Experiments
Next, we show our experimental results compar-
ing the following four models: Baseline (Baseline,
Sec. 4.1), Ensemble (Lakshminarayanan et al.,
2017) (Ensemble, Sec. 2), Temperature Scal-
ing (Guo et al., 2017) (TempScale, Sec. 2), our
method (Ours, Sec. 4.2), and its variant with auto-
matic distillation temperature selection (Ours (T̂ ),
Sec. 4.4). For each table, we report results with
and without running the scaling-binning calibrator
following the description in Sec. 3.2. Due to space
constraints, we discuss and display the average per-
formances in here (please see Sec. 5).

Baseline Performances. Results are shown in
Table 1; here, we can see that the baseline has
relatively high calibration errors. Notably, the out-
of-domain ECE values are around 18−19, inter-
preted as over/under-estimating the probability by
about 18−19% in expectation.

Ensemble and Temperature Scaling. Next, we
add ensembles/temperature scaling to the baseline.
Results in Table 1 show that performances improve

in general, especially in the out-of-domain settings:
3/9 in-domain metrics improve (2/9 metrics sim-
ilar) and 8/9 out-of-domain metrics improve for
ensembles, 6/9 in-domain metrics improve (2/9
metrics similar) and 7/9 out-of-domain metrics im-
prove (1/9 metrics similar) for temperature-scaling.
The results are largely consistent with previous
observations that temperature-scaling performed
better when the data come from in-domain (it out-
performs ensembles among 7/9 metrics and 1/9
similar in in-domain settings), whereas ensembles
are more competitive in out-of-domain settings at
the cost of extra computation (it out-performs tem-
perature scaling in 4/9 metrics in out-of-domain
settings while being similar in 3/9).

Our Methods. Then, we apply our method,
which has the same computation at inference time
as the baseline. Table 1 showed that performances
improve as well despite having no extra inference-
time computation cost: 2/9 metrics improve (3/9
metrics similar) in-domain and 9/9 metrics im-
prove out-of-domain. Applying the automatic tem-
perature selection on top of our method further
improves out-of-domain performance in 4 metrics.
However, using automatic temperature does not
further improve the performance when we addi-
tionally apply the scaling-binning calibrator. We
hypothesize that this is because temperature values
are chosen based on evaluation metrics before ap-
plying the scaling-binning calibrator, thus fail to
take it into account. Also, comparing our method
to ensembles and temperature scaling, our method
improves upon temperature scaling in 5/9 metrics
in out-of-domain settings (1/9 similar), but out-
performs the more expensive ensembles in just 3/9
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Without Scaling-Binning Calibrator With Scaling-Binning Calibrator

MCE ECE Brier Score SCE (d) SCE (b) MCE ECE SCE (d) SCE (b)

In Domain

Ours 17.19 5.66 12.19 8.18 12.28 12.94 3.24 4.39 7.51
−Ensemble 18.10 5.90 12.20 10.11 13.19 17.09 5.48 6.40 9.33
−TempScale 21.70 6.13 12.28 8.33 12.58 10.49 3.79 4.45 8.26
−Distillation 13.04 4.51 11.58 4.40 10.09 6.14 2.61 4.30 7.38

Out of Domain

Ours 28.26 17.17 28.08 17.63 22.15 25.11 14.50 15.55 17.92
−Ensemble 27.25 17.40 27.96 18.75 22.89 32.20 16.70 19.86 21.81
−TempScale 29.18 19.89 29.50 21.28 24.89 30.68 17.40 20.76 22.63
−Distillation 21.74 15.39 26.71 15.85 20.58 19.89 14.82 13.05 16.85

Table 2: In-domain/out-of-domain ablation results averaged across tasks. SCE(d)/SCE(b): Squared Calibration
Errors (debiased/biased). Lower scores indicate better calibration.

metrics (1/9 similar). Comparing our method with
automatic temperature selection, we can see 8/9
metrics in out-of-domain settings improves com-
pared to temperature scaling, and 5/9 compared
to ensembles (1/9 similar). This shows that our
methods are competitive in out-of-domain settings
with little extra computation.

6.3 Ablation Experiments

In this section, we (1) ablate our method by re-
moving components to gain insights into how each
of the components contribute to the final perfor-
mance,9 and (2) measure how well distillation trans-
fers calibration performance.

First, we remove ensembles (or temperature
scaling), and include only temperature scaling
(or ensembles) and distillation (−Ensembles and
−TempScale, respectively). We can see from the
results in Table 2 that removing either of them leads
to worse performances in general: 7/9 in-domain
(2/9 being similar) and 6/9 (2/9 being similar) out-
of-domain for removing ensembles, 4/9 in-domain
(4/9 similar) and 9/9 out-of-domain for removing
temperature scaling. This shows that the additional
calibration gains from the teacher model can be
effectively distilled into the student models.

Next, we compare the models before/after distil-
lation (−Distillation).10 As expected, the teacher
model (before distillation) achieved strong perfor-
mance at the expense of extra inference-time com-
putation. We then study to what extent distillation
transfers calibration performance. Let At and Bt

9For ease of comparison, we only ablate the system without
the automatic temperature selection.

10The −Distillation in Table 2 is the result of combining
ensembles and temperature-scaling. In Table 1, we showed
that distillation (especially when combined with automatic
temperature) could be helpful compared to either ensembles
or temperature-scaling alone.

be two different teacher models (before distilla-
tion) with difference in only one of the components
(e.g., ensemble or temperature-scaling), and let As

and Bs be the corresponding student models (after
distillation). Then, we compute the relative per-
centage of improvement because of a component
from teacher to student model (assumingA is more
powerful than B), denoted as ρAB:

ρAB =
ε(As)− ε(Bs)

ε(At)− ε(Bt)
× 100, (10)

where ε(·) denotes the out-of-domain calibration
performance. We compute ρAB for each metric,
and use the median of percentages as the summary
statistic. We found 40.8% (111.2%) of the im-
provements from adding ensembles (temperature
scaling) as extra components in teacher models are
transferred to students models via distillation.11

7 Conclusion and Discussion

We presented a study of calibration of finetuned
language models in the context of text classifica-
tion, where models are evaluated on in-domain
and out-of-domain data. We showed the effective-
ness of a few widely-used calibration methods. We
illustrated the intuitive connection between distil-
lation and calibration, and described simple yet
competitive calibration methods. We conducted
experiments to empirically understand whether dis-
tillation can be used to distill calibration perfor-
mance, and showed that the simple methods we
described achieved competitive out-of-domain cal-
ibration performances. We further presented ab-
lation studies on the usefulness of components of

11We chose median as it is simple and less affected by
outliers. Please see the supplementary materials Sec. C for
more details.
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the proposed method and examined the transfer-
ability of calibration via distillation. However, our
method is limited in that it requires an overhead
cost involved in training the student model, which
could be expensive in some settings. We leave it to
future works to investigate more efficient inference-
time recalibration techniques.
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A Background and Related Works

A.1 Epistemic and Aleatoric Uncertainty
Two types of uncertainty commonly appear in ma-
chine learning literature: epistemic uncertainty and
aleatoric uncertainty (Gal, 2016; Kendall and Gal,
2017). Epistemic uncertainty accounts for uncer-
tainty in model parameters, and tends to decrease as
the amount of observed data increases. Aleatoric
uncertainty conveys the noise inherent in the ob-
servations, and thus cannot be explained away with
an increasing amount of data available. In the
case of classification, examples of aleatoric un-
certainty include the probability of the top class,12

and the entropy of the probability distribution over
classes (Kendall et al., 2018); examples of epis-
temic uncertainties include the mutual informa-
tion.13 In the literature of uncertainty calibration,
we usually calibrate aleatoric uncertainty measured
by the probability of the prediction. In Sec. 4.2,
we also view distillation from the angle of match-
ing another uncertainty between teacher model and
student model, the predictive entropy (Gal, 2016).

A.2 Uncertainty Calibration
The quality of the uncertainty measurement is usu-
ally measured via calibration (Kendall and Gal,
2017). In the context of calibration, the uncer-
tainties often refer to predictive probabilities. The
model is calibrated if the predictive probabilities
match the empirical frequency of the data (Gal,

12More specifically, it is one minus the probabil-
ity/confidence of the top class.

13Please see page 54 in Gal (2016) for details.

2016). Let Ŷ and P̂ be the predicted class and
its associated confidence (probability of correct-
ness) of a neural network. We would like the
confidence estimates P̂ to be calibrated, which in-
tuitively means that we want P̂ to represent true
probabilities (Guo et al., 2017):

P(Ŷ = Y |P̂ = p) = p,∀p ∈ [0, 1]. (11)

Suppose a classification model is given N input
examples, and made predictions ŷ1, ..., ŷN , each
with p̂ = 0.35. We would expect 35% of the
predictions would be correct. The problem of
uncertainty/confidence calibration and confidence
scores have been studied and applied in various
settings (Kuleshov and Liang, 2015; Kuleshov and
Ermon, 2017; Pereyra et al., 2017; Hendrycks and
Gimpel, 2017; Elsahar and Gallé, 2019; Reddy
et al., 2019). In practice, however, perfect cali-
bration is almost impossible (Guo et al., 2017), and
estimating the first term in Eq. 11 is not straightfor-
ward using finite samples, because in most cases P̂
is a continuous random variable (Guo et al., 2017;
Kumar et al., 2019). In Sec. 3, we describe ways to
estimate the calibration performance.

It has been widely observed that modern neu-
ral networks are usually not calibrated out of
the box (Platt, 1999; Zadrozny and Elkan, 2001;
Guo et al., 2017; Ovadia et al., 2019). Recal-
ibration methods improve calibration by trans-
forming un-calibrated outputs into calibrated out-
puts/probabilities, and they include scaling-based
methods (Platt, 1999; Guo et al., 2017), histogram-
binning-based methods (Guo et al., 2017; Zadrozny
and Elkan, 2001), and ensembles (Lakshmi-
narayanan et al., 2017). Recently, Kumar et al.
(2019) proposed the scaling-binning calibrator and
a more sample-efficient estimator of calibration er-
ror. In our work, we describe simple approaches
that combines the strength of ensembles and tem-
perature scaling without introducing computation
at inference time; we further apply the scaling-
binning calibrator to ensure calibration.

Ensembles work by aggregating multiple net-
works trained independently on the entire dataset,
and has been shown to achieve strong performance
in out-of-domain calibration (Ovadia et al., 2019;
Lakshminarayanan et al., 2017).14 Temperature

14More generally, there are randomization-based ensembles
and boosting-based ensembles. Within the randomization-
based ensembles, in our work we use the entire training dataset
to train each model instead of different bootstrap samples of
the original training set (Lakshminarayanan et al., 2017).
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scaling is an extension of Platt scaling (Guo et al.,
2017). It uses a single scalar parameter T > 0 for
all classes. Given output zi (usually logits vectors),
the confidence prediction is:

p̂i = max
k

σ(zi,k/T ). (12)

An extension, called heteroscedastic regression,
is used in our work, which replaces the constant
scalar with learned values (Kendall and Gal, 2017;
Kendall et al., 2018).

A.3 Distillation
Knowledge distillation (Hinton et al., 2015; Domin-
gos, 1997; Blum and Mitchell, 1998; Zeng and
Martinez, 2000; Ba and Caruana, 2014) is a com-
pression technique in which a compact model (usu-
ally referred to as the student model) is trained to
mimic the behavior of a more powerful teacher
model. In the context of classification, knowledge
distillation works by augmenting the loss func-
tion with an additional term DKL(pi‖pj) where
pi = softmax(zi/T ) and pj = softmax(zj/T )
with zi and zj the logits from two models, and T
controls the smoothness of the output distribution.
Knowledge distillation has been used in a wide
range of applications (Buciluǎ et al., 2006; Wang
et al., 2018; Kim and Rush, 2016; Furlanello et al.,
2018; Clark et al., 2019; Teh et al., 2017; Schwarz
et al., 2018; Sanh et al., 2019). In this work, we
show that distillation can also be used to distill cal-
ibration performance, and use it to build simple yet
competitive recalibration methods.

A related area of research is label smooth-
ing (Yuan et al., 2020). Label smoothing replaces
the hard/one-hot targets yk with modified targets
yk(1−α)+α/K, whereK is the number of classes
and α is a hyper-parameter. Pereyra et al. (2017)
showed that label smoothing provides consistent
gains across many tasks and proposed a new reg-
ularizer, termed confidence penalty. Müller et al.
(2019) studied when label smoothing is helpful ,
and found that label smoothing can implicitly cal-
ibrate model’s predictions. Instead, our use of a
teacher model can be seen as adaptively deciding
how much smoothing is needed (Tang et al., 2020).

A.4 Recent Related Works
Finally, there are also a few recent related works
in the computer vision literature, e.g., Yun et al.
(2020) proposed to distill the predictive distribution
between different samples of the same label during

training to improve calibration performance, Gurau
et al. (2018) proposed Distilled Dropout Network
which distills knowledge from multiple MC sam-
ples from the teacher to improve the reliability of its
uncertainty scores. In our work, we mainly focus
on language tasks. Concurrent to our work, Desai
and Durrett (2020) studied the calibration of pre-
trained transformers when finetuned to downstream
tasks, and Hendrycks et al. (2020) studied the out-
of-distribution robustness of pretrained transform-
ers. We are different from these two works in that
first we present a systematic study on the out-of-
distribution calibration; second we draw insights
from the connection between distillation and tem-
perature scaling to design simple yet competitive
recalibration methods; third, we conduct experi-
ments to understand the connection between these
two concepts empirically; finally, we also include a
more comprehensive set of calibration evaluations
following Ovadia et al. (2019) and Kumar et al.
(2019).

B Setup Details

Model Details and Hyperparameter Search.
Our codebase is largely based on the
Transformers library from HuggingFace (Wolf
et al., 2019).15 We used RoBERTa-base (Liu
et al., 2019) for the language model backbone
and used most of the default/recommended hyper-
parameters in the Transformers library. We
tried two values of the learning rate in our initial
experiments: 2e−5 and 1e−5; these numbers
are chosen based on the hyperparameter search
described in the library, and we stick to one of
them (1e−5) based on accuracy. For experiments
that involve ensembles, we use an ensemble
size 2. For experiments that involve distillation,
we set T = 1.0 (i.e., no scaling) for models
without automatic temperature selection unless
we explicitly mention otherwise. When automatic
temperature selection is used, we chose T̂ based
on the Brier Scores on the validation dataset. All
of our experiments ran on a single V100 GPU.
The baseline model has 125.2M parameters, the
temperature-scaling (heteroscedastic variant) has
125.8M parameters, and our method has 125.2M
(same as the baseline model). We train multiple
models using different random seeds before
ensembling them, but otherwise run the training

15https://github.com/huggingface/
transformers. We used v2.4.1.

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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and inference once. The runtime varies among
tasks, but most of them could finish within a day.

Data. We perform experiments on the classifica-
tion tasks from the GLUE Benchmark (Wang et al.,
2019; Warstadt et al., 2019; Dolan and Brockett,
2005; Agirre et al., 2007; Williams et al., 2018; Ra-
jpurkar et al., 2016; Dagan et al., 2006; Bar-Haim
et al., 2006; Giampiccolo et al., 2007; Bentivogli
et al., 2009; Levesque et al., 2011).1617, and we re-
fer readers to Wang et al. (2019) regarding dataset
statistics. Because the calculation of calibration er-
rors requires access to the ground truth data, which
is not available for GLUE data, we split the valida-
tion dataset into two halves, one for validation and
the other for test, following the approach of Desai
and Durrett (2020). For MultiNLI, we merge the
results for both MultiNLI matched and mismatched
sections. When computing the out-of-domain per-
formance between the 3-label MultiNLI and other
2-label NLI tasks, we follow the approach used
in the jiant library (Pruksachatkun et al., 2020)
and merge the predictions/labels that correspond to
“neutral” and “contradiction” into a single category.
We follow the Transformers library for the rest
of the data preprocessing.

Evaluation Details. Our evaluation follows Guo
et al. (2017), Ovadia et al. (2019), and Kumar et al.
(2019). For MCE, ECE, and Brier Score, our im-
plementation follows Ovadia et al. (2019),18 and
we use the default bin-size of 10 (in the tables
below, we additionally include the performances
when evaluating using bin-sizes of 15 and 50). For
squared calibration errors (debiased or biased), we
use the uncertainty-calibration library
from Kumar et al. (2019) and follow default con-
figurations whenever possible.19

For in-domain evaluations, the train data and
evaluation data come from the same task. For out-
of-domain evaluations, the train data and evalu-
ation data come from different tasks of the same
type. We group MRPC and QQP (paraphrase tasks),
and group MNLI (2-label version),20 QNLI, RTE,

16https://gluebenchmark.com/
17QQP dataset: https://

www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs

18https://github.com/google-research/
google-research/tree/master/uq_
benchmark_2019

19https://github.com/p-lambda/verified_
calibration

20We only use the 2-label version of MNLI for evaluation.

and WNLI (NLI tasks). We leave SST-2 (senti-
ment), CoLA21 (acceptability), and MNLI (3-label
version, NLI) as separate groups. We use the in-
domain validation data to train the scaling-binning
calibrator.

Analysis Experiments Details. We conduct ex-
periments on RTE, in which we distill teacher mod-
els with different ensemble-sizes (from 1 to 6) and
the temperature scaling constant (from 0.50 to 2.00
with a step size of 0.02) to student models. Each
model is then evaluated on both in-domain task
(RTE) and out-of-domain tasks (MNLI-2, QNLI,
WNLI) using confidence, ECE, MCE, Brier Scores,
SCE (debiased) and SCE (biased). The numbers
represent performances on the validation dataset.

C Further Experiment Details

Distillation Transferability of Calibration.
We compute ρAB based on both Table 1 and
Table 2 of the main paper. The percentage of
improvement presented in Sec. 6.3 of the main
paper on ensembles is computed based on tempera-
ture scaling + ensembles (−Distillation in main
paper Table 2) as At, ensembles only (Ensemble
in main paper Table 1) as Bt, temperature scaling
+ ensembles + distillation (Ours in main paper
Table 2) as As, and ensembles + distillation
(−TempScale in main paper Table 2) as Bs. The
percentage of improvement on temperature scaling
is computed similarly with temperature scaling
component as the main difference between the
teacher/student models.

D Expanded Analysis Experiments

Please see Fig. 2 for the expanded visualization of
the analysis experiments.

E Detailed Main Experiment Results

Please see Table 3 and Table 4 for detailed in-
domain and out-of-domain experiment results.

F Detailed Ablation Experiment Results

Please see Table 5 and Table 6 for detailed in-
domain and out-of-domain ablation experiment re-
sults.

21We use accuracy for CoLA evaluation so that calibration
error computations would be more consistent across tasks.

https://gluebenchmark.com/
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://github.com/google-research/google-research/tree/master/uq_benchmark_2019
https://github.com/google-research/google-research/tree/master/uq_benchmark_2019
https://github.com/google-research/google-research/tree/master/uq_benchmark_2019
https://github.com/p-lambda/verified_calibration
https://github.com/p-lambda/verified_calibration
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(a)

(b)

Figure 2: Figure (a): Visualization of calibration performance, measured by SCEs (debiased and biased), between
teacher models and student models, trained on RTE evaluated on RTE (in-domain), WNLI, QNLI, and 2-label
version of MNLI (out-of-domain). The n in the legend refers to the size of ensemble(s). Figure (b): This is a
zoomed-out version of Figure (a). Instead of using color to imply the ensemble size, here the color refers to the
task in which the models are evaluated, and points of different ensemble sizes but the same evaluation task are
aggregated and represented by the same color. Here each sub-figure represents the evaluation metric. All Figures:
The X-axis refers to the performance of the teacher model, and the Y-axis refers to the performance of the student
model. Within each sub-figure, each dot represents a different configuration used in the teacher model. The P/S in
the legends refer to the Pearson/Spearman correlations.
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