
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 930–945

June 6–11, 2021. ©2021 Association for Computational Linguistics

930

On Attention Redundancy: A Comprehensive Study

Yuchen Bian, Jiaji Huang, Xingyu Cai, Jiahong Yuan, Kenneth Church
Baidu Research, Sunnyvale, CA, USA

{yuchenbian,huangjiaji,xingyucai,jiahongyuan,kennethchurch}@baidu.com

Abstract

Multi-layer multi-head self-attention mecha-
nism is widely applied in modern neural lan-
guage models. Attention redundancy has been
observed among attention heads but has not
been deeply studied in the literature. Us-
ing BERT-base model as an example, this pa-
per provides a comprehensive study on atten-
tion redundancy which is helpful for model
interpretation and model compression. We
analyze the attention redundancy with Five-
Ws and How. (What) We define and focus
the study on redundancy matrices generated
from pre-trained and fine-tuned BERT-base
model for GLUE datasets. (How) We use
both token-based and sentence-based distance
functions to measure the redundancy. (Where)
Clear and similar redundancy patterns (clus-
ter structure) are observed among attention
heads. (When) Redundancy patterns are simi-
lar in both pre-training and fine-tuning phases.
(Who) We discover that redundancy patterns
are task-agnostic. Similar redundancy pat-
terns even exist for randomly generated to-
ken sequences. (“Why”) We also evaluate in-
fluences of the pre-training dropout ratios on
attention redundancy. Based on the phase-
independent and task-agnostic attention redun-
dancy patterns, we propose a simple zero-shot
pruning method as a case study. Experiments
on fine-tuning GLUE tasks verify its effective-
ness. The comprehensive analyses on atten-
tion redundancy make model understanding
and zero-shot model pruning promising.

1 Introduction

Multi-layer multi-head self-attention architectures
(Transformer (Vaswani et al., 2017)) are widely
applied in modern language models, such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), OpenAI GPT (Radford et al., 2018), GPT-
2 (Radford et al., 2019) and ERNIE2.0 (Sun et al.,
2019), to name a few.

Redundancy phenomenon is discovered among

0 12 24 36 48 60 72 84 96 108 120 132 144
Head index

0

12

24

36

48

60

72

84

96

108

120

132

144

He
ad

 in
de

x

1 2 3 4 5 6 7 8 9 10 11 12
Layer index

1

2

3

4

5

6

7

8

9

10

11

12

La
ye

r i
nd

ex

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Pair-wise Jensen-Shannon distance of atten-
tion heads for the pre-trained BERT-base model (12-
layer-12-head self-attention). Attention redundancy
(cluster with small distances) exists in adjacent atten-
tion heads and layers.

attention heads. It demonstrates that many atten-
tion heads generate very similar attention matrices
(Clark et al., 2019; Kovaleva et al., 2019). We take
the pre-trained BERT-base model as an example. It
learns 12-layer-12-head self-attention matrices de-
scribing dependencies between each pair of tokens
in a sentence. Then for each token, there are 144
attention vectors. We use Jensen-Shannon distance
to measure the relationship between each pair of
vectors. Then for one sentence (consisting of a
sequence of tokens), the token-averaged distance
is utilized to imply the redundancy between each
pair of attention matrices. Smaller distance val-
ues reflect more redundancy. Figure 1 shows the
redundancy (distance) among 144 × 144 pairs of
attention matrices averaged over 1000 randomly
sampled sentences. We can see clear redundancy
patterns (clusters with smaller distance areas) in
consecutive attention layers.

Analyzing the attention redundancy helps to in-
terpret the multi-layer multi-head self-attention ar-
chitecture. Various studies have attempted to re-



931

veal the relationship among attention heads. Exam-
ples are attention visualization (Vig and Belinkov,
2019), common attention patterns (Kovaleva et al.,
2019), attention head pruning (Voita et al., 2019),
and probing test (Clark et al., 2019). Existing
works either focus on the 12 × 12 attention ma-
trices and their effects on (pre-training or/and fine-
tuning) performances or focus on linguistic features
extracted by latent token vectors and attention ma-
trices.

Though the redundancy phenomenon was dis-
covered, no existing work studies the attention re-
dundancy pattern itself (i.e., the 144×144 distance
matrix in Figure 1) deeply. This motivates us to
conduct a comprehensive and complementary study
on the attention redundancy phenomenon.

In this paper, we take the BERT-base model as a
representative model to analyze the attention redun-
dancy with Five Ws and How. As far as we know,
many of the following discoveries are new to the
research community.

What is attention redundancy?
Given a distance function, we define the pair-

wise distance matrix (∈ R144×144) of the 12× 12
attention matrices of BERT-base model as atten-
tion redundancy matrix. In this paper, we obtain re-
dundancy matrices from both pre-trained and fine-
tuned BERT-base model for GLUE tasks as the
research objects.

How to measure attention redundancy?
Except for the two token-based measures,

Jensen-Shannon distance (Clark et al., 2019) and
cosine similarity (Kovaleva et al., 2019) used in lit-
erature, we employ two more token-based distance
function and three sentence-based ones to mea-
sure attention redundancy and analyze their similar
redundancy patterns (please refer to Section 4.1
for more details). The purpose is to alleviate the
measuring bias of just using one distance function.
Sentence-based distances directly measure the rela-
tionship between two attention matrices without av-
eraging over tokens. We visualize the redundancy
patterns using various distance functions.

Where does attention redundancy exist?
We find common hierarchical cluster structures

in the set of token-based redundancy matrices and
the set of sentence-based redundancy matrices, re-
spectively. Attention heads of earlier, middle, and
deeper attention layers are clearly clustered in the
redundancy matrices. We also demonstrate that
highly correlated similar redundancy patterns exist

in redundancy matrices generated based on differ-
ent type of distances.

When does attention redundancy occur?
The redundancy is phase-independent. Com-

mon redundancy patterns are discovered in both
the pre-trained phase and fine-tuned phases. For
any downstream task with any distance function,
we notice highly correlated attention redundancy
patterns between two phases.

Who (which task) has attention redundancy?
We surprisingly realize that the redundancy is

task-agnostic. The redundancy patterns are highly
correlated across different tasks. We even randomly
generate token sequences as input in the pre-trained
BERT-base model. Very similar attention redun-
dancy patterns occur as well.

Based on this astonishing discovery, as a case
study application, we propose a simple zero-shot
head-pruning strategy based on clustering results
using redundancy matrices. Compared to other
complex pruning strategies, e.g., (Tang et al., 2019;
Jiao et al., 2019; Fan et al., 2019; Wang et al., 2019;
McCarley, 2019), the most important is that with-
out knowing any data of fine-tuning tasks, this prun-
ing can be effectively and efficiently conducted
just based on some randomly generated token se-
quences with the pre-trained BERT-base model.
The only effort is to compute one or several re-
dundancy matrices. Results reflect that for most
GLUE tasks, the proposed pruning strategy based
on redundancy matrices can prune up to 75% to
85% of attention heads while keeping comparable
fine-tuning performances.

“Why” does the phase-independent and task-
agnostic attention redundancy happen?

It’s hard to tell the reason of the redundancy
patterns (that’s why we use the quoted “Why”).
However, we conduct experiments to evaluate the
effects on attention redundancy of dropout ratios in
the pre-training phase which are suspected as one
of reasons (Clark et al., 2019).

When we use sentence-based distance, a mono-
tonic trend is found. Attention heads tend to be
more redundant when increasing dropout ratios.
When we use token-based distances, a complex
"N"-shape effect exists. We also notice that the
redundancy is more sensitive to dropouts in hid-
den linear transformations than to dropouts in the
self-attention mechanism.

We believe that above-mentioned new findings in
this paper make the redundancy analyses a promis-



932

ing research direction in model interpretation and
model compression, and so on.

2 Related Work

Existing literature analyzes multi-layer multi-head
self-attention architectures based language mod-
els (e.g., BERT) from different aspects includ-
ing word/token embedding latent space, linguistic
knowledge interpretability, attention mechanism,
and so on (Rogers et al., 2020).

The output of BERT attention layers are token
embedding vectors. One output vector for one to-
ken aggregates contextual information from the
whole sentence. In the vector space, attention can
produce strong representations for syntactic phe-
nomena and phrasal information (Jawahar et al.,
2019) , but small improvements on semantic tasks
(Tenney et al., 2019). Ethayarajh (2019) showed
that contextualized representations of all words are
not isotropic in any layer. Cai et al. (2021) re-
vealed isotropy in the clustered contextual embed-
ding space, and found low-dimensional manifolds.
In the fine-tuning process, Kovaleva et al. (2019)
showed that the last two attention layers encode
task-specific features while earlier layers capture
more fundamental information.

Another set of works focus on the ability of ex-
tracting linguistic knowledge. BERT can obtain
syntactic dependencies, parts of speech tags, word
disambiguation, and so forth (Ethayarajh, 2019;
Vig and Belinkov, 2019; Clark et al., 2019; Gold-
berg, 2019). It showed that the same layer learns
similar knowledge (Clark et al., 2019). Positional
information is encoded in BERT lower layers (Lin
et al., 2019). Vig and Belinkov (2019) argued that
middle and last attention layers can extract depen-
dency relations and distant information, respec-
tively. Even with BERT’s success, it still struggles
handling some linguistic information and tasks.
BERT does not excel at numbers, negation, in-
ferences and role-based event prediction (Wallace
et al., 2019; Ettinger, 2020). It’s questionable to
provide transparency or meaningful explanations
for model predictions on downtream tasks (Jain
and Wallace, 2019) .

Since self-attention is the fundamental mecha-
nism in BERT, existing works also investigate ex-
tracted attention vectors and/or matrices. These are
most relevant to our study. Clark et al. (2019) and
Kovaleva et al. (2019) found some common atten-
tion patterns, such as patterns on delimiter tokens,

block, and heterogeneous patterns. Also, redun-
dancy and overparameterization is discovered in
attention heads. By using attention-based probing
classifiers, Clark et al. (2019) showed that heads
in the same layer often exhibits similar behaviors.
Attention heads can be pruned with different strate-
gies but keep comparable performance in down-
stream tasks (Voita et al., 2019; Clark et al., 2019).
Some layers can even be reduced to a single head
(Michel et al., 2019).

Understanding attention redundancy can help
interpret pre-trained/fine-tuned language models
and guide model compression. But no systematic
study on attention redundancy exists. This paper
provides a deep study (Five-Ws and How) on the
attention redundancy.

3 What: Redundancy Matrices

In this paper, we use BERT-base model as a repre-
sentative to study the attention redundancy exist-
ing in multi-layer multi-head self-attention mech-
anisms. As a pre-trained language model, BERT
has been verified with outstanding fine-tuning per-
formances on many downstream language under-
standing tasks.

In BERT-base model there are 12 self-attention
layers each of which consists of 12 self-attention
heads. For one input (sentence or sentence pair
with special tokens [CLS] and [SEP]), we extract
12× 12 attention matrices. The size of each matrix
is n × n where n is the number of tokens after
BERT tokenization. Given a metric (e.g., distance
function) and extracted attention matrices, we can
measure the relationship between each pair of the
144 attention matrices, for instance the 144× 144
matrix in Figure 1. We define the pair-wise relation-
ship among the 144 heads (i.e., attention matrices)
as redundancy matrix. We consider that the smaller
the distances among some attention heads are, the
more attention redundancy exists in them.

As for the studying objects, we use the well-
known natural language understanding benchmark
GLUE task1 (Wang et al., 2018) as evaluation ob-
jects for the attention redundancy analysis. Among
GLUE, CoLA is for English sentence acceptabil-
ity judgments. SST-2 and STS-B are sentiment
analyses tasks. MRPC and QQP are for sentence-
pair similarity classification. MNLI, QNLI, and

1We eliminate WNLI due to its very small size. The same
elimination was conducted in the literature (Kovaleva et al.,
2019).



933

RTE are natural language inference tasks. CoLA
and SST-2 are single sentence tasks, while others
are predicting relationship between a pair of sen-
tences. Except that STS-B is a regression task, in
the BERT framework, others are formed as classifi-
cation tasks.

In experiments, we randomly select 1000 data
samples from each development set2 as data in-
stances and report the averaged results. We feed
them to (pre-trained and fine-tuned) BERT-base
model to generate attention matrices.

We use PyTorch BERT-base model as the pre-
trained model3 (Wolf et al., 2019). For fine-
tuning, we train each task with suggested hyper-
parameters max-length=128, num-epoch=3, batch-
size-per-GPU=32 on 8 GPUs. All results in this
paper are averaged over 5 trials.

4 How: Distance Functions

A fundamental question about attention redundancy
is how to measure the similarity or distance be-
tween two attention matrices. The smaller the dis-
tance is, the more redundancy should exist. In this
section, we introduce two levels of distance func-
tions, token-based and sentence-based distances.
The aim is to inspect their interpretabilities and con-
sistency on quantifying the attention redundancy
and to alleviate measuring bias of just using a cer-
tain distance function.

Let dist(Ai,Aj) be a distance function to mea-
sure the relationship between the ith and jth atten-
tion matrices Ai and Aj . Note that we reshape
the 12 layers×12 heads into 144 attention matri-
ces because the inputs of dist are two matrices.
Intuitively, there should be three properties in a
defined distance function. (i) dist(Ai,Ai) = 0;
(ii) the distance function should be symmetric,
i.e., dist(Ai,Aj) = dist(Aj ,Ai); (iii) If Ai is
more similar to Aj than Ak, then dist(Ai,Aj) <
dist(Ai,Ak). So for the following distances, we
modify them according to these requirements and
normalize them into range [0,1] for easy compar-
isons.

4.1 Two Levels of Distances

Token-Based Distance For one input sentence, we
can extract 144 attention weight matrices. Each
matrix is ∈ [0, 1]n×n where n is the number of

2If the total number of development data is less than 1000,
we select all data.

3https://github.com/huggingface/transformers

tokens in the sentence. Then for each token in a
sentence, we get 144 attention vectors (∈ [0, 1]n).
We can compute the pairwise distance of them and
average on the n tokens to obtain a final scalar
value for a pair of attention matrices.

Four token-based distance functions are gener-
ated from the following: cosine similarity (cos),
Pearson correlation coefficient (corr), Jensen-
Shannon distance (JS), and Bhattacharyya coef-
ficient (BC). Note that for readability, please refer
to Appendix A for detailed descriptions, implemen-
tations, and our modifications.

Sentence-Based Distance Unlike the token-
based distances, here we directly measure the dis-
tance between two n × n attention matrices cor-
responding to the whole input sentence. We mod-
ified three measures: distance correlation (dCor)
(Székely et al., 2007), Procrustes coefficient (PC)
(Gower, 1971), and Canonical correlation coeffi-
cient (CC) (Hotelling, 1992). Please refer to Ap-
pendix A for more details.

In general, sentence-based measures care about
covariance and/or linear/nonlinear dependency for
the given two attention matrices while token-based
ones only focus on two single attention vectors.

4.2 Visualization of Redundancy Matrices

We take CoLA with pre-trained BERT-base as an
example to visualize the redundancy matrices based
on the two sets of distance functions. We also
conduct visualization for other GLUE tasks in Ap-
pendix B. Shown in Figure 2, each heatmap shows
the normalized distances (averaged over the 1000
selected CoLA development data) using one dis-
tance function. Each entry reflects the distance
between a pair of attention heads. We can see clear
common redundancy patterns existing in the re-
dundancy matrices based on token-based distances.
Similar observations are shown for sentence-based
distances.

5 Where: Redundancy in Layers

In this section, we discuss the redundancy patterns
in details and show that similar redundancy patterns
exist in redundancy matrices when using the four
token-based distance functions. So do for the three
sentence-based distance functions.

5.1 Redundancy Patterns

There are two observations in Figure 2. First, atten-
tion heads in the same layer and consecutive layers



934

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r
JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Redundancy matrices in the pre-trained BERT-base model for CoLA development data using various
distance functions. The left four and right three are for token-based and sentence-based distances, respectively.
Similar attention redundancy patterns (cluster with small distances) exist in each set of distance functions.

tend to be more redundant than heads in far-apart
layers. Second, redundancy hierarchical cluster
structure exists among layers. However, different
cluster structures exist as well when comparing
results of the two sets of distance measures. The
left four sub-figures are for token-based distances.
They cluster the first 4 layers, the middle 6 lay-
ers and the last 2 layers into three clusters and the
last 8 layers into a bigger cluster. The last three
sub-figures are for sentence-based measures. The
cluster structures are not clearer than that of token-
based measures. But we can still observe that the
middle 10 layers have smaller distances. Heads
in the same layer have closer distances, especially
the first and last layer. From the view of attention
redundancy, these observations can be explained by
conclusions in Kovaleva et al. (2019); Clark et al.
(2019) that heads within the same layer or nearby
attention layers are extracting similar features (e.g.,
task-specific features).

5.2 Similar Patterns

Next, we show that similar redundancy patterns
occur when the four token-based distances are em-
ployed. So do the three sentence-based distances.
In Figure 3, we compute the correlation4 between
each pair of the redundancy matrices (with CoLA
and pre-trained BERT-base) in Figure 2. High cor-
relations are observed in redundancy matrices of
each type of distances. Note that we also provide
experimental results for other tasks with both pre-
trained and fine-tuned BERT-base model in Ap-
pendix C.

As for the different cluster structures for token-
based and sentence-based distance functions, the
reason is related to the information captured by
different distance functions. Sentence-based mea-
sures consider the covariance or nonlinear relation-

4Similar normalization and modification in Section 4.1 are
conducted without being subtracted by 1.

JS co
s

co
rr BC

dC
or PC CC

JS

cos

corr

BC

dCor

PC

CC
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Correlation in two types of redundancy ma-
trices (with pre-trained BERT-base for CoLA). There
are high correlations among token-based and sentence-
based distances, respectively.

ship between two sets of attention matrices. But
token-based ones target on two single attention vec-
tors. Also, different distance functions measure
relationships in different ways. For example, The
sentence-based dCor distance is based on nonlin-
ear operations and 1 is obtained if and only if the
two sets of input random variables are indepen-
dent5. The token-based Pearson correlation (corr)
is a measure for linear correlations.

In summary, by utilizing token-based and
sentence-based distances to measure the attention
redundancy, highly correlated similar redundancy
patterns exist in each type, respectively.

6 When: Redundancy Is
Phase-Independent

As a pre-trained language model, BERT is fine-
tuned for downstream tasks. In this section, we
check the redundancy patterns in both pre-trained
and fine-tuned BERT-base model.

Figure 4 shows the attention redundancy ma-
trices of fine-tuned BERT-base for CoLA using
the two levels of distances (results for other tasks
are shown in Appendix B). Very similar redun-
dancy patterns to those in Figure 2 can be observed.

5dCor distance = 1 is equivalent to that the original dCor
correlation = 0 since we modify it with being subtracted by 1.



935

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r
JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Redundancy matrices in fine-tuned BERT-base for CoLA. They are very similar to redundancy patterns
in pre-trained BERT-base shown in Figure 2.

CoLA

SST-2

MRPC

QQP

STS-B

MNLI

QNLI

JS cos corr BC dCor PC CC

RTE
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Correlation of redundancy matrices between
pre-trained and fine-tuned BERT-base model for GLUE
tasks. Highly correlated attention redundancy patterns
occur in the two phases.

To quantify the similarity, we simply compute the
absolute values of differences between two cor-
responding redundancy matrices in Figure 2 and
Figure 4. The mean difference value is just 0.035.
In addition, we compute correlations between pre-
trained and fine-tuned BERT-base for each GLUE
task under each distance function. As shown in
Figure 5, high correlations are shown in pre-trained
and fine-tuned phases for all GLUE tasks and all
distance functions.

To summarize, attention redundancy patterns in
pre-trained and fine-tuned phases are very similar
and highly correlated.

7 Who: Redundancy Is Task-Agnostic

In this section, we analyze the attention redundancy
from the task-oriented perspective. Specifically, for
each distance function and each phase, we com-
pute the correlation between redundancy matrices
of each pair of tasks. The correlation results for
pre-trained BERT-base model under different dis-
tances are shown in Figure 6 (results for fine-tuned
BERT-base are presented in Appendix D). We find
that the redundancy patterns across tasks are very
similar with each other. Based on the task cate-
gories provided in Wang et al. (2018), we can also

notice that relatively higher correlations occur in
the two single-sentence tasks (CoLA and SST-2),
the three similarity and paraphrase tasks (MRPC,
QQP, and STS-B), and the three inference tasks
(MNLI, QNLI, and RTE), respectively.

To further check the task-agnostic observation,
we even randomly generate 1000 token sequences
with various lengths (uniformly distributed) as in-
put for the pre-trained BERT-base (“RANDOM”
in Figure 6). We can observe high correlations
among redundancy patterns of GLUE datasets and
random inputs.

We conclude that attention redundancy patterns
are task-agnostic. We think that it may be caused
by the input formatting in BERT. In fine-tuning,
the special token [CLS] and [SEP] are inserted in
the beginning and at the end of one input sentence,
respectively. If there are two sentences as input,
they are also delimited by the special token [SEP].
It is found that [CLS] and [SEP] may dominate
the attention distribution in some attention heads
(Clark et al., 2019; Kovaleva et al., 2019) such
that high similarities are observed through different
tasks.

Based on this surprising discovery, we can apply
this task-agnostic observation for pruning redun-
dant attention heads. Without knowing any data of
downstream task, we conduct a simple but effective
clustering-based zero-shot pruning strategy based
on attention redundancy in the following.

7.1 Case Study Application: Zero-Shot
Attention Head Pruning

In this section, we introduce a simple zero-shot
pruning strategy based on the task-agnostic cluster
structure of attention redundancy matrices. Note
that there are some complicated pruning strategies
in the literature, such as (Tang et al., 2019; Jiao
et al., 2019; Fan et al., 2019; Wang et al., 2019;
McCarley, 2019). Most of them compress pre-
trained models during or after fine-tuning to re-



936

Co
LA

SS
T-
2

M
RP

C
QQ

P
ST

S-
B

M
NL

I
QN

LI
RT

E
RA

ND
OM

CoLA
SST-2
MRPC
QQP

STS-B
MNLI
QNLI
RTE

RANDOM

JS

Co
LA

SS
T-
2

M
RP

C
QQ

P
ST

S-
B

M
NL

I
QN

LI
RT

E
RA

ND
OM

cos

Co
LA

SS
T-
2

M
RP

C
QQ

P
ST

S-
B

M
NL

I
QN

LI
RT

E
RA

ND
OM

corr

Co
LA

SS
T-
2

M
RP

C
QQ

P
ST

S-
B

M
NL

I
QN

LI
RT

E
RA

ND
OM

BC

Co
LA

SS
T-
2

M
RP

C
QQ

P
ST

S-
B

M
NL

I
QN

LI
RT

E
RA

ND
OM

dCor

Co
LA

SS
T-
2

M
RP

C
QQ

P
ST

S-
B

M
NL

I
QN

LI
RT

E
RA

ND
OM

PC

Co
LA

SS
T-
2

M
RP

C
QQ

P
ST

S-
B

M
NL

I
QN

LI
RT

E
RA

ND
OM

CC

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Correlations of redundancy matrices of task pairs (using pre-trained BERT-base). Redundancy patterns
are task-agnostic. They are very similar across different tasks, even with random inputs.

Figure 7: Performances of pruned BERT-base model for GLUE tasks. x-axis is the pruning ratio. Performances
can be preserved after pruning even 75− 85% attention heads for most tasks.

duce the computational load in the inference phase.
However, our proposed pruning strategy is before
fine-tuning and zero-shot (i.e., without knowing
any data in fine-tuning tasks).

Comparing and evaluating existing pruning
works are beyond the scope of this paper. We leave
the pruning topic as a future work. However, we
believe that attention redundancy analyses in this
paper benefit developing efficient pruning methods.

7.1.1 Pruning Method

The whole procedure is as the following. First, we
feed randomly generated token sequences as input
data in BERT-base model and obtain the redun-
dancy matrices like Figure 2. Second, a clustering
algorithm is applied on one redundancy matrix or
the averaged redundancy matrices. If a pruning
ratio p is given and the clustering method needs
a given number of cluster, then we set the clus-
ter number to be d144× (1− p)e. Otherwise, a
cluster-number-free clustering method is preferred.
Third, a clustering goodness metric is used for each
object (i.e., attention head) to obtain the cluster
representative head which is kept during pruning.
We can simply prune trainable parameters corre-
sponding to other heads and relevant parameters in
subsequent feed-forward layers, then fine-tune as
usual for downstream tasks.

7.1.2 Pruning Performance
In this section, we applied the well-known spectral
clustering6 and Silhouettee Score7 as the cluster-
ing goodness metric to obtain cluster representa-
tive heads. We prune attention heads using the
same obtained pruning strategy (since the pruning
is zero-shot and task-agnostic) and fine-tune the
pruned BERT-base model for each GLUE task with
suggested hyper-parameters in Section 3. The fine-
tuned performances on development sets are shown
in Figure 7. Each sub-figure corresponds to one
task. x-axis is the pruning ratio between 5% and
95% with an interval of 5%. We conduct 10 trials
for each fine-tuning task. Red dashed line reflects
the average performance without pruning8. Blue
line plots averaged performances under different
pruning ratios. Boundaries of shadow areas cover
the best and worst results of the 10 trials.

In Figure 7, not surprisingly, performances drop
as the pruning ratio increases. However, in 4 (SST-
2, MRPC, QQP and RTE) out of these 8 tasks ,
we could use a pruning ratio as big as 85%, with-
out significant performance loss (< 5%) against an
unpruned model. In MNLI and QNLI, the perfor-
mance loss is bigger. But still, the pruning ratio

6https://scikit-learn.org/stable/modules/generated/sklearn.
cluster.SpectralClustering.html

7https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.silhouette_score.html

8We obtain comparable or even bet-
ter performances as the reported scores
(https://github.com/huggingface/transformers/tree/master/
examples/text-classification) averaged on 10 trials.



937

123456789101112
Head

123456789101112

La
ye
r

Prune 5%

123456789101112
Head

Prune 15%

123456789101112
Head

Prune 25%

123456789101112
Head

Prune 35%

123456789101112
Head

Prune 45%

123456789101112
Head

Prune 55%

123456789101112
Head

Prune 65%

123456789101112
Head

Prune 75%

123456789101112
Head

Prune 85%

123456789101112
Head

Prune 95%

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8: Chances of a head being pruned at various pruning ratios when using our redundancy clustering based
zero-shot pruning strategy (BERT-base model with random inputs). Results are averaged over 10 clustering trials.
In each heatmap, the title shows the pruning ratio (larger pruning ratios reflect that more heads are pruned). The
lighter the entry color is, the more often the head gets pruned. We observe that heads in earlier and deeper layers
are pruned with high chances under larger pruning ratios. Please refer to Section 7.1.3 for more details.

can be as big as 75% to guarantee a small perfor-
mance loss (< 5%). The only two outliers are CoLA
and STS-B. We think their smaller validation sets
(≤ 1000) may result in fluctuations and prevent
us from making a strong conclusion, and a further
study is deferred to future work.

7.1.3 Pruning Heads Visualization

In Figure 8, we visualize some pruning results av-
eraged over 10 clustering trials. Lighter colors rep-
resent that one head is pruned more often. When
pruning ratios are small (e.g., <15%), heads in the
first four layers are pruned with higher chances
than those in further layers. When pruning ratio
increases (25%∼75%), heads in earlier and deeper
layers are pruned more often. However, some heads
are always kept, for example, Head-2,6,10,12 in
Layer-11 and Head-1,3,12 in Layer-12. In extreme
cases (85% and 95% pruning ratios), pruning these
heads hurts fine-tuning performances (Figure 7).
Interestingly, along all pruning ratios (including
cases of 85% and 95%), some heads in the middle
layers are kept with high chances.

We observe that heads in the first four layers
are always very likely to be pruned. This verifies
the cluster structure in redundancy matrices (e.g.,
Figure 2). This may due to the fact that heads in
earlier layers capture more superficial linguistic
features (Kovaleva et al., 2019) which might be
less informative in fine-tuning than other heads. As
pruning ratio increases, heads in deeper layers are
also more likely to be pruned, than those in the
middle layers. We conjecture that after the middle
layers, the contextualized embeddings are already
very "strong" for down-stream tasks. Therefore
the deeper layers do not require too many heads
(though a few are left) to handle the task.

To summarize the case study of pruning, we
emphasize that the proposed simple but robust re-
dundancy clustering based pruning method is task-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Dropout ratio

0.56

0.57

0.58

0.59

0.60

0.61

M
ea

n 
di

st
an

ce

JS

Attn & hidden
Only attn
Only hidden

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Dropout ratio
0.38

0.40

0.42

0.44

0.46

0.48

0.50

M
ea

n 
di

st
an

ce

dCor

Attn & hidden
Only attn
Only hidden

Figure 9: The effects of dropout ratio on the attention
redundancy. "N"-shape is shown on the left (token-
based JS distance). Almost monotonic effects exist
on the right (sentence-based dCor distance): higher
dropout results in more redundancy. Redundancy is
more sensitive to hidden-dropout-ratio than attention-
head-dropout-ratio.

agnostic and zero-shot. Compared to other prun-
ing methods, (i) it requires no data from down-
stream tasks; (ii) one pruning strategy obtained
from the pre-trained model can robustly prune less
informative heads and preserve comparable fine-
tuning performances for all GLUE downstream
tasks. The powerful strength of the simple prun-
ing strategy results from the phase-independent
and task-independent attention redundancy patterns
existing in BERT-base model. As a future work,
we would check if similar attention redundancy
patterns exist in other multi-layer multi-head self-
attention based models and develop corresponding
pruning mechanisms.

8 “Why”: Effects of Pre-Training
Dropouts

It is hard to answer the fundamental question why
attention redundancy exists. However, in this sec-
tion, we examine one factor that may be the cause.

Dropout in the pre-training phase is suspected
to be one reason resulting in redundant attentions
(Clark et al., 2019). But Clark et al. (2019) didn’t
evaluate that. In this section, we investigate ef-
fects of various dropout ratios in the pre-training



938

process on the attention redundancy. In BERT pre-
training, there are two dropout ratios, attention-
head-dropout-ratio and hidden-dropout-ratio. The
former randomly deactivates a ratio of trainable
weights in the attention head (key, query, and value
transformation matrices). The latter deactivates
some weights in the linear transformation matri-
ces which integrate all attention heads after each
attention layer. Their default values are 0.1.

We manually set various values (from 0.0 to
0.9) for those two dropout ratios and train a
BERT masked language model on Wiki103 train-
ing dataset9 from scratch. We train 100 epochs or
until training loss converges. Then we randomly se-
lect 1000 sentences from the test dataset as objects.
For each sentence, we calculate the mean value
of attention redundancy matrix using JS and dCor
distance. The final reported values are averaged
over the 1000 sentences.

Results of three settings are shown in Figure
9. "Only attn" means that we only change the
attention-head-dropout-ratio and keep the hidden-
dropout-ratio as the default value 0.1. "Only hid-
den" is changing hidden-dropout-ratio and keeping
attention-head-dropout-ratio as default. "Attn &
hidden" modifies both dropout ratios. In both fig-
ures, smaller distance values reflect heavier atten-
tion redundancy.

We can see that the token-based measure JS and
sentence-based measure dCor show reversed trends
in the middle range ([0,2 0.7]). For JS on all three
settings, when dropout ratio increases (i.e., more
inactive weights updating in pre-training) the dis-
tances first drop down to the lowest values (when
dropout ratio is 0.2) and increase and then drop
again heavily. On the other hand, for dCor, the
distance decreases (heavier attention redundancy)
along the increased dropout ratio.

We conclude that dropout ratio does not play
a simple effect on the attention redundancy. The
"N"-shape effects shown in the left figure (token-
based distance JS) is demonstrated from the view of
attention vectors’ similarity. On the other hand, the
sentence-based distance (dCor) figure shows that
higher dropout ratios result in more redundancy10.

In both figures, we observe that slopes of "Attn &

9https://blog.einstein.ai/the-wikitext-long-term-
dependency-language-modeling-dataset/

10Note that we use 1 - original distance correlation for
consistency among distance functions. Original distance cor-
relation=0 means that two sets of random variables are inde-
pendent.

hidden" and "Only hidden" are steeper than that of
"Only attn". This means that dropout in the hidden
transformations affects the attention redundancy
more than the attention dropout.

There is no doubt that more factors must affect
the attention redundancy. We leave the “why” in
future study.

9 Conclusion
Using BERT-base model as an example, we com-
prehensively investigated the attention redundancy
in multi-layer multi-head self-attention based lan-
guage models. The redundancy was measured by
distance functions at token level and sentence level.
At both levels, we found that many heads are not
distinct from each other, and clear clustering ef-
fects were observed. We discovered that the at-
tention redundancy is phase-independent and task-
agnostic. Specifically, compared to a pre-trained
model, the redundancy patterns do not change
much after fine-tuning on multiple downstream
tasks. We also shown complex influences on redun-
dancy of dropout ratios in hidden transformations
and self-attention. Based on these discoveries, we
design a zero-shot strategy to prune attention heads.
Compared to existing methods, the zero-shot prun-
ing is simple and robust (task-agnostic). In the
near future, we are interested in experimenting this
method over more self-attention based pre-trained
language models and more downstream tasks.

References
Anil Bhattacharyya. 1946. On a measure of divergence be-

tween two multinomial populations. Sankhyā: the indian
journal of statistics, pages 401–406.

Xingyu Cai, Jiaji Huang, Yuchen Bian, and Kenneth Church.
2021. Isotropy in the contextual embedding space: Clusters
and manifolds. In ICLR.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christo-
pher D Manning. 2019. What does bert look at? an analysis
of bert’s attention. arXiv preprint arXiv:1906.04341.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. BERT: Pre-training of deep bidirectional
transformers for language understanding. In NAACL.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? comparing the geometry
of bert, elmo, and gpt-2 embeddings. arXiv preprint
arXiv:1909.00512.

Allyson Ettinger. 2020. What bert is not: Lessons from a new
suite of psycholinguistic diagnostics for language mod-
els. Transactions of the Association for Computational
Linguistics, 8:34–48.



939

Angela Fan, Edouard Grave, and Armand Joulin. 2019. Reduc-
ing transformer depth on demand with structured dropout.
In ICLR.

Yoav Goldberg. 2019. Assessing bert’s syntactic abilities.
arXiv preprint arXiv:1901.05287.

JC Gower. 1971. Statistical methods of comparing different
multivariate analyses of the same data. Mathematics in the
archaeological and historical sciences, pages 138–149.

Harold Hotelling. 1992. Relations between two sets of
variates. In Breakthroughs in statistics, pages 162–190.
Springer.

Sarthak Jain and Byron C Wallace. 2019. Attention is not
explanation. In NAACL.

Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. 2019.
What does bert learn about the structure of language? In
ACL.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen,
Linlin Li, Fang Wang, and Qun Liu. 2019. Tinybert: Distill-
ing bert for natural language understanding. arXiv preprint
arXiv:1909.10351.

Julie Josse and Susan Holmes. 2016. Measuring multivariate
association and beyond. Statistics surveys, 10:132.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna
Rumshisky. 2019. Revealing the dark secrets of bert. arXiv
preprint arXiv:1908.08593.

Pierre Legendre and MARIE-JOSÉE FORTIN. 2010. Com-
parison of the mantel test and alternative approaches for
detecting complex multivariate relationships in the spatial
analysis of genetic data. Molecular ecology resources,
10(5):831–844.

Yongjie Lin, Yi Chern Tan, and Robert Frank. 2019. Open
sesame: Getting inside bert’s linguistic knowledge. arXiv
preprint arXiv:1906.01698.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A ro-
bustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

J Scott McCarley. 2019. Pruning a bert-based question an-
swering model. arXiv preprint arXiv:1910.06360.

Paul Michel, Omer Levy, and Graham Neubig. 2019. Are
sixteen heads really better than one? In NeurIPS.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language models are
unsupervised multitask learners. OpenAI Blog, 1(8):9.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky. 2020. A
primer in bertology: What we know about how bert works.
arXiv preprint arXiv:2002.12327.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao Tian,
Hua Wu, and Haifeng Wang. 2019. Ernie 2.0: A continual
pre-training framework for language understanding. arXiv
preprint arXiv:1907.12412.

Gábor J Székely, Maria L Rizzo, Nail K Bakirov, et al. 2007.
Measuring and testing dependence by correlation of dis-
tances. The annals of statistics, 35(6):2769–2794.

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vech-
tomova, and Jimmy Lin. 2019. Distilling task-specific
knowledge from bert into simple neural networks. arXiv
preprint arXiv:1903.12136.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam
Poliak, R Thomas McCoy, Najoung Kim, Benjamin
Van Durme, Samuel Bowman, Dipanjan Das, et al. 2019.
What do you learn from context? probing for sentence
structure in contextualized word representations. In ICLR.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In NeurIPS.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing the struc-
ture of attention in a transformer language model. arXiv
preprint arXiv:1906.04284.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich,
and Ivan Titov. 2019. Analyzing multi-head self-attention:
Specialized heads do the heavy lifting, the rest can be
pruned. In ACL.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh, and
Matt Gardner. 2019. Do nlp models know numbers? prob-
ing numeracy in embeddings. In EMNLP.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel R Bowman. 2018. Glue: A multi-
task benchmark and analysis platform for natural language
understanding. arXiv preprint arXiv:1804.07461.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. 2019. Struc-
tured pruning of large language models. arXiv preprint
arXiv:1910.04732.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim
Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew.
2019. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771.



940

This is the appendix for NAACL-HLT 2021 pa-
per: Yuchen Bian, Jiaji Huang, Xingyu Cai, Jia-
hong Yuan, and Kenneth Church. On Attention
Redundancy: A Comprehensive Study.

A Distance Functions

We provide detailed descriptions of distance func-
tions and our modifications in this section. Most
of them exist in python scipy and sklearn pack-
ages. For others, we also provide implementa-
tion references or implement by ourselves. But
more mathematical details are beyond this paper’s
scope. Please refer to original papers or (Josse and
Holmes, 2016) for discussions.

A.1 Token-Based Distances

For an input sentence, each token corresponds to
144 attention vectors.

Let p,q be two attention vectors or attention
distributions (since the sum of each attention vector
is 1). Four modified distance functions used in this
paper are:

• cosine similarity (cos): Since cos(p,q) for a
pair of distribution vectors is bounded in [0, 1],
we modify it with 1 − cos(p,q) to keep the
distance properties in Section 4.

• Pearson correlation coefficient (corr): We
normalize as (1 − corr(p,q))/2 due to its
range [−1, 1].

• Jensen-Shannon distance (JS): Its range is
[0,1] and it’s consistent with the distance prop-
erties. It is also used in the literature (Clark
et al., 2019; Jain and Wallace, 2019) to mea-
sure the distance of two attention distribu-
tions.

• Bhattacharyya coefficient (BC) (Bhat-
tacharyya, 1946): It measures the amount of
overlap between two statistical populations.
It can be used to determine the relative
closeness of the two attention vectors.
BC(p,q) =

∑
x p(x)q(x). Its range is

[0, 1], and we modify it by 1−BC(p,q).

A.2 Sentence-Based Distances

For an input sentence, let Ai and Aj be arbitrary
two attention matrices among the 144 attention
matrices extracted from the BERT-base model.

• Distance correlation11 (dCor) (Székely et al.,
2007): It is introduced to address the defi-
ciency of Pearson’s correlation which is sensi-
tive to a linear relationship between two vari-
ables. It’s widely used in statistical commu-
nity. It’s based on nonlinear operation and the
range is [0, 1] where 0 is got when two sets of
random variables are independent. We modify
it as 1-dCor(Ai,Aj).

• Procrustes coefficient (PC) (Gower, 1971)
: It can measure the closeness of two data
matrices. It’s also known as Lingoes and
Schönemann (RLS) coefficient (Legendre and
FORTIN, 2010). It varies from 0 to 1 and can
be used as a distance measure.

• Canonical correlation coefficient (CC)
(Hotelling, 1992): It’s a famous method to
study the relationship between two sets of
variables. It’s defined as the trace of a matrix
combining the covariance of two input data
matrices. We modify it as 1-CC(Ai,Aj).

B Attention Redundancy Matrices

In this section, we provide attention redundancy
matrices visualization results for GLUE datasets
and randomly generated token sequences (Figure
10 to Figure 18).

C Consistency of Redundancy Patterns
in GLUE Tasks

In this section, we provide more consistency results
of attention redundancy patterns measured based
on token-based and sentence-based distances for
GLUE tasks in Figure 19 including both pre-trained
and fine-tuned BERT-base model.

D Cross-Task Correlations of
Redundancy Patterns in GLUE Tasks

In this section, we show the cross-task correlation
results of attention redundancy patterns measured
based on different distances for GLUE tasks and
random inputs in fine-tuned BERT-base model in
Figure 20.

11https://github.com/vnmabus/dcor



941

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(a) Redundancy matrices in pre-trained BERT-base for CoLA

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(b) Redundancy matrices in fine-tuned BERT-base for CoLA

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(c) Difference of redundancy matrices between pre-trained and fine-tuned BERT-base for CoLA

Figure 10: Redundancy matrices in BERT-base for CoLA

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(a) Redundancy matrices in pre-trained BERT-base for SST-2

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(b) Redundancy matrices in fine-tuned BERT-base for SST-2

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(c) Difference of redundancy matrices between pre-trained and fine-tuned BERT-base for SST-2

Figure 11: Redundancy matrices in BERT-base for SST-2



942

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(a) Redundancy matrices in pre-trained BERT-base for MRPC

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(b) Redundancy matrices in fine-tuned BERT-base for MRPC

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(c) Difference of redundancy matrices between pre-trained and fine-tuned BERT-base for MRPC

Figure 12: Redundancy matrices in BERT-base for MRPC

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(a) Redundancy matrices in pre-trained BERT-base for QQP

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(b) Redundancy matrices in fine-tuned BERT-base for QQP

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(c) Difference of redundancy matrices between pre-trained and fine-tuned BERT-base for QQP

Figure 13: Redundancy matrices in BERT-base for QQP



943

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(a) Redundancy matrices in pre-trained BERT-base for STS-B

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(b) Redundancy matrices in fine-tuned BERT-base for STS-B

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(c) Difference of redundancy matrices between pre-trained and fine-tuned BERT-base for STS-B

Figure 14: Redundancy matrices in BERT-base for STS-B

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(a) Redundancy matrices in pre-trained BERT-base for MNLI

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(b) Redundancy matrices in fine-tuned BERT-base for MNLI

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(c) Difference of redundancy matrices between pre-trained and fine-tuned BERT-base for MNLI

Figure 15: Redundancy matrices in BERT-base for MNLI



944

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(a) Redundancy matrices in pre-trained BERT-base for QNLI

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(b) Redundancy matrices in fine-tuned BERT-base for QNLI

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(c) Difference of redundancy matrices between pre-trained and fine-tuned BERT-base for QNLI

Figure 16: Redundancy matrices in BERT-base for QNLI

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(a) Redundancy matrices in pre-trained BERT-base for RTE

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(b) Redundancy matrices in fine-tuned BERT-base for RTE

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

(c) Difference of redundancy matrices between pre-trained and fine-tuned BERT-base for RTE

Figure 17: Redundancy matrices in BERT-base for RTE



945

1 2 3 4 5 6 7 8 9 101112
Layer

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

JS

1 2 3 4 5 6 7 8 9 101112
Layer

cos

1 2 3 4 5 6 7 8 9 101112
Layer

corr

1 2 3 4 5 6 7 8 9 101112
Layer

BC

1 2 3 4 5 6 7 8 9 101112
Layer

dCor

1 2 3 4 5 6 7 8 9 101112
Layer

PC

1 2 3 4 5 6 7 8 9 101112
Layer

CC

0.0

0.2

0.4

0.6

0.8

1.0

Figure 18: Redundancy matrices in pre-trained BERT-base for randomly generated token sequences

JS co
s

co
rr BC

dC
or PC CC

JS
cos
corr
BC

dCor
PC
CC

CoLA

JS co
s

co
rr BC

dC
or PC CC

SST-2

JS co
s

co
rr BC

dC
or PC CC

MRPC

JS co
s

co
rr BC

dC
or PC CC

QQP

JS co
s

co
rr BC

dC
or PC CC

STS-B
JS co
s

co
rr BC

dC
or PC CC

MNLI

JS co
s

co
rr BC

dC
or PC CC

QNLI

JS co
s

co
rr BC

dC
or PC CC

RTE

JS co
s

co
rr BC

dC
or PC CC

RANDOM

0.0

0.2

0.4

0.6

0.8

1.0

(a) Pre-trained BERT-base model

JS co
s

co
rr BC

dC
or PC CC

JS
cos
corr
BC

dCor
PC
CC

CoLA

JS co
s

co
rr BC

dC
or PC CC

SST-2

JS co
s

co
rr BC

dC
or PC CC

MRPC

JS co
s

co
rr BC

dC
or PC CC

QQP

JS co
s

co
rr BC

dC
or PC CC

STS-B

JS co
s

co
rr BC

dC
or PC CC

MNLI

JS co
s

co
rr BC

dC
or PC CC

QNLI
JS co
s

co
rr BC

dC
or PC CC

RTE

JS co
s

co
rr BC

dC
or PC CC

RANDOM

0.0

0.2

0.4

0.6

0.8

1.0

(b) Fine-tuned BERT-base model

Figure 19: Correlation of redundancy matrices in BERT-base for GLUE tasks and random inputs

Co
LA

SS
T-
2

M
RP

C
QQ

P
ST

S-
B

M
NL

I
QN

LI
RT

E
RA

ND
OM

CoLA
SST-2
MRPC
QQP

STS-B
MNLI
QNLI
RTE

RANDOM

JS

Co
LA

SS
T-
2

M
RP

C
QQ

P
ST

S-
B

M
NL

I
QN

LI
RT

E
RA

ND
OM

cos

Co
LA

SS
T-
2

M
RP

C
QQ

P
ST

S-
B

M
NL

I
QN

LI
RT

E
RA

ND
OM

corr

Co
LA

SS
T-
2

M
RP

C
QQ

P
ST

S-
B

M
NL

I
QN

LI
RT

E
RA

ND
OM

BC

Co
LA

SS
T-
2

M
RP

C
QQ

P
ST

S-
B

M
NL

I
QN

LI
RT

E
RA

ND
OM

dCor

Co
LA

SS
T-
2

M
RP

C
QQ

P
ST

S-
B

M
NL

I
QN

LI
RT

E
RA

ND
OM

PC

Co
LA

SS
T-
2

M
RP

C
QQ

P
ST

S-
B

M
NL

I
QN

LI
RT

E
RA

ND
OM

CC

0.0

0.2

0.4

0.6

0.8

1.0

Figure 20: Correlations of redundancy matrices between task pairs (with fine-tuned BERT-base)


