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Abstract
Formal semantics in the Montagovian tradi-
tion provides precise meaning characterisa-
tions, but usually without a formal theory
of the pragmatics of contextual parameters
and their sensitivity to background knowledge.
Meanwhile, formal pragmatic theories make
explicit predictions about meaning in context,
but generally without a well-defined compo-
sitional semantics. We propose a combined
framework for the semantic and pragmatic in-
terpretation of sentences in the face of proba-
bilistic knowledge. We do so by (1) extend-
ing a Montagovian interpretation scheme to
generate a distribution over possible meanings,
and (2) generating a posterior for this distri-
bution using a variant of the Rational Speech
Act (RSA) models, but generalised to arbitrary
propositions. These aspects of our framework
are tied together by evaluating entailment un-
der probabilistic uncertainty.1

We apply our model to anaphora resolution
and show that it provides expected biases un-
der suitable assumptions about the distribu-
tions of lexical and world-knowledge. Further,
we observe that the model’s output is robust to
variations in its parameters within reasonable
ranges.

1 Introduction

A goal of much work in computational semantics
is to determine how responsibility should be ap-
portioned between discrete, logical techniques and
stochastic, probabilistic ones in explanations of
inference. A current tradition that has roots in sym-
bolic AI leverages the power of theorem provers to
model inference in corpora, oftentimes grappling
with both deductive and abductive modes of rea-
soning (Blackburn and Bos, 2005; Bos and Mark-
ert, 2005; Raina et al., 2005; van Eijck and Unger,

1The code for this paper is available on GitHub at:
https://github.com/juliangrove/
grove-bernardy-chatzikyriakidis-naloma2021

2010; Abzianidze, 2015; Emerson and Copestake,
2017a,b; Abzianidze, 2020, i.a.). Such approaches,
while explicitly compositional, often attempt to
combine both semantic and pragmatic meaning
into a single inferential module, with the goal of
capturing naturally occurring patterns.

Simultaneously (in the last decade), Rational
Speech Act (RSA) models have provided a promis-
ing avenue for integrating logical and probabilis-
tic approaches to meaning by modelling utterance
interpretation as a process of updating probabil-
ity distributions over logically characterised mean-
ings (Goodman and Stuhlmüller, 2013; Lassiter
and Goodman, 2013; Goodman and Frank, 2016;
Lassiter and Goodman, 2017, i.a.). According to
the RSA perspective, interpreting an utterance in-
volves reasoning pragmatically about a speaker’s
intended message according to Bayesian princi-
ples of belief update. The reasoning of rational
conversation participants, moreover, reflects prin-
ciples of cooperative communication according to
which speakers make true and informative utter-
ances. Thus such models aim to capture a central
feature of rational discourse known since the work
of Grice (1975): that it is constrained by principles
of appropriate social behaviour, which, through the
reasoning of interlocutors, serve to enrich the very
meanings which are communicated.

The goal of the current work is to integrate these
two approaches to meaning and inference by using,
on the one hand, a theorem prover to reason about
compositionally derived semantic meanings and,
on the other hand, Bayesian inference, as applied
within the RSA framework, to give a computational
account of pragmatic reasoning in discourse. Our
contribution is thus to tie work in the logical tra-
dition into a successful probabilistic framework
for pragmatic reasoning. While logical entailment
is at the core of evaluating truth values, we use
probabilistic reasoning to deal with epistemic un-

https://github.com/juliangrove/grove-bernardy-chatzikyriakidis-naloma2021
https://github.com/juliangrove/grove-bernardy-chatzikyriakidis-naloma2021
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Figure 1: Phases of our system. Syntax is first inter-
preted into a distribution over FOL formulae. The truth
values of such formulae can then be extracted using a
theorem prover, allowing an expected value for the re-
sulting distribution to be computed. The RSA model
acts on the distribution over FOL formulae. This re-
finement step may itself invoke the theorem prover and
distributions over truth values (we omit these dependen-
cies to avoid clutter).

certainty. As such, this paper contributes a hybrid
logical/probabilistic semantics consisting of both a
standard Montagovian compositional scheme and
an RSA model.

We pay special attention to the resolution of
linguistic ambiguity in discourse—in particular,
anaphora—as a test-case for our approach. By
considering anaphora resolution as a Bayesian in-
ference problem, we show how both prior world
and lexical knowledge may influence the choice
of antecedent for a given pronoun. Moreover, be-
cause our computational implementation combines
a probabilistic approach to inference with a com-
positional, logical approach to meaning in the tra-
dition of Montague (1973), i.e., by integrating nu-
meric computation and theorem proving, we are
able to explicitly and robustly characterise the con-
tribution of conventional meaning to the task of
pragmatic inference, as well as how the latter serves
to modulate uncertainty about the former. We illus-
trate our approach on two test cases which differ
in the priors they involve, thus demonstrating the
importance of background knowledge to the be-
haviour of our model.

2 The framework

2.1 Compositional semantics under
ambiguity

The goal of Montagovian compositional semantics
is to map syntactic representations of an utterance

u onto a meaning in some predefined domain. Typ-
ically, such meanings are propositions (for some
logical system, like first order logic or type the-
ory). We can write ‘φ = JuK’ to represent such
a mapping. However, there are, in general, sev-
eral ways to map utterances to propositions, due
to semantic ambiguity; thus our compositional se-
mantics should instead produce a distribution of
propositions.

The structure of our framework is illustrated in
Figure 1. The first step in mapping an utterance to
a pragmatically enriched meaning involves taking
that utterance onto a probability distribution over
expressions in some metalanguage: those which
represent the dynamic semantic meaning of the
utterance. As will become clear, any metalanguage
for which one may define some computable notion
of entailment suffices. For our implementation, we
choose standard first order logic, so that utterances
are mapped to distributions over FOL formulae.

Generalising the work of Lassiter and Goodman
(2013), we may formalise this distribution in terms
of the equation φ = JuKθ, where θ is a set of ran-
dom variables, each having some a priori initial
distribution. One can understand the above equa-
tion as invoking an interpretation function, J·K, de-
fined inductively on expressions, and depending
on the set θ of parameters whose role is to select
among possible interpretations, as illustrated by the
following scheme for Functional Application.

f = JnpKθ x = JvpKθ

f(x) = Jnp vpKθ

In this way, a compositional semantics simultane-
ously produces distributions for φ and the parame-
ters in θ.

2.2 Reasoning under probabilistic knowledge

One can evaluate the truth value of a proposition,
given some background context, by evaluating its
provability under a system of deduction (the system
in question representing the reasoning capabilities
of agents). We represent background knowledge as
a distribution over sets of FOL formulae Γ, each
of which may be regarded as representing a world-
state; that is, a way things might be. We can then
evaluate the truth value of φ, given some fixed
world-state (i.e., set of hypotheses) Γ, as ‘[Γ ` φ]’,
that is, 1 if Γ ` φ holds logically, and 0, otherwise.
Even though entailment in many logical systems
is undecidable, we may circumvent this issue, for
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example, by limiting them to a certain depth of
deduction, perhaps modelling finite reasoning ca-
pabilities. In our implementation, we use a regular
FOL tableau prover limited to depth 10; this way,
we can work with any set of propositions express-
ible in FOL, and in particular, those delivered by a
Montagovian interpretation procedure. Calculating
entailment constitutes the second step in our frame-
work; it takes us from a probability distribution
over formulae φ to a probability distribution over
truth values reflecting whether φ holds at a world-
state Γ, given an initial probability distribution over
world-states.

Hereafter, we let Γ be a random variable rang-
ing over sets of FOL formulae, whose distribution
represents epistemic uncertainty of an agent about
background knowledge, i.e., the actual world-state.
Such a formulation of uncertainty is very flexible.
For example, uncertainty about John’s height can
be represented as Γ = {John’s height is H}, where
H is a random variable with a normal distribution
of mean 1.8 meters and standard deviation 0.05
meters. Discrete uncertainty may be represented
using Bernoulli distributions. If b is a Boolean vari-
able with a Bernoulli distribution, uncertainty about
weather conditions can be represented as follows:
Γ = if b then {it will rain tomorrow} else {it will
not rain tomorrow}. Given a set of propositions
Ψ = {ψ1, . . . , ψn}, each true or false according to
one of a sequence of Bernoulli random variables
γ = b1, . . . , bn, we may take Γ to be equal to γΨ,
i.e., the set containing either ψi or its negation ¬ψi,
as according to whether bi is True or False.

Given this setup, we can define a notion of ‘ex-
pected truth value’, which we encode as a real num-
ber between 0 and 1. We notate the truth value of
φ, given some set of background hypotheses Γ, as
‘[Γ ` φ]’ and thus denote the expected truth value
of φ, which takes into account the distribution as-
sociated with Γ, ‘EΓ[Γ ` φ]’. As discussed in the
next section, we will more often invoke the proba-
bility of non-entailment, given as EΓ[Γ 6` φ], and
which is equal to 1− EΓ[Γ ` φ].

In general, we compute probability distributions
over formulae, world-states, and truth values com-
positionally, in terms of probabilistic programs. A
probabilistic program that returns a value of type
α is a function of type (α → R) → R; that is,
one which consumes probability density functions
(PDFs), i.e., from values of type α to real numbers,
in order to derive a real number. For example, a

probabilistic program that returns values of type α
from some finite list l with a uniform distribution
is the function λf.sum(mapfl)/(lengthl). Given
a PDF f , this program computes its sum across the
members of l and divides the result by the length
of l, thus returning the mean. If α is itself R, the
program may be used to compute an expected value
by simply feeding it the identity function.

Crucially, probabilistic programs may be com-
posed: given a probabilistic program m returning
values of type α → β and a probabilistic pro-
gram n returning values of type α, a new pro-
gram returning values of type β can be derived
as λk.m(λf.n(λx.k(fx))). Such a composition
scheme may appear familiar to many as applicative
composition in the continuation monad. Indeed,
probabilistic programs are composed by passing
their input PDFs as continuations. More generally,
complex probabilistic programs are easy to write
and compose in monadic style, thus allowing us to
keep our implementation pure and squarely within
the simply typed λ-calculus. This approach, im-
portantly, sets our framework apart from previous
attempts at integrating natural language semantics
with probabilistic computation, e.g., Goodman and
Lassiter (2015).

2.3 RSA
We first review the general assumptions of the RSA
model, and then we present the particular variant
of RSA that we use in this paper. We discuss the
differences between our presentation and that of
the original RSA model of Lassiter and Goodman
(2013) in §6.2.

RSA assumes two agents, a listener L and a
speaker S. S utters a declarative sentence u heard
by L, without transmission error. The point of RSA
is to model how, assuming Gricean cooperativeness
between S and L, L should disambiguate among
possible interpretations of u.

Our model is defined by the following relations:

PL1(φ | u) ∝ PS1(u | φ)× P (φ)

PS1(u | φ) ∝ (PL0(φ | u)/C(u))α

PL0(φ | u) = Eθ,Γ[Γ, φ, JuKθ 6` ⊥]

In the above, relations for PL1 and PL0 represent
listener models. Their primary function is to yield
a distribution over interpretations of a given utter-
ance u as propositions φ. PL1(φ|u) corresponds to
a Bayesian update to the probability of the propo-
sition φ, given an observation of the utterance u.
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Following Bayes’ theorem, this conditional prob-
ability is determined by multiplying a likelihood,
PS1(u | φ), by a prior, P (φ).

The likelihood is the probability that the prag-
matic listener S will utter u, given an intention to
communicate the proposition φ. In other words,
the output of the model PS1 is an estimate of the
probability of S uttering u if S means φ. This esti-
mate is, in turn, obtained by considering utterances
u in proportion to how likely they are to skew the
(literal) listener towards interpreting u as φ, while
taking into account an intrinsic utterance costC(u).
Furthermore, an exponent α is applied to model the
tendency of S to behave rationally, i.e., by choosing
utterances in view of L0’s tendencies in conjunc-
tion with utterance cost.

The prior probability of the proposition φ is de-
termined, in part, by the distribution over θ and, in
part, by the distribution over prior knowledge Γ.
Thus we have that P (φ) ∝ EΓ[Γ, φ 6` ⊥] ∗ P (θ),
where φ = JuKθ (for some θ), and P (φ) = 0,
otherwise. Priors are thus assessed using a non-
contradiction model of interpretation: intuitively,
Γ describes a world state—a way things could be—
and φ is accepted if it is compatible with the world-
state Γ.

The literal listener L0 similarly uses a non-
contradiction model of interpretation. It rejects
interpretations φ incompatible with the utterance,
in proportion to the a priori distribution of mean-
ings for u, namely JuKθ.

A final point deserving mention is that, in gen-
eral, the priors over Γ and θ need not be the same
in PL1 and PL0 . In PL1 , they are L’s actual priors,
while in PL0 they are those that L believes that
S believes L has. In what follows, we consider
only those priors which constitute common ground
knowledge, i.e., in which case they are equal.

3 Anaphora resolution as a case study

To apply the above theory to anaphora resolution,
we let θ be a set of parameters that determine the
mapping of anaphoric expressions to antecedents.
(In our experiments, we will consider only pronom-
inal anaphora.)

For example, if u = ‘he runs’, then (singleton) θ
could be taken in the set Θ = {John,Bill, Bob},
if those three antecedents are available in the dis-
course context. The logical representation of the
utterance is then JuKθ = run(θ). The factor P (θ)
might be used to give lower probabilities to an-

tecedents further back in the discourse; a value for
this prior might be estimated from psycholinguistic
experimentation. For the sake of simplicity, we let
P (θ) be uniform across Θ in what follows.

Alternative utterances Within the RSA frame-
work, PS1 gives the distribution over alternative
utterances considered by the speaker to express φ.
The set underlying this distribution, moreover, must
be supplied by the modeller a priori. We determine
this set as follows. First, the utterance observed by
L is itself in this set. Moreover, for any utterance
u in the set, and for any anaphor x present in u,
we include in the set the alternative utterance u′

just like u, but in which the anaphor is substituted
by a noun phrase denoting the antecedent actually
meant by S (given S’s intention to communicate
φ). That is, u′ is less ambiguous than u. For ex-
ample, when evaluating P (‘he runs’|run(bill)), S
considers both ‘he runs’ and ‘Bill runs’. This set
is important because it is used to normalise S’s
distribution over utterances:

PS1(u|φ) =
(PL0(φ|u)/C(u))α∑
u′(PL0(φ|u′)/C(u′))α

Background knowledge In our experiments, we
let Γ be governed by a finite sequence of Boolean
variables b1, . . . , bn drawn from Bernoulli dis-
tributions. Concretely, we work with a set of
potential propositions {ψ1, . . . , ψn} and write
‘. . . bi . . . {. . . ψi . . .}’ to denote the set containing
ψi if bi is True and ¬ψi if bi is False. The set of
propositions in Γ and the parameters of their asso-
ciated Bernoulli distributions vary from example
to example.

The model then predicts a posterior distribution
over mappings θ from anaphora to antecedents,
along with a corresponding posterior distribution
over meanings φ. As a result, one may also ob-
tain a posterior distribution over Boolean variables
bi representing the common ground, now updated
with φ.

4 Examples

We provide two examples to illustrate our model
and, in particular, the effect of prior knowledge on
its behaviour. Our first example is (1).

(1) Emacs is waiting for the command. It is pre-
pared.

Here, the noun phrases Emacs and the command
are in competition as potential antecedents for the
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pronoun it.2 Intuitively, the most likely antecedent
for the pronoun is Emacs, which we take to be due
(at least in part) to the fact that the verbs waiting
and prepared lexically entail that their subjects are
animate.3 Thus a rational listener who infers that
the antecedent for it in (1) is Emacs is doing so (at
least in part) on the basis of the following reason-
ing: because animacy is entailed of the pronoun in
virtue of its role as subject of the verb prepared,
it is more likely, all else being equal, to co-refer
with Emacs, which is also entailed to be animate
(in virtue of being the subject of the verb waiting),
than the command, which is subject to no such en-
tailment. Such an inference is thus obtained on the
basis of abductive reasoning about the source of
the animacy of the pronoun.

The availability of this reasoning in (1) contrasts
with its relative unavailibility in the second exam-
ple in (2).

(2) Ashley is waiting for Amy. She sees her.

In contrast to Emacs and the command, proper
names referring to humans, like Ashley and Amy,
are very likely to denote animate individuals. As
such, their prior probability of being animate will
be higher than that of the noun phrases in (1), and
the animacy entailment contributed by the verb
waiting will therefore provide less of a basis for
using animacy as a cue to distinguish potential an-
tecedents for the pronouns. With the impact of ani-
macy attenuated in (2), the candidate antecedents
for the subject pronoun should be in closer com-
petition, and anaphora resolution should be less
certain. Intuitively, this seems to be the case: it
appears more difficult to determine the referent of
the subject pronoun in (2) than in (1) (though exper-
imental investigation would be required to confirm
this intuition).

We can model the difference between these ex-
amples by assuming different priors for the ani-
macy of the referents of noun phrases like Emacs
and the command, on the one hand, and Ashley
and Amy, on the other. In our model, we encode
such priors by associating probabilities with sen-
tences translated into first order formulae; each
such formula ψ is then associated with an indepen-
dent Bernoulli random variable b in the definition

2This example comes from Lappin and Leass (1994), who
resolve anaphora on the basis of a number syntactic and se-
mantic heuristics, with no specific pragmatic analysis.

3These inferences may, in fact, be presuppositions, a point
we gloss over here.

of a probabilistic program that returns a world-state
consisting of a set of hypotheses encoded as logical
formulae. That is, such a set contains ψ if b is True,
and it contains ¬ψ if b is False.

animate(emacs) 0.2
animate(the command) 0.2

animate(ashley) 0.9
animate(amy) 0.9

As the table shows, we model world knowledge
as dictating that the referents of Emacs and the
command are only 20% likely to be animate, while
individuals such as Ashley and Amy are 90% likely
to be animate. Though these priors are somewhat
arbitrary, they are meant to reflect qualitative dif-
ferences in the knowledge we have about noun
phrases referring to humans and those referring to
other objects.

In addition to the priors listed above, we in-
clude priors for the truth of the following formulae,
which, in each case, we take to be 0.05.

∃x : wait for(emacs, x)
∃x : wait for(the command, x)

∃x : wait for(ashley, x)
∃x : wait for(amy, x)

prepared(emacs)
prepared(the command)

∃x : see(ashley, x)
∃x : see(amy, x)

Finally, we encode the lexical entailments of the
verbs waiting, prepared, and sees in terms of the
following formulae:

∀x : (∃y : wait for(x, y))→ animate(x)
∀x : prepared(x)→ animate(x)
∀x : (∃y : see(x, y))→ animate(x)

In our model, these formulae act as filters of back-
ground knowledge: any world-state that contradicts
them is given probability 0, and the probability dis-
tribution over world-states is re-normalised. As a
result, the Bernoulli random variables associated
with individual hypotheses in the final model of
background knowledge will not be entirely inde-
pendent.

5 Results and analysis

To illustrate the model’s performance, we give re-
sults for the examples discussed in the previous
section, fixing values for parameters in the speaker
model; in particular, the exponent α, as well as
the log-cost associated with an utterance that uses
either a pronoun or a full noun phrase to refer to a
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given antecedent. Table 1 provides the model’s cal-
culations of the pragmatic listener’s bias to choose
Emacs (as opposed to the command) as the an-
tecedent of the subject pronoun of (1), across two
values of α and two sets of values for log-cost. Log-
costs for pronouns (PN) and full noun phrases (NP)
are summed, for any given utterance, to provide
its total log-cost. For example, if the log-cost of
a pronoun is 1, and that of a full noun phrase is 2
(as in the models reported in rows 2 and 4), then an
utterance with one pronoun and one noun phrase
will have a total log-cost of 3, and the probability
PL0 is scaled by a factor of e−3α in the calculation
of PS1 .

α PN NP Emacs bias
0.5 0 0 87.9%
0.5 1 2 86.9%
4.0 0 0 99.9%
4.0 1 2 98.6%

Table 1: Example (1)

The results of Table 1 highlight three notable
features of our model. First, anaphora resolution
displays the expected bias, based on the prior world
and lexical knowledge governing inference. In par-
ticular, lexical knowledge associated with the verbs
waiting and prepared determines that their subjects
be animate; thus the pragmatic listener performs a
kind of abductive inference, based on these entail-
ments: a pronoun which is entailed to be animate
displays a high probability of seeking animacy in
its antecedent. Comparison with the results for (2)
(which we discuss next) illustrates the importance
of the low animacy priors (0.2) for the antecedents
in achieving pragmatic reasoning of this kind.

Second, even though high values of α increase
the bias in favour of Emacs (as expected), the
model is not very sensitive to its precise choice.
As α approaches 0, the speaker model approaches
a uniform distribution over utterances, but even as
low a value as 0.5 yields sensible results.

Third, incorporating a measure of cost into the
reasoning of the pragmatic speaker has a dampen-
ing effect on the model’s bias, as can be seen by
comparing rows 1 and 2, as well as rows 3 and 4.
This effect consists in about 1% of difference, and
it is due to the fact that making reference to cost
has the pragmatic listener reason about a “lazier”
pragmatic speaker; such a speaker, who finds full
noun phrases costlier to utter than pronouns, will

more likely choose a pronoun to minimise their ef-
fort, rather than as a result of their reasoning about
a literal listener who will choose the expected an-
tecedent for the pronoun.

Table 2 provides the model’s calculations of the
pragmatic listener’s bias to choose Ashley (as op-
posed to Amy) as the antecedent for both the subject
pronoun she and the object pronoun her in (2). We
show results for the same values of α and log-cost.

α PN NP
Ashley bias

for she for her
0.5 0 0 53.0% 50%
0.5 1 2 52.9% 50%
4.0 0 0 60.7% 50%
4.0 1 2 54.2% 50%

Table 2: Example (2)

We note, first, that the same general patterns
across values of α and log-cost obtain for this ex-
ample as for the previous one: higher values of α
exaggerate the pragmatic listener’s bias, while in-
creasing noun phrase cost relative to pronoun cost
dampens it.

Second, comparing the results of this model with
those for (1) demonstrates clearly the effect of prior
knowledge on the model’s behaviour. Because the
antecedents have high animacy priors (0.9), the
animacy entailment of the verb waiting provides
less of a basis for distinguishing them; as a result,
they are in closer competition as antecedents for the
subject pronoun, which is entailed to be animate,
and bias toward the subject antecedent is greatly
reduced (though still present).

Last, we note that the object pronoun is exactly
split in its probability of taking Ashley versus Amy
as its antecedent in (2). Because there is no ani-
macy entailment from the verb for the object pro-
noun, the pragmatic listener has no basis for distin-
guishing the antecedents, e.g., through abductive
inference. This result supports our explanation for
the biases displayed in the other cases.

6 Related work

The work presented in this paper is related to a
number of attempts in both the formal and compu-
tational semantics communities to bridge logical
and probabilistic approaches to natural language
semantics. These approaches, in addition to their
formal differences, can be categorised into those
which have been computationally implemented and
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those which have not. In the first category, one
finds approaches such as Beltagy et al. (2013);
Goodman and Stuhlmüller (2013); Goodman and
Frank (2016); Lassiter and Goodman (2013, 2017);
Bernardy et al. (2018); Emerson and Copestake
(2017b) , while in the latter category, those such as
van Eijck and Lappin (2012); Cooper et al. (2015);
Sutton (2018).

A common theme among probabilistic ap-
proaches to interpretation is that they describe a
set of possible world-states as a distribution. Pred-
icates are then evaluated at each world-state, and
probabilistic truth is the expected value over all
possible world-states. In implemented accounts,
one often uses Monte Carlo sampling methods to
estimate truth values. We refrain from a further
comparison with approaches lacking a computa-
tional implementation: even though they contain
fruitful ideas, it is unclear how they should be re-
alised computationally.

Another way to classify approaches is by the rep-
resentation of world-states that they employ. Good-
man and Stuhlmüller (2013); Goodman and Frank
(2016); Lassiter and Goodman (2013) use an ad
hoc set of variables, chosen according to the prob-
lem at hand. Bernardy et al. (2018) use vector
representations inspired by machine-learning ap-
proaches. Bernardy et al. (2019b) present a system
that tries to minimise (and in cases, eliminate) the
need for sampling by modelling predicates as (the
unions of) boxes and individuals as points.

A unique characteristic of the present account is
our use of a small number of Bernoulli random vari-
ables to represent world-states, where each variable
captures the applicability of a proposition. This
choice is afforded by the use of logical entailment
as the basis of evaluating truth values. Together,
this means that we can provide exact calculations
for truth values, i.e., by taking the average over fi-
nite probability distributions. An additional benefit
of using the knowledge-as-propositions approach
is that we have all the expressivity of the under-
lying logic at our disposal. Hence, we have no
difficulty dealing with predicates with multiple ar-
guments, contrary to Bernardy et al. (2019b, 2018).
Even though weighted formulae can be interpreted
as possible world-states via a Markov Logic Net-
works (Domingos and Lowd, 2009), as Beltagy
et al. (2013) showed for natural language semantics,
our simpler approach is sufficient for our purposes.

6.1 Logical approaches to semantic inference

Our framework aspires to connect two traditions
in the study and computational implementation of
semantics: logical, compositional semantics on
the one hand, and Bayesian pragmatics, on the
other. This connection is achieved by reasoning
about propositional entailment via theorem proving,
while modelling pragmatic inference as Bayesian
reasoning, using a variant of RSA. Thus there are
important connections to other approaches to se-
mantics and natural language inference that rely
on a compositional semantics to translate abstract
syntax trees into logical formulae and then evaluate
inference patterns via theorem proving (Bos and
Markert, 2005; Mineshima et al., 2015; Abzianidze,
2015; Bernardy and Chatzikyriakidis, 2017, 2019,
2021). These accounts vary in their details; for ex-
ample, in the type of parser used: Bos and Markert
(2005); Mineshima et al. (2015); Abzianidze (2015)
use variants of CCG parsers, while Bernardy and
Chatzikyriakidis (2017, 2019) use the GF parser
(Ranta, 2011). They also vary in the types of mean-
ing representations they employ, as well as in the
underlying logical systems they use (e.g., first or-
der versus higher order). Finally, they differ in
their choice of theorem provers, and whether they
are automated or interactive. But the connections
between such approaches and ours are clear: all
employ a compositional semantics to generate log-
ical formulae, which are further reasoned about
with theorem provers. A crucial difference between
our approach and the aforementioned ones, how-
ever, is that ours supports a designated pragmatic
module that accomplishes pragmatic inference with
Bayesian reasoning. Thus our framework may be
seen as involving a pragmatic enrichment of a logi-
cal component, afforded by Bayesian reasoning in
the guise of RSA. Finally, despite the fact that our
account follows previous work in the RSA tradition
(Goodman and Stuhlmüller, 2013; Goodman and
Frank, 2016; Lassiter and Goodman, 2013, 2017),
it employs a couple of different assumptions than
usual—a point to which we now turn.

6.2 The relation between our model and
standard RSA

Lassiter and Goodman (2013) give an RSA model
governed by the following relations (modulo re-
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naming of some parameters):

PL1(Γ, θ | u) ∝ PS1(u | Γ, θ)× PL1(Γ)

PS1(u | Γ, θ) ∝ (PL0(Γ | u, θ)/C(u))α

PL0(Γ | u, θ) = PL0(Γ | JuKθ)

This model differs from ours in two notable ways.
First, the model of Lassiter and Goodman directly
marginalises the distribution of world-states (Γ in
the above formalisation), while we only consider
the possible meanings of an utterance (JuKθ). In
other words, we regard pragmatic inference as a
problem of inferring utterance meanings, rather
than one of directly updating the common ground.

This choice has practical consequences from a
modelling perspective. When applying the frame-
work of Lassiter and Goodman, one needs to
choose prior distributions carefully, in order to
cover all possible aspects of a given world-state
which may be relevant to the truth value of any of
the possible meanings of u; i.e., those, which, in
our example of anaphora resolution, we obtained
as mappings from utterances to propositions that
varied along the set of parameters θ.

Second, we have allowed the pragmatic speaker
model PS1 to marginalise over θ. In contrast, the
model of Lassiter and Goodman uses a value of
θ which is fixed throughout the model; i.e., it is
passed up from the literal listener to the pragmatic
listener. Since our distribution over θ depends on
the utterance whose interpretation it parameterises,
we allow our pragmatic speaker to re-sample θ in
its model of the literal listener.

Finally, in comparison to previous RSA work
which attempts to combine a natural language se-
mantics with probabilistic reasoning (see Goodman
and Lassiter, 2015), the approach we advocate is,
we believe, conservative, flexible, and modular:

• It allows for the usual approach to composi-
tional semantics, i.e., in a pure logical lan-
guage.

• Any such logic can be chosen, so long as it is
equipped with a computable notion of entail-
ment.

• Probabilistic computation is added in terms of
continuation passing, i.e., as a monadic side
effect.

• Even such a side effect does not extend the
basic semantics of the metalanguage, which is

just the simply typed λ-calculus. We therefore
end up with a compositional mathematical
theory of the phenomena under investigation.

This situation contrasts, for example, with the im-
plementation of Goodman and Lassiter (2015), us-
ing Church. While Goodman and Lassiter are in-
novative in their integration of probabilistic com-
putation into a functional language, they extend
the simply typed λ-calculus with a probabilistic se-
mantics, which, as far as we can tell, is not entirely
compositional and thus difficult to reason about.

7 Future directions

The model presented in this paper relies on tech-
niques that are widely used in computational se-
mantics; by combining them in a novel way, we
believe that our approach has important potential
to generate applications in semantic analysis, in-
ference, and Bayesian cognitive modelling. One
immediate avenue for extending our model con-
cerns its applicability to a range of semantic prob-
lems that could benefit from a system that leverages
both logical semantics and Bayesian reasoning. An
obvious candidate is predication vagueness, a clas-
sic problem for logical semantics and the target
of discussion of a number of Bayesian approaches
to semantics (Sutton and Filip, 2016; Lassiter and
Goodman, 2017; Bernardy et al., 2019a; Emerson,
2020). Thus extending the coverage of the present
model and checking the predictions it makes with
respect to these phenomena is one of our goals.

We are also interested in designing a general
natural language inference system based on the ap-
proach proposed in this paper; such a system could
then be evaluated against various test suites. To
start, one can check whether the proposed system
accounts for pragmatic aspects of the FraCaS test
suite (Cooper et al., 1996), the RTE test suite (Da-
gan et al., 2006), or the small probabilistic test suite
of Bernardy et al. (2019a).

As a realistic anaphora resolution algorithm,
the model presented here falls short in some re-
spects. First, we take no account of the well-studied
grammatical restrictions on the relation between
pronominal anaphora and their antecedents (Rein-
hart, 1976; Chomsky, 1981). Second, our model
currently shows no sensitivity to the discourse fac-
tors which are well known to affect the acceptabil-
ity of anaphora in various contexts. And third, it
incorporates no sensitivity to psycholinguistic con-
straints on anaphora, which, like discourse factors,
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affect acceptability. There are different ways one
might make the model sensitive to such constraints,
which may be decided on a case-by-case basis.
In principle, any non-pragmatic factor may be ac-
counted for by imposing the right prior on θ. How-
ever, other solutions suggest themselves. Gram-
matical constraints on the anaphora-antecedent re-
lation, for example, might be implemented in an
improved compositional semantics which makes
antecedents available for certain anaphora depend-
ing on their relative syntactic positions. Sensitivity
to discourse factors might be incorporated into our
model as declarative knowledge that contributes
to the prior (i.e., on a par with world and lexical
knowledge). And, psycholinguistic (and, perhaps,
discourse) constraints might, for example, be in-
corporated into our pragmatic speaker model as
a more realistic measure of cost (see, e.g., Orita
et al., 2015), or our literal listener model, by sam-
pling antecedents for anaphora according to their
retrieval costs. In principle, antecedent retrieval
cost could be incorporated into the distribution over
antecedents accessed by the pragmatic listener, as
well, perhaps depending on whether our model
is viewed as giving a computational-level versus
algorithmic-level characterisation of anaphora res-
olution (Marr, 1982).

The ultimate success of our approach relies on
obtaining an accurate account of prior knowledge.
Prior world knowledge can be obtained through ex-
periment, following approaches to RSA that have
assessed prior beliefs using surveys (Xiang et al.,
2021a,b). Given that our model characterises prior
knowledge declaratively, we can use similar meth-
ods.

Finally, although we have paid specific attention
to anaphora resolution, our model makes way for a
general approach to semantic ambiguity resolution.
We might, for example, extend our model to other
anaphora-like phenomena, e.g., ellipsis, as well as
the resolution of structural and quantifier-scope am-
biguities. The success of such extensions depends
on generating an appropriate set of alternatives,
given an utterance (and vice versa). For ellipsis,
semantic alternatives can be generated by a free
parameter, as above; in the case of, e.g., quantifier
scope, one might incorporate a parser to provide
alternative semantic representations for a given ut-
terance. In all cases, one requires an appropriate
set of alternative utterances from a proposition in
the speaker model.
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Electronic Press.

Bernardy, J.-P. and Chatzikyriakidis, S. (2021). Ap-
plied temporal analysis: A complete run of the fra-
cas test suite. In IWCS 2021 - 14th International
Conference on Computational Semantics - Long pa-
pers.

Blackburn, P. and Bos, J. (2005). Representation and
Inference for Natural Language: A First Course
in Computational Semantics. Studies in Compu-
tational Linguistics. University of Chicago Press,
Chicago.

Bos, J. and Markert, K. (2005). Recognising Tex-
tual Entailment with Logical Inference. In Proceed-
ings of Human Language Technology Conference
and Conference on Empirical Methods in Natural
Language Processing, pages 628–635, Vancouver,
British Columbia, Canada. Association for Compu-
tational Linguistics.

Chomsky, N. (1981). Lectures on Government and
Binding: The Pisa Lectures. Number 9 in Studies in
Generative Grammar. Foris Publications, Dordrecht.

Cooper, R., Crouch, D., Eijck, J. V., Fox, C., Genabith,
J. V., Jaspars, J., Kamp, H., Milward, D., Pinkal, M.,
Poesio, M., Pulman, S., Briscoe, T., Maier, H., and
Konrad, K. (1996). Using the Framework. Techni-
cal Report LRE 62-051 D-16, The FraCaS Consor-
tium.

Cooper, R., Dobnik, S., Lappin, S., and Larsson, S.
(2015). Probabilistic Type Theory and Natural Lan-
guage Semantics. In Linguistic Issues in Language
Technology, Volume 10, 2015. CSLI Publications.

Dagan, I., Glickman, O., and Magnini, B. (2006).
The PASCAL Recognising Textual Entailment Chal-
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