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Abstract

Stance detection on social media can help to
identify and understand slanted news or com-
mentary in everyday life. In this work, we pro-
pose a new model for zero-shot stance detec-
tion on Twitter that uses adversarial learning to
generalize across topics. Our model achieves
state-of-the-art performance on a number of
unseen test topics with minimal computational
costs. In addition, we extend zero-shot stance
detection to new topics, highlighting future di-
rections for zero-shot transfer.

1 Introduction

Stance detection, the problem of automatically
identifying positions or opinions in text, is becom-
ing increasingly important for social media (e.g.,
Twitter), as more and more people turn to it for their
news. Zero-shot stance detection, in particular, is
crucial, since gathering training data for all topics
is not feasible. While there has been increasing
work on zero-shot stance detection in other gen-
res (Allaway and McKeown, 2020; Vamvas and
Sennrich, 2020), generalization across many topics
in social media remains an open challenge.

In this work, we propose a new model for stance
detection that uses adversarial learning to general-
ize to unseen topics on Twitter. Our model achieves
state-of-the-art zero-shot performance on the ma-
jority of topics in the standard dataset for English
stance detection on Twitter (Mohammad et al.,
2016) and also provides benchmark results on two
new topics in this dataset.

Most prior work on English social media stance
detection uses the SemEval2016 Task 6 (SemT6)
dataset (Mohammad et al., 2016) which consists
of six topics. While early work trained using five
topics and evaluated on the sixth (e.g., Augenstein
et al. (2016); Zarrella and Marsh (2016); Wei et al.
(2016)), they used only one topic, ‘Donald Trump’

⇤⇤ Denotes equal contribution.

(DT), for evaluation and did not experiment with
others. Furthermore, recent work on SemT6 has
focused on cross-target stance detection (Xu et al.,
2018; Wei and Mao, 2019; Zhang et al., 2020):
training on one topic and evaluating on one dif-
ferent unseeen topic that has a known relation-
ship with the training topic (e.g., “legalization of
abortion” to “feminist movement”). These models
are typically evaluated on four different test topics
(each with a different training topic).

In contrast, our work is a hybrid of these two set-
tings: we train on five topics and evaluate on one
other, but unlike prior work we do not assume a
relationship between training and test topics and so
we use each topic in turn as the test topic. This illus-
trates the robustness of our model across topics and
additionally allows zero-shot evaluation of SemT6
on two new topics that were previously ignored by
cross-target models (‘atheism’ and ‘climate change
is a real concern’).

Recently, Allaway and McKeown (2020) intro-
duced a new dataset of news article comments
for zero-shot stance detection. While this dataset
evaluates generalization to many new topics when
learning with many topics and only a few exam-
ples per topic, there are no datasets for social me-
dia with this setup. Specifically, current datasets
for stance detection on Twitter (Mohammad et al.,
2016; Taulé et al., 2017; Küçük, 2017; Tsakalidis
et al., 2018; Lai et al., 2020) have only a few topics
but many examples per topic. Therefore, zero-shot
stance detection on social media is best modeled as
a domain adaptation task.

To model zero-shot topic transfer as domain-
adaptation, we treat each topic as a domain. Follow-
ing the success of adversarial learning for domain
adaptation (Zhang et al., 2017; Ganin and Lem-
pitsky, 2015), we use a discriminator (adversary)
to learn topic-invariant representations that allow
better generalization across topics. Although, Wei
and Mao (2019) also proposed adversarial learning
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for stance detection, their model relies on knowl-
edge transfer between topics (domains) and so is
only suited to the cross-target, not zero-shot, task.
In contrast, our work adopts a successful cross-
target architecture into a domain adaptation model
without requiring a priori knowledge of any rela-
tionship between topics.

Our contributions in this work are: 1) we
propose a new model for zero-shot stance detection
on Twitter using adversarial learning that does
not make assumptions about the training and test
topics, and 2) we achieve state-of-the-art perfor-
mance on a range of topics and provide benchmark
zero-shot results for two topics not previously used
in the zero-shot setting with reduced computational
requirements compared to pre-trained language
models. Our models are available at: https:

//github.com/MalavikaSrikanth16/

adversarial-learning-for-stance.

2 Methods

We propose a new model, TOpic-ADversarial Net-
work, for zero-shot stance detection, that uses
the domain-transfer architecture from Zhang et al.
(2017) coupled with a successful stance model (Au-
genstein et al., 2016) with an additional topic-
specific attention layer, to produce topic-invariant
representations that generalize to unseen topics (see
Figure 1).

2.1 Overview and Definitions
Let D be a dataset of examples, each consisting
of a document d (a tweet), a topic t, and a stance
label y. The task is to predict a label ŷ 2 {pro, con,
neutral}, given d and t.

In domain-adaptation, adversarial learning
forces the model to learn domain-invariant (i.e.,
topic-invariant) features that can then be transferred
to a new domain. To do this, a classifier and a
discriminator (adversary) are trained jointly from
the same feature representation to maximize the
classifier’s performance while simultaneously min-
imizing the discriminator’s.

2.2 Model Components
(a) Topic-oriented Document Encoder We en-
code each example x = (d, t, y) using bidirec-
tional conditional encoding (BiCond) (Augenstein
et al., 2016), since computing representations con-
ditioned on the topic have been shown to be crucial
for zero-shot stance detection (Allaway and McKe-

own, 2020). Specifically, we first encode the topic
as ht using a BiLSTM (Hochreiter and Schmidhu-
ber, 1997) and then encode the text using a second
BiLSTM conditioned on ht.

To compute a document-level representation vdt,
we apply scaled dot-product attention (Vaswani
et al., 2017) over the output of the text BiLSTM,
using the topic representation ht as the query. This
encourages the text encoder to produce representa-
tions that are indicative of stance on the topic and
so would improve classification performance.

To prevent the adversary corrupting the encoder
to reduce its own performance, we add a document
reconstruction term (Lrec

d ) to our loss function,
as in Zhang et al. (2017), as well as a topic
reconstruction term (Lrec

t ), to ensure the output of
neither BiLSTM is corrupted. We use a non-linear
transformation over the hidden states of each
BiLSTM for reconstruction. The reconstruction
loss is the mean-squared error between the
reconstructed vectors and the original vectors,
under the same non-linearity.

(b) Topic-invariant Transformation To allow
the adversary to produce topic-invariant repre-
sentations without removing stance cues and
without large adjustments to vdt, we follow Zhang
et al. (2017) and apply a linear transformation
fvdt = W

tr
vdt that we regularize (Ltr) to the

identity I .

(c) Stance Classifier We use a two-layer feed-
forward neural network with a ReLU activation
to predict stance labels ` 2 {�1, 0, 1}. Since
stance is inherently dependent on a topic, and
the output of the transformation layer should be
topic-invariant, we add a residual connection
between the topic encoder ht and the stance
classifier. That is, we concatenate ht with fvdt
before classification.

(d) Topic Discriminator Our topic discriminator
is also a two-layer feed-forward neural network
with ReLU and predicts the topic t of the input x,
given the output of the transformation layer fvdt. In
order to learn representations invariant to both the
source and target domains, we train the discrimi-
nator using both labeled data for the source topics
from D and unlabeled data D

ul for the zero-shot
topic (not from the test data), following standard
practice in domain adaptation (Ganin and Lempit-
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Figure 1: TOpic-ADersarial Network (§2.2). t is the topic, d is the document.

Topic # Ex # Unlabeled Keywords
DT 707 2194 trump, Trump
HC 984 1898 hillary, clinton
FM 949 1951 femini
LA 933 1899 aborti
CC 564 1900 climate
A 733 1900 atheism, atheist

Table 1: Data statistics for SemT6. DT: Donald Trump,
HC: Hillary Clinton, FM: Feminist Movement, LA: Le-
galization of Abortion, CC: Climate Change is a Real
Concern, A: Atheism.

sky, 2015; Zhang et al., 2017).

2.3 Adversarial Training
Our model, TOAD, is trained by combining the in-
dividual component losses. For both the stance clas-
sifier and topic-discriminator we use cross-entropy
loss (Ls and Lt respectively). Since we hypoth-
esize that topic-invariant representations will be
well suited to zero-shot transfer, we want to mini-
mize the discriminator’s ability to predict the topic
from the input. Specifically, we minimize Ls while
maximizing Lt, which we do using gradient rever-
sal during backpropagation (Ganin and Lempitsky,
2015). Our final loss function is then

L = �rec(Lrec
d + Lrec

t ) + �trLtr
+ Ls � ⇢Lt

where �rec, �tr are fixed hyperparameters. The hy-
perparameter ⇢ gradually increases across epochs,
following Ganin and Lempitsky (2015). All loss
terms except Ls are computed using both labeled
and unlabeled data.

3 Experiments

Data In our experiments, we use the SemT6
dataset (see Table 1) used in cross-target stud-
ies (Mohammad et al., 2016). For each topic
t 2 T , we train one model with t as the zero-shot
test topic. Specifically, we use all examples from
each of the five topics in {T � t} for training and
validation (split 85/15) and test on all examples for
t. To train the topic-discriminator, we additionally

use ⇠2k unlabeled tweets for the zero-shot topic t

from the set collected by Augenstein et al. (2016).
Theses tweets are from the same time period as the
SemT6 dataset (⇠2016) and therefore are better
suited for training a discriminator than newly
scraped Tweets. To select Tweets for each topic
we use 1-2 keywords (see Table 1).

Baselines We compare against a BERT (Devlin
et al., 2019) baseline that encodes the docu-
ment and topic jointly for classification, as
in Allaway and McKeown (2020) and BiCond –
bidirectional conditional encoding (§2.2) without
attention (Augenstein et al., 2016). Additionally,
we compare against published results from three
prior models: SEKT – using a knowledge graph to
improve topic transfer (Zhang et al., 2020), VTN –
adversarial learning with a topic-oriented memory
network, and CrossN – BiCond with an additional
topic-specific self-attention layer (Xu et al., 2018).

Hyperparameters We tune the hyperparameters
for our adversarial model using uniform sampling
on the development set with 20 search trials. We
select the best hyperparameter setting using the
average rank of the stance classifier F1 (higher is
better) and topic discriminator F1 (lower is bet-
ter). We remove settings where the discriminator
F1 is < 0.01, under the assumption that such low
performance is the result of overly corrupt represen-
tations that will not generalize. We use pre-trained
100-dimensional GloVe vectors (Pennington et al.,
2014) in our models.

Our implementations of BERT and BiCond are
trained in the same setting as TOAD (i.e., 5 topics
for train/dev, 1 topic for test). However, because
CrossN, VTN, and SEKT are designed to learn
relationships between topics, they are not suited
to the zero-shot task (only the cross-target task)
and therefore we report only their published cross-
target results for the topic pairs (i.e., train on one,
test on the other) DT $ HC and FM $ LA. We
note that since TOAD is trained using significantly
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DT HC FM LA A CC
P C Favg P C Favg P C Favg P C Favg P C Favg P C Favg

BERT 22.3 57.9 40.1 36.1 63.2 49.6 46.6 37.3 41.9 36.9 52.8 44.8 39.6 70.8 55.2† 66.3 8.2 37.3
BiCond 17.0 43.9 30.5 18.9 46.5 32.7 31.7 49.5 40.6 27.1 41.7 34.4 2.3 59.7 31.0 16.5 13.5 15.0
CrossN - - 46.1 - - 41.8 - - 43.1 - - 44.2 - - - - - -
VTN - - 47.9 - - 36.4 - - 47.8 - - 47.3 - - - - - -
SEKT - - 47.7 - - 42.0 - - 51.3 - - 53.6 - - - - - -
TOAD 40.0 58.9 49.5†⇤ 35.3 67.1 51.2 41.5 66.7 54.1†⇤ 30.6 61.7 46.2⇤ 17.7 74.5 46.1 45.4 16.5 30.9
� adv 29.0 54.1 41.5 32.1 66.4 49.3 39.8 46.1 43.0 32.0 46.4 39.2 7.5 72.0 39.8 37.4 22. 0 29.7

Table 2: Zero-shot stance Favg on the test sets for six topics. † indicates significance (p < 0.005) comparing to
BERT, ⇤ indicates significance (p < 0.005) comparing to TOAD without adversary. P is pro, C is con. Published
results are used for CrossN, VTN, and SEKT; they do not report class-wise scores.

Homogeneity Completeness

DT TOAD 0.034 0.034
�adv 0.102 0.104

HC TOAD 0.118 0.120
�adv 0.135 0.142

Table 3: Results of Kmeans clustering using the repre-
sentations of models trained with zero-shot test topics
DT and HC. Higher numbers indicates better match be-
tween the clustering and gold topic labeling.

more data, our experiments evaluate not only model
architectures but also the benefit of the zero-shot
setting for topic-transfer.

4 Results

As in prior work (e.g., Zhang et al. (2020)) we
report Favg: the average of F1 on pro and con.

Our model TOAD achieves state-of-the-art re-
sults (see Table 2) on two (DT, FM) of the four
topics used in cross-target stance detection (DT:
Donald Trump, HC: Hillary Clinton, FM: Feminist
Movement, LA: Legalization of Abortion). These
results are statistically significant (p < 0.005)
when compared to both the BERT baseline and
to TOAD without the adversary 1 . In addition we
provide benchmark results on two topics (A: Athe-
ism, CC: climate change is a real concern) that have
not been used previously for zero-shot evaluation.

We also observe that TOAD is statistically
indistinguishable from BERT on three additional
topics (HC, LA, CC) while having only 0.5%

as many parameters (600k versus 110mil). As a
result of this small size, TOAD can be trained
using only the CPU and, because of it’s recurrent
architecture, would gain less from the increased
parallel computation of a GPU (compared to a
transformer-based model). Therefore, TOAD has a
potentially much lower environmental impact than
BERT with similar (or better) performance on five

1SEKT code is not available for computing significance.

(a) Using the combined vocabulary of both topics.

(b) Using the vocabulary of the topic on the y-axis.

Figure 2: Jensen-Shannon divergence for topic pairs.

out of six zero-shot topics.

Analysis Since cross-target models (e.g., SEKT)
rely on assumptions about topic similarity, we first
analyze the impact of topic similarity on stance
performance (see Figure 2). Specifically, we com-
pute the Jensen-Shannon divergence (Lin, 1991)
between word distributions for pairs of topics to
examine the impact of topic similarity on stance
performance (see A.4 for details). We use Jensen-
Shannon divergence (DJS) because it has been
shown to successfully distinguish domains (Ruder
and Plank, 2017; Plank and van Noord, 2011).

Using the combined vocabulary of both topics
in a pair (see Figure 2a), we observe that human
notions of similarity (used to select pairs for cross-
target models) may be flawed. For example, while
the cross-target pair DT $ HC is relatively similar,
for the other standard cross-target pair, FM $ LA,
FM is almost as similar to DT as to LA. Since
zero-shot transfer methods use all non-test topics
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for training, they avoid difficulties introduced by
flawed human assumptions about similarity (e.g.,
about the ideological similarity of FM and LA).

We then examine, whether distributional similar-
ity between topics does actually relate to cross-
target (T1 ! T2) stance performance. Using
the vocabulary for only one topic (VT1) per pair
(see Figure 2b), we observe an inverse relation-
ship between similarity and relative stance per-
formance. Specifically, relatively lower similarity
(higher divergence) often leads to relatively higher
stance performance. For example, DJS(HC||DT)

is higher than DJS(DT||HC) suggesting that a
model trained on HC has less information about
the word-distribution for DT than a model trained
on DT has about HC. However, the cross-target
stance models trained in the HC ! DT setup (e.g.,
SEKT) actually perform relatively better than those
trained in the DT ! HC setup. This highlights a
further problem in the cross-target setting: using
similar topics may encourage models to rely on dis-
tributional patterns that do not correlate well with
cross-topic stance labels.

Next, we examine how topic-invariant the repre-
sentations from TOAD actually are, and the impact
of this on stance classification. We extract represen-
tations from our models, apply K-means clustering
with k = 6, and compare the resulting clusters to
the gold topic labeling (see Table 3). We exam-
ine representations from models trained with either
zero-shot topic DT or HC because the improve-
ment by the adversary is statistically significant
for DT but not for HC. We observe that for both
topics, the clusters from TOAD representations are
less aligned with topics. This shows that using
adversarial learning produces more topic-invariant
representations than without it.

Furthermore, we see that the difference (in both
homogeneity and completeness) between TOAD
with and without the adversary is larger on DT
than on HC (� ⇡ 0.7 and � ⇡ 0.02 respectively).
This suggests that the stance detection performance
difference between TOAD with and without the
adversary is tied to the success of the adversary at
producing topic-invariant representations. That is,
when the adversary is less successful, it does not
provide much benefit to TOAD.

Finally, we conduct an ablation on the topic-
specific components of TOAD (Table 4). We ob-
serve that the residual topic and unlabeled data are
especially important. Note that while the keywords

DT HC
Favg � Favg �

TOAD 49.5 51.2
�Lrec

t 44.6 -4.9 52.5 +1.3
� residual topic 39.3 -10.2 43.4 -7.8
�D

ul 40.0 -9.5 51.1 -0.1

Table 4: Ablation of TOAD with test sets DT and HC.

used to collect unlabeled data may favor the pro
class (e.g., aborti), we do not observe a preference
for the pro class in our models, likely due to class
imbalance (e.g., 20.9% pro DT). Additionally, we
observe that while the topic reconstruction Lrec

t is
important for DT, it actually decreases the perfor-
mance of the HC model. We hypothesize that this is
because the adversary is less successful for HC and
therefore Lrec

t only increases the noise in the stance
classification loss for HC. Our results reaffirm the
dependence of stance on the topic while also high-
lighting the importance of fully topic-invariant rep-
resentations in order to generalize.

5 Conclusion

We propose a new model for zero-shot stance de-
tection on Twitter that uses adversarial learning to
produce topic-invariant representations that gener-
alize to unseen topics. Our model achieves state-of-
the-art performance on a number of unseen topics
with reduced computational requirements. In ad-
dition, our training procedure allows the model to
generalize to new topics unrelated to the training
topics and to provide benchmark results on two
topics that have not previously been evaluated on
in zero-shot settings. In future work, we plan to
investigate how to extend our models to Twitter
datasets in languages other than English.
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6 Ethics Statement

We use a dataset collected and distributed for the
SemEval2016 Task 6 (Mohammad et al., 2016)
and used extensively by the community. Data
was collected from publicly available posts on
Twitter using a set of manually identified hashtags
(e.g., “#NoMoreReligions” and “#Godswill”, see
http://saifmohammad.com/WebDocs/

Stance/hashtags_all.txt for a complete
list).

All tweets with the hashtag at the end were col-
lected and then post-processed to remove the actual
hashtag. Thus, there is no information on the gen-
der, ethnicity or race of the people who posted.
Many of the tweets that we examined were Stan-
dard American English coupled with internet slang.

The intended use of our technology is to predict
the stance of authors towards topics, where the top-
ics are often political in nature. This technology
could be useful for people in office who want to
understand how their constituents feel about an is-
sue under discussion; it may be useful to decide
on new policies going forward or to react proac-
tively to situations where people are upset about
a public issue. For example, we can imagine us-
ing such a tool to determine how people feel about
the safety of a vaccine or how they feel about im-
migration policies. If the system is incorrect in
its prediction of stance, end users would not fully
understand how people feel about different topics.
For example, we can imagine that they may decide
that there is no need to implement an education pro-
gram on vaccine safety if the stance prediction tool
inaccurately predicts that people feel good about
vaccine safety. The benefits of understanding, with
some inaccuracy, how people feel about a topic,
outweigh the situation where one has no informa-
tion (or only information that could be gleaned by
manually reading a few examples). The technology
would not be deployed, in any case, until accuracy
is improved.

We also note that since many topics are political
in nature, this technology could be used nefariously
to identify people to target with certain types of
political ads or disinformation (based on automati-
cally identified beliefs) or by employers to identify
political opinions of employees. However, because
the data does not include any user-identifying in-
formation, we ourselves are prevented from such
usage and any future wrongful deployment of the
technology in these settings would be a direct viola-

tion of Twitter’s Terms of Service for developers2.
Given that we don’t know the race of posters and

we don’t know whether African American Vernac-
ular is fairly represented in the corpus, we don’t
know whether the tool would make fair predictions
for people who speak this dialect. Further work
would need to be done to create a tool that can
make fair predictions regardless of race, gender or
ethnicity.

As noted in the paper, the environmental impact
of training and deploying our tool is less than for
all comparably performing models.
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A Appendix

A.1 Implementation Details
Our models are implemented using Pytorch3. We
implement our K-means clustering with Scikit-
learn4. Our models are trained using one Titan Xp
P8 GPU, but, as noted in the paper, they can also
be trained on the CPU with a minimual increase in
computation time.

We train TOAD, TOAD without adversary, and
BiCond for a maximum of 100 epochs with early
stopping on the development set, computed using
Favg. We use Adam (Kingma and Ba, 2015) to
optimize and for the adversarial model we decay
the learning rate in relation to the discriminator
strength hyperparameter ⇢ (Ganin and Lempitsky,
2015). Specifically, until epoch 50, the learning
rate is fixed at l and the value of ⇢ remains 0. If
total number of epochs is t, for an epoch e > 50

we compute, p = (e � 50)/t. The learning rate at
epoch e is computed as l/(1+↵ ·p)

� and the value
of ⇢ at epoch e is computed as 2/(1 + e

��·p
) � 1

where ↵, � and � are hyperparameters.
For the BERT baseline we fine-tune for 10

epochs using the implementation of BERT from
the Hugging Face Transformers library5. We use a
batch size of 16 and a learning rate of 2e � 5 with
linear decay after the first 10% of training steps.
We optimize using AdamW. To prevent exploding
gradients, we apply gradient clipping to 1.0.

We report validation performance of our models
on stance classification (see Table 5) as well as the
score of the topic-discriminator on the training set,
since it is not computed on the development set
(see Table 6). We also show the average number
of parameters and runtime for all models averaged
over all topics (see Table 7).

A.2 Hyperparameters
We tune the hyperparameters for our adversarial
model using uniform sampling on the development
set with 20 search trials. We select the best hy-
perparameter setting using the average rank of the
stance classifier F1 (higher is better) and topic dis-
criminator F1 (lower is better). We remove set-
tings where the discriminator F1 is < 0.01, under
the assumption that such low performance is the
result of overly corrupt representations that will
not generalize. In all models, we use pre-trained

3
https://pytorch.org/

4
https://scikit-learn.org/stable/

5
https://huggingface.co/transformers/

100-dimensional GloVe vectors (Pennington et al.,
2014) in our models. We show hyperparameter con-
figurations and search space for TOAD (Table 8),
TOAD without the adversary (Table 9) and BiCond
(Table 10). Note that there are no hyperparemters
to tune for the BERT baseline.

A.3 Data
We preprocess tweets by removing URLs and men-
tions. We remove the # symbol from hashtags
in tweets and tokenize the hashtags. We remove
emojis and punctuation from tweets. We convert
tweets to lowercase and remove stopwords from the
tweets. We show the class distribution in Table 11.

A.4 Topic Divergence
Jensen-Shannon divergence (Lin, 1991) is a
smoothed, symmetric variant of KL divergence.
Let t

(1) and t

(2) be two topics and P and Q be
word-distributions for the topics respectively. Then
the KL divergence is defined as DKL(P ||Q) =P

i pi log

pi
qi

. However, DKL(P ||Q) is undefined
if qi = 0 for any qi 2 Q. Therefore, Jensen-
Shannon divergence uses the average distribution
M =

1
2(P + Q) and is defined as

DJS(P ||Q) =

1

2

(DKL(P ||M) + DKL(Q||M)).

We follow Plank and van Noord (2011) in com-
puting word distributions for each topic pair. Let
V = [tVt be the union of the vocabularies for all
topics t. Then for the topic pair t

(1) and t

(2), the
distribution for one topic is either t 2 R|V

t(1)
[V

t(2)
|

or t 2 R|V
t(1)

|, where ti is the probability of the i-th
word in the vocabulary. Note, we use Vt(1) [ Vt(2)

or Vt(1) rather than V to ensure that mi 6= 0 for
all mi 2 M , regardless of choice of topics. Also
note that when using only the vocabulary from t

(1),
DJS(P ||Q) is no longer symmetric, since the size
of t depends of which topic is t

(1).

A.5 Ablation Results
We report full ablation results on all components
of the adversarial model, on all six topics on the
development sets (see Table 12).

We also report the results of applying K-means
clustering on the representations extracted from the
models trained in each setup. For clustering, we
extract representations for the entire dataset (train,
dev, and test). Then we randomly split the dataset
into train and test with no zero-shot topic. We fit
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DT HC FM LA A CC
BERT 45.0 42.8 41.8 42.9 42.9 41.5
BiCond 66.7

(64.6 ± 0.01)
68.7
(65.8 ± 0.01)

65.6
(64.2 ± 0.006)

66.9
(64.4 ± 0.02)

64.8
(62.0 ± 0.01)

61.3
(59.7 ± 0.006)

TOAD 66.1
(64.4 ± 0.09)

65.9
(64.1 ± 0.18)

62.2
(59.8 ± 0.09)

64.9
(63.0 ± 0.07)

64.6
(62.0 ± 0.06)

64.8
(58.8 ± 0.13)

� adv 69.3
(68.1 ± 0.008)

72.6
(70.7 ± 0.008)

68.2
(66.7 ± 0.007)

69.2
(66.8 ± 0.01)

66.5
(65.3 ± 0.006)

65.3
(63.9 ± 0.02)

Table 5: Favg results on the development sets for each topic, with mean and variance shown for models with
hyperparameter tuning.

DT HC FM LA A CC
TOAD 1.9 2.2 28.7 1.3 26.5 4.2

Table 6: Topic-discriminator F1 on the training set for
TOAD across topics.

K-means clustering on the training portion and eval-
uate on the test portion. We use the same train/test
split for all clusterings. We evaluate using homo-
geneity (evaluates whether each cluster contains
only examples of one topic) and completeness (all
examples from one topic are in one cluster) (see
Table 13).
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BERT BiCond TOAD TOAD �adv
# parameters 110 million 358926 554152 632915
avg. runtime 15min 5min 20min 20min

Table 7: Search trials, time, and parameters for models. We average across all six topics for each model.

Hyperparameter Search space Best assignment
DT HC FM LA A CC

BiLSTM hidden size unifrom-integer[40-150] 80 105 113 115 111 105
Stance classifier hidden size uniform-integer[80-300] 147 278 201 222 213 254
Topic discriminator hidden size uniform-integer[40-150] 85 95 140 120 143 90
�rec choice[1] 1 1 1 1 1 1
�tr choice[0.1, 1, 10] 0.1 0.1 10.0 10.0 1.0 0.1
� uniform-integer[10-15] 14 12 14 11 11 10
↵ choice[10] 10 10 10 10 10 10
� choice[0.25] 0.25 0.25 0.25 0.25 0.25 0.25
l choice[0.001] 0.001 0.001 0.001 0.001 0.001 0.001

Table 8: Hyperparameter search space and best settings for TOAD.

Hyperparameter Search space Best assignment
DT HC FM LA A CC

BiLSTM hidden size unifrom-integer[40-150] 96 96 140 134 140 115
Stance classifier hidden size uniform-integer[80-300] 137 137 228 166 228 222

Table 9: Hyperparameter search space and best settings for TOAD without the adversary.

Hyperparameter Search space Best assignment
DT HC FM LA A CC

BiLSTM hidden size unifrom-integer[40-150] 74 94 128 78 141 104
Dropout uniform-float[0.1-0.4] 0.2380 0.3220 0.4015 0.3086 0.3912 0.2501

Table 10: Hyperparameter search space and best setting for BiCond.
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Topic %Pro %Con %Neither # Total
DT 20.9 42.3 36.8 707
HC 16.6 57.4 26.0 984
FM 28.2 53.8 18.0 949
LA 17.9 58.3 23.8 933
A 16.9 63.3 19.8 733
CC 59.4 4.6 36.0 564

Table 11: Class distributions for each of the six topics.
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DT HC FM LA A CC
F1 � F1 � F1 � F1 � F1 � F1 �

TOAD 49.5 51.2 54.1 46.2 46.1 30.9
� transformation 38.8 -10.7 43.2 -8.0 51.9 -2.2 43.6 -2.6 44.5 -1.6 44.4 +13.5
�Ltr 34.8 -14.7 48.0 -3.1 47.9 -6.2 39.7 -6.4 41.9 -4.3 4.5 -26.4
�Lrec

t 44.6 -4.9 52.5 +1.3 35.0 -19.1 46.9 +0.7 38.7 -7.4 4.4 -26.5
�Lrec

d 36.9 -12.6 46.3 -4.9 49.7 -4.4 48.3 +2.1 43.1 -3 18.1 -12.8
�Lrec

t & �Lrec
d 43.0 -6.5 43.5 -7.7 40.1 -14.0 43.3 -2.9 39.5 -6.6 37.3 +6.4

� residual topic 39.3 -10.2 43.4 -7.8 45.4 -8.7 43.3 -2.9 44.6 -1.5 37.3 +6.4
�D

ul 40.0 -9.5 51.1 -0.1 44.0 -10.1 46.2 -0.0 40.3 -5.8 26.1 -4.8

Table 12: Full component ablation on test sets for all six topics.

DT HC FM LA A CC
Hom. Com. Hom. Com. Hom. Com. Hom. Com. Hom. Com. Hom. Com.

TOAD 0.034 0.034 0.118 0.120 0.293 0.302 0.091 0.093 0.091 0.092 0.144 0.149
� adv 0.102 0.104 0.135 0.142 0.078 0.081 0.075 0.078 0.033 0.034 0.097 0.1

Table 13: Homogeneity (Hom.) and completeness (Com.) for clusters computed with the representations extracted
from models with each of the six topics as the test set.


