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Abstract

The language models nowadays are in the cen-
ter of natural language processing progress.
These models are mostly of significant size.
There are successful attempts to reduce them,
but at least some of these attempts rely on ran-
domness. We propose a novel distillation pro-
cedure leveraging on multiple teachers usage
which alleviates random seed dependency and
makes the models more robust. We show that
this procedure applied to TinyBERT and Dis-
tilBERT models improves their worst case re-
sults up to 2% while keeping almost the same
best-case ones. The latter fact keeps true with
a constraint on computational time, which is
important to lessen the carbon footprint. In ad-
dition, we present the results of an application
of the proposed procedure to a computer vision
model ResNet, which shows that the statement
keeps true in this totally different domain.

1 Introduction

Nowadays the language models became a corner-
stone in many natural language processing tasks.
Their results in the benchmarks show new high
scores. But with great power sometimes comes
huge size, the current models could have dozens of
billions of weights, e.g. TuringNLG (Rasley et al.,
2020), to GPT-3 (Brown et al., 2020) with 175 bil-
lion parameters, and counting. In many cases the
resources of computational memory are limited and
there is a demand for small solutions. One of such
solutions is a distillation of language models. There
were presented several approaches for the specified
task, among others these are TinyBERT (Jiao et al.,
2019) and DistilBERT (Sanh et al., 2019).

We analyzed these approaches and found that
they share an important flaw - the dependency from
the random seed used in the distillation process.

0Work done while Artur Ilichev was at Huawei.

During the distillation a student model needs to be
trained multiple times with different random seeds
to achieve better performance, although it is not
guaranteed that there will be “winning numbers”
in your seed choice. So we concentrated on the
worst case scenario and proposed a technique to im-
prove it. Considering the computational resources,
the improvement could be achieved with the same
computational budget, allowing one to diminish
the carbon footprint. We propose the novel tech-
nique of multi-teacher distillation called to make
the mentioned language models more robust to seed
selection. We evaluated our method on a computer
vision classification model ResNet (He et al., 2016)
and make sure that the proposed technique is appli-
cable to a totally different domain.

Our contribution is as follows: we present (i) a
new distillation method and an experimental evalu-
ation of this method for three models, namely (ii)
TinyBERT and (iii) DistilBERT, where we mod-
ified the distillation procedure adding the task-
specific distillation, for three natural language un-
derstanding tasks and (iv) ResNet for a computer
vision task, showing on the one hand that models
learned from multiple teachers are consistently bet-
ter in the worst case and about the same in the best
case, and on the other hand, these models are better
with a constraint on computational time.

This work is structured as follows: in Section 3
we describe the distillation process and our modi-
fication (in Section 3.5); in Section 4 we describe
the datasets used in the experiments, which are de-
scribed in Section 5. The Section 6 concludes the
article and discusses the obtained results.

2 Related Work

Common techniques for model compression and ac-
celeration can be roughly grouped into three groups.
Pruning parts of large-scale models allows to re-
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duce the number of weights and accelerate infer-
ence. Sajjad et al. (2020) drop entire layers from
pre-trained Transformer models, showing that sev-
eral top-layers can be dropped, maintaining the
performance on downstream tasks. Michel et al.
(2019) remove all but one attention head, show-
ing that indeed one head might be sufficient at
the test time not only for sentence modeling tasks
and but for machine translation also. Quantiza-
tion keeps the network structure unchanged, but
quantizes network weights to smaller data types,
such as int8. Quantization can be performed both
post training (Bhandare et al., 2019) or during fine-
tuning (Zafrir et al., 2019). Knowledge distilla-
tion (Hinton et al., 2014) trains the more compact
models, students, to reproduce the behavior of a
larger model, the teacher. BERT-PKD (Sun et al.,
2019), TinyBERT (Jiao et al., 2019) and Distil-
BERT (Sanh et al., 2019), distilled versions of the
BERT model, are commonly used as strong base-
lines for BERT compression. We describe Tiny-
BERT and DistilBERT models in more detail in the
next section. Cho and Hariharan (2019) show that
distilling from a better (larger and more accurate)
teacher does not always lead to a better student
model. We see this result as a motivation for using
multiple teachers instead of trying to pick the best
one to get a better score.

There are several prior studies considering dis-
tillation from multiple teachers for Computer Vi-
sion (CV) or Natural Language Processing (NLP)
tasks. It can be applied to a multi-task or multi-
domain setting. For example, Zhang and Peng
(2018) combine the knowledge of teachers trained
on different tasks, Wu et al. (2019) train teachers
on different features extracted from video frames,
Ruder et al. (2017) use domain-specific teachers
for domain adaptation, and Tan et al. (2019) ob-
tain multilingual machine translation model using
teachers pre-trained for each language pair.

Some authors apply multiple teachers without
significantly modifying the distillation pipeline,
which is closer to our work. Fukuda et al. (2017)
propose two ways to utilize multiple teachers in the
distillation process: to augment the training data
with soft labels provided by different models or
to switch the teacher models dynamically at the
mini-batch level. Ze et al. (2020) show that aver-
aging the prediction of three teachers trained with
different learning rates can improve the score on
Question Answering (QA) and Natural Language

Inference tasks. Yang et al. (2020) adopted two-
stage distillation procedure and showed improve-
ment in several QA tasks. Liu et al. (2019) show
the improvement on several tasks from the GLUE
benchmark. Additionally, Sau and Balasubrama-
nian (2016) propose to add normally distributed
random noise to the logits of the teacher model
during distillation, claiming that such procedure is
a simulation of learning from multiple teachers.

Besides prediction averaging, multiple teachers
can also be utilized to transfer knowledge contained
in hidden states or structural relations between ex-
amples. You et al. (2017) average soft-labels of
multiple teachers and propose to transfer relative
dissimilarity among intermediate representations
using teacher voting to select the best ordering re-
lationships. Liu et al. (2020) combine soft-labels
of multiple teachers with learnable weights, distill
structural knowledge between data examples, and
transfer intermediate layer representations making
each teacher responsible for a specific group of lay-
ers in the student network. Both papers relate to
the Computer Vision field, both use models with
different architectures as teachers, and both show
that 5 teachers are better than 3 for their methods
(in terms of classification accuracy), but not better
for the original knowledge distillation.

To the best of our knowledge, there is no study
dedicated to the isolated investigation of the ef-
fect that multiple teachers distillation has on the
model quality and robustness and of how this effect
change with the number of teachers. Importantly,
we use models with exactly the same architecture
but fine-tuned with different random seeds as teach-
ers.

3 Model Distillation

We briefly describe the formulation of Original
Knowledge Distillation procedure (Hinton et al.,
2014), two approaches to distill BERT-like mod-
els, and one approach to distill the ResNet CV
model. Then we describe how multiple teachers
get involved in the process.

3.1 Knowledge Distillation

The Original Knowledge Distillation (OKD), pro-
posed by Hinton and co-authors in (Hinton et al.,
2014), became an integral part of transferring
knowledge from large neural networks to smaller
ones. The idea is to train a network called “stu-
dent” using the task-specific outputs of the so-
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Figure 1: An overview of distillation from BERT to
TinyBERT, the figure is taken from the original paper
(Jiao et al., 2019) : (a) the general idea of Transformer
distillation, (b) the details of Transformer-layer distilla-
tion

called “teacher” model as targets. This method
combines two losses, namely LCE and LKD. With
λ being a hyper-parameter to control the relative
influence of the teacher knowledge transfer.

LOKD = LCE + λLKD. (1)

LKD, Knowledge Distillation loss component, is a
metric of proximity between logits of the teacher
and student models (zT and zS respectively). In
this paper, we use the Cross-Entropy variation as
this loss:

LKD = −softmax(zT / t)·log softmax(zS/ t),
(2)

where t is the softmax temperature applied at train-
ing time. At the student model inference its soft-
max temperature is set to 1. LCE is a classic Cross-
Entropy loss for label prediction. The following
models are modifying this process each in its own
way.

3.2 TinyBERT
The TinyBERT (Jiao et al., 2019) model has the
same general architecture as BERT (Devlin et al.,
2018), but has fewer layers and smaller hidden
and feed-forward sizes. We experiment with the
smallest 4-layer model. The number of attention
heads on each Transformer (Vaswani et al., 2017)
layer is the same as in BERT (12 heads).

The TinyBERT distillation process involves sev-
eral loss functions. Assume that the student model
has M + 2 layers, with 0 and M + 1 being the in-
dices of the Embedding layer and Prediction Layer
respectively. The Transformer (Vaswani et al.,
2017) layers are numbered from 1 to M . Every
Transformer layer of the student model receives
knowledge from the teacher network. Illustrations

to this process are presented in Fig. 1. The mapping
g(k) between the teacher and student layers is es-
tablished by a uniform function, in our case the k-th
layer of the student model learns from g(k) = 3k-
th layer of the teacher network (BERTBASE). The
objective is defined as MSE between the Atten-
tion score matrices plus MSE between the outputs
of the Transformer layer (after its FFN part). In
order for the dimensions of the student and the
teacher hidden states to match, a learnable linear
transformation is applied to the student states. The
resulting loss function looks as follows:

LTransformer(k) = MSE(HS
k WHHT

g(k))+

+
1

h

h∑
i=1

MSE(AS
k,i,A

T
g(k),i),

(3)

where Hk is the output of the k-th Transformer
Layer, WH is the linear transformation matrix, h
is the number of attention heads, and Ak,i is the
Attention matrix of layer k and head i. Whether
the states are associated with the student or the
teacher is indicated by the upper indices S and T,
respectively. Similarly, MSE is used to distill the
embeddings E{S,T}:

Lemb = MSE(ESWe,E
T ). (4)

For the prediction layer, the Knowledge Distillation
loss (2) described above with temperature t = 1 is
used to adjust the weights of the student.

The TinyBERT distillation process includes two
stages. During the first stage called General Dis-
tillation (GD), the large unlabeled corpus (English
Wikipedia) is used and the general linguistic knowl-
edge contained in model weights is transferred
from teacher to student (the prediction layer is
untapped). The following objective is minimized
during the distillation process:

Ltiny =

M∑
k=0

Llayer(Sk, Tg(k)). (5)

For each layer the loss function is defined by

Llayer(k) =

{
Lemb, k = 0,

LTransformer(k), 0 < k ≤M.
(6)

The second stage is called Task-Specific Distil-
lation (TD) and aims to transfer the task-specific
knowledge. It is in fact split into two phases. First,
Intermediate Layers Distillation (ILD) is performed



604

with the same loss Ltiny (5) as in the General Dis-
tillation. Then, Prediction Layer Distillation (PLD)
is performed with LKD.

The authors apply an augmentation procedure
to extend the task-specific training dataset. For
every example in the training dataset, N new exam-
ples are generated by replacing random words in a
sentence with candidates provided by BERT (De-
vlin et al., 2018) as a language model or by nearest
neighbors search in GloVe (Pennington et al., 2014)
embedding space. The number N is called the aug-
mentation factor. A detailed description of the al-
gorithm can be found in the original paper (Jiao
et al., 2019).

3.3 DistilBERT

The DistilBERT (Sanh et al., 2019) model also
shares the general architecture with BERT, slightly
modifying it by removing the token-type embed-
dings and the pooling layer. Following the original
work, we use 6-layer DistilBERT. The student lay-
ers are initialized directly from the teacher network
(BERTBASE) weights using the uniform strategy
for layer mapping.

In the original work, DistilBERT only obtains
knowledge from the teacher BERT through General
Distillation, although the authors mention experi-
ments with Task-Specific Distillation on SQuAD
dataset (Rajpurkar et al., 2016). For General Dis-
tillation, a concatenation of English Wikipedia and
Toronto Book Corpus (Zhu et al., 2015) is used
as training data. The student model uses both su-
pervised training loss (Masked Language Model-
ing loss, LMLM) and Knowledge Distillation loss,
with logits for the teacher and the student being
obtained on Masked Language Modeling (Devlin
et al., 2018) task. In addition, the cosine embed-
ding loss Lcos is used, where the cosine distance is
calculated between the outputs of the FFN on the
last Transformer layers of the teacher and student.
Thus, the general DistilBERT model is trained us-
ing the following loss:

Ldistil = LMLM + LKD + Lcos. (7)

In the original work, the model is then directly
fine-tuned on downstream tasks without the help
of a teacher network. In the present work, we
experiment with the Task-Specific Distillation ap-
plied to DistilBERT. We adopt the two-stage proce-
dure similar to TinyBERT. After obtaining the gen-
eral model, we perform distillation on task-specific

datasets. We experimented with different loss func-
tion combinations and found out that the best task-
specific performance is achieved when three loss
functions are used:

LTS
distil = LCE + LKD + Lcos, (8)

where LCE is the standard Cross-Entropy loss (cal-
culated with ground truth data labels) and Lcos is
the same cosine embedding loss as used during the
General Distillation. Unlike TinyBERT, we do not
split the Task-Specific Distillation stage into two
phases (since there is no need to transfer knowl-
edge between deep layers of the networks) and do
not use data augmentation.

3.4 ResNet

We also tested our method in application to a com-
puter vision task. We use the classic ResNet model
described in (He et al., 2016). The key idea behind
the ResNet architecture is a residual block which
consists of convolutions layers with skip connec-
tions, that helps to reduce the gradient vanishing
problem which makes possible to build a deeper
neural network.

The key difference between knowledge distilla-
tion in NLP (both TinyBERT and DistilBERT vari-
ations) and CV is the stage of distillation. A CV
distillation does not contain the General Distillation
phase, hence teacher and student models are not
pre-trained on a general task. In our experiments
teacher and student models were ResNet variants,
namely ResNet-110 and ResNet-20 respectively.

3.5 Multiple Teachers (Our Method)

A possible way to provide a student model with
more knowledge is to make use of multiple teacher
models. This can be achieved by combining predic-
tions, outputs, or hidden states of several models.
In the present work, we focus on averaging the
logits of all teachers before the final softmax layer.
That means that multiple teachers are used exclu-
sively during Prediction Layer Distillation to Tiny-
BERT and during Task-Specific Distillation to Dis-
tilBERT. All other stages are conducted with one
(primary) teacher. We also use outputs from only
one primary teacher model for Lcos loss function
during Task-Specific Distillation to DistilBERT to
ensure more fair comparison with TinyBERT. Thus,
the use of k teachers {S1, . . . , Sk} is introduced by
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slightly changing the LKD formula (2):

LkKD = −softmax(zT / t)×

×log softmax(
k∑

i=1

zSi/ (k · t)).
(9)

In this paper we obtain different teacher net-
works for each downstream task simply by fine-
tuning BERTBASE with different random seeds.
We leave the study of other ways of selecting
teacher networks to combine as future work.

As for ResNet distillation, since there are no
other phases, except the phase of target task distilla-
tion, we use multiple teacher distillation technique
on it. We again simply fine-tune ResNet-110 with
different random seeds to build a set of teachers.

4 Datasets

For evaluation we use a subset of tasks from the
GLUE benchmark (Wang et al., 2019) for NLP
models. We chose the CoLA task, since the per-
formance drop is the biggest on this dataset for
both considered models. The MRPC and SST tasks
were chosen in addition to CoLA task due to the
average performance drop. Also, the size of MRPC
is comparable to CoLA, while SST-2 is a much
bigger corpus. Another important feature is that
MRPC and SST-2 corpora have test labels publicly
available, while the CoLA dataset has not, so be-
low all the results are provided on the development
set from this dataset. A brief description of the
datasets is provided in this section. We summa-
rize information about the datasets in Table 1. The
original results of considered NLP models are pre-
sented in Table 2. There are additional datasets in
GLUE benchmark, namely: MNLI-m, MNLI-mm,
QQP, QNLI, RTE, and STS-B. We provide results
on these datasets for reference.

For a computer vision model we chose the clas-
sic CIFAR-10 dataset. For the chosen implemen-
tation the results, on this dataset are 93.68% and
91.73% for teacher and student respectively1.

MRPC
The Microsoft Research Paraphrase Corpus (Dolan
and Brockett, 2005) contains sentence pairs in the
online news domain. The task is to classify whether
the sentences in the pair are semantically equivalent

1These results are better than reported in the original pa-
per (He et al., 2016) due to mistakes in the original implemen-
tation.

Table 1: Dataset statistics. In “Samples” column we
provide train/validation/test split size. “#Tokens“ col-
umn contains an average number of words and punctu-
ation marks in a dataset sample. For MRPC we provide
the summed number of tokens for a pair of sentences as
a sample.

Corpus Samples #Tokens Metric
MRPC 3668 / 408 / 1725 43.9 / 44.0 / 43.5 Accuracy
CoLA 8551 / 1043 / 1063 8.9 / 9.3 / 9.1 MCC
SST-2 67349 / 872 / 1821 9.4 / 19.5 / 19.2 Accuracy
CIFAR-10 50000 / - / 10000 N/A Accuracy

(i.e. have the same meaning). We use classification
accuracy as the evaluation metric. The test labels
are publicly available for this dataset.

CoLA

The Corpus of Linguistic Acceptability (Warstadt
et al., 2019) consists of sentences from linguistic
literature. Each example is annotated with a binary
label of whether it is a grammatically acceptable
English sentence. We evaluate the Matthews corre-
lation coefficient (Matthews, 1975) on the develop-
ment set only, due to the test labels are not publicly
available.

SST-2

The Stanford Sentiment Treebank (Socher et al.,
2013) contains sentences from the movie reviews.
We evaluate the classification accuracy on binary
sentiment annotation (positive/negative), which can
be obtained from publicly available fine-grained
five-way sentiment labels for both development
and test sets.

CIFAR-10

CIFAR-10 dataset was presented in (Krizhevsky
et al., 2009). It consists of the 50000 training im-
ages and 10000 test images scraped from the In-
ternet. They are labeled with 10 categories for
classification: plane, car, cat, dog, bird, deer, frog,
horse, ship, truck. In this paper, we evaluate the
classification accuracy metric in this task. The test
labels are publicly available for this dataset.

5 Experiments

In this section we describe the experimental setup
and then provide the results and their analysis.
All the experiments were performed on a single
GeForce RTX 2080 Ti.
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Table 2: Results are evaluated on the test set of GLUE official benchmark datasets. All models are learned in a
single-task manner. In the parentheses we provide performance drop (or gain with ’-’) in comparison to the teacher
model marked with *.

Model
Dataset

MNLI-m MNLI-mm QQP SST-2 QNLI MRPC RTE CoLA STS-B

BERTBASE* 83.9 83.4 71.1 93.4 90.9 87.5 67.0 52.8 85.2
BERTSMALL 75.4 74.9 66.5 87.6 84.8 83.2 62.6 19.5 77.1
DistilBERT 78.9 (5.0) 78.0 (5.4) 68.5 (2.6) 91.4 (2.0) 85.2 (5.7) 82.4 (5.3) 54.1 (12.9) 32.8 (20.0) 76.1 (9.1)
TinyBERT 82.5 (1.4) 81.8 (1.6) 71.3 (-0.2) 92.6 (0.8) 87.7 (3.2) 86.4 (1.1) 62.9 (4.1) 43.3 (9.5) 79.9 (5.3)

Figure 2: Results for TinyBERT. Shaded: ± one stan-
dard deviation.

5.1 Distillation Setup

For each dataset we fine-tuned 6 teacher mod-
els with different random seeds. Each teacher
NLP model is initialized with BERTBASE uncased
version from Huggingface’s Transformers open-
source library2 (Wolf et al., 2020). We used 30552
as the vocabulary size. Each teacher CV model
is initialized as a ResNet-110 model trained on
CIFAR-10.

To study the dependence between the number of
teachers and the student model scores, we vary the
number of teachers from 1 (single teacher distilla-
tion) to 6. For each number k, we perform experi-

2We used Transformers version 2.9.0

Figure 3: Results for DistilBERT. Shaded: ± one stan-
dard deviation.

ments with every k-combination (unordered) from
a 6-teacher set. For instance, for k = 2 we have
C2
6 = 15 possible combinations. Since distillation

procedures for NLP models contain parts where
a single teacher is used (ILD for TinyBERT and
Lcos for DistilBERT), we actually conduct k exper-
iments for each k-combination with every teacher
from that combination being selected as primary.

For both TinyBERT and DistilBERT, we experi-
ment only with Task-Specific Distillation. As ini-
tialization, general models published by the authors
are used3. For ResNet models we use an existing

3General 4layer-312dim TinyBERT from
https://github.com/huawei-noah/
Pretrained-Language-Model/tree/master/

https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/TinyBERT
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implementation4 to train the models on the CIFAR-
10 dataset, since there is no pre-training stage in
this model distillation process.

For TinyBERT, we perform Task-Specific Dis-
tillation from a single teacher using the original
pipeline presented in (Jiao et al., 2019). The only
difference is that for the MRPC dataset where a
pair of sentences is passed as model input we apply
augmentation procedure to both input sentences
simultaneously, while (Jiao et al., 2019) leave one
of the sentences unchanged. For distillation from
multiple teachers, the Intermediate Layers Distil-
lation part remains the same and Prediction Layer
Distillation is modified as described above. For
each teacher combination, we perform distillation
3 times on MRPC and CoLA with training data
files generated by different runs of the augmenta-
tion procedure. Since SST-2 has significantly more
training data, the results are less dependent on ran-
domness in the augmentation procedure, so we use
only one generated file for it.

For DistilBERT, we use our Task-Specific Distil-
lation procedure described above. As we already
mentioned, we do not use data augmentation, so
we perform distillation 3 times with different ran-
dom seeds on all datasets to reduce the impact of
randomness on the results of our experiments and
to have the same number of experiments as with
TinyBERT.

5.2 Results
We conducted a series of experiments in order to
prove a hypothesis that a distilled model learned
from multiple teachers is more robust to a seed
choice. We call a model more robust if it has higher
worst possible scores, while keeping the best possi-
ble scores about the same level.

At first we would like to compare single-teacher
models with multiple teacher ones. To do that, we
calculate the minimum and the maximum score
achieved with each teacher k-combination. In sin-
gle teacher mode we simply reuse scores obtained
with each teacher included in the combination,
while in multiple teacher mode we use all teachers
in the combination for the LkKD. Then we aver-
age these minimum and maximum scores over all

TinyBERT
distilbert-base-uncased model from Transformers

library (https://github.com/huggingface/
transformers/tree/master/examples/
distillation)

4https://github.com/akamaster/pytorch_
resnet_cifar10

Figure 4: Results for TinyBERT considering time spent
on distillation. Shaded: ± one standard deviation.

Figure 5: Results for DistilBERT considering time
spent on distillation. Shaded: ± one standard devia-
tion.
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Figure 6: Results for ResNet on CIFAR-10 dataset.
Shaded: ± one standard deviation.

Figure 7: Training duration for ResNet on CIFAR-10
dataset. Shaded: ± one standard deviation.

combinations for each k, obtaining the aggregated
measure of models performance.

The scoring results for TinyBERT are provided
at Fig. 2, the scoring results for DistilBERT are pro-
vided at Fig. 3, while ResNet results are presented
at Fig. 6. As one could see the initial hypothesis
could be considered true for all the datasets and
more than that, the best achievable results are more
probable with multiple teacher models for the most
models and datasets, with exception of SST-2 for
DistilBERT and CoLA for TinyBERT.

One could point out concern regarding the mul-
tiple teacher models: these models require signifi-
cantly larger computational resources to be trained.
In order to reduce the potential carbon footprint,
we collected additional data for training duration.
Since all the training procedures were performed
on the same hardware, these measurements could
be used for the computational budget comparison.
The metrics for TinyBERT are presented at Fig. 4,
the metrics for DistilBERT are presented at Fig. 5,
while the time consumption for ResNet is presented

at Fig. 7. It is readable from the figures that with
additional restriction on comparable computational
time the hypothesis keeps true, the distilled mod-
els are better in the worst case and keep about the
same results in the best case, which allows us to
call them more robust than the single ones.

6 Conclusion

We showed that the existing distillation process
could be improved with the usage of multiple
teachers which differ only with random seed ini-
tialization. For the NLP models we applied our
method to the task-specific distillation, thus im-
proving TinyBERT results. For DistilBERT we
modified the original procedure, which led to the
improvement in most cases. We also applied the
proposed method to ResNet model distillation on
the CIFAR-10 task, which led to the quality im-
provement in all evaluated cases. More than that,
the models with roughly the same time consumed
by the learning (and distillation) process are better
in the worst case, keeping the best results about
same level. This keeps true for all the evaluated
models and datasets.

As future work, we see an application of the de-
veloped technique to the wider variety of models,
including the computer vision ones. We hope that
our approach can improve the robustness of other
modern distillation methods. The additional exper-
iments could be done with more specific tasks, like
dialog generation and information retrieval. We
hope that our work will foster the research on this
topic in the future.
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