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Abstract
Entity tags in human-machine dialog are inte-
gral to natural language understanding (NLU)
tasks in conversational assistants. However,
current systems struggle to accurately parse
spoken queries with the typical use of text
input alone, and often fail to understand the
user intent. Previous work in linguistics has
identified a cross-language tendency for longer
speech pauses surrounding nouns as compared
to verbs. We demonstrate that the linguistic ob-
servation on pauses can be used to improve ac-
curacy in machine-learnt language understand-
ing tasks. Analysis of pauses in French and En-
glish utterances from a commercial voice as-
sistant shows the statistically significant differ-
ence in pause duration around multi-token en-
tity span boundaries compared to within entity
spans. Additionally, in contrast to text-based
NLU, we apply pause duration to enrich con-
textual embeddings to improve shallow pars-
ing of entities. Results show that our proposed
novel embeddings improve the relative error
rate by up to 8% consistently across three do-
mains for French, without any added annota-
tion or alignment costs to the parser.

Index Terms: Natural Language Understanding,
BERT, Shallow Parsing, Entity Recognition, Con-
textual Embeddings

1 Introduction and Related Work

Voice assistants are increasingly becoming a part
of our daily lives as they empower us to complete
diverse and complex tasks. Today, voice assistants
are able to make phone calls, take notes, set alarms,
narrate bed time stories, or even rap hip-hop. Given
a user’s request, the assistant transcribes the input
audio to text, and a natural language understanding
(NLU) system classifies and routes the transcribed
text to components that handle the request (e.g.,
phone call, notes, alarm).

∗work done as an intern at Apple
†work done while at Apple

Typical conversational NLU systems rely on
text, the output of an automatic speech recognition
(ASR) system (Muralidharan et al., 2019). These
systems have proven successful, but relying wholly
on text means that some analyses may be inaccu-
rate (Nygaard et al., 2009), since acoustic signals
may be needed to arrive at the right intent. For
example, in the utterance “play thank you next”,
the pause duration between “you” and “next” can
help determine if the request is to play the specific
song “thank you next” or to play the song “thank
you” but next in the queue. This disambiguating
function of pause information is well known, but
the potential role of pause information in signalling
different types of constituents, as described in Sei-
fart et al. (2018), has not, to our knowledge, been
investigated in this setting.

Our goal is two-fold. Our first objective is to an-
alyze the findings of Seifart et al. (2018) in the con-
text of spoken conversations typical of those pro-
cessed by voice assistants. Specifically, we show
that differences in pause length around named en-
tity spans is a statistically reliable processing cue.
Our second goal is to demonstrate that the intuitive
role of pause duration in aiding language under-
standing can be used in practice. Specifically, we
present novel pause-grounded contextual embed-
dings that consistently outperform text-based repre-
sentations in a language understanding task across
multiple domains.

A standard approach to a tighter integration be-
tween acoustic information and NLU has been to
use end-to-end models that can consume acoustic
waveforms directly and learn NLU labels (Haghani
et al., 2018). However, this approach can be diffi-
cult to adapt to traditional text-based tasks since au-
dio inputs need to be labeled with task-specific in-
formation, introducing additional annotation costs.

An alternative approach is suggested by the re-
cent and growing body of research which encodes
text along with other modalities, such as audio
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Table 1: Statistics for the dataset EngFrPauseData.

Measure French English
Number of utterances 17,799 22,388

Average # tokens in an utterance 3.67 4.71
% of tokens that are entities 24% 24.52%

Average pause duration per token 51.60ms 33.64ms

and video, in a single embedding, known as multi-
modal grounded embeddings (Settle et al., 2019;
Jeon et al., 2019; Rahman et al., 2020; Lan et al.,
2020; Chuang et al., 2019; Chung et al., 2020).
These models have proven successful in tasks like
speech recognition (Settle et al., 2019) and sen-
timent analysis (Rahman et al., 2020). However,
they require the data from different modalities to be
aligned in order to produce the embeddings, again
increasing the cost of generating training data.

We work within this paradigm of multi-modal
grounded embeddings using pause markers in spo-
ken utterances for the task of shallow parsing (Lad-
hak et al., 2016; Vijayakumar et al., 2017; Rahman
et al., 2020; Liu et al., 2020; Lan et al., 2020).
We propose a novel self-supervised architecture
adding a pause prediction task to traditional text-
based BERT-style language models (Devlin et al.,
2019). To the best of our knowledge, this is the first
study on grounding textual embeddings in spoken
pause signals.

We pre-train our embeddings using token-level
pauses from the ASR system, and consume the rep-
resentations in the downstream parsing task without
fine-tuning. We do not input pause duration in our
downstream task and, therefore, do not require data
from different modalities to be aligned. This sets
our approach apart from end-to-end approaches
that use speech signals as input during inference,
requiring additional task-specific annotation (such
as Chi et al. (2020); Liu et al. (2020); Ling et al.
(2020)).

2 Analysis of Pause Duration

In Seifart et al. (2018), time-aligned spoken lan-
guage corpora in multiple languages were com-
pared in terms of speech rate and pause duration.
The variable of interest was the difference between
nouns and verbs, with the subtlety that nominal-
isations of verbs still counted as verbs, and (less
frequent) verbalisings of nouns counted as nouns.
This means the the distinction was close to the tra-
ditional semantic distinction of ‘object’ and ‘action’

words. Their main findings were that speech rate
slows relatively before nouns, and for most lan-
guages, pauses are more likely before nouns than
before verbs.

We are most interested in the observation about
pauses before nouns, as a potential signal for an
upcoming named entity sequence. Named entities
may not be limited to single nouns, but may be
a span of tokens with at least a head noun. We
analyze if pauses are more likely and/or longer
before (or after) the boundary of an entity span
than within the span itself.

We investigate this as follows. We consider
a set of utterances from a large internal, anony-
mous dataset, collected over several months and
domains (referred to throughout as UsageData).
Given the sampling methodology, it can be con-
cluded that there are no speaker-dependent effects
in our dataset. The utterances have been taken from
an upstream ASR system which provides each ut-
terance hypothesis with pause durations following
each token, in milliseconds. In order to test the find-
ings of Seifart et al. (2018) in the voice assistant
setting, we randomly sample UsageData utterances
from the sports, movies, and music domains in En-
glish and French (referred as EngFrPauseData); see
Table 1 for an overview.

We manually annotate EngFrPauseData with
BIO-style tags (Ramshaw and Marcus, 1995; Tjong
Kim Sang and De Meulder, 2003); O for non-entity,
B for beginning of an entity, I for inside an entity.
Furthermore, if a token is tagged with a B or I, it
contains an additional entity tag (e.g., Artist). We
combine the pause information from ASR with the
named entity tags to derive pauses before, during,
and after an entity. We aggregate pause and token
duration statistics across all utterances for all do-
mains in a language and fit distributions for the
following pairs of settings: O-B, B-I, I-I, B-O, I-O.
For example, an O-B pair marks the pause duration
between a token tagged O and the token following
it tagged B, while an I-I pair denotes the pause be-
tween a token tagged I and the token following it
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Figure 1: Histograms showing the normalized frequency distribution of the pause duration for French on the
EngFrPause Data described in Table 1 across three domains: sports, movies, and music. x-axis marks pause

duration in milliseconds (up to 3 standard deviations from the mean) for before (O-B) and inside (B-I and I-I) an
entity (left), and after (B-O and I-O) and inside (B-I and I-I) an entity (right). y-axis shows log-normalized counts.

Note that the deep purple-grey color is indicative of the red and blue histograms overlapping.

also tagged I.
To analyze whether the study in Seifart et al.

(2018) can be extended to spoken entity sequences,
we ask whether the pause duration before, within,
and after an entity is different in a statistically sig-
nificant way. To do this, we first log normalize
the frequency of pauses before, inside, and after an
entity to account for differences in their raw counts.
In Fig. 1 and Fig. 2 we plot and compare histograms
showing the normalized frequency distributions of
pauses before an entity (O-B) and inside an entity
(B-I and I-I), and inside an entity and after an entity
(B-O and I-O) for French and English respectively.
We observe that pauses before uttering and after
uttering an entity are longer than pauses within the
entity itself.

For French, the mean duration for pause within
an entity is 18.17ms, for pause before an entity is
55.04ms, and for pause after an entity is 63.86ms.
The differences in mean pause duration for both
within and before an entity, and for within and after
an entity are found statistically significant using a
two sample statistical significance t-test; p-values
are 4.59e-34 and 3.97e-20, respectively.

For English, the mean duration for pause within
an entity is 15.21ms, for pause before an entity is
33.99ms, and for pause after an entity is 38.08ms.
The differences in pause duration are again found
to be statistically significant for both before and
within an entity (p-value: 7.31e-33), and within and
after an entity (p-value: 6.81e-36). These findings
are in line with those from Seifart et al. (2018) and

suggests that acoustic pauses are indeed a useful
and complementary signal to text-based features.

Likewise, in Figure 3, we show the percentage
frequency of pauses greater than or equal to 60ms
for different types of entity labels. Here, too, we
observe that such pauses are more frequent after or
before entities (label types O-B, I-O, B-O) as com-
pared to within entities (label types B-I, I-I), for
both French (Figure 3a) and English (Figure 3b).

Note that the pause length difference within and
outside an entity span tends to be greater in French
than in English. Similarly, the difference in fre-
quency of longer pauses at entity boundaries ver-
sus within entity spans is greater in French than
in English, as can be visualized in Figure 3. We
therefore carried out our further experiments on
the French data (hereafter, FrPauseData), both for
reasons of time, and on the grounds that any effects
were more likely to show up there. 1

3 Shallow Parsing

Our primary downstream setting that consumes
contextual embeddings (described in Section 4)
comprises of shallow parsing, as a sequence la-
belling task. It takes text output from an ASR
system as the input, and produces an output label
for each input token. The labels aim to recognize
the intent of the spoken utterance, typically picking

1Regrettably, we could not find a public domain dataset
with analogous properties so that our findings could be repli-
cated by others, and so we have have presented results on this
proprietary data and shared the statistics of our dataset.
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Figure 2: Histograms showing the normalized frequency distribution of the pause duration for English on the
EngFrPause Data described in Table 1 across three domains: sports, movies, and music. x-axis marks pause

duration in milliseconds (up to 3 standard deviations from the mean) for before (O-B) and inside (B-I and I-I) an
entity (left), and after (B-O and I-O) and inside (B-I and I-I) an entity (right). y-axis shows log-normalized counts.

Note that the deep purple-grey color is indicative of the red and blue histograms overlapping.

out a verb and the phrases that could constitute ar-
guments of the verb. For example, “play thank you
next" would be parsed as “play/Verb thank/Song
you/Song next/Song".2

In all experiments, we first pass the text output
obtained from ASR into either a pre-trained base-
line or pause-sensitive contextual embedding (refer
Section 4). We pass the so-obtained contextual
embedding representations into a relatively simple
shallow parsing model. The shallow parser is a
sequence tagger model that feeds the contextual
embedding corresponding to each text token into a
single-layered BiLSTM with a CRF on top, obtain-
ing a predicted label for each token as the output
(refer Fig. 4). During training, our shallow parser
is optimized by minimizing the Negative Log Like-
lihood (NLL) over the data. Our shallow parser
is identical to that of Muralidharan et al. (2021),
except that we feed the output of the BiLSTM into
a CRF layer, which we empirically observe boosts
performance in all cases.

4 Pre-training Embeddings with Pause
Information

The baseline version of the shallow parser uses a
text-only embedding. This embedding is a BERT-
style text-based language model (Devlin et al.,
2019) trained without the next sentence prediction
auxiliary task of the original BERT architecture.

To investigate the effect of pauses, we compare
2“thank you next" is the ASR recognition result for the

song “Thank u, Next".

the baseline architecture with an identical BERT-
based model extended with an additional spoken
pause prediction task, as shown in Fig. 5. We are
given, for each utterance, the pauses following each
token in milliseconds, and we learn a model jointly
optimizing a text-based language modeling task
and a token-level pause duration prediction task.
We add additional linear projections over interme-
diary representations from the encoder to predict
pause durations following a token. We refer to
the encoder as the “Joint Utterance Encoder”, and
to the linear projection as the “Pause Prediction
Layer”. We use negative log-likelihood (NLL) for
categorical loss and mean squared error (MSE) for
regression loss optimizations. We backpropagate
the sum of the losses from both the text-based and
the speech-based pause prediction tasks into the
Joint Utterance Encoder.

We consider two variants of the prediction task:
Hierarchical Bin Classification [HBC]: The task
is to perform hierarchical classification where the
first linear projection predicts the boolean pres-
ence/absence of a pause and the second linear pro-
jection maps non-zero pauses (in the case of pres-
ence of a pause) into one of three labels: short,
medium, and long, indicative of the pause dura-
tions.
Normalized Linear Regression [NLR]: The task
is to linearly predict the length of pause (normal-
ized into a range from zero to one) following a
token.

More concretely, in a given utterance, let Tb be
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Figure 3: Histogram of percentage frequency of pause duration >=60ms on the EngFrPause Data (described in
Table 1) per label type for (a) French and (b) English. x-axis marks entity label type and y-axis shows percentage
frequency of long pauses. O-B, I-O, and B-O indicate label types at entity span boundaries (before/after entites),

and B-I and I-I indicate label types within entity spans.

the set of tokens used to train the BERT-style model
using a Masked Language Model (MLM) objec-
tive and lbi be the softmaxed LM prediction for the
probability of the ith token ti. Further, let Ts be
the set of tokens on which the pause prediction
tasks are to be trained, and for the tthi token, let
lci be the predicted probability of the true coarse-
grained (presence/absence) label by HBC, let lfi be
the predicted probability of the true fine-grained
short (S), medium (M), or long (L) label by HBC,
let lri be the predicted pause by the NLR module,
let 1gci indicate the presence/absence of a pause,
and let gri be the true normalized pause duration.
Then the baseline BERT-style encoder is trained by
minimizing the loss

LBERT = −
∑
ti∈Tb

log lbi . (1)

The loss for the HBC task is

LHBC = −
∑
ti∈Ts

(
log lci + 1gci

log lfi

)
. (2)

The loss for the NLR task is

LNLR =
∑
ti∈Ts

(gri − lri )
2 . (3)

The joint loss is LBERT+λLHBC or LBERT+λLNLR
respectively, where λ is a weighting factor set to 1
in our experiments.

5 Experimental Design

In our experiments, we compare the parser with the
baseline version of text-only embeddings against
a version using embeddings enhanced with pause
information (HBC and NLR). This is the only dif-
ference between the two systems: the speech pause

play thank you next

verb song song song
Key

Pause-Sensitive 
Contextual 
Embedding

Sequence Tagger

BiLSTM

CRF

Figure 4: Illustration of our shallow parser module.
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Figure 5: Pause-Sensitive Contextual Embedding. (a) Joint Utterance Encoder, in which the prediction layer can
be (b) HBC, (c) NLR, or absent (baseline).

Table 2: Relative percent change in error rates for Shallow Parser with pause-sensitive embeddings. Boldface
marks best performance for domain and metric.

Model Domain EER TER UER

HBC
Music +0.47% +0.22% -2.34%
Movies -2.83% -2.78% -0.57%
Sports +0.70% +0.71% -1.12%

NLR
Music -2.94% -3.32% -4.10%
Movies -8.32% -8.51% -3.99%
Sports -2.63% -2.67% -3.22%

signals used to pre-train the embeddings are not
used directly in the parser. Neither the baseline ver-
sion nor the pause-sensitive embeddings are fine-
tuned in the parser.

For pre-training the BERT-style language mod-
els, we train over a random sample from the French
section of UsageData without entity annotations
(‘FrTrainData’). FrTrainData contains about 50
million utterances with token-level ASR feature
tuples consisting of recognized text and post-token
pause duration (in milliseconds) for each input
point.

To generate label boundaries for the HBC task,
we sort pause durations in FrPauseData in ascend-
ing order and divide the resulting list of pauses into
three parts with an equal number of data points.
These serve as the label boundaries for the S, M,

and L length labels for HBC. Empirically, pause
durations less than 60ms are labeled as S, those be-
tween 60ms and 310ms are labeled as M, and those
greater than 310ms are labeled as L. During train-
ing, we discard any pause greater than 10,000ms as
noise from upstream ASR. For NLR, we normalize
the pauses between 0 and 1 by dividing each dura-
tion by 10,000ms (the longest pause duration in the
pruned dataset).

For the classification task, we opt for HBC
to address the class imbalance problem in our
data (Tsagkias et al., 2009) (see Figure 1, which
shows a large proportion of tokens with zero pause
detected). This coarse-to-fine approach helps with
learning the presence/absence of pauses (coarse la-
bel) over the skewed dataset while also allowing
the auxiliary S/M/L prediction (fine label) to be suf-
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ficiently fine-grained to prove useful in improving
the feature representation.

To train the embeddings, we consider a vocabu-
lary of the 100k most frequent tokens in FrTrain-
Data. To train the pause prediction layers, we pre-
dict the labels over a subset of tokens per utterance.
We randomly sample 15% of the tokens per utter-
ance up to a maximum of 3 tokens, including at
least one token with a non-empty label (words not
contributing to the user intent are given a null label
by the shallow parser). We backpropagate the sum
of losses from the text-prediction and the pause-
prediction tasks to the Joint Utterance Encoder.

We evaluate system performance on shallow
parsing with three error rate measures at entity,
token, and utterance levels:
Entity Error Rate (EER) measures the proportion
of incorrectly labeled entities out of all entities.
Token Error Rate (TER) measures the proportion
of incorrectly labeled entities out of all tokens (both
entities and non-entities).
Utterance Error Rate (UER) measures the pro-
portion of utterances with at least one mislabeled
entity.
We report all metrics as means over 10 runs for
each model configuration.

6 Results

We compare the performance of our pause-sensitive
model with that of our baseline text-based BERT
architecture in Table 2. Our best performing model
consistently outperforms the baseline with an im-
provement in error rates on entity, token, and ut-
terance levels across all three domains under study.
We note that NLR consistently provides a greater
improvement over HBC. This is in line with our
expectations since user requests to a voice assistant
are typically short utterances with small inter-token
pauses (Table 1) across domains. Unlike the regres-
sion objective of the NLR model which is trained
on exact pause durations scaled between 0 and 1, to
train over the classification objective of HBC, we
discretize these pause durations into four classes
losing the granularity of small variations in these
recorded pauses.

Looking at performance across domains, we ob-
serve that improvement in EER and TER for the
Movies domain is consistently higher than that for
Music and Sports. We look at FrPauseData to find
that entity names in the Movies domain typically
contain longer sequences of tokens than entities for

the Music and Sports domains, where bynames and
abbreviations are often used. On average, entity
spans in the Movies domain are relatively longer
than entity spans in Music by 49.64%, and in Sports
by 39.71% in our dataset. For example, the major-
ity entity span type in the Movies domain is ’movie
title’ which on average consists of 2.54 tokens and
makes 34% of the domain. This token length is
more than double that of the majority label type
’team name’ in the Sports domain which makes
60% of the domain and contains 1.25 tokens on
average. We note a similar pattern on observing the
top-3 most frequent entity types per domain. For
example, the mean token length for the top-3 most
frequent labels in the Movies domain is 2.43 to-
kens compared with only 1.59 tokens in the Music
domain. This relates with our earlier experiment
with FrPauseData—we noted a longer mean pause
duration of 120.23ms for Movies, compared with
39.06ms for Music, and 29.38ms for Sports. We
hypothesize that longer sequences of entity names
cause speakers to make longer pauses around these
entity spans.

Finally, since the NLR model improves perfor-
mance across all domains under study, we empha-
size that it can be used in settings where a pre-
trained set of embeddings are shared across multi-
ple applications, which is particularly relevant in
open-topic voice assistant NLU systems where the
domain of a user request is ascertained at run time.

7 Conclusion

In this paper, we analyzed the statistically signif-
icant correlation of pause lengths with syntactic
properties in real-world usage data for three entity-
rich application domains. To exploit this property,
we presented a novel pause-sensitive contextual
embedding model. The model outperforms text-
based representations in a language processing task
across multiple domains. Our approach does not
impose additional task-specific annotation require-
ments and can be extended to more text-based tar-
get tasks. To the best of our knowledge, this is the
first study on grounding textual representations in
pause signals for improved understanding in voice
assistants.
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