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1 Aim of the Workshop

According to the World Federation of the Deaf (WFD) over 70 million people are deaf and
communicate primarily via a sign language (SL). Contrary to popular belief, SLs differ from
spoken languages; they are not merely mappings of words in a spoken language into hand
gestures. SLs are independent natural languages expressed in the visual-gestural modality with
their own words and grammar that are separate from their regional spoken counterpart (Camgoz
et al., 2018; Stokoe Jr, 2005). With more than 150 different sign languages1 and more than 7000
spoken languages2 crossing the signed-spoken language barrier in current times of increased
globalisation and information flow is a challenging task, but one that is crucial for fair access of
information.

Currently, human interpreters are the main medium for signed-to-spoken, spoken-to-signed
and signed-to-signed language translation. The availability and cost of these professionals is
often a limiting factor in communication between signers and non-signers. Machine translation
(MT) is a core technique for reducing language barriers [for spoken languages]. Although MT
has come a long way since its inception in the 1950s, it still has a long way to go to successfully
cater to all communication needs and users. When it comes to the deaf community, MT is in its
infancy.

The rapid technological and methodological advances in deep learning (DL), and in AI
in general, that we have seen in the last decade, have not only improved MT, the recognition
of image, video and audio signals, as well as the understanding of language, and the synthe-
sis of life-like 3D avatars, etc., but have also led to the fusion of interdisciplinary research
innovations that lays the foundation of automated translation services between signed and spo-
ken languages. However, these recent advances have not yet improved the translation between
signed and spoken, and between signed and signed languages to the extent of spoken-to-spoken
MT where reaching human-level translation quality has been claimed more than once in the last
5 years (Junczys-Dowmunt et al., 2016; Wu et al., 2016; Hassan et al., 2018). Furthermore,
lessons learned from research and development in the field of Natural Language Processing
(NLP) (related to spoken language) have not yet been taken into account in the work of signed
language researchers (Yin et al., 2021).

1The Ethnologue website (https://www.ethnologue.com/subgroups/sign-language)
lists 150 sign languages; WFD reports more than 200 sign languages; other sources re-
port up to 300 sign languages (e.g. https://www.k-international.com/blog/

different-types-of-sign-language-around-the-world/).
2See https://www.ethnologue.com/guides/how-many-languages for an overview.
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The goal of the first edition of the workshop on Automatic Translation for Signed and Spo-
ken Languages (AT4SSL) is to reduce the aforementioned gaps in research and development
of tool, techniques and methodologies for the automatic translation between signed and spoken
languages. It provides a venue where researchers, practitioners, interpreters and innovators who
focus on sign language linguistics, MT, NLP, interpreting of signed and spoken languages, im-
age and video recognition (for the purpose of sign language recognition), 3D avatar and virtual
signers synthesis, and other related fields can present complete or ongoing research and dis-
cuss problems, challenges and opportunities for the automated translation of signed-to-spoken,
spoken-to-signed and signed-to-signed communication. The AT4SSL workshop encapsulates:
(i) 8 long papers, presenting complete work; (ii) 3 short papers, presenting ongoing research;
(iii) a key-note presentation and (iv) a panel discussion.

The work presented in this and other workshops3 along with the increased finan-
cial support for large-scale projects working on signed and spoken language translation
such as SignON (https://signon-project.eu/) and EASIER (https://www.
project-easier.eu/) are indicative for the realisation that such a complex task needs
to be addressed from different sides and through a multidisciplinary collaboration. As a work-
shop within the Machine Translation Summit 2021 (MTSummit 2021), the AT4SSL workshop
also aims to bring closer the wider MT and the signed language research and development
communities.

2 Paper Overview

The first edition of the AT4SSL workshop received 15 submissions (including long and short
papers). Eight long papers, presenting completed work, and three short papers, presenting
ongoing work were accepted to be presented at the workshop.

Three long papers present work on translation of sign language (gloss or video) into text,
exploiting existing and proposing new techniques based on low-resource MT approaches. These
papers are:4

• “Frozen Pretrained Transformers for Neural Sign Language Translation” (long paper) by
Mathieu De Coster, Karel D’Oosterlinck, Marija Pizurica, Paloma Rabaey, Severine Ver-
linden, Mieke Van Herreweghe and Joni Dambre

• “Data Augmentation for Sign Language Gloss Translation” (long paper) by Amit
Moryossef, Kayo Yin, Graham Neubig and Yoav Goldberg

• “Approaching Sign Language Gloss Translation as a Low-Resource Machine Translation
Task” (long paper) by Xuan Zhang and Kevin Duh.

Two position papers discuss specific pitfalls, challenges and ethical considerations in the
development of sign language technologies with a more in-depth focus on 3D avatars. These
are:

• “The Myth of Signing Avatars” (long paper) by Rosalee Wolfe, John C. McDonald, Eleni
Efthimiou, Evita Fontinea, Frankie Picron, Davy Van Landuyt, Tina Sioen, Annelies Braf-
fort, Michael Filhol, Sarah Ebling, Thomas Hanke and Verena Krausneker

• “Is ”good enough” good enough? Ethical and responsible development of sign language
technologies” (long paper) by Maartje De Meulder

3For example, the workshop on Sign Language Translation and Avatar Technologies (SLTAT) http://sltat.
cs.depaul.edu/ and the workshop on Sign Language Recognition, Translation and Production (SLRTP) https:
//slrtp.com/.

4Following alphabetic order based on the author’s surname.
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One long paper and one short paper present work on synthesis of sign language, i.e. text-
to-sign and 3D avatar synthesis on AR glasses:

• “AVASAG: A German Sign Language Translation System for Public Services” (short
paper) by Fabrizio Nunnari, Judith Bauerdiek, Lucas Bernhard, Cristina España-Bonet,
Corinna Jäger, Amelie Unger, Kristoffer Waldow, Sonja Wecker, Elisabeth André, Stephan
Busemann, Christian Dold, Arnulph Fuhrmann, Patrick Gebhard, Yasser Hamidullah, Mar-
cel Hauck, Yvonne Kossel, Martin Misiak, Dieter Wallach and Alexander Stricker

• “Automatic generation of a 3D sign language avatar on AR glasses given 2D videos of
human signers” (long paper) by Lan Thao Nguyen, Florian Schicktanz, Aeneas Stankowski
and Eleftherios Avramidis

Two long and two short papers address other miscellaneous topics:

• “Sign and Search: Sign Search Functionality for Sign Language Lexica” (long paper) by
Manolis Fragkiadakis and Peter van der Putten – which presents different methods for
search and retrieval of signs from sign language lexica using OpenPose keypoints.

• “Using Computer Vision to Analyze Non-manual Marking of Questions in KRSL” (long
paper) by Anna Kuznetsova, Alfarabi Imashev, Medet Mukushev, Anara Sandygulova and
Vadim Kimmelman – which a manual and an automatic analysis of non-manual markings
in Kazakh-Russian Sign Language (KRSL) as presented in yes/no and wh- questions. The
automated analysis uses an approach based on OpenPose.

• “Online Evaluation of Text-to-sign Translation by Deaf End Users: Some Methodologi-
cal Recommendations” (short paper) by Floris Roelofsen, Lyke Esselink, Shani Mende-
Gillings, Maartje de Meulder, Nienke Sijm and Anika Smeijers

• “Defining meaningful units. Challenges in sign segmentation and segment-meaning map-
ping” (short paper) by Mirella De Sisto, Dimitar Shterionov, Irene Murtagh, Myriam Ver-
meerbergen and Lorraine Leeson – the only linguistically oriented paper which discusses
challenges related to mapping signs into meaning units that can allow the processing of
sign language with established NLP and MT tools and techniques.

3 Invited Speakers

This first edition of the AT4SSL hosts one invited talk and a panel discussion. The key-note
speaker is:

Prof Lorraine Leeson (key-note) (female) holds a Dip. Deaf Studies (interpreting),
M.Phil Linguistics, PhD. Linguistics. Cert. Gender Studies. She is Professor in Deaf Stud-
ies at the Centre for Deaf Studies, School of Linguistics, Speech and Communication Sciences
and Associate Dean of Research (Research Integrity) for Trinity College Dublin (2018-present).
Prof Leeson has worked with Deaf communities in a range of capacities since 1990. She served
as inaugural Director of the Centre for Deaf Studies at Trinity College Dublin from 2001-17.
Her research work is multidisciplinary in nature. Her doctoral work was the first to examine
aspects of the morphosyntax of Irish Sign Language, and subsequent to this, she has published
widely on aspects of the grammar of Irish Sign Language, as well as on applied linguistics top-
ics, including a significant body of work on sign language interpreting (16 books, 58 papers, 13
edited volumes (journals/monographs) and 100+ peer-reviewed conference papers). She was
named a European Commission European Language Ambassador for her work on sign lan-
guages in 2008. Lorraine was a member of the first cohort of professionally trained Irish Sign
Language/English interpreters in Ireland, and she continues to interpret. She has engaged in
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pan-European research work with academic institutions, Deaf communities and interpreting or-
ganisations since 1990, serving as Chair of the European Forum of Sign Language Interpreters
Committee of Experts (2013-2019). She is a member of the Royal Irish Academy’s Committee
on Languages, Literatures and Cultures (LLC) (2018-present).

The panel will feature seven prominent experts in the fields of machine translation, ma-
chine learning, engineering, sign language linguistics and computational linguistics, data col-
lection and processing (for the purposes of sign language research) and avatar and 3D technolo-
gies. The panel members are:

• Mr Mark Wheatley, Executive Director of the European Union of the Deaf (EUD), Bel-
gium

• Prof Gorka Labaka, Assistant professor at the Engineering School of the University of
the Basque Country (UPV/EHU), Spain

• Prof Christian Rathmann, Professor in Deaf Studies Interpreting at Humboldt Univer-
sity, Germany.

• Dr Sarah Ebling, Lecturer and research associate at the University of Zurich and the
University of Applied Sciences of Special Needs Education Zurich (HfH), Switzerland.

• Prof Myriam Vermeerbergen, Associate Professor at KU Leuven, Belgium

• Mr Thomas Hanke, Research Associate at the University of Hamburg, Germany.

• Prof Richard Bowden, Professor of Computer Vision and Machine Learning at the Uni-
versity of Surrey, the UK.

4 Committees

4.1 Organisation committee
• Dimitar Shterionov (workshop chair), Tilburg University

• Carmel Grehan, Trinity College Dublin

• Mathieu De Coster, Ghent University

• Aoife Brady, The ADAPT Centre, Dublin City University

• Davy Van Landuyt, European Union of the Deaf

• Jorn Rijckaert, Vlaams GebarentaalCentrum,

• Catia Cucchiarini, Dutch Language Union (Nederlandse Taalunie)

• Mirella De Sisto, Tilburg University

• Vincent Vandeghinste, KULeuven / Instituut voor de Nederlandse Taal

4.2 Program committee
• Abraham Glasser, Rochester Institute of Technology

• Ahmet Alp Kindiroglu, Bogazici University

• Amanda Duarte, Barcelona Supercomputing Center
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• Amit Moryossef, Bar-Ilan University, Google

• Daniel Stein, eBay Inc.

• Eva Vanmassenhove, Tilburg University
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• Iacer Calixto, University of Amsterdam
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• Kayo Yin, Carnegie Mellon University
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• Tsourakis Nikos, University of Geneva
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Abstract
Sign language translation (SLT) is often decomposed into video-to-gloss recognition and gloss-
to-text translation, where a gloss is a sequence of transcribed spoken-language words in the
order in which they are signed. We focus here on gloss-to-text translation, which we treat as
a low-resource neural machine translation (NMT) problem. However, unlike traditional low-
resource NMT, gloss-to-text translation differs because gloss-text pairs often have a higher lex-
ical overlap and lower syntactic overlap than pairs of spoken languages. We exploit this lexical
overlap and handle syntactic divergence by proposing two rule-based heuristics that generate
pseudo-parallel gloss-text pairs from monolingual spoken language text. By pre-training on
this synthetic data, we improve translation from American Sign Language (ASL) to English
and German Sign Language (DGS) to German by up to 3.14 and 2.20 BLEU, respectively.

1 Introduction

Sign language is the most natural mode of communication for the Deaf. However, in a predom-
inantly hearing society, they often resort to lip-reading, text-based communication, or closed-
captioning to interact with others. Sign language translation (SLT) is an important research
area that aims to improve communication between signers and non-signers while allowing each
party to use their preferred language. SLT consists of translating a sign language (SL) video
into a spoken language (SpL) text, and current approaches often decompose this task into two
steps: (1) video-to-gloss, or continuous sign language recognition (CSLR) (Cui et al., 2017;
Camgoz et al., 2018); (2) gloss-to-text, which is a text-to-text machine translation (MT) task
(Camgoz et al., 2018; Yin and Read, 2020b).

In this paper, we focus on gloss-to-text translation. SL data and resources are often scarce,
or nonexistent (§2; Bragg et al. (2019)). Gloss-to-text translation is, therefore, an example of an
extremely low-resource MT task. However, while there is extensive literature on low-resource
MT between spoken languages (Sennrich et al., 2016a; Zoph et al., 2016; Xia et al., 2019; Zhou
et al., 2019), the dissimilarity between sign and spoken languages calls for novel methods.
Specifically, as SL glosses borrow the lexical elements from their ambient spoken language,
handling syntax and morphology poses greater challenges than lexeme translation (§3).
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fs-JOHN FUTURE FINISH READ BOOK WHEN HOLD

When will John finish reading the book?

ASL Video:

ASL Gloss:

English:

GLOSSING

TRANSLATION

(a) ASL video with gloss annotation and English translation

FORWARD LOOK TOMORROW CHILD SEE

I'm looking forward to seeing the children tomorrow.

Synthetic Gloss:

English:

I look forward to seeing the child tomorrow.Model Output:

GENERATE

TRAIN

(b) Data augmentation and training

Figure 1: Real and synthetic gloss-spoken pairs.

In this work, we (1) discuss the scarcity of SL data and quantify how the relationship be-
tween a sign and spoken language pair is different from a pair of two spoken languages; (2)
show that the de facto method for data augmentation using back-translation is not viable in ex-
tremely low-resource SLT; (3) propose two rule-based heuristics that exploit the lexical overlap
and handles the syntactic divergence between sign and spoken language, to synthesize pseudo-
parallel gloss/text examples (Figure 1b); (4) demonstrate the effectiveness of our methods on
two sign-to-spoken language pairs.

2 Background

Sign Language Glossing SLs are often transcribed word-for-word using a spoken language
through glossing to aid in language learning, or automatic sign language processing (Ormel
et al., 2010). While many SL glosses are words from the ambient spoken language, glossing
preserves SL’s original syntactic structure and therefore differs from translation (Figure 1a).

Data Scarcity While standard machine translation architectures such as the Transformer
(Vaswani et al., 2017) achieve reasonable performance on gloss-to-text datasets (Yin and Read,
2020a; Camgoz et al., 2020), parallel SL and spoken language corpora, especially those with
gloss annotations, are usually far more scarce when compared with parallel corpora that exist
between many spoken languages (Table 1).

Language Pair # Parallel Gloss-Text Pairs Vocabulary Size (Gloss / Spoken)

Signum (von Agris and Kraiss, 2007) DGS-German 780 565 / 1,051
NCSLGR (SignStream, 2007) ASL-English 1,875 2,484 / 3,104
RWTH-PHOENIX-Weather 2014T (Camgoz et al., 2018) DGS-German 7,096 + 519 + 642 1,066 / 2,887 + 393 / 951 + 411 / 1,001
Dicta-Sign-LSF-v2 (Limsi, 2019) French SL-French 2,904 2,266 / 5,028
The Public DGS Corpus (Hanke et al., 2020) DGS-German 63,912 4,694 / 23,404

Table 1: Some publicly available SL corpora with gloss annotations and spoken language trans-
lations.

3 Sign vs. Spoken Language

Due to the paucity of parallel data for gloss-to-text translation, we can treat it as a low-resource
translation problem and apply existing techniques for improving accuracy in such settings.
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Figure 2: Lexical and syntactic similarity between different language pairs denoted by their
ISO639-2 codes.

However, we argue that the relationship between glossed SLs and their spoken counterparts is
different from the usual relationship between two spoken languages. Specifically, glossed SLs
are lexically similar but syntactically different from their spoken counterparts. This contrasts
heavily with the relationship among spoken language pairs where lexically similar languages
tend also to be syntactically similar the great majority of the time.

To demonstrate this empirically, we adopt measures from (Lin et al., 2019) to measure
the lexical and syntactic similarity between languages, two features also shown to be positively
correlated with the effectiveness of performing cross-lingual transfer in MT.

Lexical similarity between two languages is measured using word overlap:

ow =
|T1 ∩ T2|
|T1|+ |T2|

where T1 and T2 are the sets of types in a corpus for each language. The word overlap between
spoken language pairs is calculated using the TED talks dataset (Qi et al., 2018). The overlap
between sign-spoken language pairs is calculated from the corresponding corpora in Table 1.

Syntactic similarity between two languages is measured by 1−dsyn where dsyn is the syntac-
tic distance from (Littell et al., 2017) calculated by taking the cosine distance between syntactic
features adapted from the World Atlas of Language Structures (Dryer and Haspelmath, 2013).

Figure 2 shows that sign-spoken language pairs are indeed outliers with lower syntactic
similarity and higher lexical similarity. We seek to leverage this fact and the high availability
of monolingual spoken language data to compensate for the scarcity of SL resources. In the
following section, we propose data augmentation techniques using word order modifications to
create synthetic sign gloss data from spoken language corpora.

4 Data Augmentation

This section discusses methods to improve gloss-to-text translation through data augmentation,
specifically those that take monolingual corpora of standard spoken languages and generate
pseudo-parallel “gloss” text. We first discuss a standard way of doing so, back-translation, point
out its potential failings in the SL setting, then propose a novel rule-based data augmentation
algorithm.

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
1st International Workshop on Automatic Translation for Signed and Spoken Languages

Page 3



4.1 Back-translation
Back-translation (Irvine and Callison-Burch, 2013; Sennrich et al., 2016a) automatically creates
pseudo-parallel sentence pairs from monolingual text to improve MT in low-resource settings.
However, back-translation is only effective with sufficient parallel data to train a functional MT
model, which is not always the case in extremely low-resource settings (Currey et al., 2017), and
particularly when the domain of the parallel training data and monolingual data to be translated
are mismatched (Dou et al., 2020).

4.2 Proposed Rule-based Augmentation Strategies
Given the limitations of standard back-translation techniques, we next move to the proposed
method of using rule-based heuristics to generate SL glosses from spoken language text.

General rules The differences in SL glosses from spoken language can be summarized by
(1) A lack of word inflection, (2) An omission of punctuation and individual words, and (3)
Syntactic diversity.

We, therefore, propose the corresponding three heuristics to generate pseudo-glosses from
spoken language: (1) Lemmatization of spoken words; (2) POS-dependent and random word
deletion; (3) Random word permutation.

We use spaCy (Honnibal and Montani, 2017) for (1) lemmatization and (2) POS tagging to
only keep nouns, verbs, adjectives, adverbs, and numerals. We also drop the remaining tokens
with probability p = 0.2, and (3) randomly reorder tokens with maximum distance d = 4.

Language-specific rules While random permutation allows some degree of robustness to
word order, it cannot capture all aspects of syntactic divergence between signed and spoken
language. Therefore, inspired by previous work on rule-based syntactic transformations for re-
ordering in MT (Collins et al., 2005; Isozaki et al., 2010; Zhou et al., 2019), we manually devise
a shortlist of syntax transformation rules based on the grammar of DGS and German.

We perform lemmatization and POS filtering as before. In addition, we apply compound
splitting (Tuggener, 2016) on nouns and only keep the first noun, reorder German SVO sen-
tences to SOV, move adverbs and location words to the start of the sentence, and move negation
words to the end. We provide a detailed list of rules in Appendix A.

5 Experimental Setting

5.1 Datasets
DGS & German RWTH-PHOENIX-Weather 2014T (Camgoz et al., 2018) is a parallel cor-
pus of 8,257 DGS interpreted videos from the Phoenix1 weather news channel, with corre-
sponding SL glosses and German translations.

To obtain monolingual German data, we crawled tagesschau2 and extracted news caption
files containing the word “wetter” (German for “weather”). We split the 1,506 caption files
into 341,023 German sentences using the spaCy sentence splitter and generate synthetic glosses
using our methods described in §4.

ASL & English The NCSLGR dataset (SignStream, 2007) is a small, general domain dataset
containing 889 ASL videos with 1,875 SL glosses and English translations.

We use ASLG-PC12 (Othman and Jemni, 2012), a large synthetic ASL gloss dataset cre-
ated from English text using rule-based methods with 87,710 publicly available examples, for
our experiments on ASL-English with language-specific rules. We also create another synthetic
variation of this dataset using our proposed general rule-based augmentation.

1www.phoenix.de
2www.tagesschau.de
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Figure 3: Translation results using various amounts of annotated parallel data.

5.2 Baseline Setup

We first train a Baseline system on the small manually annotated SL dataset we have available
in each language pair. The model architecture and training method are based on Yin and Read
(2020b)’s Transformer gloss-to-text translation model. While previous work (Yin and Read
Reimpl.) used word-level tokenization, for Baseline and all other models described below, we
instead use BPE tokenization (Sennrich et al. (2016b); with 2,000 BPE codes) for efficiency
and simple handling of unknown words. For all tested methods, we repeat every experiment 3
times to account for variance in training.

5.3 Pre-training on Augmented Data

For General-pre and Specific-pre, we pre-train a tokenizer and translation model on pseudo-
parallel data obtained using general and language-specific rules respectively, until the accuracy
on the synthetic validation set drops. We test both models on the parallel SL dataset in a zero-
shot setting.

For BT-tuned, General-tuned and Specific-tuned, we take models pre-trained on pseudo-
parallel data obtained with either back-translation, general rules, or language-specific rules, and
continue training with half of the training data taken from the synthetic pseudo-parallel data and
the other half taken from the real SL data. Then, we fine-tune these models on the real SL data
and evaluate them on the test set.

6 Results

We evaluate our models across all datasets and sizes using SacreBLEU (v1.4.14) (Post, 2018)
and COMET (wmt-large-da-estimator-1719) (Rei et al., 2020). We also compare our results to
previous work on PHOENIX in Table 2. Detailed scores for each experiment are provided in
Appendix C.

First, we note results on General-pre and Specific-pre. Interestingly, the scores are non-
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PHOENIX NCSLGR
BLEU↑ COMET↑ BLEU↑ COMET↑

Yin and Read Reimpl.4 22.17 -2.93 - -
Baseline 21.15 -5.74 15.95 -61.00

General-pre (0-shot) 3.95 -69.09 0.97 -135.99
Specific-pre (0-shot) 7.26 -53.14 0.95 -134.13

BT-tuned 22.02 6.84 16.67 -51.86
General-tuned 23.35 13.65 19.09 -34.50
Specific-tuned 23.17 11.70 18.58 -39.96

Table 2: Results of our different models on PHOENIX and NCSLGR. We bold scores statisti-
cally significantly higher than baseline at the 95% confidence level.

negligible, demonstrating that the model can learn with only augmented data.3 Moreover, on
PHOENIX Specific-pre achieves significantly better performance than General-pre, which sug-
gests our hand-crafted syntax transformations effectively expose the model to the divergence
between DGS and German during pre-training.

Next, turning to the tuned models, we see that Specific and General outperform both the
baseline and BT by large margins, demonstrating the effectiveness of our proposed methods.
Interestingly, General-tuned performs slightly better, in contrast to the previous result. We
posit that, similarly to previously reported results on sampling-based back translation (Edunov
et al., 2018), General is benefiting from the diversity provided by sampling multiple reordering
candidates, even if each candidate is of lower quality.

Looking at Figure 3, we see that the superior performance of our methods holds for all data
sizes, but it is particularly pronounced when the parallel-data-only baseline achieves moderate
BLEU scores in the range of 5-20. This confirms that BT is not a viable data augmentation
method when parallel data is not plentiful enough to train a robust back-translation system.

7 Implications and Future Work

Consistent improvements over the baseline across two language pairs by our proposed rule-
based augmentation strategies demonstrate that data augmentation using monolingual spoken
language data is a promising approach for sign language translation.

Given the efficiency of our general rules compared to language-specific rules, future work
may also include a more focused approach on specifically pre-training the target-side decoder
with spoken language sentences so that by learning the syntax of the target spoken language, it
can generate fluent sentences from sign language glosses having little to no parallel examples
during training.

3In contrast, merely outputting the source sentence results in 1.36 BLEU, -90.28 COMET on PHOENIX and 1.5
BLEU, -119.45 COMET on NCSLGR.

4The original work achieves 23.32 BLEU; correspondence with the authors has led us to believe that the discrepancy
is due to different versions of the underlying software.
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A Data Augmentation Rules

A.1 General Rules
For a given sentence S:

1. Discard all tokens t ∈ S if POS(t) 6∈ {noun, verb, adjective, adverb, numeral}

2. Discard remaining tokens t ∈ S with probability p = 0.2

3. Lemmatize all tokens t ∈ S

4. Apply a random permutation σ to S verifying ∀i ∈ {1, n}, |σ(i)− i| ≤ 4

where n is the number of tokens in S at step 4 and POS is a part-of-speech tagger.

A.2 German-DGS Rules
For a given sentence S:

1. For each subject-verb-object triplet (s, v, o) ∈ S, swap the positions of v and o in S

2. Discard all tokens t ∈ S if POS(t) 6∈ {noun, verb, adjective, adverb, numeral}

3. For t ∈ S, if POS(t) = adverb, then move t to the start of s

4. For t ∈ S, if NER(t) = location, then move t to the start of s

5. For t ∈ S, if DEP(t) = negation, then move t to the end of s

6. For t ∈ S, if t is a compound noun c1c2...cn, replace t by c1

7. Lemmatize all tokens t ∈ S
where POS is a part-of-speech tagger, NER is a named entity recognizer and DEP is a depen-
dency parser.

B Model Reproduction

For reproduction purposes, here we lay the exact commands for training a single model using
OpenNMT 1.2.0 (Klein et al., 2017). These commands are taken from (Yin and Read, 2020b).

Given 6 files—train.gloss / train.txt, dev.gloss / dev.txt, test.gloss / test.txt—we start by
preprocessing the data using the following command:

onmt preprocess −dynamic dict −save data processed data \
−train src train.gloss −train tgt train.txt −valid src dev.gloss −valid tgt dev.txt

Then, we train a translation system using the train command:

onmt train −data processed data −save model model −layers 2 −rnn size 512 −word vec size 512 −heads 8 \
−encoder type transformer −decoder type transformer −position encoding −transformer ff 2048 −dropout 0.1 \
−early stopping 3 −early stopping criteria accuracy ppl −batch size 2048 −accum count 3 −batch type tokens \
−max generator batches 2 −normalization tokens −optim adam −adam beta2 0.998 −decay method noam \
−warmup steps 3000 −learning rate 0.5 −max grad norm 0 −param init 0 −param init glorot −label smoothing 0.1 \
−valid steps 100 −save checkpoint steps 100 −world size 1 −gpu ranks 0

At the end of the training procedure, it prints to console “Best model found at step X”.
Locate it, and use it for translating the data:

onmt translate −model model step X.pt −src test.gloss −output hyp.txt −gpu 0 −replace unk −beam size 4

Finally, evaluate the output using SacreBLEU:

cat hyp.txt | sacrebleu test.txt
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C Full Experimental Results

Table 3 includes the evaluation scores for all of our experiments, ran three times.

% of available annotated data used 1% 5% 25% 100%

BLEU COMET BLEU COMET BLEU COMET BLEU COMET

PHOENIX

Baseline 6.37 ± 0.89 -89.21 ± 12.82 10.18 ± 0.40 -71.37 ± 2.86 16.20 ± 0.27 -33.88 ± 4.35 21.15 ± 0.58 -5.74 ± 2.35
BT-tuned 4.12 ± 1.55 -91.87 ± 16.35 9.91 ± 0.54 -53.38 ± 4.04 17.10 ± 0.56 -16.46 ± 2.52 22.02 ± 0.50 6.84 ± 0.34
General-tuned 9.49 ± 1.01 -52.23 ± 6.31 14.78 ± 0.51 -27.13 ± 2.29 19.86 ± 0.64 -0.72 ± 2.44 23.35 ± 0.22 13.65 ± 1.68
Specific-tuned 9.70 ± 0.75 -55.94 ± 2.08 14.65 ± 0.29 -30.85 ± 1.45 19.66 ± 0.08 -5.62 ± 0.51 23.17 ± 0.30 11.70 ± 1.20

NCSLGR

Baseline 0.47 ± 0.60 -153.90 ± 11.89 2.07 ± 0.32 -145.14 ± 1.15 8.07 ± 0.43 -101.24 ± 5.14 15.95 ± 1.11 -61.00 ± 6.86
BT-tuned 1.07 ± 0.47 -139.80 ± 3.78 3.71 ± 0.55 -117.33 ± 3.03 9.11 ± 0.05 -82.41 ± 2.29 16.67 ± 0.32 -51.86 ± 0.66
General-tuned 1.58 ± 0.60 -134.22 ± 1.73 5.13 ± 0.15 -106.59 ± 1.56 11.04 ± 0.04 -66.35 ± 2.00 19.09 ± 0.20 -34.50 ± 1.19
Specific-tuned 1.30 ± 0.52 -128.14 ± 1.58 4.94 ± 0.45 -107.60 ± 4.01 10.99 ± 0.12 -71.37 ± 1.01 18.58 ± 0.84 -39.96 ± 1.91

Table 3: Mean and standard deviation of BLEU and COMET over different experimental set-
tings. We bold scores statistically significantly higher than baseline at the 95% confidence
level.

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
1st International Workshop on Automatic Translation for Signed and Spoken Languages

Page 11



   

 1 

Is “good enough” good enough? Ethical and responsible development of sign 
language technologies1 
 
Maartje De Meulder 
 
Abstract 
 
This paper identifies some common and specific pitfalls in the development of sign language 
technologies targeted at deaf communities, with a specific focus on signing avatars. It makes 
the call to urgently interrogate some of the ideologies behind those technologies, including 
issues of ethical and responsible development. The paper addresses four separate and 
interlinked issues: ideologies about deaf people and mediated communication, bias in data 
sets and learning, user feedback, and applications of the technologies. The paper ends with 
several take away points for both technology developers and deaf NGOs. Technology 
developers should give more consideration to diversifying their team and working 
interdisciplinary, and be mindful of the biases that inevitably creep into data sets. There should 
also be a consideration of the technologies’ end users. Sign language interpreters are not the 
end users nor should they be seen as the benchmark for language use. Technology 
developers and deaf NGOs can engage in a dialogue about how to prioritize application 
domains and prioritize within application domains. Finally, deaf NGOs policy statements will 
need to take a longer view, and use avatars to think of a significantly better system compared 
to what sign language interpreting services can provide. 
 
 
Introduction 
 
In our everyday lives, we increasingly (and often unconsciously) rely on technologies where 
the languages we see, hear and produce are mediated in real-time by technology. Indeed, we 
are well into the human-machine era (Sayers et al., 2021). We talk to our devices using 
Amazon’s Alexa and Apple’s Siri, we read tweets in different languages through Twitter’s 
automatic translation feature, deaf people use Google Live Transcribe, Ava, and other apps 
for real-time speech-to-text access. All these features were built on years and years of human 
work, and years and years of training of machines. We know and accept that some of these 
features are far from perfect yet, but we use them anyway. Because these AI applications feed 
on data and our frequent use, technology is advancing quickly and improving all the time. 
Machines learn.  
 
The last three decades have seen sign languages, and deaf people, who use these languages, 
as target groups of language technologies, being included in these efforts in various ways. 
This includes developments in automated translation from text-to-sign (e.g. Stoll et al., 2020), 
speech-to-sign (e.g. Cox et al., 2002; Glauert et al., 2006), or sign-to-text (currently still very 
limited, e.g. Camgöz et al., 2020a, b). The technology is being developed in the form of many 
existing technologies, for example wearable solutions like smart gloves and intelligent bots 
with sign language avatars (virtual humans). This makes it increasingly likely that we will sign 
to and through technology. 
 

 
1 The writing of this paper has benefited from ongoing discussions on this theme as part of the EU COST Action network 
‘Language in the Human Machine Era’ https://lithme.eu/  
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Some of the technological solutions under development are campaigned and marketed as 
trailblazing, advanced developments, using cutting edge technologies. Inventors can be big 
tech companies but just as well hearing undergraduates who don’t know any sign language.  
A good example is the robot-arm developed by hearing undergrad students who claimed this 
would advance deaf children’s inclusion in education and could help “millions of deaf people”. 
The only thing the robot arm could actually do, was rudimentary fingerspelling (Drewett, 2018). 
The rationales for developing these technologies ‘for’ deaf people often stem from a saviour 
complex (“we, abled people, need to help disabled people communicate”), and from “techno-
solutionism” (Fleet, 2021) which leads to technology being developed uniformed by the lived 
experience of disabled people. Even so, these inventors often get significant press attention 
or even gain awards and grants from panels that do not include any signers (Lipomi, 2017). 
Most of these solutions are also one-way, placing the burden on deaf people (e.g. to wear 
smart gloves) so that ‘hearing’ people can understand them (Kouznetsova, 2016; Lu, 2016; 
Woodcock, 2012, 2020). There are also detectable ideologies behind sign-to-text technologies 
about the normativity of the spoken modality - in a sense, that deaf people’s ideas make ‘more 
sense’ if converted to spoken form (Hill, 2013). Also, ideologies supporting the technologies 
reveal a lot about how deaf people are viewed and communication is normatively mediated.  
 
Funded research projects in this field often claim that these technologies can assist with 
‘inclusion’ of deaf people, ‘social equality’ and, finally, address the problem of the ‘insufficient 
availability’ and ‘prohibitive costs’ of sign language interpreting services. Recently funded and 
on-going projects in the EU attract quite a lot of funding, with the European Commission 
spending several millions of euro per project. Despite these claims, a lot of the technology is 
still notably limited in its development and usability. Also and importantly, much of the work 
has started and is on-going with minimal input from deaf communities (Erard, 2017). 
 
This paper is not about the current technical limitations of language technologies for sign 
languages. These technologies have a lot of catching up to do compared to technologies for 
spoken languages. This will happen, one way or another. Instead, this paper addresses a 
more urgent issue: the ethical and responsible development of these technologies, specifically 
sign language avatars. This issue is currently virtually not discussed in the academic and 
practice community. Most publications on machine translation for sign languages are either 
technical accounts of how machine translation can work or uncritical technical evaluations of 
user experience (e.g. Kacorri et al., 2017, but see Quandt et al. 2021 for an exception). There 
are virtually no critical insights into ethical, societal, and ideological rationales for and 
consequences of technologies. Indeed, that discussion usually lags behind scientific 
innovation - ethical debates about new technologies often come after the fact of their use. But 
at least for sign languages, the lag time is becoming very long now, and there is a critical need 
to address some urgent questions.   
 
Who invents the technologies, and what is their motivation for developing them? How are data 
being collected to make machines learn? Who evaluates the outcomes, and how? Is there an 
actual demand from the communities? Who are the end users and who decides that? Who 
benefits from these technologies, and who is at risk of being left behind? What are the current 
and potential future applications of those technologies? How will language rights keep pace 
with the development of language technologies? What are the ideologies behind these 
technologies? 
 
This paper will mostly write from a Deaf Studies and sociolinguistics perspective, with a 
specific focus on sign language avatars (meaning communication towards sign language 
users). While I will semantically differentiate between the ‘avatar’ as the digital figure 
representing a (signing) person and the underlying ‘translation engine’ from or towards sign 
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languages, for reasons of simplicity I will occasionally use the term ‘avatar’ to include the 
underlying translation engine. These avatars can be created in different ways. The movement 
can be based on recorded motion capture from real human signers or can be based on 
computer-synthesized motions. More recent innovations use machine learning trained on 
existing video data to generate these avatars. Those are the innovations this paper will mainly 
focus on, discussing research projects that have recently ended or are on-going in the 
European Union and the UK, such as Content4All2, EASIER3, SignON4, SignLab at University 
of Amsterdam (UvA)5, and aID – Artificial Intelligence for the Deaf6). It will address four 
separate and interlinked issues: ideologies about deaf people and mediated communication, 
bias in data sets and learning, user feedback, and applications of the technology. The paper 
ends with a few take away points for both technology developers and deaf NGOs. 
 

Ideologies about deaf people/mediated communication 
 
Several of the above-mentioned projects start from specific ideologies about deaf people and 
mediated communication: the researchers perceive a problematic ‘communication gap’ or 
‘language barrier’ between ‘deaf’ and ‘hearing’ people, and state that technologies can and 
should address this gap or barrier. The main aim of the SignON project, prominent on the 
home page and the funder page, is to “bridge the communication gap between Deaf, hard of 
hearing and hearing people”. It will “cross the language barrier between Deaf sign language 
users, hard of hearing and hearing people. SignON will tear down this information barrier that 
currently exists.” The EASIER project is “bridging the communication gap between the deaf 
and the hearing”. The aiD project offers “AI solutions for communicating needs of deaf people”. 
The SignLab at UvA highlights “breaking language barriers”. Stoll et al. (2018, p. 891) see the 
facilitation of “easy and clear communication between the hearing and the Deaf” as the critical 
aim of text-to-sign technologies, stating “… there is no guarantee that someone whose first 
language is, for example, British Sign Language, is familiar with written English, as the two 
are completely separate languages” (p. 892).  
 
Some projects then make the leap to stating that their research can mitigate the problem of 
the limited availability and prohibitive costs of sign language interpreting services. SignON 
sees sign language interpreters as “the main medium for signed-to-spoken, spoken-to-signed 
and signed-to-signed translation”, and the availability and costs of these services are seen as 
“a limiting factor in communication between signers and non-signers”.  
 
Some of the projects and the literature explicitly state the aim of language technologies for 
sign languages is not to substitute human interpreters but aim to be there for when interpreters 
are not available. The Content4All project proclaims that “systems that can accurately 
translate and produce sign would be of use to the Deaf. Not to replace human interpreters, 
but to provide translation into native sign language when an interpreter is not available (Young, 
2020). A Dutch newspaper reporting on the development of sign language avatars at UvA 
headlined their piece “Sign language interpreters are scarce. Therefore an Amsterdam 

 
2 September 2017-November 2020, H2020 funding €4.1 million, https://content4all-project.eu/ and 
https://cordis.europa.eu/project/id/762021  
3 January 2021-December 2023, H2020 funding €3.9 million, https://www.project-easier.eu/vision/ and 
https://cordis.europa.eu/project/id/101016982  
4 January 2021-December 2023, H2020 funding €5.6 million, https://signon-project.eu/ and 
https://cordis.europa.eu/project/id/101017255  
5 https://www.signlab-amsterdam.nl/index.html NWO VICI grant or a 5-year project, funding €1.5 million. 
6 December 2019-November 2023, H2020 funding €1.5 million, https://aideaf.eu/ and 
https://cordis.europa.eu/project/id/872139  
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institute is learning an avatar to sign” and reported the lead researcher saying that “a human 
interpreter is always to be preferred above an avatar, when such an interpreter is available” 
(Zijlmans, 2021). Sáfár and Glauert state that “… in the deaf community, there is often a fear 
that the hard won recognition of their sign language will result in moves to make machines 
take over the role of human interpreters” (Sáfár & Glauert, 2012). The World Federation of the 
Deaf and World Association of Sign Language Interpreters (2018) statement on the use of 
signing avatars is the only one that uses different words to describe the risks and challenges: 
“the difference in linguistic quality between humans and avatars is why WFD and WASLI 
caution against the use of signing avatars as a replacement for human signers (World 
Federation of the Deaf & World Association of Sign Language Interpreters, 2018). The 
availability issue stands against experiences of deaf people being offered video remote 
interpreting (VRI) instead of sign language interpreters on location in some contexts, and their 
objections to this (e.g. Collinson, 2018). So, in reality, the ‘unavailability’ argument is a red 
herring – live interpreters will be substituted for avatars. 
 
Another, related, aspect, is that the benchmark used to evaluate the quality of sign language 
technologies are often, again, sign language interpreters. Sayers et al. (2021, p. 10) assert 
that “consensus among the Deaf community so far is that these [smart gloves, avatars] are a 
profoundly poor substitute for human interpreters”. Content4All affirms that “generating 
translations of the same quality as a human interpreter is extremely challenging”. Sign 
language interpreters, not deaf signers themselves, are thus seen as language models, and 
as the benchmark for accepted standards of language use. If anything, this shows low 
ambition and an inability to see who the technology is for. Sign language interpreters are not 
the end users, nor should they be the benchmark.  
 
With spoken languages there is the recognition that machine translation is at the moment of 
inferior quality compared to human translators, but that aspect is much less foregrounded and 
emphasized compared to the sign language projects. This is because the situation is 
profoundly different for deaf people, who are made reliant (by policy, legislation, and normative 
views on the role of sign language interpreting services) on sign language interpreters in many 
aspects of their lives. For deaf people, language rights often are paramount to access to sign 
language interpreters in the first place (De Meulder, 2016). But sign language interpreting 
services are, in many cases, a Band-Aid solution. They are not scalable services, and not 
equally available to deaf people who use them. They mostly benefit those deaf people with 
certain interpreter-related privileges. Even so, the provision of sign language interpreting 
services has become the institutionally normative, often unquestioned, solution to grant deaf 
people access to education and public services (De Meulder & Haualand, 2021).  
 

Data sets and bias 
 
In the context of machine learning, and more specifically the subtopic of Natural Language 
Processing (NLP) most sign languages tend to belong to the category of ‘low-resourced 
languages’. The ‘low-resourced’ aspect refers to a lack of available training data and the 
fragmentation of efforts in resource development (Sayers et al., 2021). Indeed, NLP 
applications require large datasets to be available on which to train new algorithms. As NLP 
falls into the category of ‘supervised learning’, the algorithms learn by example in the form of 
‘labels’, which tell the algorithm what needs to be learned. To allow this, large datasets must 
be labelled — which is expensive, time consuming, and prone to error, which can introduce 
bias. If the dataset is not carefully curated, it is mainly through these labels that bias can sneak 
into the algorithm. For sign languages there is the additional issue of a different language 
modality, which makes data collection and machine training much more challenging than it is 
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between most spoken languages. Also, input in the form of text annotations in itself skews 
data sets because sign languages do not have a widely used written form (Jantunen et al., 
2021).  
  
Linked to this, there is the problem of generating data in a context of data sparsity and the 
risks for bias of language models. This is a common issue for NLP tools (Bender, 2019, 2021; 
Benjamin, 2020; Beukeboom and Burgers, 2017; Blodgett et al., 2020; Benjamin, 2020; 
Saleiro et al., 2020;). Dictionaries/lexicons for sign languages are developed for human use, 
not machine use (i.e. use by automated NLP systems). Digital sign language corpora have 
mostly focused on linguistic aspects (how signing is used) rather than computational 
processing (data from tracking movements, facial expressions, timing, etc.) (Sáfár & Glauert, 
2012). These corpora are confronted with other problems that make them far less suitable for 
machine use linked to size and representativeness, and variety of discourses (Jantunen et al., 
2021; Schembri & Cormier, 2022). In the absence of (semi-) automated annotation, manual 
annotation is demanding and time-consuming. This means that while for some sign languages 
there is a set of videorecorded data (although still small compared to most data sets for spoken 
languages), these are not suitable for machine learning because they are not, or only partially, 
annotated. Even if there is annotation, some of the larger sign language corpora currently only 
have basic annotation such as glosses and possibly translations but no other tags that can be 
provided by semi-automatic tagging tools (Hochesang, 2021; Schembri & Cormier, 2022 ).  
 
On the other hand, we have to resign to, and therefore deal with, the realisation that machines 
are and will be trained on those corpora, which in themselves by design contain all the biases 
of the humans who design and assemble them (Saleiro et al., 2020). The largest sign language 
corpora now have participants numbering in the hundreds, but are often skewed by a native 
speaker bias, preferring focus on (often white) deaf native signers or early learners, who often 
went to residential schools (e.g. Schembri et al., 2013, for BSL). Jantunen et al. (2021, p. 4-
5) go so far as to say that “the contribution of novices and non-native signers means decreased 
quality and accuracy” in corpora, and “to increase validity and recognition systems should be 
trained with real (native or near native) signers in realistic scenarios”. At the same time, they 
state that “datasets should include representative, generalizable samples from diverse age 
groups, gender, culture, various ethnicities, varying body types and physical traits, clothes, 
lighting conditions and more”. Work has been done on the development of more specialised 
corpora (see Schembri & Cormier, 2022). These focus on e.g. L2 learners (Mesch & 
Schönström, 2018), but not (yet) on, for example, signers from different racial and educational 
backgrounds, signers with immigration backgrounds, language deprivation, various 
disabilities, etc.  
 
Due to this context of data scarcity, some of the on-going EU-funded projects start to collect 
their own data sets to train machines, using readily available internet data. In some cases, 
these are interpreted datasets. In these datasets both the signed input from the interpreter 
and the spoken source languages are available (or in the opposite case, the signed source 
language and the spoken output from the interpreter). This is also made possible by the 
COVID-19 pandemic, which led to an increase in recorded interpreted presentations, classes, 
press conferences etc. which are often available online. These datasets (with both deaf and 
hearing interpreters) are used as a training phase for machines to quickly enlarge the dataset.  
 
In this stage already there is a significant risk for how bias can creep into the system when 
machines are trained on amalgams of data sets with input produced by either primarily white, 
native signers, or by interpreters. This is even more cause for concern combined with two 
related issues. The first is that sign language interpreters are often already language models 
for deaf learners in regular education (Caselli et al., 2020) and deaf people already often need 
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to adapt their signing to be understood by interpreters. The second is that there is a realistic 
future possibility that signing avatars are going to be used to train sign language interpreting 
students. This would happen in an already problematic context of sign language interpreting 
training programs in general not reflecting racial diversity and multicultural, multilingual deaf 
community needs (Robinson et al., 2020).  
 

User feedback 
 
Thirdly, there is the issue of user feedback. When prototypes of avatars are developed, the 
developers need feedback from end users. In two cases (SignLab UvA and Content4All) this 
is/was done by an online survey in which (self-selected) deaf people are given specific tasks 
based on a pre-determined set of responses.  
 
In the SignLab project deaf people are asked how well they understand translations by an 
animated avatar (using SiGML for sign language synthesis) compared to video translation by 
a deaf signer, specifically in a medical setting. Similarly, in the Content4All survey respondents 
look at an animated avatar and a deaf signer translating the weather forecast and are given 
specific tasks to evaluate comprehension. For example, they have to indicate which Dutch 
words they understood from the signing, given multiple options, answer questions (e.g., where 
do the clouds go to, what did the moderator suggest doing tomorrow?) and then indicate how 
sure they are of their response. At the start of the survey, it is specifically asked to give 
opinions “on comprehension of the signs rather than the look of the avatar” – as if the two can 
be separated.  
 
Although asking user feedback is important, there are also several issues that must be 
addressed, and it is here where interdisciplinary approaches and specifically input from Deaf 
Studies researchers is most critically needed. Most deaf people have a life-long experience 
understanding different signing styles, of widely varying quality (see also Green, 2014 and 
Kusters et al., 2020 work on ‘understanding’). The risk with asking this kind of user feedback 
is that deaf people will see avatars’ signing as another signing style they’ll have to put up with 
and learn to ‘understand’ (just as they need to learn to understand interpreters’ signing). This 
can lead to socially desirable responses. This is related to what Woodcock (2020) in this 
context calls a “mouse on the doormat design” and the savior complex of some inventors: 
respondents might say they understood just because they think they are expected to 
appreciate this technology that is made ‘for’ them. A third issue is the uncanny valley (Mori et 
al., 2012) which might make viewers uncomfortable when confronted with simulations that 
closely resemble humans but are not quite convincing enough. We regard a Toy Story 
character which is obviously not human, as cute, but an avatar which is meant to be human 
but is not, as creepy. This combined with most deaf respondents not having realistic (or just 
not having any) expectations about avatars (see also Sáfár & Glauert, 2012). While some deaf 
people are trained to manage expectations about sign language interpreters (knowing the 
limitations of interpretation) and may tolerate the limitations of Google Translate or existing 
speech-to-text technologies, most deaf people are not yet used to manage expectations about 
the robotic and unarticulated signing of most avatars. This means that either expectations can 
be too low so that ratings will be higher than reasonably justified, or that on the contrary 
expectations are too high. Add to this the lack of testing in real-world settings. Indeed, there 
is a big difference from watching an avatar from a screen in your own office for a short 
experiment, and having to watch it during a nerve-wrecking medical appointment. This is not 
just unintentionally creepy entertainment in the uncanny valley, when you can look away 
(Woodcock, 2020). If your health depends on it, you cannot afford to look away. Evaluations 
do not account for this. 
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Applications  
 
A last issue are current and future applications of language technologies for sign languages, 
such as avatars. The use of those technologies in the context of highly constrained and 
predictable domains such as tourism or travelling could be reasonably justified. An avatar 
might be used to make an order in a coffee house, check in in a hotel, have access to 
announcements at airports or railway stations, or for interaction with specific customer 
services. Another potentially useful application of avatars could be in those situations where 
sensitive, confidential information must be shared (by a deaf person themselves or a human 
interpreter) and where this person prefers to remain anonymous, and in areas where deaf 
people feel uncomfortable about the presence of interpreters (see also Quandt et al. 2021). 
 
However, some starter projects beginning with very fundamental limitations as outlined above, 
at this point already go directly into sensitive areas such as the medical domain (e.g. 
Roelofsen et al., 20217). This happens despite explicit statements and warnings by 
authoritative deaf NGOs such as the WFD and WASLI that the medical domain is a no-go 
area. These NGOs expressed concerns on the use of avatars “when the information being 
delivered is live, complex or of significant importance to the lives of deaf citizens” (World 
Federation of the Deaf & World Association of Sign Language Interpreters, 2018). Applications 
in the medical domain have been spurred by the COVID-19 pandemic, which exposed 
communication problems between health care professionals and deaf people when everyone 
had to wear facemasks, interpreters were often not allowed in hospitals and interpreting via 
video relay was not always viable. 
 
That this is happening in the first place, is again linked to how deaf people are viewed, and 
how communication is currently normatively mediated by sign language interpreters. Sign 
language interpreters, on location or remotely, are accepted for mediated healthcare 
communication, despite critical limitations (Kushalnagar et al., 2019). Because this practice is 
largely accepted and even normative, use of language technologies in healthcare situations 
is seen as the logical next step and as a justified application domain by technology developers. 
 

Conclusion 
 
This paper has identified some common and specific pitfalls in the development of sign 
language technologies targeted at deaf communities and has made the call to urgently 
interrogate the ideologies behind those technologies, including issues of ethical and 
responsible development. What has been done technologically so far is very promising, but if 
continued on the same path, there is a risk that technologies developed in the end will not be 
voluntarily adopted by end users. This uptake in use is important, because the more ‘we’ use 
AI, the better it will become. There must be a consideration though of who this ‘we’ is – who 
is the language technology for, and why? Sign language interpreters are not the end users 
here, nor should they be seen as the benchmark for language use. Placing interpreters on the 
centre of deaf peoples’ lives (a constructed dependence) comes from a biased and hearing-
centred view on communication.  
 
For the technology developers, this paper makes the call to diversify the team and work 
interdisciplinary. Co-design or co-engineer (see also Jantunen et al., 2021) with the end users 

 
7 For demo see here https://www.signlab-amsterdam.nl/healthcare-demo.html 
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of the language technologies, a widely varied group of deaf people. Not just to ensure 
semantic value, but also to ensure that technologies are being developed incorporating the 
communities demands, values, and feedback, that there is given consideration to interaction 
design and user interfaces. Engage in interdisciplinary collaborations, combining Deaf 
Studies, language policy, sign linguistics, Sign Language Interpreting Studies, computer 
science, sociolinguistics, Human Computer Interaction, artificial intelligence, computational 
linguistics, etc., not only in the execution of research projects but also in writing and reviewing 
them.  
 
Regarding data sets, this paper is not meant as a discouragement for researchers from 
advancing the state of the art. If there is a need to wait for the ‘perfect’ datasets to appear 
(which might never happen) instead of using what is readily available, the delay for practical 
working solutions might become much longer. This is a call though to at the very minimum be 
mindful of the biases that will inevitably creep into data sets, and to consider the long-term 
implications of this. 
 
Regarding applications, there are some take-away points both for developers of technologies 
and for deaf NGOs who need to evaluate their use and application domains. At this point, 
many projects are using signing avatars to do many different things, in many different ways – 
some of which are probably less problematic, and some of which are more. A deaf tech 
developer and artist working on incorporating signed language into VR spaces is a very 
different development and application compared to a hearing non-signing engineer developing 
a signing avatar without any consultation or collaboration with deaf communities. For the 
developers of technologies and for deaf NGOs there are two takeaway points:  
(1) Prioritize the application domains: there is a significant distinction to be made between for 
example an avatar presenting information on a government webpage, or an avatar used to 
mediate communication during a life-threatening healthcare situation. There is a lot of 
unproblematic low-hanging fruit: it is thus important to identify those research agendas which 
are problematic, while leaving space for those who are not. This is even more a case for deaf 
academics to (co-)lead these projects and to involve deaf people in various roles, in various 
stages of review of project applications, project development, project execution, and 
evaluation. This will make it possible to identify early which research agendas are problematic, 
and how this can be potentially mitigated, and which research agendas are worth pursuing. 
This will advance the state of the art in such a way that it is more likely technologies will be 
adopted by end users.  
(2) Prioritize within application domains: building on the previous point, it will be critical to make 
much finer distinctions per different uses per domain. For example it is not helpful to tar all 
applications in the medical domain with the same brush. Some might be useful and necessary, 
while others might remain a no-go.  
 
For the deaf NGOs there are two further points to keep in mind.  
(a) Look at the horizon: statements by for example WFD and WASLI are based on the current 
state of the art, which appropriately advises against the use of avatars “when the information 
being delivered is live, complex or of significant importance to the lives of deaf citizens” (World 
Federation of the Deaf & World Association of Sign Language Interpreters, 2018). The 
technologies developed so far just do not warrant use of avatars in those situations. But this 
is not a status quo, and technology is advancing all the time. Policy statements will need to 
take a much longer view. Here again, the questions from the introduction of this article come 
to the foreground. What are potential future applications of those technologies? Not based on 
the technologies as they are now, but based on how they will inevitably develop? How will 
language rights keep pace with the development of language technologies? Who benefits from 
these technologies, and who is at risk of being left behind?  
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(b) Use avatars to think of a significantly better system: much of the current ideological 
framework by which the use of avatars is assessed is based on experiences with sign 
language interpreting services. Deaf NGOs appropriately advise against use of avatars in 
situations where it is not warranted, but at the same time, sign language interpreting services 
are often used in situations where they are not warranted either. The political institution of sign 
language interpreting services leaves a lot of questions to be considered regarding scalability 
and fairness. Let’s not substitute one imperfect system with another. Let’s use this moment in 
time, these technological possibilities, to try and design a better system. 
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Abstract
Sign language lexica are a useful resource for researchers and people learning sign languages.
Current implementations allow a user to search a sign either by its gloss or by selecting its
primary features such as handshape and location. This study focuses on exploring a reverse
search functionality where a user can sign a query sign in front of a webcam and retrieve a set of
matching signs. By extracting different body joints combinations (upper body, dominant hand’s
arm and wrist) using the pose estimation framework OpenPose, we compare four techniques
(PCA, UMAP, DTW and Euclidean distance) as distance metrics between 20 query signs, each
performed by eight participants on a 1200 sign lexicon. The results show that UMAP and
DTW can predict a matching sign with an 80% and 71% accuracy respectively at the top-20
retrieved signs using the movement of the dominant hand arm. Using DTW and adding more
sign instances from other participants in the lexicon, the accuracy can be raised to 90% at the
top-10 ranking. Our results suggest that our methodology can be used with no training in any
sign language lexicon regardless of its size.

1 Introduction

Sign language lexica are a valuable source for people learning sign languages, teachers and par-
ents who need to communicate in signs with their deaf children as well as researchers studying
the languages in question. These lexica allow the user to submit a query containing a unique
identifier that by definition refers to a sign (commonly referred to as gloss) and retrieve a video
or an image of that sign. In addition to this functionality, some lexica let the user define the
formal parameters of the target sign (i.e. its location, handshape, or movement) and retrieve
all the signs that contain these features. It is then at the users’ discretion to view all the pro-
vided signs and select the desired ones. These search functionalities are particularly useful as
sign languages, contrary to spoken languages, do not have any unified notation system for sign
representation.

Even though a sign search functionality which is based on formal parameters is a user-
friendly option in sign language lexica, it still requires manual annotation. Dictionary compilers
have to manually link these values to the individual videos of signs. This is a time consuming
and prone to errors task and, as Zwitserlood (2010) discusses, it is the reason why only a few of
such dictionaries exist to date. More importantly, according to Zwitserlood, these dictionaries
are unidirectional “giving only signed translations of words from a spoken language in a one-
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to-one relation” (Zwitserlood, 2010). Furthermore, as the retrieved results contain only the
parameters selected by the user, the signs are presented in no particular order.

In this paper, we describe a methodology and its experimental results for multi-directional
search functionality for sign language lexica. Our proposed method, extending on previous
efforts by Schneider et al. (2019) and Fragkiadakis et al. (2020), utilizes either the Uniform
Manifold Approximation and Projection for Dimension Reduction (UMAP) technique or the
Dynamic Time Warping (DTW) algorithm to measure the distance between a query sign and
all the signs in a lexicon. Both techniques require no training, thus making our methodology
applicable to any sign language. Requiring training would add further obstacles to making
dictionaries widely available, similar to how the need for manual annotation is limiting dictio-
nary availability. Finally, these methods have been compared to two other techniques namely
Principal Component Analysis (PCA) and Euclidean distance.

The paper is organized as follows: in Section 2 we discuss the research which has been
conducted in relation to search functionality for sign language lexica or has the potential to be
applied in that domain. In Section 3 we describe our methodology regarding the extraction of
the body joint coordinates as well as the methods and algorithms compared in this study. In
Section 4 we present the results of our experiments. We discuss them in Section 5 and conclude
and motivate future research in Section 6.

2 Related Work

Over the last decade, many research projects have examined the use of computer-vision tech-
niques to allow a user to search a sign in a database or lexicon by performing it in front of a
camera or sensor. Wang et al. (2012) have developed a system for semi-automatic search func-
tionality. In their system, a user marks the start and end frames of a sign and denotes whether
the sign is one- or two-handed. Consequently, the system detects the hands on the basis of
skin color and motion. The user can correct, if needed, the detected hand locations and pass
the query to the system. Using Dynamic Time Warping their approach computes the similarity
between the query sign and all the signs in the database. Their results suggest a 78% accuracy
on the top-10 retrieved signs on a 1113 sign lexicon. While the accuracy rate is high enough,
the user still needs to indicate the handedness feature (one- or two-handed) as well as the du-
ration of the sign. Additionally, the data-set used in this study has been recorded under studio
conditions posing the question of applicability on noisy real-life conditions on the video query.

Conly et al. (2015) have used Dynamic Time Warping to match a sign on an American
Sign Language dictionary. Using Microsoft’s Kinect they detect the hand positions and perform
sign matching. Their results suggest an accuracy of 77.3% on the top-50 retrieved signs. A
major advantage over Wang’s et al. (2012) implementation is that this system does not require
the intervention of the user.

Metaxas et al. (2018) have developed a framework that analyzes handshape, orientation,
location, and motion trajectories to recognize 350 ASL signs. By passing the extracted features
into Hidden Conditional Ordinal Random Fields (HCORF) they achieve a top-1 accuracy of
93.3% and a top-5 accuracy of 97.9%.

Vidalón and Martino (2016) have created a system for Brazilian Sign Language recognition
using Dynamic Time Warping, a Nearest-Neighbor classifier and Kinect. On a data-set of 107
signs, they have reported an accuracy of approximately 98%. A major drawback of their results
is the fact that their data-set is user-dependent.

The majority of the aforementioned studies use either a depth sensor or computer-vision
techniques. These techniques primarily rely on color and motion detection algorithms, as fea-
ture extraction methods, which imposes additional problems. Such techniques can be prone to
errors and most importantly require studio conditions in order to predict the required features
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such as the face and the hands. While such conditions can be true for the videos in a lexicon
they cannot be assumed for the query videos. Searching a lexicon can be done in any possible
space and lighting conditions, thus it is important that the technique used to capture the required
features to be as much as inclusive as possible.

In 2017 Cao et al. (2017) presented a framework for multi-person 2D pose estimation,
OpenPose. This framework can efficiently detect body, foot, hand and facial key-points from a
simple RGB video or picture. Its high accuracy, performance and easy implementation make it
the ideal framework to parse sign language and gestural videos. Its output consists of multiple
json (or differently formatted) files containing all the pixel x, y coordinates of the body, hand
and face joints. Most studies use OpenPose to pre-process the videos and use its output to
further train or compare machine and deep learning models.

Schneider et al. (2019) have used OpenPose as well as DTW and Nearest-Neighbor algo-
rithm to perform classification of six gestures. Their results suggested an accuracy of 77.4%.
Most recently, Fragkiadakis et al. (2020) have used OpenPose and DTW to predict a sign
recorded using a webcam from a 100 signs lexicon. Their method predicted the matching sign
with an 87% and 74% accuracy at the top-10 and top-5 retrieved signs by using the path of the
dominant hand’s wrist.

This study extends on previous efforts for efficient sign ranking for sign language lexica
by:

• Considering a far larger lexicon compared to previous efforts: 1200 signs in total

• Comparing four different techniques: Principal Component Analysis (PCA), Uniform
Manifold Approximation and Projection for Dimension Reduction (UMAP), Dynamic
Time Warping (DTW) and Euclidean distance

• Comparing three different skeletal joint combinations (upper body, dominant hand arm,
dominant hand wrist)

• Exploring potential accuracy increase by adding more sign instances in the lexicon

An important difference from previous studies in search functionality for sign language
dictionaries is that in our case we expect signers to not “properly” sign a particular sign. As
Alonzo et al. (2019) discuss, it is possible that people would not remember exactly how a sign
is performed, and as a result, they might sign it slightly differently. Thus it is expected that the
matching sign would not be in the first retrieved sign result. This is precisely the reason why
we tested our methodologies on a data-set that contains signs performed also by people with
no or little experience in sign language. In most sign language data-sets used for sign language
recognition tasks, signs are mostly performed by people familiar with sign languages. However,
sign language lexica are intended also for people with little knowledge of sign language. As a
result, high variability is expected when recording a sign.

Another limitation posed in our study is that sign language lexica do not often contain
multiple instances of a particular sign. While various studies using deep learning techniques
have shown high accuracy in predicting different signs (Li et al., 2020; Gökçe et al., 2020;
Sincan and Keles, 2020; Hosain et al., 2021), they cannot be used in our case. These techniques
often require vast amount of data in order to be trained which might not be available on all
sign language lexica. Our main goal is to develop a system that can be easily used in any sign
language lexicon regardless of the amount of data in it and most importantly the language itself.
However, in this study, we explore the possibility of having a few additional sign instances in
the lexicon and their potential benefit to successful sign retrieval.
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3 Data-sets and Methods

In this section we describe the data pre-processing as well as the data-sets and methods used in
this study.

3.1 Data Pre-processing and Normalization

OpenPose outputs x, y pixel coordinates for each predicted body and finger joint. These pixel
coordinates are relative to the frame size and as a result it is important to normalize them to
account for different positions in the frame. As all people in the data-set (both in participants’
and lexicon’s data) are expected to be in an upright position in front of the camera, rotational
in-variance is omitted. The normalization process is the following: for each detected person
in a frame, the neck key-point coordinates are subtracted from all the other key-points. Subse-
quently, all key point coordinates are being divided by the distance between the left and right
shoulder key-point. Finally, a horizontal flip is applied when a participant is left-handed by cal-
culating the average velocity of each hand’s wrist. The overall normalization process is based on
previous studies by Celebi et al. (2013), Schneider et al. (2019) and Fragkiadakis et al. (2020).
Furthermore, all signs have been re-interpolated to 86 frames which is the mean sign length.
Although it makes little difference to DTW’s accuracy, equal length inputs make it easier to
handle.

3.2 Data-sets

For this study we used the Ghanaian Sign Language lexicon (GSL) (Fragkiadakis et al., 2021;
HANDS!Lab, 2020). This lexicon consists of 1200 signs from one signer and has been compiled
for educational purposes to be used in a mobile application. A lot of studies in the sign language
recognition field have used sign language data-sets from well documented sign languages with
primarily signers with light skin tones. We have decided to apply our methodology in a sign
language less documented and analyzed with computer vision and machine learning algorithms
in order to further explore how these techniques can perform in such conditions.

In addition, the data gathered by Fragkiadakis et al. (2020) have been used to compare
the different algorithms described in the next section. This data-set contains the data of ten
participants. Each one of them performed the same 20 signs, from the original lexicon, in
front of a webcam. The data of two participants have been discarded due to inconsistencies of
OpenPose on recognizing their right-hand finger’s and left arm joints.

We have decided to include in the lexicon the data from a random participant every time
we tested the methodology. As the lighting conditions on the participants’ videos were of poor
quality, the predicted body joints by OpenPose had substantially more noise compared to the
ones predicted on the lexicon’s data. By extending the database with another participant’s data,
we introduced some noise to the otherwise non-noisy data-set. As a result, each participant’s
sign was compared with 1220 signs in our database (1200 from the GSL lexicon and 20 from an-
other random participant). A complete overview of the participants’ data-set and the apparatus
used to gather the data can be found in Fragkiadakis’s et al. (2020) study.

One of the main goals of this study is to find if and how different skeletal joints affect the
accuracy of the algorithms. As a result, we have compiled 3 different data-sets per condition
per participant’s data. The first data-set contains the upper body joints as well as the dominant
hand fingers joints’ coordinates resulting in a 86 × 29 × 2 (frames by skeletal joints by x, y
coordinates) dimensionality per sign. Consecutively, the second data-set contains the dominant
hand arm joints’ coordinates (nose, neck, shoulder, elbow, wrist) resulting in a 86 × 5 × 2
dimensionality per sign. Finally, the data-set regarding the dominant hand wrist data has a
86× 2 dimensionality per sign.
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3.3 Methods

The following section describes the methods and the four techniques used in this study.

3.3.1 Dimensionality Reduction

As described in the previous section, each sign in each compiled data-set can be seen as a
multidimensional vector. To properly project it into the 2D space while still retaining most of
the original information, we used two dimensionality reduction techniques.

The first technique applied is Principal Component Analysis (PCA). PCA is an orthogo-
nal linear transformation that converts the data to a new frame of reference. PCA constructs
Principal Components as linear combinations of the initial variables. These components are not
correlated and most of the information within the introductory variables is compressed into the
first components. By disposing the components with low information and taking into account
the remaining ones as new variables, it allows for dimensionality reduction without loosing in-
formation. As a technique it has been widely used in the gestural as well as the sign language
domain either as a visualization technique or as a pre-processing stage prior to other machine
and deep learning stages (Gweth et al., 2012; Sawant and Kumbhar, 2014; Haque et al., 2019;
Gao et al., 2021).

Furthermore, the Uniform Manifold Approximation and Projection for Dimension Reduc-
tion (UMAP) technique has been utilized. This method has been used instead of another popular
dimensionality reduction technique called t-distributed stochastic neighbor embedding (T-sne)
(Van der Maaten and Hinton, 2008). T-sne’s inability to preserve the global structure of the data
makes it unusable if distances between different clusters or points need to be calculated such as
in our case (McInnes et al., 2018). In contrast, UMAP can better preserve both local and most
of the global structure in the data allowing the calculation of distance metrics between clusters.
Moreover, the lack of normalization in UMAP effectively reduces the time of computation of
the high-dimensional graph.

In our study both PCA and UMAP have been used to reduce the dimensionality of each
sign to a single x, y coordinate. Subsequently, we measured the euclidean distance between all
the signs of the lexicon and the participants’ signs. Accuracy for each participant’s sign was
measured based on whether the target sign was on the top-k shortest distant signs.

Furthermore, in order to validate the results produced by the UMAP algorithm in its ability
to preserve the global distances of the data, we calculated their euclidean distances in the origi-
nal high-dimensional space. This method has been used as a benchmark to compare the results
of both PCA and UMAP.

3.3.2 Dynamic Time warping

In addition to the dimensionality reduction techniques described above, Dynamic Time Warp-
ing (DTW) has been used to measure the similarity between the different signs. Dynamic Time
Warping is a dynamic programming based time series comparison algorithm to produce a dis-
tance metric between two inputs. It has been widely used in the speech recognition domain
(Myers et al., 1980; Abdulla et al., 2003; Axelrod and Maison, 2004) as well as the gestural and
sign language recognition fields as shown in Section 2.

In this study we utilize a DTW python implementation with open beginning and ending
attributes by Giorgino (2009) and Tormene et al. (2009) which in a preliminary experiment
produced better results compared to the previous DTW implementation by Fragkiadakis et al.
(2020). Similarly, we used a median filter with radius r = 3 for smoothing the time series
signals from the body joints.

Finally, the overall pipeline of the experiment can be seen in Figure 1.
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Figure 1: Pipeline of the overall study.

3.3.3 How many signs?
Many sign language lexica allow their users to submit their own versions of signs. As a result,
different instances of the same sign can be stored in the database. One of our research questions
is whether having multiple instances of each sign can potentially improve the accuracy of the
algorithms. To verify that, we progressively added the 20 signs from other participants to the
lexicon. Subsequently, we measured the average top-1 and top-10 accuracy for each algorithm
and each skeletal condition.

Such information can be useful to sign language lexicographers when compiling sign lan-
guage lexica. They can take advantage of crowd-sourcing material, contributing not only to the
augmentation of their lexica but also to the accuracy of the models used for enhanced search
functionality.

4 Results

Table 1 presents the overall accuracy for each of the skeletal conditions. Top-k refers to the
number of signs a user must look up before finding a correct match. Accuracy indicates whether
the target sign is present in the top-k retrieved signs and is averaged across all participants and
all signs.

Highest accuracy is apparent at a top-50 level at 95% using the UMAP algorithm and
the joints of the dominant hand arm. Furthermore, top-20 rank shows an adequate accuracy
at 80% again using UMAP and the dominant hand arm coordinates. Figure 2 presents the
visualizations of the UMAP algorithm for each of the skeletal condition for one participant.
The results of the calculated euclidean distances on the original high-dimensional space show
an adequate accuracy of approximately 68% at the top-50 rank in both dominant hand arm and
wrist data-sets.

Principal component analysis (PCA) performed, on average, better using the wrist coordi-
nates and showed the highest accuracy at the top-50 at approximately 41%.

DTW showed the highest accuracy at 79% at top-50 rank using the data of the dominant
hand wrist and 77% using the dominant hand arm. On average, DTW had the best accuracy at

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
1st International Workshop on Automatic Translation for Signed and Spoken Languages

Page 28



Skeletal condition Upper body Dominant hand arm Dominant hand wrist
Top-k Top - 1 Top - 10 Top - 20 Top - 50 Top - 1 Top - 10 Top - 20 Top - 50 Top - 1 Top - 10 Top - 20 Top - 50
PCA 0.0375 0.1562 0.2187 0.325 0.025 0.1562 0.2125 0.3437 0.0187 0.1562 0.2125 0.4125
UMAP 0.1312 0.4125 0.6562 0.6937 0.0812 0.4375 0.8 0.95 0.1125 0.2562 0.3687 0.4575
DTW 0.57 0.64 0.67 0.687 0.5188 0.65 0.7188 0.7763 0.5265 0.6562 0.7125 0.7937
Euclidean distance 0.2125 0.4625 0.5325 0.6188 0.2625 0.5 0.6063 0.6938 0.1875 0.445 0.55 0.675

Table 1: Sign retrieval accuracy per algorithm (by row) on the three skeletal conditions based
on the top-k retrieved signs (highest value per column in bold).

(a) upper body (b) dominant hand arm (c) dominant hand wrist

Figure 2: UMAP visualizations for one participant for the different skeletal conditions. With
red are the signs of the participant and with blue the targeted signs.

around 70% at the top-20 retrieved signs regardless of the skeletal condition used, with a slight
increase noticed using the dominant hand arm data.

Figure 3 presents the top-1 and top-10 accuracy levels using DTW and UMAP that have
been computed by incrementally adding other participants’ data in the lexicon. It can be ob-
served that by adding more sign instances from 6 different participants, the accuracy reached a
90% level at the top-10 retrieved signs using DTW and the upper body and dominant hand wrist
data. Furthermore, a raise of approximately 15% can be noticed at the top-1 rank on DTW using
the upper body and dominant hand wrist joints by adding the data of just 2 participants (Figure
3a). On the other hand, UMAP did not show any adequate raise at the top-1 accuracy regardless
of the added participants’ data and skeletal condition. However, an increase, of approximately
35%, can be seen at the top-10 ranking level using the data of 2 participants (Figure 3b).

(a) Top-1 (b) Top-10

Figure 3: Top-1 (a) and Top-10 (b) accuracy using DTW and UMAP based on added partici-
pants’ data in the lexicon.
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5 Discussion

In this study we have investigated the use of OpenPose and four different implementations as
distance metrics for an efficient ranking pipeline to retrieve matching signs from a sign lan-
guage lexicon. The results demonstrated that, on a large vocabulary of 1200 signs, such a task
can be achieved with an adequate accuracy rate using the Uniform Manifold Approximation
and Projection for Dimension Reduction (UMAP) or Dynamic Time Warping (DTW) and the
dominant arm joints’ coordinates.

With regard to the visualizations produced by the UMAP algorithm, a few observations
can be made. Firstly, by using the upper body joints UMAP produces discrete clusters. These
clusters seem to reflect an abstract representation of the movement of each sign. This behavior
has been observed also using the dominant hand arm coordinates, although it is more noticeable
using all the upper-body joints. We have observed that signs that have similar movement but
different handshapes are grouped close to each other.

However, special consideration needs to be made when viewing the visualizations pro-
duced by UMAP, especially the one using the upper body joints. The distances between the
noticeable clusters, as well as their size relative to each other, do not hold any particular mean-
ing. This is because of the use of local distances by the algorithm when constructing the graph.
However, our results using the euclidean distances on the high-dimensional space suggest that
UMAP preserves the original global distances.

Finally, it is worth mentioning that DTW performs equally well irrespective of the skeletal
condition used at around 70% at the top-20 rank. Overall, it produces the most stable and
consistent accuracy at the top-10 retrieved signs at around 65%. This accuracy level can be
further raised reaching 90% by adding 6 more sign instances (from different signers) into the
original lexicon. This attribute can be further explored by lexicographers by asking users of
their lexica to submit their own versions of signs. This process can significantly boost the
performance of DTW in its ability of retrieving the closest matching sign. A broad benefit of
using such an algorithm is the fact that lexica compilers do not need to re-train any model if
more signs or sign instances are added to their lexica.

In general, while our accuracy does not reach the ones reported by Schneider et al. (2019)
and Fragkiadakis et al. (2020) (77.4% top-1 and 74% top-5 accuracy respectively) using similar
algorithms and frameworks, our methods have been applied on a far larger lexicon (1200 signs
instead of 6 and 100 respectively). As a result, we provide a better approximation on how these
methods can actually be used in real world lexica.

6 Conclusions

To sum up, we have obtained satisfactory results demonstrating that UMAP and DTW, in com-
bination with the pre-trained pose estimation framework OpenPose, can be used as an efficient
sign ranking and retrieval system. Our method can effectively be applied to any sign language
lexicon without any training process involved.

To the best of our knowledge, this is the first study using UMAP as a dimensionality reduc-
tion technique within the sign language domain and showcasing the strength of such algorithm
compared to other implementations.

Future work will focus on exploring additional deep learning implementations for an ef-
ficient handshape and pose recognition. Their use, as well as supplementary hyper-parameter
optimization for the techniques used in this study, could lead to an increase in accuracy. Whilst
as we argued that for the availability of dictionaries it will be good to focus on zero training
approaches, in future work we intend to run comparative analysis to understand the impact of
training based approaches on performance. We propose that further research should also be un-
dertaken in order to assess the application of our method on different datasets and languages. On

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
1st International Workshop on Automatic Translation for Signed and Spoken Languages

Page 30



a wider level, the techniques used in this study could be further explored to measure variation
in different sign languages. The results from the use of UMAP and DTW on a large vocabulary
suggest that these techniques might be well suited for variation measurement tasks, broadening
their use beyond the search functionality for sign language lexica.
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Abstract 

Development of automatic translation between signed and spoken languages has lagged be-
hind the development of automatic translation between spoken languages, but it is a common 
misperception that extending machine translation techniques to include signed languages 
should be a straightforward process. A contributing factor is the lack of an acceptable method 
for displaying sign language apart from interpreters on video. This position paper examines 
the challenges of displaying a signed language as a target in automatic translation, analyses 
the underlying causes and suggests strategies to develop display technologies that are ac-
ceptable to sign language communities. 

1. Introduction 

Deaf sign language users around the world face continual challenges in daily interaction with 
hearing, non-signing populations. The gold standard for translating between signed and spoken 
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languages1 are certified sign language interpreters who are essential to facilitating communica-
tion for education, healthcare, and legal consultation among other situations. However, many 
transactions in daily living consist of short conversations over a hotel desk, at a store counter 
or in an office foyer. These interactions are so limited in scope and duration that hiring a qual-
ified interpreter would be prohibitively expensive or quite unnecessary, or even impossible be-
cause in most countries there is a shortage of qualified interpreters. In such situations, an auto-
matic translation system between spoken and signed language would ease communication bar-
riers and improve inclusivity. For technology of this sort to be useful, it must display sign lan-
guage in a way that is acceptable to members of the sign language community. 

To be effective, an automated translation system or machine translation system must be 
able to produce legible, grammatically, and phonologically and phonetically correct, acceptable 
utterances in a desired target language with minimal or no human involvement. Researchers 
have made significant progress in translating between high-resource languages that have a writ-
ten form and some have suggested that automatic translation has achieved human parity in some 
domains (Hassan, et al., 2018).  

Progress in translating between signed and spoken languages has lagged significantly in 
comparison. Traditionally, this task has been conceived as one of text-to-text translation, in-
volving written representations of sign languages. Since sign languages have no widely ac-
cepted written form, an additional required step in going from a spoken language to a sign 
language is that of displaying signed languages in their natural moving form, in the visual mo-
dality (Ebling, 2016). This position paper examines the challenges of displaying signed lan-
guage as a target in automatic translation, analyses the underlying impediments and suggests 
strategies to develop display technologies that are acceptable to deaf sign language users.  

2. Background 

Sign languages are distinct from their surrounding spoken languages. For example, in France, 
many deaf persons have Langue des Signes Française (LSF), not French, as their preferred 
language. Since French is a second language to them, even its written form poses a barrier.  
Many researchers have noted that written language poses barriers to members of the Deaf com-
munities (Traxler, 2000; Gutjahr, 2006; Hennies, 2010; Konrad, 2011). 

Deaf sign language users consider themselves members of a minority group, with a dis-
tinct language, culture, and shared experiences, rather than as simply persons with a disability 
(De Meulder, Krausneker, Turner, & Conama, 2019). They continually struggle with the reality 
that policy makers in governmental departments, educational institutions and health care agen-
cies consist primarily of hearing people who are not familiar with the values, goals and concerns 
of sign language communities (Branson & Miller, 1998). As a result, there is a history of dis-
enfranchisement which adds a barrier of distrust to the barrier of language that exists between 
deaf and hearing communities. At present, current technology claiming to translate between 
spoken and signed languages are not viewed favourably by sign language communities. Rather, 
the technology is often perceived as a ploy to replace human interpreters (World Federation of 
the Deaf, 2018; European Union of the Deaf, 2018), or even as cultural appropriation by pre-
dominantly hearing researchers, who do not always have linguistic knowledge of these lan-
guages, and often have little connection with sign language communities (Erard, 2017). 

 
1 The term spoken language refers to any language that is not signed, whether represented as speech or 
as text. 
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Linguists have noted that as long as avatars are only capable of artificial and flawed language, 
they are very likely to be counterproductive. (Austrian Association of Applied Linguistics, 
2019).  

This scepticism and often downright hostility towards automatic translation systems is 
exacerbated by the generally poor quality of their sign language (Sayers, et al., 2021). To date 
these have exhibited robotic movement and are mostly unable to reproduce all of the multi-
modal articulation mechanisms necessary to be legible. They are comparable to early speech 
synthesis systems which featured robotic-sounding voices that chained words together with lit-
tle regard to coarticulation and no attention to prosody. 

3. Quality of the target language  

Just as with text-to-text translation applications, users will judge the quality of the application 
by the quality of its output to the target language. The same is true when the target language is 
signed. Poor-quality signing is difficult to understand, just as poor-quality speech synthesis or 
egregious misspellings are difficult to understand. It undermines the viewer’s confidence in the 
quality of the translation. Worse, poor quality signing alienates the sign language community. 
Being forced to struggle with the poor signing is no better than being forced to lip read or use 
captions in the second language.  

This is simply more evidence that reconfirms a continuing disenfranchisement. For these 
reasons, quality of the ultimate signed language display must be given highest priority in a 
spoken to signed translation system. The motion should be indistinguishable from that of a 
human signing the same utterance. This visual Turing Test should be the ultimate goal of any 
sign language display. 

4. Sign language in automatic translation services 

Among the challenges to acceptable sign language display as part of an automatic translation 
system, three issues stand out. These are 1) the difference of modalities between signed and 
spoken languages 2) the representation used to characterize sign languages and 3) the develop-
ment of the technology required to display sign languages. 

4.1. Modality 

The modality of sign languages differs markedly from that of spoken languages, which utilize 
the vocal apparatus for production, and hearing for reception. Spoken languages use visible 
communicative behaviours like gestures as well, but listeners can comprehend audio-only 
sources. In contrast, signed languages use only visible actions for production, and vision for 
reception. Whereas speech utilizes a single vibrating column of air for producing utterances, 
signed languages use the configuration and movement of multiple body parts concurrently, in-
cluding hands with all the fingers, head, face, eyes, and torso. 

All sign languages have linguistic processes that are not linearly ordered. For example, in 
American Sign Language (ASL) the appearance of pursed lips in conjunction with the sign 
SMOOTH intensifies the degree of smoothness. In signed language, layers of processes ranging 
from the phonological to the prosodic can co-occur (Crasborn, 2006). Co-occurrence is a more 
general term than synchronized or simultaneous, as co-occurring events do not necessarily start 
or end at the same time, but they overlap in their duration. 

Although there are many discrete lexical items in signed languages, much information is 
conveyed through forms with infinite variability and depiction, unlike fixed dictionary signs.  
A case in point are classifiers, which represent general categories or “classes” of objects. They 
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can be used to describe the size and shape of an object, and they can also represent how an 
object moves or is utilized. Through the use of classifiers, a signer can describe a scenario with 
few discrete lexical items. The signer creates an image in space. This is not simply an informal 
gesture as there are well-documented linguistic rules governing classifier usage (Lepic & 
Occhino, 2018). These are evocative, not necessarily iconic, and are extremely powerful. In a 
story about a motorcycle ride (Dudis, 2004), a signer can use an instrument classifier to indicate 
that the rider is revving the engine and a vehicle classifier to show the rider driving away on a 
hilly highway (Figure 1). 

  

The motorcyclist driving up a hill 
Figure 1. Classifier usage (Dudis, 2004). 

   
The presence of multiple articulators that can co-occur and classifier usage are examples 

of the stark difference between signed and spoken languages. For these reasons, it is essential 
to avoid the trap of casting the problem of signed/spoken translation as a case of simply retriev-
ing lexical items or phrasal units from a dictionary and concatenating them.   

4.2. Representation 

The second of the three challenges is the question of representation. Languages commonly pro-
cessed by automatic translation systems have a written form. Signed languages do not. They 
are languages and cultures that have been preserved and transmitted from generation to gener-
ation by “hand to eye to hand”. Determining a standard transcription/annotation system that can 
capture all of the linguistic information contained in a signed message is still an open question. 
A linear stream of glosses, even with accompanying superscript strings to indicate prosody and 
syntax (Adamo-Villani & Wilbur, 2015), does not contain the entire semantic content of a 
signed utterance, in particular the depicting and spatialized linguistic structures.  

This is not analogous to the difference between reading printed text on a page and witness-
ing an actor perform the text. Less information is captured in a gloss stream than is conveyed 
in written text. A hearing person may argue that not all features of articulation are captured in 
a printed sentence of a spoken language, such as speed of delivery, but in languages where 
adverbs are not necessarily expressed as separate lexical items, the lack of a speed indication is 
losing semantic information, not just performance information. 

4.3. Sign language display 

The third challenge is the display of a sign language when it is the target. The most commonly 
used strategy for this purpose is avatar technology.  Three-dimensional avatars have the 
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advantages of consistency and flexibility. When recording a human signer with traditional 
video, special care must be taken to ensure consistency of the studio set up and the appearance 
of the signer between recording sessions. This requires additional time and money. When using 
an avatar, the lighting and camera set up can be fixed; the clothing can be chosen by the viewer 
as can the hair and makeup. No additional resources are required to ensure consistency. 

In addition, avatars have the advantage of flexibility through the use of animation tech-
niques.  They can display co-occurring linguistic processes. Proper application of coarticulation 
can provide smooth transitions and can inflect signs according to syntactic rules. These proper-
ties are necessary for a translation system to produce novel utterances. 

Avatars also have flexibility in appearance. They can be easily adapted to look like the 
shape of the original speaker/source, like a presenter or a cartoon character or a movie character. 
This flexibility in appearance can also anonymize a signer, so that the signer’s identity will 
remain hidden. 

Another advantage of this type of anonymization of content is that it covers one of the key 
properties of written language, which is inherently more anonymous than a live performance 
that is spoken or signed. With an anonymously presented avatar, content can be communicated 
without knowing the person who expressed it. 

5. The promise and mythology of avatars 

Given that there is a century’s worth of development in animation, and nearly half that support-
ing video game technology, it would be tempting to dismiss the question of using avatars to 
display sign languages as a solved problem. However, a closer analysis shows that there are 
still significant challenges yet to be fully addressed. 

Animation, the precursor to avatar technology, is powerfully communicative. Animation 
artists abstract and emphasize the salient features of a character for greater audience appeal and 
engagement. Simplification of a character’s appearance is vital to maximizing emotional im-
pact. This is the reason that the eyes of Disney cartoon characters are twice the size of those of 
a human and spaced more widely apart.    

However, the requirements for sign language display are different from those for portray-
ing cartoon characters. Beyond communicative power, display of sign language requires preci-
sion. It must adhere more closely to physical reality. For example, the hands of animation char-
acters such as Mickey Mouse or Homer Simpson have only three fingers. For a hearing audi-
ence, this is perfectly acceptable, but three fingers aren’t enough to distinguish between the 
fingerspelled letter W and the number 4 (Figure 2). Another consideration is that while character 
animation effectively uses the face and body to express emotion, the facial animation is typi-
cally at a lower quality than what would be required to portray a sign language legibly.   

 

Figure 2. The difference between the letter W and the digit 4 would disappear in a three-fingered 
character. 

Several ground-breaking animations have received attention and praise from sign language 
communities (Stewart, 2008; Fumdación Fesord CV, 2007). These were manually created by 
artists with the assistance of motion capture. The artists create underlying natural processes of 
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coordinated muscle action, coarticulation at a biomechanical level and ambient movement. 
While creating the animation the artists are continually checking whether the animation draft 
effectively communicates the intended message and editing the draft when there are flaws. 
However, animations are intended for playback only and are not extensible without manual 
intervention. Once completed, they are archived, and without additional manual editing cannot 
be utilized for generating new utterances. In short, animations are not created in real time and 
are not interactive. 

In contrast, video game characters move in response to player input in real time and are 
highly interactive. Thus, using video game technology might seem like an expedient approach 
to sign language display for a translation system. However, many game players continue to 
comment on the poor quality of the game characters. This is due to the effect of the uncanny 
valley (Tinwell, 2014). If a character appears more human-like, viewers expect the character to 
behave in a more human-like manner. But because the character’s motion cannot be refined and 
edited by human animators before it is displayed, the results are unsatisfying. As explained by 
a professional animator (Trentskiroonie, 2015),  

 
For something like film or television, I could create a kickass animation of a monster jumping 
off a building and landing on the street below, but to do the same thing in a game, the movement 
has to be broken up into separate parts. This is because he probably won't do the exact same 
action every time. There may be buildings of different heights in the game, so I can't hard-code 
the height of the jump into the animation. I have to create an initial jump animation, then an idle 
hang-time animation to play while he's in the air, and then a landing animation. The programmer 
then strings the jump, hang-time, and landing together and decides the timing and trajectory of 
the hang-time part procedurally.   ... That takes artistic control away from the animator and can 
result in some fugly animation. 
 

Unfortunately, a “fugly” motion on a sign language avatar can destroy the legibility and even 
the meaning of the message, thus making the avatar bothersome or even useless for a deaf sign 
language user.  Finally, the representation of signed languages through avatars will have an 
effect on the hearing perception of these minority languages. Hearing viewers should not be 
confronted with "fugly" signed texts and be misled into thinking that it is real sign language in 
all its beauty and richness. 

The analysis of the requirements for a sign language avatar shows that it must have the 
expressivity of manual animation but the flexibility of a video game character. These two re-
quirements are in conflict. It is still an open question as to how to reconcile these goals. 

6. Moving forward 

The establishment of a set of best practices would be a substantive step toward the development 
of better sign language displays in automatic translation systems, but it cannot happen without 
a mutual collaboration with sign language stakeholders (Tupi, 2019).  Deaf leadership is vital 
for the establishment of a validated methodology for user evaluation of avatar technology. Once 
created and reviewed, the methodology should be made publicly available to all researchers 
working in this area. Currently in Austria, there is a small research project aiming to create a 
Best Practice Protocol for the use of signing avatars (Krausneker, 2021). 

 
This is consistent with the World Federation of the Deaf’s position paper on Sign Language 
Work (World Federation of the Deaf, 2014). 
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The WFD considers exclusion of Deaf Community and their national organizations from sign 
language work ... a violation of the linguistic human rights of deaf people. Decisions regarding 
sign languages should always remain within the linguistic community, in this case deaf people. 
 

Best practice for reviewing research papers would include an awareness of the multidisciplinary 
qualification required. It is not enough to know about machine translation. Reviewers must also 
be aware of sign language linguistics, the deaf experience and previous work in sign language 
machine translation. 

When reporting on an advance in sign language avatar technology, researchers should in-
clude a sample of the sign language produced by the technique outlined in a paper. Since the 
sample would necessarily contain motion, it could either take the form of a media file in a 
commonly available format such as MPEG-4, or a web application available online.   Confer-
ence organizers and journal editors need to collaborate with academic and professional organi-
zations to archive media accompanying research papers.  

7. Conclusion 

“Together, we are strong.”  -- Lutz König, Hamburg, 14 November 2017  
 

Together, machine translation (MT) researchers, sign language linguists and the deaf sign lan-
guage community have the potential to form powerful partnerships to educate policy makers 
(Bragg, et al., 2019). Ideally, Deaf professionals should be educated, supported, and actively 
sought to include in sign language relevant research projects. 

  
To hearing researchers: Get to know members of sign language communities and learn 

about deaf culture. 
• Take a class in the national sign language of your country. You already know several 

spoken languages -- why not discover an entirely new world?  Or if you don’t feel 
you have time, 

• Go to a deaf event -- see a play in sign language, go to a deaf trade show. 
• When writing grant proposals that include work relevant for sign languages, include 

the local and/or national deaf community. Most countries in the world have a National 
Association of the Deaf.  Include budget for interpreters. 

• Listen. Just because an idea or a result is incredibly appealing to an MT researcher 
does not mean that it will be useful or welcomed within the sign language community. 
Take feedback seriously and act on it. 

 
Through exchange of ideas and concerns, the sign language community can inform MT re-
searchers about their priorities, and MT researchers can clarify the capabilities and limitations 
of today’s technologies. A clear understanding of priorities, expectations, potentials, and limi-
tations will move the state of the art closer to realization of better inclusivity. 
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Abstract
This paper presents an overview of AVASAG; an ongoing applied-research project develop-
ing a text-to-sign-language translation system for public services. We describe the scientific
innovation points (geometry-based SL-description, 3D animation and video corpus, simplified
annotation scheme, motion capture strategy) and the overall translation pipeline.

1 Introduction

The development of software solutions able to translate (bi-directionally) from spoken lan-
guage to sign-language (SL) has received a lot of attention during the last years. In Europe,
the involvement of the public institutions in such line of research culminated with the fund-
ing, under the H2020 program, of two 3-year long research projects, namely EASIER [12] and
SignON [13, 15].

In this paper, we present the architecture of project AVASAG [11] (Avatar-basierter
Sprachassistent zur automatisierten Gebärdenübersetzung = Avatar-based speaking assistant for
the automated translation of sign language), which is a project funded by the German ministry
for education and research (BMBF) aiming at deploying a commercial system able to automati-
cally translate text to sign language in various domains of public services (e.g., announcements
for railway stations, airports, harbors, and hygiene warnings). The implementation choices are
driven by the following requirements and constraints:

1. The system is devoted to off-line translation services. Hence, translation does not need
to be necessarily in real-time, but rather offer the possibility to human operators (likely
trained interpreters) to finalize the animation through manual editing, and approve it before
delivery;

2. The avatar animation will be tuned to maximize comprehensibility, while at the same time
maintaining a sufficient level of acceptance in terms of naturalness of the animation. This
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can be seen as the compromise set to initial synthetic voices used for public services;
3. In order to approach the market within a reasonable time frame, the project focuses on

realizing at first well recognized forms of inflection of lexical signs (e.g., sign relocation,
interrogative forms, role shifts, classifiers), but still open to the realization of more creative
iconic gestures in future extensions;

4. The system is engineered to scale with time as new signs are added to its vocabulary to
support more application domains.

From a scientific point of view, the project aims at the following innovation points.

First, the project is developing a translation system that goes beyond classic symbolic rep-
resentation of SL. Existing SL-descriptions range from mere un-contextualized GLOSSES, to
more sophisticated formats specifying hand (shape, orientation, location, trajectory) and facial
movements (e.g., Stokoe [16], HamNoSys [5]). This gives the opportunity to human operators
for the corrections of sentences when the text-to-SL-description fails. However, compared to
data-driven approaches, animations driven by SL symbolic descriptors are generally judged as
generating non-believable unnatural animations (see [10] for an overview). On the other hand,
recent end-to-end data-driven approaches are moving towards the generation of 3D sign pose
sequences [14] that could be used to animate an avatar from a kinematic level, but hinders the
possibility of a manual correction of the translation result.

In this project, we try to merge the advantages of data-driven animation, which leads to
more natural looking results, while leaving the capability of post-translation manual correc-
tion. Given a vocabulary of motion captured signs, the inflection of signs within the context
of a sentence will be realized by transforming a sign data using: i) non-rigid 3D transforma-
tion (translation, rotation, scaling, shearing) of the hand trajectories and torso movement, ii)
corrective blend-shapes on the facial animation, and iii) time-warping functions controlling the
dynamic of the execution. All of those inflection transformations are driven by numerical pa-
rameters that can be manipulated by a human through the use of “3D gizmos” in a dedicated
editing GUI.

As an advantage with respect to performing end-to-end translation (directly from text to
avatar animation data), predicting only inflection parameters significantly reduces the size of
the target output, thus likely allowing for the preparation of accurate models with much less
training material.

Second, the project will deliver to the scientific community, with public unrestricted ac-
cess, a corpus of sentences with parallel data whose entries are composed of:

• The text of the sentence in natural language (both in the host language and in its English
translation);

• a GLOSS transcription of the sentences using the philosophy of the gloss-ID [6];
• the 3D motion capture (MoCap) data of the corresponding SL translation, captured in a

high-class motion capture studio, for full body, hands, and facial animation;
• Full-HD video of the interpreter during the same motion capture session, hence synchro-

nized at frame level with the 3D MoCap data;
• the annotation of the sentence videos on different tiers (see the third innovation point for

details) performed with a cross-check procedure by native deaf and SL interpreters;
• the inflection parameters, i.e., the values for the (3D) transformation inflecting the signs.

In addition, the corpus will be paired with a vocabulary of signs (aka signary), indexed by
gloss-IDs, where each sign will contain: the MoCap data and video of non-inflected signs
executed in the same settings as for the sentences, syntactic information of the sign, such as

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
1st International Workshop on Automatic Translation for Signed and Spoken Languages

Page 44



Interpreter Annotator(s)

Corpus:
Sentences

Corpus: 
SL Videos

Video and Motion
Capture

Corpus: 
Animation Data

NovA

Vocabulary
Animation
Analyzer

Corpus Animation 
Analyzer

Text2MMS 
(Training)

Vocabulary 
Animation Data

Vocabulary

Interpreter

Video and
Motion
Capture

Corpus: 
Training Data 

(MMS)

Translation 
Model

Computes
Geometric

Info

Adds new signs

Corpus: 
Video Annotations 

 

Avatar Player
Input Sentence

Text2MMS 
(Inference) MMS instance MMS

sequencer
Animation 
Synthesis

Parameterized
signs

Figure 1: Overview of the off-line training (top) and real-time translation (bottom) pipelines.

symmetry, number of hands, use of mouthing, body contacts, and finally the references to all
the possible semantic meanings in WordNet [9].

Third, the annotation process will follow an innovative “boolean-based” simplified
annotation scheme, where annotators on each tier must check a flag only if the execution of a
sign in the sentence shows meaningful differences with respect to its lexicalized form in the
vocabulary. Here, by “meaningful”, we mean deliberate inflections (such as sign relocation,
eyebrows movement, body shifts, head movement, facial expressions, and the like) of the sign
in order to convey additional meaning. The extraction of the exact values of those differences,
i.e., the magnitude of the inflection parameters, is delegated to a procedural analysis of the
3D animation data. Such a simplified annotation strategy is supposedly faster than existing
schemes, where annotators must select values from closed lists or insert free text.

Fourth, we are employing a MoCap system that combines different data streams together,
like real-time streamed point clouds and multiple (depth) cameras. These different data sources
are then combined and processed inclusively to create a matching animation.

2 System Overview

Figure 1 shows a diagram of the offline and realtime phases of the proposed architecture.

Motion Capture The corpus creation starts from a set of written sentences that are translated
into sign language and recorded with both a video camera and a full-body motion capture system
(fingers, hands, arms, torso, head, and face). The recording is performed simultaneously, so to
have a perfect match between the video and the animation data recording.

Annotation The video material will be annotated using the annotation tool NOVA [1]. Here,
the data is stored in a collaborative annotation database, so that the annotation work can be
divided among several users. In addition, machine learning methods can be integrated into
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NOVA with the goal of generating annotations in part automatically. We will train different
neural networks for this purpose in an attempt to reduce the workload of the annotators.

The main tier of the annotation scheme is the gloss tier, which consist of the time segmen-
tation to identify the beginning and end of a sign. Within each time slot, the annotator inserts
the gloss-ID of the vocabulary. Two additional tiers annotate if the dominant or non-dominant
hand are performing another sign, holding the previous one, or placing a classifier in the sign-
ing space. Each of the remaining tiers must be checked with a boolean true only if meaningful
differences with the vocabulary are noticed for the movement of the manual elements (configu-
ration, location, orientation), non-manuals (torso, shoulders, head, mouth/mouthings, cheecks,
eyes, eyebrows, facial expression); flagging a difference will trigger the automatic computa-
tion of inflection parameters. Finally, explicit grammar roles (wh-question, yes/no question,
negation) are also annotated.

Vocabulary creation The vocabulary is created interactively during the annotation of the
segmentation tiers. Each time a new sign is encountered, the annotator will insert a new entry
in the vocabulary. Each new sign will be then motion-captured in its non-inflected form and
both the video and the MoCap data associated to the vocabulary entry. Each entry is completed
with annotations about the number of used hands, if it is relocatable in space, if there is contact
with other body parts or between hands, mouthing or mouth gestures, and references to all
appropriate WordNet synsets [9].

Animation data analysis The Corpus Animation Analyzer computes the inflection parame-
ters that transform signs from their non-inflected form into the way they appear in the sentences.
The implementation is based on trajectories transformation (e.g., [2]) and mesh registration (see
[17] for a survey). As a result, inflection parameters will take the form of 4D matrices for non-
rigid 3D transformations or vectors for corrective blendshape weighting. The output of the
analysis–the MMS (multi-modal signstream)–consists of the annotated sentences augmented
with the sign inflection parameters.

Automatic translation The Text2MMS is a machine learning module in charge of the con-
version between written text and the MMS abstraction. For the task, we will train a neural
network that takes sequences of words as input and outputs the most probable class for each
element in the vocabulary. Inflection parameters will be predicted as continuous real numbers.
Given that machine learning heavily depends on the amount of data used for training, and the
corpus might not achieve consistent sizes in the short term, we will adopt both transfer learning
and data augmentation techniques. In the first case, we will use pre-trained language models
that will be fine-tuned to perform our task [3]. In the second case, we will generate synthetic
data using the relations in WordNet, word classes, and our vocabulary joined with unsupervised
methods when possible [19, 4].

Avatar creation For the character creation, a state-of-the-art 3D computer graphic program
(e.g., Autodesk 3ds Max) will be used. For the development of the photorealistic avatar a
3D photo-scan system for generating high level realistic face textures will be build up. To
avoid errors potentially introduced while retargeting between the MoCap data and the avatar’s
skeleton, the avatar is tuned according to body measurements on the actor. As suggested in
previous research [8], we will apply high contrast between skin, clothes and background color,
and will provide careful lighting with shadows for a 3D effect.

Avatar animation The avatar animation consists of parsing MMS sequences, and play back
the resulting animation data. For the animation synthesis, we use the cloud-based Charamel
software VuppetMaster [18], which supports a 3D real-time rendering engine based on WebGL
standard, thus making it possible to run the avatar on all known devices (including browsers).
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The animation of hands and torso will be driven by inverse kinematic chains. Fifty-one facial
action units can be used for creating expressive facial animations, which is fundamental for the
comprehension of sign language [7].

User Evaluation With pursuing a human-centered approach within the project, ensuring a
focus on the needs of those who are supposed to use and understand the avatar, is essential.
Evaluations by and exchange with the target group is thus integrated into the entire process—
starting with elaborate measures of user research in early phases (requirements analysis such
as personas, scenarios, and user stories) that form the foundation for formative and summative
evaluations conducted within usability labs later on. In this way, we want to achieve not only a
high acceptance and quality of the avatar, but also strengthen the acceptance and support within
the SL-community towards our project’s approach.

Ensuring the sign language quality An essential part of project is the continuous checking
of the sign language quality of the avatar to be developed. This is achieved through the col-
laboration with a team of sign language experts and professional interpreters who supervise the
annotation process and ensure a high quality standard of the avatar with regard to the representa-
tion of sign language. In this way, representatives of the future user group work actively within
the realization of the avatar and influence the development according to their requirements.

3 Current Status and Future Work

At the moment of writing, the project completed its initial investigation stage and it is at the
beginning of its development stage. The corpus structure has been finalized. The MoCap envi-
ronment has been tested, finalized, and was used to capture the first sentences of the corpus. The
annotation tool has been configured and sign language experts are using it. Scripts to automatize
the processing of the corpus (e.g., extraction of facial animation data from videos, consistency
check) are under development. The avatar animation engine can playback motion captured sen-
tences and non-inflected signs with body and hands. As soon as facial animation is supported,
the avatar will undergo the first user evaluation. Tools for the analysis of the animation data
(such as trajectory transformation and mesh registration) are under investigation.

As a first goal, the system shall enable translations for public services, which is charac-
terized by a formal communication register. In the future, the system will be extended to be
applied in different contexts, where more complex sign language features, such as iconicity,
pose higher challenges for the whole translation pipeline.
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Abstract

This paper presents a study that compares non-manual markers of polar and wh-questions to
statements in Kazakh-Russian Sign Language (KRSL) in a dataset collected for NLP tasks.
The primary focus of the study is to demonstrate the utility of computer vision solutions for
the linguistic analysis of non-manuals in sign languages, although additional corrections are
required to account for biases in the output. To this end, we analyzed recordings of 10 triplets
of sentences produced by 9 native signers using both manual annotation and computer vision
solutions (such as OpenFace). We utilize and improve the computer vision solution, and briefly
describe the results of the linguistic analysis.

1 Introduction

Non-manual marking, that is, linguistically significant use of the body, head, facial features,
and eye gaze, is a prominent feature of sign languages (Pfau and Quer, 2010). For instance, in
most sign languages, polar questions are accompanied with raised eyebrows, and some type of
head movement (Cecchetto, 2012). While non-manual markers in many sign languages have
been previously studied, many other sign languages have not been analyzed before, including
Kazakh-Russian Sign Language (KRSL), which we discuss in this study.

Current developments in computer vision provide an opportunity for a large-scale quan-
titative research on non-manual markers. In this study, we evaluate whether computer vision
solutions can be utilized for the analysis of non-manual marking present in sign language video
recordings. The objective of this work is to compare non-manual markers in statements and
questions in KRSL, and to test a computer vision solution against manual annotations.
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2 Background

2.1 Non-manual markers in sign languages

Sign languages employ not only hands, but also the body, the head, and the face in order to ex-
press linguistic information. Non-manual markers have been analysed for many sign languages
(see Pfau and Quer (2010) for overviews). These markers function on different linguistic levels:
phonological, morphological, syntactic, and prosodic.

Question marking in particular has been studied for many sign languages (Cecchetto,
2012). Polar (yes/no) questions seem to be almost universally marked by eyebrow raise on the
whole sentence, while content questions (wh-questions) are more varied: some sign languages
use eyebrow raise, some use eyebrow lowering, and some a combination of both (Zeshan,
2004). In addition, some type of head movement is reported as a marker for many languages,
including backward head tilt (chin moving upwards) and forward head tilt (chin moving down-
ward/forward).1 The non-manual markers vary in scope: they can align with different con-
stituents in the sentence. Furthermore, recent corpus-based research shows a high degree of
variability of non-manual marking of questions, contrary to previous claims of the obligatory
nature of such markers (Hodge et al., 2019).

Because of both typological and language-internal variation in non-manual marking of
questions in sign languages, it is clearly necessary to conduct more empirical studies of such
marking in languages that have not been described yet. In addition, applying novel computer
vision techniques can facilitate reliable quantitative analysis and enable quantitative cross-
linguistic comparison in future.

2.2 Quantitative approaches to non-manual marking

While there exist quantitative studies of non-manuals in various sign languages, some also based
on naturalistic corpus data (Coerts, 1992; Puupponen et al., 2015; Hodge et al., 2019), until very
recently quantitative approaches were limited by the data sets and the available techniques of
analysing non-manuals. Many projects in the past employed manual annotation of non-manual
markers, which is both extremely time-consuming and potentially unreliable (Puupponen et al.,
2015). Moreover, manual annotation rarely provides the amplitude of non-manuals – in most
cases annotation only states the existence of the marker. A more reliable alternative has been to
use motion tracking to record precise quantitative data (Puupponen et al., 2015) e.g. on head
movement. However, using a motion tracking set up is costly, and the signers have to wear
trackers, which make the data recorded this way very far from naturalistic.

Currently two developments have made a large-scale quantitative studies of non-manual
marking possible. First, large naturalistic corpora have been created for several sign languages
(Crasborn et al., 2008; Konrad et al., 2020). Second, computer vision techniques now allow
tracking of the body and facial features in video recordings without any trackers (see references
in Section 4). The field of sign language translation has already benefited from these and other
factors (see (Camgoz et al., 2018) for a brief overview), however most models only consider
hand signs (Zimmermann and Brox, 2017) and other models do not interpret the video features
at all (Li et al., 2020). Therefore we are just starting a discussion on the applicability of machine
learning methods to non-manual feature extraction in sign languages. In this study, we test the
applicability of computer vision to studying question marking using a controlled data set of
statements and questions in Kazakh-Russian Sign Language.

1Other markers relevant for question marking include eye aperture, eye gaze direction, and body movements, but
we do not consider them in this study (Cecchetto, 2012).

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
1st International Workshop on Automatic Translation for Signed and Spoken Languages

Page 50



2.3 Kazakh-Russian Sign Language (KRSL)
KRSL is the language used primarily by the deaf and hard-of-hearing people in Kazakhstan.
We use the term KRSL to acknowledge the fact that this language is closely related to Russian
Sign Language due to the common history in the times of the Soviet Union. While no formal
comparison between the two languages has been conducted, anecdotally the two languages are
fully mutually intelligible, and not considered as separate languages by the deaf signers. Note,
however, that KRSL signs can be accompanied by Kazakh mouthings.

Question marking in KRSL has not been described before. Based on the typological re-
search cited above, we had a strong expectation that eyebrow position and head movement
would be used to mark questions in KRSL, and that polar questions would be marked with raised
eyebrows; we did not have a clear expectation about the eyebrow position in wh-questions.

3 Methodology

3.1 Participants and data collection
We collected video recordings from 9 native signers of KRSL: five deaf signers, and four inter-
preters, who are hearing children of deaf adults (CODAs). The data set analysed here is a part
of a larger data set collected for a different project on automatic sign language recognition.2

We created a list of 10 simple sentences consisting of a subject and an intransitive verb.
Each of the sentences was collected in three forms: statement (1a), polar question (1b), and
wh-question (1c). The former two types of sentences thus contained two signs, and the latter
type contained three signs due to the presence of a wh-sign.

1. (a) GIRL FALL (b) GIRL FALL? (c) WHERE GIRL FALL?
‘A girl fell.’ ‘Did the girl fall?’ ‘Where did the girl fall?’

The stimuli were presented in written Russian to the hearing signers, and as video recordings in
KRSL to the deaf signers. We did not use filler sentences, nor concealed from the signers that
we were interested in question marking in KRSL. Our aim was thus not to create a maximally
naturalistic data set, but a controlled data set with uniform structures produced by several signers
for experimenting with computational approaches. No explicit instructions were given about the
non-manuals, so we expected the signers to produce the markers natural to them.

Given that the data set was created for the purposes of automatic sign language recognition,
and not for research on the grammar of KRSL, and due to the relatively small pool of signers
which also includes hearing CODAs, the current study can only be considered describing non-
manual marking of questions in this specific data set, and not in KRSL in natural settings.
However, we believe that this is a first step towards a more broader research. Furthermore, the
size of the data set is quite small, so further testing of the approach with larger data sets will be
required in future.

3.2 Manual annotation
As the first step in research, we watched all the videos in order to get a qualitative picture of the
non-manual patterns. For polar questions, it turned out that the main non-manual markers were
eyebrow raise on the whole sentence and two consecutive forward head tilts on the subject and
verb (2). For wh-questions, it was eyebrow raise on the whole sentence or only on the wh-sign
and a backward head tilt on the whole sentence or the wh-sign (3-4). It was also noticeable that,
in wh-questions, the signers had less consistency in their marking.

2All the data used in this study as described below is available at https://github.com/kuzanna2016/
non-manuals-2020.
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2.
br_raise

head_forward
DOG

head_forward
EAT

‘Is the dog eating?’

3.
br_raise
chin_up

WHERE CHILD DANCE
‘Where the child is dancing?’

4.
br_raise
chin_up

WHEN MOM TIRED
‘When was mom tired?’

With these observations, it was decided that we need to manually annotate eyebrow move-
ment and head tilts. Besides that, the manual signs were annotated to determine the boundaries
of the constituents, and the syntactic roles of the constituents (subject, verb, wh-word) were
annotated. The annotations were made by the first author, according to the Corpus NGT Anno-
tation Conventions (Crasborn et al., 2015) using the ELAN software (ELAN, 2020).

In order to explore reliability of manual annotation, 20% of randomly selected videos (54
videos) were independently annotated by the last author specifically for eyebrow movement (as
later in the paper we assess computer vision measurements of this specific non-manual against
manual annotations). Inter-rater agreement was calculated in two different ways: using agree-
ment in category assignment and using the percentage of overlap between the annotations to
take duration into account. We found moderate raw agreement for eyebrow movement detec-
tion (67%), and even lower agreement in overlap between annotations (57%).

This testing of the reliability of manual annotations is a showcase of the difficulty and
subjectivity of this procedure. It is clear that automation of annotation is a necessity. At the
same time, the computer vision tools discussed below make it potentially possible to study
these subtle phonetic properties of non-manuals.

In some of the videos, the signers produced signs other than the subject, object, and the
verb (such as a past tense marker), and in a few videos the subject sign was missing. We
removed such videos from further quantitative analysis. Having done that, we had 259 videos
in total (88 statements, 82 polar questions, 89 wh-questions).
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Figure 1: The behaviour of keypoints with different head turns on the test video.

4 Applying computer vision

The field of computer vision is actively developing thanks to the advancements in deep learning.
Achievements in this area allow computers to process a large amount of visual information, such
as pictures, photos or videos. One of the tasks of computer vision is landmark detection. It can
be described as an object recognition task with localization: the algorithm needs not only to
detect an object on the image, but also to estimate the position of this object. We planned to use
face and head landmarks recognition tools to estimate the eyebrow and head movement.

OpenFace is a toolkit for facial landmark detection, head pose estimation, facial action unit
recognition and other facial behaviour analysis (Baltrušaitis et al., 2018, 2013; Zadeh et al.,
2017). OpenFace is able to estimate 3D landmarks position from 2D points using Point Distri-
bution Model, which parametrizes the shape of a face using a limited set of parameters, such as
scaling, rotation, translation and individual deformations of the face. We used OpenFace 2.2.0
FeatureExtraction model for getting face landmarks position in 3D and head pose estimation
for every frame. Face landmarks and head coordinates were in x,y,z-coordinates in mm, and the
head rotation angle was in radians with the camera being the origin. The model also provided
us with a confidence score for each frame. By outputting head rotation, OpenFace directly
provides a measure of forward/backward head tilt that we are interested in for the analysis.
However, the estimation of eyebrow position from OpenFace output is less straightforward.

When we visually investigated the OpenFace output, we noticed that the results conflicted
with our initial observations. We expected polar questions to have the largest eyebrow raise
but OpenFace output was even smaller than in statements. Furthermore, we saw correlation
between rotation angle and eyebrow distance, meaning that, probably, OpenFace predictions
are prone to bias by the head rotation.

To demonstrate this bias, we plotted 3 frames from our test video of the forward to back-
ward head tilt without eyebrow movement. We rotated the face keypoints in the reverse angle
of the computed head rotation and centred them on the bridge of the nose keypoint number 27.
From Figure 1, we can see that the face points, especially eyebrow points, are bending. Hence,
the 3D model that OpenFace deduces is likely to be distorted in the presence of head movement.
We therefore had to attempt to eliminate such distortions.

General 3D reconstruction from a single camera is a really challenging problem and it is
outside of our area of competence, therefore we were not able to modify the OpenFace model
itself. Moreover, we do not have the specifically annotated data with facial landmarks to retrain
the model. That is why we will deal with the computed output instead of the model.

To deal with the bias we created a machine learning model that would predict the eyebrows
distance depending on the head rotation when the eyebrows were not raised or lowered, i.e. the
default eyebrow distance with the influence of tilting. We trained linear regression with L2
regularization and alpha 0.001 from sklearn library for Python (Pedregosa et al., 2018) on
statements that contained no eyebrow raises: 63 sentences (4414 frames). The target of the
model was the distance from the eyebrow points (18, 23 - inner, 20, 25 - outer) to the eye line -
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a line between points 36, 45. The mean inner eyebrow distance in the subset was 29.7 and the
outer was 27.1. Our choice of the model was based on the observation that the distortion seems
to be linear and consistent across signers – Pearson correlation coefficient between vertical head
angle and the eyebrow distance to the eye line in sentences with no eyebrow raise is -0.42 for
the inner distance and -0.48 for the outer distance. Moreover, the training data set is small and
thus a simple model should be sufficient.

Model № Features inner MSE outer MSE

1 cos, sin, tan of vertical and horizontal head angles; 4
nose length (distance between points 27 and 30)

2 + signer IDs and sentence IDs 1.61 1.54
3 + the vertical eye distances 1.45 1.36

Table 1: Models’ features description and the results

The features of the models that we used are shown in Table 1. We did not use the angle
of rotation in the z-axis (from the ears to the shoulders) because it worsened the result for
such turns. We did not use pure radians for rotation, because they shifted the model to some
incomprehensible extremes.3 In all our experiments we used 5-split random permutation cross-
validation with test proportion of 25% (731 frames) to make sure the model does not overfit.

The first model performed with an MSE of about 4 for each eyebrow distance. However
we wanted a better result. We added meta information as one-hot encoded vectors and it signif-
icantly increased the quality on the cross-validation. We believe that this allowed the model to
learn the individual mean eyebrow height for each signer. We also noticed that blinking affected
the distance estimation, so we added eye aperture features, which slightly reduced the error.4

After training the final model on statements, the eyebrow distance was predicted for all
sentences, and then subtracted from the distance computed on OpenFace output directly. Thus,
we subtracted the changes in distance caused by the tilts from the distance based on the output
to get the unbiased distance measurement.

To check that this approach produced reasonable results, we looked manually at 35 sen-
tences and compared the predictions with the annotations. In general, the output of the model
agreed with our annotations. Furthermore, the correlation between the vertical head tilt and the
new eyebrow distance is lower than on the original distance (-0.27 for inner, -0.25 for outer).
Having demonstrated that this method of adjusting the eyebrow distance for head movement
works well, we conducted the subsequent analysis using it.

5 Statistical analysis

One of the main advantages of applying computer vision to analysis of non-manuals in sign
languages is that it opens the possibility of consequent advanced statistical analysis, instead of
relying on qualitative observations. Thus, we use the current data set to showcase a possible
statistical analysis of the output of the proposed computer vision approach.

We analyzed the data in R (version 3.6.3) using R Studio (version 1.0.143) (R Core Team,
2020; RStudio Team, 2020). For this study, we averaged the eyebrows distance in each video in
the parts of sentence areas for inner eyebrows points (20,23) and for outer eyebrows points

3We also deleted the frames that had low OpenFace confidence (<0.8) - 103 frames from 12 videos in total.
4It was our decision to select specific data set features to increase the accuracy of the model. Thus the current model

would not generalize to other data sets and we encourage other researchers to retrain it on their data or use the first
model without the meta features.
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Figure 2: Mean head rotation angle and predicted difference in eyebrow movement for three
sentence types. Vertical lines define the beginning and ending of the part of sentence tag (S
- subject, V - verb). Rotation graphs are reversed in y-axis for interpretation (lower angle -
backward head tilt, higher angle - forward head tilt).

(18,25) (averaging the left and right eyebrow distance). Thus, we had four eyebrow mea-
surements for all the sentences (inner and outer mean distance for the subject and inner and
outer mean distance for the verb) and separately we had six eyebrow measurements for the
wh-questions (inner and outer mean distance for the wh-sign, subject, and verb). Besides, we
calculated the mean head rotation angle on the x-axis (vertical tilts) again for two signs for all
the sentences and for three signs for the wh-questions.

A mixed-effects multivariate linear regression model was picked for the analysis (Baayen
et al., 2008; Bates et al., 2014). We made 9 models with the outcome variables of internal and
external eyebrow distances and head tilt angle on the subjects, verbs, and wh-questions.

The fixed predictor variables for the first 6 models were sentence type (categorical, three
levels: statement, polar question, wh-question), group (categorical, deaf vs. hearing), and all the
interactions between the two predictors. For the last three models, the fixed predictor variables
were part of sentence (categorical, three levels: wh-word, subject, verb), group (categorical,
deaf vs. hearing), and all the interactions between the two predictors. We used orthogonal
coding of contrasts for the predictors with three levels. Finally, for all models, the random
variables were participant (with a random slope for sentence type or part of sentence), and
sentence (with a random slope for group).

For the models, we used the lme4 package (Chung et al., 2015) with the help of the blme
package to achieve convergence with a small number of levels for the random effects (Chung
et al., 2013). The significance of the contribution of the factors was computed with the ANOVA
function from the car package (Fox and Weisberg, 2019).

6 Results

Firstly, we examined the results visually. From Figure 2, we can see that: polar questions have
tilting forward on the subject and verb and eyebrows raise on the whole question, while wh-
questions have tilting backwards on the wh-word and eyebrows raise in the beginning on the
wh-word, which is slowly declining to the end of the sentence. In all the statistical analyses
below, the effect of group and interactions between the group and the other effects were never
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significant, so we do not discuss them further.

6.1 Eyebrow movement
We find that sentence type significantly influences both internal and external eyebrows distance
on the subject and the verb (ANOVA χ2 show significance at p<0.001 for all the comparisons).

For internal eyebrow points, the eyebrows distance is bigger for wh-questions than state-
ments on the subject by estimated 1 mm (se = 0.64, t = 1.57), and on the verb by 0.87 mm (se
= 0.5, t = 1.76). The average between statement and wh-question is lower than polar questions
by 2.05 mm (se = 0.46, t = 4.48) on the subject and 2.34 mm (se = 0.55, t = 4.23) on the verb.

For external eyebrow points, the eyebrows distance is bigger for wh-questions than state-
ments on the subject by estimated 1 mm (se = 0.65, t = 1.5), and on the verb by estimated 0.63
mm (se = 0.5, t = 1.27). The average between statement and wh-question is less than polar
questions by estimated 1.66 mm (se = 0.43, t = 3.89) on the subject and 1.77 mm (sse = 0.6, t
= 2.91) on the verb. The difference in distance is lower for the external eyebrows than for the
internal eyebrows (but note that we did not quantitatively compare these differences).

In wh-questions, we find that the part of the sentence influences the eyebrow distance
(ANOVA χ2 for internal = 7.362, df = 2, p<0.05, for external = 6.824, df = 2, p <0.05).

Internal eyebrows distance on the subject is bigger than on the verb by 0.5 mm (se = 0.5, t
= 1.09). The average between internal eyebrows distance on subject and verb is less than on the
wh-word by 0.73 mm (se = 0.38, t = 1.9). External eyebrows distance on the subject is bigger
than on the verb by 0.68 mm (se = 0.47, t = 1.43). The average between external eyebrows
distance on subject and verb is less than on the wh-word by 0.59 mm (se = 0.4, t = 1.43).

To sum up, we confirmed our initial hypothesis that polar questions and wh-questions are
marked with eyebrow raise both internal and external. Besides, we find indications that the
contour of the raise is different in these sentence types, even though we have not tested the
significance of these differences as the estimates come from different models. The eyebrow
raise in polar questions is higher on the verb than on the subject, whereas in wh-questions it is
higher on the subject than on the verb. Also, the raise itself is smaller in wh-questions.

Moreover, we analyzed the eyebrow raise in wh-questions separately and found out that
eyebrows raise starts at the wh-word and then gradually decreases.

6.2 Head movement
As we stated before, vertical head tilts are measured in radian angles on the x-axis. A positive
angle means forward tilt, whereas a negative angle means head tilt backwards.

We find that sentence type influences the head rotation angle on the subject and the verb
(ANOVA χ2 for subject 8.819, df = 2, p <0.05, for verb 10.462, df = 2, p <0.01). The head
rotation angle is bigger for wh-questions than statements on the subject by estimated 0.006
radians (se = 0.029, t = 0.22), and on the verb by estimated 0.03 radians (se = 0.02, t = 1.4).
The average between statement and wh-question is lower than polar questions by estimated 0.13
radians (se = 0.046, t = 2.9) on the subject and 0.2 radians (se = 0.06, t = 3.1) on the verb.

In wh-questions, we find that the part of the sentence significantly influences the head
rotation angle (ANOVA χ2 = 39.887, df = 2, p <0.001). Rotation angle on the subject is less
by estimated 0.06 radians (se = 0.02, t =-2.6) than on the verb. Rotation angle is less on the
wh-word than on the average between subject and verb by 0.16 radians (se = 0.04, t = -4.19).

To conclude, as we saw in Figure 2, polar questions differ from wh-questions and state-
ments regarding head tilting forward on the subject and verb. Meanwhile, the difference be-
tween wh-questions and statements is not significant (0.006 radians and 0.032 radians on sub-
ject and verb respectively). However, when examining wh-questions separately, we confirmed
that the wh-word is marked with a head tilt backwards (-0.16 radians) in contrast to the other
part of the sentence, and this difference is significant.
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7 Discussion

7.1 Non-manual question marking in the KRSL dataset
Our study provides a first description of non-manual question marking in KRSL by analyzing
a dataset created for NLP purposes. As discussed above, it is inadvisable to generalize our
findings to naturalistic use of KRSL.

Both manual annotations and the quantitative analysis demonstrate that polar questions in
the dataset are marked by forward head tilt on the subject and the verb, and eyebrow raise on
the whole sentence; wh-questions are marked by backward head tilt on the wh-sign, and by
eyebrow raise on the wh-sign that can also spread to the whole sentence, but the raise is smaller
than in polar questions. This dataset thus neatly fits the most common typological pattern for
non-manual marking of questions in sign languages (Cecchetto, 2012).

7.2 Applicability of computer vision
This study demonstrates that it is possible to apply modern computer vision tools to analyze
non-manual markers in sign languages quantitatively.

OpenFace (Baltrušaitis et al., 2018, 2013; Zadeh et al., 2017) provides a solution to the
problem of using 2D video recordings for analysis by reconstructing a 3D model of the face
from the 2D representation. However, our experiments show that the reconstructed 3D model
is still sensitive to distortions due to some types of movement (specifically, due to forward and
backward head tilts). We developed a solution for this problem by applying machine learning
in order to teach a new model to account for the bias introduced by the head tilts.

Based on this experience, we can also offer a practical recommendation for linguists
planning to use OpenFace or similar tools for the analysis of non-manual markers. In case the
study involves novel data collection, it would be very useful to record each subject rotating their
head in various directions without moving the eyebrows or any other articulators on the face.
These recordings can be later use to train a model similar to the one described in this study to
correct for distortions due to head tilts. In our data set we fortunately had some recordings that
could be used as such a training data set, but it is better to plan for such a data set directly.

8 Conclusions

This paper presents the analysis of non-manual marking of simple polar and wh-questions in
KRSL produced by nine native KRSL signers for a dataset for automatic sign language transla-
tion. To this end, we firstly annotated the data set manually, and then applied computer vision
techniques to automate extraction of non-manual marking from video recordings.

Our findings suggest that polar questions in the KRSL dataset are marked by an eyebrow
raise on the whole sentence, and by consecutive forward head tilts on the subject and the verb.
In addition, wh-questions are marked by backward head tilts on the wh-sign, and by an eyebrow
raise on the wh-sign that can spread over the whole sentence.

Additionally, we demonstrated the utility of computer vision solutions, specifically, Open-
Face (Baltrušaitis et al., 2018, 2013; Zadeh et al., 2017) that can be applied to sign language
data for the purpose of linguistic analysis of non-manual marking. However, we also discovered
that head movement leads to distortion of the facial features even though OpenFace reconstructs
a 3D model of the face to account for such movement. We addressed this problem with a ma-
chine learning solution.
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Abstract
A cascaded Sign Language Translation system first maps sign videos to gloss annotations and
then translates glosses into a spoken languages. This work focuses on the second-stage gloss
translation component, which is challenging due to the scarcity of publicly available parallel
data. We approach gloss translation as a low-resource machine translation task and investi-
gate two popular methods for improving translation quality: hyperparameter search and back-
translation. We discuss the potentials and pitfalls of these methods based on experiments on
the RWTH-PHOENIX-Weather 2014T dataset.

1 Introduction
More than 70 million deaf people around the world use sign language as their primary language
to communicate. In a society dominated by hearing people and spoken languages, there is a risk
that deaf people may experience inconvenience and isolation. In countries like India, Iran, and
Russia, lack of sign language interpreters hampers access to public services and courts (Kozik,
2019). Automatic Sign Language Translation (SLT) has recently gained increasing attention
from researchers and would help remove the communication barriers.

Sign language is not simply a visual form of spoken languages. It has its own linguis-
tic rules, including phonology, morphology, syntax and semantics that are different from other
languages (Valli et al., 2011). For example, in American Sign Language, the subject or ob-
ject might be omitted in certain situations. There is also a process called Topicalization, where
prominent information is signed first, resulting in an adjustment to the basic SVO word order.
Linguists use glossing to annotate signs, which can be viewed as a written form of sign lan-
guage. Glosses can be taken as intermediate representations when translating continuous sign
utterances to spoken language sentences.

Previous work on SLT adopts either an end-to-end system that maps sign language videos
directly to spoken languages, or a cascaded system, as shown in Figure 1, that first relies on
Continuous Sign Language Recognition (CSLR) to produce sign glosses and then passes the
glosses into a Neural Machine Translation (NMT) system (Camgoz et al., 2018, 2020; Yin and
Read, 2020). Importantly, Camgoz et al. (2018) reports that the cascaded system outperforms
the end-to-end system by a large margin (18.13 vs. 9.58 BLEU). In this work, we focus on
improving the NMT component of cascaded systems, which attracts much less attentions com-
pared to the CSLR component of cascaded systems (Cui et al., 2017; Huang et al., 2018; Yang
et al., 2019; Orbay and Akarun, 2020).

Sign language gloss translation is a challenging problem due to the scarcity of annotated
parallel data. The popular continuous SLT dataset, “RWTH-PHOENIX-Weather 2014T” (Cam-
goz et al., 2018) contains 7,096 gloss-text examples in training set. However, the state-of-the-art
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PAST-
[long-ago] YOURSELF LITTLE GIRL PRO-2 WANT GROW-UP FUTURE DO-WHAT

SIGN  
VIDEO

SIGN  
GLOSSES

ENGLISH  
TRANSLATION When   you   were   a   little   girl,   what   did   you   want   to   do   when   you   grow   up?

Continuous Sign Language Recognition

Neural Machine Translation

Figure 1: Cascaded sign language translation system2- First, CSLR converts sign video to a
sequence of sign glosses. Then, NMT converts the sign glosses to text in e.g. English.

NMT systems are known to be extremely data-hungry and usually require millions of training
examples to obtain a good translation performance (Koehn and Knowles, 2017). In this paper,
we approach gloss to text translation as a low-resource machine translation task and investigate
two methods that are widely explored by the machine translation community to alleviate the
need of large corpora, namely hyperparameter search and back-translation.

While NMT models, like Transformer (Vaswani et al., 2017) can perform well with default
hyperparameter settings on most of the publicly available large corpora, its performance is
highly sensitive to hyperparameters under low-resource scenarios (Araabi and Monz, 2020;
Duh et al., 2020). The optimal hyperparameter settings for a large corpus might lead to a
poor system trained on a small dataset (Zhang and Duh, 2020). In this work, we focus on
tuning 4 hyperparameters and find that hyperparameter search is necessary and helpful for gloss
translation.

Back-translation (Sennrich et al., 2016a) incorporates monolingual data in NMT which
can help in low-resource settings (Hoang et al., 2018; Lample et al., 2018; Feldman and Coto-
Solano, 2020). Our experiments show that it has potential on gloss translation when the addi-
tional monolingual data are from the same domain as the parallel data.

Overall, we conclude that the low-resource machine translation perspective is promising
but should not be taken as the ultimate solution for sign language gloss translation. It may be
more promising to first focus on creating larger gloss-text datasets.

2 Related Work

Most of the Sign Language Processing research has focused on Sign Language Recognition
(Yin et al., 2016; Wang et al., 2016; Camgöz et al., 2016; Vaezi Joze and Koller, 2019). Recent
work started to show an interest in CLSR (Koller et al., 2016; Cui et al., 2017; Huang et al.,
2018; Yang et al., 2019; Orbay and Akarun, 2020). However, only a few works move forward
to tackle this problem as a SLT task. Camgoz et al. (2018) formalized SLT in the framework
of NMT and released the first publicly available SLT dataset, PHOENIX14T. Based on this
dataset, Camgoz et al. (2020) and Yin and Read (2020) explored SLT with Transformers and
developed both end-to-end and cascaded systems where gloss annotations are used as interme-
diate representations. Ko et al. (2019) proposed a sign language translation system based on
human keypoint estimation and also introduced the KETI dataset, which consists of Korean

2Sign videos and glosses are from lifeprint.com.
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sign videos and annotations. KETI has only 105 gloss annotations. Also, the sentences in
KETI are relatively short as they are related to emergency situations. Othman and Jemni (2012)
introduced the ASLG-PC12 dataset, which consists of millions of English sentences and cor-
responding American sign language glosses. However, the glosses are generated by applying
transformation rules on English sentences and are not reliable for the study of SLT.

3 Data and Setup
We evaluate the effectiveness of hyperparameter search on a parallel gloss-text dataset. For
back-translation, we experiment with monolingual data from the same domain as the parallel
data and data from a different domain respectively. In this section, we will describe the datasets
and NMT models in detail. We will also introduce our experimental setup.

3.1 Parallel Data
We use “RWTH-PHOENIX-Weather 2014T” introduced by Camgoz et al. (2018) as our parallel
gloss-text dataset. PHOENIX14T collected the weather forecast airings of the German public
tv-station PHOENIX. It is a continuous SLT corpus, which contains sign videos, gloss annota-
tions and German translations. The data split for train/dev/test is 7,096/519/642 sentences. The
vocabulary size of the training set for glosses and German3 are 1,066 and 2,887 respectively.

3.2 Monolingual Data
To the best of our knowledge, there is no publicly available large corpus of weather forecast
subtitles in German. Since domain mismatch between the monolingual data and the parallel
data might hurt the performance of NMT systems (Koehn and Knowles, 2017), we adopt several
domain adaption methods to alleviate this problem. We use Moore-Lewis filtering (Moore and
Lewis, 2010) to select sentences similar to PHOENIX14T from a German TED Talk corpus
(Duh, 2018), which consists of 151,627 sentences.

3.3 NMT Model
Most NMT models in literature follow a encoder-decoder architecture. The conditional proba-
bility of generating the target sentence y given the source sentence x is decomposed as:

p(y | x) =
JY

j=1

p(yj | y<j ,x, ✓), (1)

where ✓ represents model parameters, yj is the j-th target word, and y<j is the prefix of words
before yj . The encoder of an NMT model transforms x into a sequence of hidden states, the
decoder then generates yj iteratively based on the hidden states and the history decoding states
to form the target sentence y. We choose Transformer (Vaswani et al., 2017) as it is the de
facto mainstream NMT architecture and has achieved the state-of-the-art performance on many
machine translation tasks. Transformer is an encoder-decoder based model with each layer
consisting of a multi-head attention mechanism, followed by a feed-forward network.

3.4 Experimental Setup
3.4.1 Data Preprocessing
All datasets are tokenized using the Moses (Koehn et al., 2007) tokenizer. We train the Byte-
Pair-Encoding (BPE) segmentation (Sennrich et al., 2016b) models separately for gloss and text.
For hyperparameter search experiments (Section 4), we learn BPE models from PHOENIX14T.
For back-translation tasks (Section 5), on the German side, we learn BPE models from the

3For the rest of this paper, we will refer to sign language gloss as gloss and the spoken German as German.
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Figure 2: Histograms of BLEU scores showing wide variance in performance with different
hyperparameter settings trained on PHOENIX14T gloss-text (left) and text-gloss (right).

concatenation of selected monolingual data and PHOENIX14T data. On the gloss side, we
learn BPE models from the concatenation of PHOENIX14T data and the back-translated TED
Talk glosses.

3.4.2 NMT Setup
Our NMT models are developed in Sockeye4 (Hieber et al., 2017). The number of attention
heads is set to 8 and the feed-forward layer dimension is set to 1024. We set the dropout
probability for source and target embeddings to 0.1. Our models apply Adam (Kingma and Ba,
2014) as the optimizer. The learning rate is multiplied by 0.9 whenever validation perplexity
does not surpass the previous best in 8 checkpoints, where checkpoints are encountered for
every 1000 updates/batches. And each batch consists of 2048 words. Training stops when the
perplexity on the development set has not improved for 32 checkpoints.

All the back-translation experiments in Section 5 adopt the best hyperparameter settings
obtained by a hyperparameter search (Section 4). Note that the optimal settings for gloss-text
translation is different from text-gloss translation.

4 Hyperparameter Search

Hyperparameter selection is crucial to build a good NMT system. It is especially the case for
low-resource scenarios when the default hyperparameter settings are very likely to be ineffec-
tive. As reported in Sennrich and Zhang (2019) and Zhang and Duh (2020), the NMT systems
developed for low-resource translation tasks disagree a lot with those trained on high-resource
corpora on the optimal hyperparameter choices. Furthermore, datasets in different domains
and language pairs all differ in their hyperparameter preference. They also show that adjusting
hyperparameters can cause BLEU differences of more than 20 in some datasets.

4.1 Important Hyperparameters
In this work, we focus on 4 hyperparameters of Transformer models: the number of BPE merge
operations, the number of layers, embedding dimensions and initial learning rate. These hy-
perparameters are recognized as important hyperparameters by Zhang and Duh (2020), where
the importance is computed as the variation in BLEU when changing a specific hyperparameter
with values of all the other hyperparameters fixed (Klein and Hutter, 2019).

BPE is a word segmentation approach that combines frequent sequence of characters so
that out-of-vocabulary words are handled. It is expected to improve the translation of rare
words and has been a standard preprocessing practice in NMT. According to Ding et al. (2019),
although 32k and 90k are popular choices in most machine translation literature, they found

4github.com/awslabs/sockeye
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gloss-text text-gloss
bpe #layer #embed init lr BLEU bpe #layer #embed init lr BLEU

best 1k 4 512 0.00005 24.385 1k 4 256 0.0005 16.43
worst 2k 1 512 0.0005 21.73 1k 1 512 0.0005 13.04

random 1k 2 256 0.0002 23.49 1k 2 256 0.0002 15.74

Table 1: Performance of selected Transformers. BLEU scores are evaluated on the test set
of PHOENIX14T. Best and worst are best and worst systems obtained from hyperparameter
search respectively. Random randomly picks a hyperparameter setting from our search space.

that the BPE of the best Transformer-based architectures in low-resource setting is somewhere
between 0-2k. We thus try 1k and 2k in our experiments.

Architecture design hyperparameters like the number of layers in encoder and decoder and
embedding size are important. A big and complex model is more susceptible to overfitting.
On the other hand, if the model is too small and simple, it might struggle to capture the mean-
ingful patterns of data and result in underfitting. Our search space includes 1, 2, 4 layers and
embedding size of 256 and 512.

The learning rate is another important hyperparameter that scales the gradient in gradient
descent training. A small initial learning rate may prolong the training process, whereas a large
one may get the model stuck in a sub-optimal solution. It is recommended to start training with
a low number (Koehn, 2020). We adjust it among 0.00005, 0.0002 and 0.0005.

We tune hyperparameters for NMT systems on both gloss-text and text-gloss directions.
This sums up to 72 systems in total.

4.2 Results
The BLEU scores obtained on our search space are illustrated in Figure 2, where a wide variance
is observed. As shown in Table 1, different choices of hyperparameters can increase the BLEU
score by as much as 2.65 on gloss-text and 3.39 on text-gloss. Training is not expensive due to
the small data size, so running a wide search over hyperparameters is recommended.

5 Back-translation

Back-translation proposed in Sennrich et al. (2016a) has shown its effectiveness in utilizing
monolingual data to improve the translation performance. It is particularly used in low-resource
scenarios. When it comes to sign language translation, the written text is always abundant,
whereas the glosses and parallel examples are expensive to get and are not sufficient to train a
robust NMT model. This sets a good stage for back-translation.

The workflow of back-translation is illustrated in Figure 3. In order to train a more robust
gloss-text translation model, one first trains a text-gloss model using the PHOENIX14T parallel
data (Figure 3, step 1). This model is then employed to translate monolingual German text in
the domain of TED Talk to glosses (Figure 3, step 2). This synthetic parallel corpus is then
concatenated with the PHOENIX14T data to train the final gloss-text system (Figure 3, step 3).

One problem with our implementation of back-translation is that TED Talk subtitles have
different styles compared to PHOENIX14T, which is composed of weather reports, in other
words, they are in different domains. Domain mismatch makes the translation task even more
challenging, as the synthetic parallel data might introduce noises to hurt the performance. In
order to alleviate this issue, we adopt two domain adaptation methods to aid back-translation.

5The best BLEU-4 score reported in Camgoz et al. (2020) and Yin and Read (2020) are 24.54 and 24.9, which are
comparable to our results.
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Figure 3: Back-translation workflow. Pink rectangles frame outputs of each step.

5.1 Domain Adaptation Methods
Domain adaptation leverages out-of-domain data to improve the domain-specific translation.
In this work, TED Talks are out-of-domain data and PHOENIX14T is the domain in interest
or in-domain data. We adopt a language model based data selection method to first select
examples from TED Talk corpus that are similar to PHOENIX14T. Next, those monolingual
examples are back-translated and form a synthetic parallel corpus. A model is then trained on
the concatenation of the synthetic data and the parallel PHOENIX14T data. This is not the
end. Finally, we continue training the model with only the PHOENIX14T data. This continued-
training process is also called fine-tuning, which is the conventional way for domain adaptation
(Luong et al., 2015; Sennrich et al., 2016a; Chu and Wang, 2018; Zhang et al., 2019).

5.1.1 Data Selection
We adopt the data selection method proposed in Moore and Lewis (2010). The main idea is to
score the out-of-domain data N using language models trained from the in-domain data I and
N and select top n training examples from N by a cut-off threshold on the resulting scores. To
be specific, each sentence s in N is assigned a cross-entropy difference score,

HI(s)�HN (s), (2)

where HI(s) is the per-word cross-entropy of s according to a language model trained on 1000
random samples of PHOENIX14T, and HN (s) is the per-word cross-entropy of s according to
a language model trained on 1000 random samples of TED Talks. A lower score indicates s is
more like a sentence in weather forecast then in TED Talks.

5.1.2 Fine-tuning
In conventional fine-tuning, a NMT model is trained on a high-resource out-of-domain corpus
until convergence, and then its parameters are fine-tuned on a low-resource in-domain corpus.
We approach it in a slightly different way. Instead of training on out-of-domain corpus at the
first step, we train on a shuffled combination of both in-domain and out-of-domain data, where
the small-sized in-domain data may be copied several times, and the size of the out-of-domain
data subset varies across experiments. This data size variation is intended to help us explore
how different weighting and combination of data impacts final results.

5.2 Experimental Comparison
In order to evaluate the effectiveness of back-translation on low-resource gloss-text translation,
we conduct experiments enhanced with data selection and fine-tuning techniques. We investi-
gate the effect of data ratio by varying both the size of monolingual TED Talk data and the size
of PHOENIX14T. For TED Talks, we adjust the cut-off threshold of the data selection score and
result in 10k, 50k and 100k most relevant examples. For PHOENIX14T, as it is a tiny dataset,
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Figure 4: Performance of NMT systems on gloss-text translation. BLEU scores are evaluated on
the test set of PHOENIX14T. Systems vary in whether fine-tuned on PHOENIX14T (bt vs. ft),
the size of synthetic TED Talk data (10k, 50k, 100k) and the number of copies of PHOENIX14T
added into the training data (0, 1, 2, 5, 10).

we simply balance the data ratio by making 0, 1, 2, 5 or 10 copies of it to combine with the
synthetic TED Talk data. This new corpus is used to train a gloss-text system, which we call bt
systems. Those systems are then fine-tuned on PHOENIX14T and result in ft systems.

5.3 Results on Out-Of-Domain Data Incorporation
We report the performance of different NMT systems in Figure 4.

Effect of fine-tuning Comparing ft to bt models, ft outperforms bf 10 out of 12 times. The
improvement ranges from 0.03 BLEU to 1.74 BLEU, with an average of 0.7 BLEU. The largest
improvement is achieved by ft 100k 16. This shows that although the large amount of noisy
out-of-domain data hurts the performance of the bt system, fine-tuning on only a small amount
of in-domain data still improves the performance to a great extent.

Effect of data selection In order to evaluate the influence of data selection, we train two extra
gloss-text systems and fine-tune them on PHOENIX14T. The difference is that system 1 uses
randomly sampled TED data, while system 2 uses TED data selected by the Moore-Lewis
method. It turns out that system 2 outperforms system 1 by 7.28 BLEU. Therefore, data
selection is crucial when incorporating out-of-domain data in NMT.

Effect of the amount of out-of-domain data With the size of PHOENIX14T data fixed,
ft 10k models are overall better than ft 100k models, which are better than ft 50k models.
This is not the case for bt models, where bt 100k models tend to be worse than bt 10k and
bt 50k models. This reveals one weakness of back-translation – it is prone to the quality of the

6This is short for a fine-tuned system that was trained on a concatenation of 100k TED data and 1 copy of
PHOENIX14T data.
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NMT System BLEU
gloss-text part1 19.13
text-gloss part1 9.96
gloss-text part1+synthetic part2 21.57

Table 2: Performance of NMT systems with in-domain monolingual data incorporation.

synthetic parallel data..

Effect of the amount of in-domain data Increasing the ratio of in-domain data in training
data is not always beneficial – too much in-domain data might even hurts the performance. In
practice, the data ratio can be taken as a tunable parameter and choose it wisely.

Effect of back-translation The best system enhanced with back-translation and domain adapta-
tion techniques achieves 24.31 BLEU, which is slightly worse than the best BLEU score (24.38)
achieved by hyperparameter search (Table 1). We wonder whether it would make a difference if
the domain issue is eliminated. In next section, we simulate a condition when extra in-domain
monolingual examples are available.

5.4 Results on In-Domain Data Incorporation

In order to evaluate back-translation on a less simpler situation, where domain mismatch is
not a concern, we divide the PHOENIX14T training set into 2 parts. Each part contains 3,548
samples. We treat part 1 as a parallel corpus, while for part 2, we discard all the glosses and
only keep the German text to simulate additional in-domain monolingual data.

We first train a gloss-text system on part 1 as a baseline (gloss-text part1). Next, we
train a text-gloss system on part 1 (text-gloss part1). We then use this system to translate the
German text from part 2 into synthetic glosses. The final gloss-text system is trained on the
concatenation of part 1 and the synthetic parallel data of part 2 (text-gloss part1+synthetic
part2). The performance of the 3 systems on PHOENIX14T test set is shown in Table 2. The
resulting gloss-text system improves over the baseline system by a margin of 2.44 BLEU. We
can expect that given high-quality in-domain monolingual data, back-translation still has a great
potential in improving the translation quality.

6 Conclusions

In this paper, we identify one challenging task in Sign Language Translation, that is the trans-
lation between sign language glosses and written languages. We argue that the obstacle lies in
the sparsity of parallel data. To conquer this problem, we propose to approach sign language
gloss translation as a low-resource machine translation task. We investigate the effectiveness of
hyperparameter search and back-translation, which are both widely used by machine translation
community for low-resource translations. We conclude that hyperparameter search is necessary,
whereas back-translation is susceptible to the quality of additional monolingual data. If there is
abundant in-domain monolingual data, back-translation is very promising. Otherwise, it should
be used with domain adaptation techniques, like data selection and fine-tuning to achieve a
reasonable performance.

Given limited parallel data, the upper bound of these low-resource methods is constrained.
We thus urge the sign language processing community to put in extra efforts in creating more
annotated parallel data.

Proceedings of the 18th Biennial Machine Translation Summit, Virtual USA, August 16 - 20, 2021 
1st International Workshop on Automatic Translation for Signed and Spoken Languages

Page 67



References

Araabi, A. and Monz, C. (2020). Optimizing transformer for low-resource neural machine
translation. arXiv preprint arXiv:2011.02266.

Camgoz, N. C., Hadfield, S., Koller, O., Ney, H., and Bowden, R. (2018). Neural sign language
translation. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
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Abstract
In this paper we present a prototypical implementation of a pipeline that allows the automatic
generation of a German Sign Language avatar from 2D video material. The presentation is
accompanied by the source code. We record human pose movements during signing with
computer vision models. The joint coordinates of hands and arms are imported as landmarks
to control the skeleton of our avatar. From the anatomically independent landmarks, we create
another skeleton based on the avatar’s skeletal bone architecture to calculate the bone rotation
data. This data is then used to control our human 3D avatar. The avatar is displayed on AR
glasses and can be placed virtually in the room, in a way that it can be perceived simultaneously
to the verbal speaker. In further work it is aimed to be enhanced with speech recognition and
machine translation methods for serving as a sign language interpreter. The prototype has been
shown to people of the deaf and hard-of-hearing community for assessing its comprehensibility.
Problems emerged with the transferred hand rotations, hand gestures were hard to recognize on
the avatar due to deformations like twisted finger meshes.

1 Introduction

About one million people in Europe are deaf and mainly communicate using sign language
(SL), which consists of gestures of hands, arms and facial expressions. Outside their daily
routines, deaf or hard-of-hearing (DHH) people face barriers for independently participating
in society. The communication between signers and hearing speakers is often supported by
trained SL interpreters. Beyond their respective communities, the availability of these services
is often lacking or costly. New technological solutions may provide democratic alternatives to
expensive and scarce translation resources and enable an independent communication between
hearing and DHH people.

Our approach is based on the assumption that a simultaneous translation from spoken lan-
guage to SL can enable more direct communication between deaf and hearing people. Through
interviews with members of the DHH community, it was apparent that translations are under-
stood even better when the interpreter’s signs can be perceived with the speaker’s mouth and
gestures at the same time. If the person has a good picture of the mouth movement, around 30%
of the speech can be read from the lips (Deutscher Gehörlosen-Bund e.V., 2021).

Several phases of the development were conducted with the support of members from the
DHH community through a co-operation with the Center for Culture and Visual Communication
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of the Deaf in Berlin and Brandenburg (ZFK)a as described in our previous publication (Nguyen
et al., 2021). In the discovery phase, qualitative interviews were conducted to provide user
insights and lead the basic design decisions, including the choice of developing an avatar on AR
glasses, as mentioned. In the early implementation phase, a professional deaf SL interpreter was
video-recorded to provide material for the SL animation. In the evaluation phase, the efficacy
of our proposed solution was evaluated via a wizard-of-Oz experiment, where a prototypical
avatar was displayed in a way that it appeared as a fully developed automatic interpreter.

In this paper we focus on the technical implementation of this avatar. The 2D videos of the
SL interpreter were analyzed with computer vision methods to extract human joint coordinates
(landmarks). After mapping these landmarks on a pre-built avatar model, the virtual interpreter
was displayed on a the AR glasses in the deaf person’s field of view.

In the next chapter we give an overview of the related work. Chapter 3 provides the details
about the implementation. In chapter 4 the evaluation process is described, whereas in chapter 5
we give a conclusion and indications for further research.

2 Related Work

In the last 30 years, diverse approaches to the automatic generation of SL have emerged. Tokuda
and Okumura (1998) presented a prototype system for a word-to-word translation of Japanese to
Japanese Sign Language (JSL) by finger spelling. By the beginning of the century, Elliott et al.
(2000) specified the first framework for producing avatar based SL from text. They proposed
the Signing Gesture Markup Language (SIGML; Elliott et al., 2004), an XML-formatted SL
sequence description to drive the animation of an avatar in a web browser. It is built on the
Hamburg Notation System (HamNoSys Hanke, 2004) that allows phonetic representations of
signs.

SiGML is still applied in recent sign generation concepts (Kaur and Singh, 2015; Verma
and Kaur, 2015; Rayner et al., 2016; Sugandhi et al., 2020). It is used as input language for
the SL animation system Java Avatar Signing (JASigning) (Elliott et al., 2010), the successor
of SiGMLSigning (Elliott et al., 2004). This was applied by Rayner et al. (2016) for their open
online SL translation application development platform and Sugandhi et al. (2020), who devel-
oped a system that produces Indian Sign Language (ISL) from English text while considering
ISL grammar. For the correct grammar they created a HamNoSys database before converting
the representations to SiGML.

Another architecture was introduced by Heloir and Kipp (2010). They presented the Em-
bodied Agents Behavior Realizer (EMBR) engine for robust real-time avatar animation. It is
controlled by the EMBRScript which defines key poses for animation sequences. The EMBR
system was later extended by Kipp et al. (2011) to build a sign animation tool based on a gloss
database.

More similar to our approach, there is recent work that builds upon open source machine
learning solutions which track human body keypoints from 2D video material. McConnell
et al. (2020) animated a two-dimensional virtual human that is able to sign the British Sign
Language (BSL) alphabet, based on body landmarks estimated by the OpenPose library (Cao
et al., 2019). Although we also focus on a method requiring no special hardware or costly
computing resources, we produce translations on a sentence level and we animate an avatar on
all three dimensions.

Our work uses the three-dimensional landmark prediction of the lightweight and fast Me-
diaPipe framework (Lugaresi et al., 2019). This was also considered for the automatic recog-
nition of SL (Harditya, 2020; Chaikaew et al., 2021; Halder and Tayade, 2021; Bagby et al.,
2021; Bansal et al., 2021) in previous work, but not for producing SL. MediaPipe is compatible

aZentrum für Kultur und visuelle Kommunikation Gehörloser in Berlin & Brandenburg e.V., Potsdam, Germany
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to more hardware systems and has less requirements than OpenPose. With the 2D skeleton gen-
erated by OpenPose and generative adversarial networks, Stoll et al. (2020) and Ventura et al.
(2020) elaborated novel approaches to generate signing videos with photo realistic humans.

Regarding the animation of 3D avatars based on 2D recordings, Brock et al. (2020) devel-
oped a pipeline that creates skeletal data from sign videos with the help of multiple recurrent
neural networks, proposing a new pose estimation framework specially designed for SL. The
authors also compare the features of different available architectures, including OpenPose and
MediaPipe. They provide a solution that covers all compared capabilities. To drive their avatar,
angular and positional joint displacements are calculated with inverse kinematics, the results
are then saved in a BVH file. User experiments showed that the synthesized avatar signing is
comprehensible.

For this paper we implemented as a first step a more simplistic method, using an existing
machine learning architecture and driving a virtual avatar by raw bone rotation data calculated
in a 3D graphic suite. We are aiming to reach likewise comprehensibility results with a more
refined animation approach in the future.

3 Implementation

The goal of the implementation was to create a SL avatar that is displayed in a HoloLens 1b and
can be used for a proof of concept where we access the acceptability and comprehensibility of
a simulated real-time translation on AR glasses among people from the DHH community.

Converting 2D SL video to a 3D avatar has multiple benefits (Kipp et al., 2011). In a sim-
ple use case, one can reside to this kind of conversion to create avatars out of pre-recorded SL
speeches, while preserving the anonymity of the speakers. In a more advanced use case, such
as the one of the automatic SL interpretation that we aim at, a big amount of sequences of SL
gestures recorded from human speakers are required as graphical linguistic units. These will be
used by a unified pipeline that generates full SL sentences, including methods of speech recog-
nition and machine translation, to be implemented in further work. Collecting bigger amounts
of human SL speaker recordings is aided if 2D cameras are used, as this is straightforward, does
not require advanced equipment and allows using videos of different signers.

Our process of creating a SL avatar for AR glasses consists of four steps. First, we col-
lected video footage of the predefined phrases by a professional interpreter (section 3.1). Then,
based on the collected video footage, motion capture was used to convert the gestures and
facial expressions into tracking points, using a motion tracking model that analyzes images
and extracts body landmark positions (section 3.2). Based on the motion tracking points, the
animations were transferred to the skeleton of the avatar after calculating rotation vectors (sec-
tion 3.3). Finally, an application was developed to display the animated avatar on the AR glasses
(section 3.4). The application, scripts and other material are published as open source.cd

3.1 Collection of video material
We filmed a professional deaf interpreter translating written German sentences to German Sign
Language (Deutsche Gebärdensprache; DGS). Since this footage is needed to track all human
joint landmarks in every single video frame, it was necessary to capture high-resolution video
with as few motion blur as possible. Using a single-lens reflex camera, this was achieved by
setting a very short exposure time of 1/1600, a relatively low f-number of 2.8 and a very high
ISO value of 3200 for strong light sensitivity. Moreover, a 1920x1080 full HD resolution and a
frame rate of 25 FPS were chosen. The recording took place at a professional film studio of the

bhttps://docs.microsoft.com/de-de/hololens/hololens1-hardware
chttps://github.com/lanthaon/sl-animation-blender
dhttps://github.com/lanthaon/sl-roleplay-unity
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ZFK, where translations for the public TV are recorded as well. The recording lasted 4 hours
and was supported by a professional film team. Three cameras filmed the interpretation from 3
different angles, but in this paper we only use the frontal camera. We will consider using the
full footage including the side cameras in order to improve detection precision in future work.

3.2 Generating Motion Capture Data
The footage was processed with a pipeline integrating three machine learning models for com-
puter vision that analyze the images and generate body landmarks with 3D coordinates for the
upper body, hands and face. These are depicted in image A of figure 1. Face detection com-
bines a compact feature extractor convolutional neural network with the anchor scheme of the
Single Shot Multibox Detector (Liu et al., 2016; Bazarevsky et al., 2019). The upper body was
analyzed via a body pose tracking model that uses an encoder-decoder heatmap-based network
and a subsequent regression encoder network (Bazarevsky et al., 2020). The hands were an-
alyzed with a palm detector, combined with a hand landmark detection model via multi-view
bootstrapping (Simon et al., 2017; Zhang et al., 2020).

We used the tools including the pre-trained models of MediaPipe Holistic (Grishchenko
and Bazarevsky, 2020) and wrote a Python script for the open source 3D graphic suite Blender
version 2.91.2e to create exportable motion capture data based on the landmarks. For the script-
ing, we worked with the Blender Python module, MediaPipe version 0.8.3.1 and OpenCV ver-
sion 4.5.1.48 under Python 3.7.

Figure 1: Holistic tracking applied to a video frame. A) is the annotated original footage where
the red dots are the tracked landmarks, while the green lines connect the joints. B) is the same
frame in Blender with landmarks plotted as orange spheres and cyan coloured bones. C) shows
the motion capture data applied to an avatar.

In order to extract the landmarks frame by frame, we created the method
get_video_frames that splits the video into an array of frames. It passes a video file
URL as string to the VideoCapture class of OpenCV, which then decodes the video frames.

The resulting frame list can then be used in method get_landmarks. Within the func-
tion, a for-loop is called which iterates the frame array, calculates the landmarks with Medi-
aPipe Holistic and saves them for each frame and type into the corresponding arrays for pose,
left hand, right hand and face. In the optimal case, after the last iteration the arrays should
contain n lists of tracked landmarks, where n is the number of frames. If for example the left

ehttps://www.blender.org/download/releases/2-91/
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Mesh type Polygon count

Hair 13.035
Shoes 4808
Dress 149.122
Shape 16.720
Total 183.685 < 200.000

Table 1: Polygon count of the avatar mesh divided into categories

hand could not be tracked in the first frame, a NoneType object is added to the array instead
of a landmark list.

After gathering the landmarks into arrays, they can be passed to
load_landmarks_into_scene. While iterating the specified landmark array, sphere
objects are created once for each existing landmark and are named uniquely after their corre-
sponding MediaPipe landmark model designation. To update the spheres’ locations analogous
to the video frame, keyframes are set in each iteration. The XYZ coordinates are multiplied
with a factor of either 30 or 40 to stretch the distances between the points, enabling to better
analyze the results visually. Image B in figure 1 shows the landmark cloud, highlighted in
orange, for an exemplary keyframe.

The last step is to built an armature with bones based on the animated landmark cloud
which is done in method create_bones. For this, lists of string tuples with names of start
and target landmarks were defined to specify between which two landmarks a bone should be
created. The first tuple item is the name of the start landmark. There, the bone’s root will
be located. The second item is the target landmark that determines the direction to where the
bone’s end joint should point at. These rules were implemented as bone constraints to which
the bones adapt automatically in each keyframe.

Finally, the resulting skeleton was exported as a Biovision Hierarchy (BVH) file, which is
a common file type for motion capture data. After that, the next step was to apply the animation
data in the BVH file to a 3D character, like depicted in C of figure 1. This will be described
further in the following subsection.

3.3 Creating and animating the avatar
For the creation of the 3D avatar, the 3D modelling software Daz Studiof has been used. The
Daz community provides free 3D content as well as 3D content for a fee. Only free 3D content
has been chosen for the character shape and assets like hair, cloth and shoes. To work with the
character in Blender, it has been exported with the Daz to Blender Bridgeg.

When developing apps for the HoloLens, it should be considered that the device is a self-
contained computer with the processing power of a mobile phone. It is recommended to limit
the overall polygon count to under 200,000 faces. We could keep the polygon count under
this level by choosing less elaborately designed assets. The number of faces for each asset are
summarized in Table 1.

3D characters created in Daz are fully rigged and prepared for animation purposes. The
character’s bone structure has been analyzed to figure out the important upper body bones
to which our BVH skeleton had to be adjusted. To apply the produced BVH data, both the
character and the BVH armature were imported into a Blender scene. In a Python script
we defined the matching bone pairs between their skeletons and set bone constraints on the

fhttps://www.daz3d.com/get studio
ghttps://www.daz3d.com/daz-to-blender-bridge
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Figure 2: Original video frame compared to BVH skeleton based on MediaPipe tracking.
The arms have a narrower angle than the original, while hands and face were tracked properly.
Starting from a perfect vertical alignment, a more natural orientation was achieved by rotating
the skeleton -30° along the corresponding axis.

avatar to copy the rotation of the assigned BVH bones. In listing 1 is an example variable
pose_bones_mapping that defines the mapping for the arm rotations calculated based on
the pose landmarks. The left entries are the bone names from the motion capture skeleton,
the right entries bone names from the Daz avatar. We named the BVH bones after their target
landmark.

Listing 1: Variable defining matching arm bones between the Daz avatar skeleton and the BVH
armature

p o s e b o n e s m a p p i n g = [
( ”LEFT ELBOW” , ” l S h l d r B e n d ” ) ,
( ” LEFT WRIST ” , ” lForearmBend ” ) ,
( ”RIGHT ELBOW” , ” r S h l d r B e n d ” ) ,
( ” RIGHT WRIST ” , ” rForearmBend ” )

]

Analyzing the resulting motion capture data in Blender revealed that hand, arm and face
landmarks were not tracked coherently by MediaPipe, they rather seemed disconnected from
each other. In figure 2 the face, arm and hand positions produced by the machine learning solu-
tion can be compared to the original recorded person. While hands and face seem to have proper
results, the arms appear to be angled narrower which indicates an inaccurate depth estimation.
Since our method copies only bone rotations and not bone positions, no full alignment is nec-
essary, but the skeleton had to be adjusted due to the unnatural orientation of the arms before
applying the rotations to the avatar. This was solved by writing a short function that adapts the
global rotation for the BVH skeleton as visualized on the right image of figure 2.

The mapping of the bone rotations was done in method map_bones which iterates
through all bone pairs of a tuple list like in listing 1. There the rotations from the BVH ar-
mature in the scene are to copied to the avatar’s bones. In general, all XYZ axes are considered
for copying the rotation, except for the head and neck bones, where the y axis is excluded. Be-
cause there was still the problem of the too narrow arm angle, the influence of the rotation copy
constraint for the forearm bone has been reduced. In some animations the avatar’s forearms or
the hands would otherwise penetrate other body parts like the face.

For the proof of concept, only rotations for arms, hand and experimentally XZ rotations for
head and neck bones were transferred to the avatar. The implementation of facial expressions
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constitutes additional challenges that have to be taken on in future work, since they represent
an essential element of the SL. Head and neck bones were created between specific face bones,
but in principle, no tracking landmarks exist for the posture.

To continue with the development of the HoloLens application, the animated avatar was
exported as a Filmbox (FBX) file that can be imported by the required Unity game engineh.

3.4 HoloLens Application Development

We used Unity version 2019.4.20f1 (LTS) for the development together with Microsoft’s Mixed
Reality Toolkit (MRTK) for Unity version 2.5.3i. The toolkit provides a bounding box into
which we embedded our avatar, enabling to position, rotate and scale the virtual character in
space. With this feature we could place the avatar independently of the environment in a way
that the study participant could see both the speaking person and the virtual interpreter avatar.
To avoid that the 3D character is accidentally moved somewhere else during the user study, we
implemented a virtual start button that disables the bounding box control before reaching the
AR glasses to our participants.

An additional physical clicker that connects to the HoloLens 1 via Bluetooth allowed us to
trigger actions during the study without wearing the AR glasses ourselves. The main camera’s
pointer handler of the Unity scene listens to the global event On Pointer Clicked. When this
event occurs, a method is called that plays the next animation defined in a list containing the 3D
avatar’s motion clip names.

After our first application prototype we experienced that the AR glasses’ computational
limits were exceeded when more than ten avatars had to be handled, whereby each of them
signed a different sentence. App size and computational complexity increased due to the many
objects to a level that the HoloLens could not handle. It crashed each time after starting the
app. Thus, our solution was to merge all animation clips needed for the role play in the user
study into one avatar. The Unity app was finally deployed on the HoloLens with the Community
Edition of Visual Studio 2019j. Figure 3 illustrates how the avatar was positioned in the study
room.

Figure 3: Final user test setup. A participant (left) is wearing a HoloLens 1 displaying a virtual
avatar in front of the table by the impersonated doctor (right), while a sign interpreter (middle)
is prepared to translate the participant’s feedback.

hhttps://unity.com/de
ihttps://docs.microsoft.com/de-de/windows/mixed-reality/mrtk-unity/
jhttps://visualstudio.microsoft.com/de/vs/
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4 Evaluation

Our evaluation comprised a user study and discovery phase prior to the implementation (Nguyen
et al., 2021). In the discovery phase we reached out to the Center for Culture and Visual Com-
munication of the Deaf in Berlin and Brandenburg (ZFK), which is a major contact point for
deaf people in the area. Four qualitative interviews were conducted and recorded to gather
insights about the DHH communities’ needs.

We could identify doctor appointments as a difficult situation for deaf people without an
interpreter. Additionally, the interviewees rated different mock-ups, showing three translation
options on three different technical devices. AR glasses combined with a virtual avatar were
considered as one of the two most useful options. The option of having a live interpreter dis-
played in AR glasses was rated as equally helpful, yet would only slightly improve the status
quo, as it would make such service locally dependent and the limited availability of interpreters
still remains a problem.

To test the prototype system, we conducted a user study similar to a wizard-of-Oz-
experiment (Nguyen et al., 2021). The use case of a medical examination was chosen during
which the doctor asks the patient several questions. In that context, an examination dialog with
predefined sentences was written and translated to SL. In the context of the dialog, the doctor is
expecting certain reactions from the DHH patient, which decrease the risk of wrong understand-
ing e.g. “Show me, where you do have pain?”. One of the experiment supervisors performed
the role of the doctor and read aloud the prepared sentences, while another supervisor used an
external clicker to trigger the corresponding animations on the AR glasses that were worn by
the participants. Speech recognition will have to be integrated in future implementations for an
independent live translation system.

We are conscious that medical usage requires high precision which is hard to be achieved
by the state of the art. Nevertheless, we proceeded with this case for the experiment, since it
was suggested during the discovery phase interviews as one of high importance for the users’
community and could therefore motivate better the evaluation of the full concept.

The whole scene was filmed and a survey of standardized questions was asked at the end
of a user test. Additional information about the qualitative results may be found in the prior
published report (Nguyen et al., 2021).

Among the three female and five male participants from which six were deaf, there were
also one hearing and one hard-of-hearing person. Results showed a high acceptance rate of the
presented solution, even though the comprehensibility of the avatar’s signing was rather low.
Participants had difficulties to identify the movements of the fingers, as the actual positions of
the individual finger joints were harder to distinguish through the often warped or deformed
hand mesh. Sometimes the movements of the avatar’s hands were furthermore jittery or in-
correct due to technical reasons concerning the fidelity of the implementation. Besides, the
study participants felt affected by the missing lip movements and facial expressions, which are
relevant for performing grammatical functions. For example, raising the eyebrows indicates a
question in DGS. With the chosen level of quality the purpose of conducting a proof of concept
was achieved, but can be improved in the future.

To summarize, sentences that were signed mainly with finger movements showed a poorer
comprehensibility rate than sentences with prominent arm movements that relied less on specific
hand gestures. Although the arms seem to have been tracked less accurately than the hands, after
being transferred to the avatar their movements were easier to recognize than finger movements,
as the overall size and length of the movements mitigate the lower landmark precision. The
mesh of the avatar’s fingers was often deformed or twisted after copying the rotation of a bone
created between two MediaPipe landmarks. We assume that the approach needs to be optimized
mathematically, since the bone rotations calculated automatically with Blender are not a fully
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accurate solution to generate SL from 2D videos. In addition, there were some inaccuracies in
the depth data estimated by MediaPipe, which led to altered distances between different parts
of the body, like hands and face. Also, the spine is not tracked, thus the posture of the avatar
cannot be influenced yet if for example the head is shifted forward in the video.

5 Conclusion

We developed a method to generate SL from 2D video recordings with the help of machine
learning methods of computer vision and a 3D creation suite. A skeleton was built from the
detected body landmarks by creating bones between pairs of specified landmarks. This was
then exported as BVH data and applied to a rigged avatar. The avatar’s bone constraints were
set to copy the rotations of the matching bones from the BVH skeleton.

Some problems became apparent after mapping the bone rotations to the avatar. Besides
modified distances between hands or arms to the body, the most severe issue was the twist-
ing of the finger meshes which altered their appearance significantly. The user study with our
prototype system showed that the avatar’s hand gestures were hard to recognize for most par-
ticipants. This led to poorer comprehensibility for sentences where the attention had to be paid
predominantly to the finger movements, while sentences with discernible arm movements were
recognized by the majority.

As it has been noted, the animation approach needs to be optimized to achieve more com-
prehensible results. Facial expressions and if possible lip movements should be enabled in
future implementations. Still, a high acceptance level could be observed for the concept of
displaying a SL avatar in AR glasses. We believe that a well developed automated speech to
SL system could enable more freedom and flexibility for deaf people in situations where an
interpretation can enhance communication significantly, but would be normally not affordable
due to the scarce availability of interpreters.

Even if our prototype system for the experiment is static through the predefined, manually
triggered questions, it opens the door for several use cases where content and vocabulary are
restricted, e.g. a museum tour. Moreover, it was important for us to create an animation solution
that requires no special hardware and enables other researchers as well as non-professionals an
open-source tool for producing three-dimensional virtually performed SL with an avatar. Our
vision is to create the basis for an animation data-set which can grow with the addition of
more scenarios and can be used for the further development of a system allowing the real-time
translation of arbitrary conversations, in conjunction with methods from speech recognition and
machine translation.
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Abstract
We present a number of methodological recommendations concerning the online evaluation of
avatars for text-to-sign translation, focusing on the structure, format and length of the question-
naire, as well as methods for eliciting and faithfully transcribing responses.

1 Introduction

There is no generally accepted methodology for evaluating the comprehensibility of avatars for
text-to-sign translation, let alone for doing so online. Evaluation procedures designed in pre-
vious work generally involve on-site interaction between experimenters and participants (Gibet
et al. 2011; Smith and Nolan 2016; Ebling and Glauert 2016; David and Bouillon 2018; Huen-
erfauth 2006; Kacorri et al. 2015, though see Quandt et al. 2021 and Schnepp et al. 2011 for ex-
ceptions). The COVID-19 pandemic has made it necessary to turn to online procedures, which
come with additional methodological challenges. On the bright side, such online procedures, if
effective, may also have benefits in a post-COVID-19 world.

We report work in progress on the evaluation of a recently developed prototype system for
translating sentences that frequently occur in a healthcare setting, particularly ones that are used
in the diagnosis and treatment of COVID-19, from Dutch into Dutch Sign Language (NGT). The
system itself is described in some detail in Roelofsen et al. (2021). Here, we share some of the
lessons we have learned in designing a methodology for evaluating this system online. Some of
these lessons specifically concern the online nature of the evaluation procedure, but others are
more general and would apply to on-site evaluation as well.

In the process of designing our methodology, we held a feedback session with seven deaf
researchers at various career stages, all users of NGT and familiar with (socio-)linguistic exper-
imental methodologies, in which we discussed a preliminary setup of the evaluation procedure.
After incorporating feedback from this session we carried out a pilot study with five partic-
ipants (all consider NGT (one of) their mother tongue(s)). While the feedback session had
already led to important improvements of the design, the pilot study brought out a number of
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further methodological issues, serious enough to render the results essentially uninterpretable.
To address these issues, we have further adapted the design of the evaluation procedure, which
is described in more detail in Section 4. The adapted procedure is already in use. Although it is
too early to present quantified results, it is clear that the methodological adjustments we made
are effective, as the issues experienced in the pilot study are no longer present. By sharing the
lessons we have learned from the feedback session and the pilot study, we hope that other re-
searchers evaluating avatars for text-to-sign translation in the future, be it online or on-site, will
be able to avoid making the same mistakes we did initially and arrive at a suitable evaluation
procedure more directly.

The extended abstract is organised as follows: Section 2 outlines the goals of our evalu-
ation procedure, Section 3 discusses the design of the questionnaire, Section 4 turns to issues
concerning elicitation and transcription of participants’ responses, and Section 5 concludes.

2 Evaluation goals

As mentioned above, the system we are evaluating translates sentences that frequently occur in a
healthcare setting, especially in the diagnosis and treatment of COVID-19, from Dutch to NGT.
For instance, a healthcare professional may enter the sentence ‘Gebruikt u medicijnen?’ (‘Do
you use any medications?’) and the system will produce a translation in NGT. Some translations
have been pre-recorded on video, others are displayed by means of an avatar, making use of the
JASigning avatar software (Kennaway et al., 2007; Ebling and Glauert, 2016). We are mainly
interested at this point in evaluating the comprehensibility of these avatar translations.

More specifically, our primary goal currently is to answer the following three questions:

1. Individual sign recognition: To what extent do deaf NGT users recognise the individual
signs that the avatar translations consist of?

2. Sentence comprehension: To what extent do deaf NGT users understand the avatar trans-
lations as intended at sentence level?

3. Clarity: How clear are the avatar translations that the system produces?

Measuring individual sign recognition alongside sentence comprehension provides us with ad-
ditional insights as to why a sentence is (mis)understood, and highlights specific areas for im-
provement. For example, some participants may recognise individual signs yet misidentify the
meaning of a sentence (or vice versa).

A secondary goal (equally important in general, but less central in the present study) is to
find out how members of the deaf community in the Netherlands view avatar technology for
sign language translation, and the potential application of such technology in various domains
(cf., David and Bouillon 2018; Bouillon et al. 2021; Quandt et al. 2021, among others).

3 Design of the questionnaire

We will comment on three design features of the questionnaire: its structure, format, and length.

Structure In evaluating the comprehensibility of avatar translations, it is crucial to have a
standard of comparison. Suppose, for instance, that we find that users correctly recognise 75%
of the individual signs that the avatar produces. This information in itself does not tell us much.
Is this a positive result, or a negative one? We cannot tell as long as we do not have a baseline.
This concern is particularly relevant here for two reasons. First, some of the translations in-
volve medical terms (e.g., ‘intravenous drip’) which may not be familiar to all participants and
therefore poorly recognised even if they are signed correctly by the avatar. Second, there is con-
siderable regional and intergenerational variation in NGT, which means that certain signs may
be familiar to NGT users from one region/generation, but not to users from another. To address
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this issue, we compare the comprehensibility of avatar translations to that of video recordings
of the same sentences signed by a deaf signer. The core of the questionnaire, then, consists of
two parts: one that assesses the comprehensibility of avatar translations, and one that does the
same for baseline videos signed by a deaf signer. The avatar part precedes the baseline part, to
avoid a learning effect when assessing the avatar.

After these two core comprehension parts, the questionnaire inquires about the partici-
pant’s general perception of avatar technology for sign language translation, and their views on
the potential application of such technology in various domains.

In addition, the questionnaire includes an introductory part (informed consent, information
about the structure of the questionnaire, and some questions about the language background of
the participants) and a closing part which checks whether the questions in the questionnaire
were clearly posed and could be responded to in a satisfactory way.

Format All questions and instructions in the questionnaire are presented both in NGT (by
means of pre-recorded videos) and in written Dutch. The person giving instructions and ask-
ing questions in the videos is a deaf NGT user, distinct from the signer in the baseline video
translations discussed above. Participants are given a choice as to whether they want to watch
the questions/instructions in NGT, read the Dutch text, or both. Most participants preferred the
videos, but some chose to read. Several participants explicitly commented that they appreciated
having this choice. Some explicitly commented that they found it pleasant that the person in the
video was a deaf signer. All participants reported that the questions and instructions were clear.

Length We aim to keep sessions under 45 minutes to avoid concentration difficulties. This
seems to work well—participants appear to be focused all the way through. What we have
learned, however, is that this means that the number of test sentences has to be kept quite low.
Our initial plan was to present 24 avatar translations and 24 corresponding baseline videos, but
this turned out not to be feasible at all. We now present 12 avatar translations and 12 baseline
videos, and this generally fits the 45 minute window.

Another lesson we learned is that, in order to measure the extent to which the individual
signs in a sentence are correctly recognised, the length of test sentences should be restricted to
around 7 signs. It is well-known that most adults cannot store more than 7 items in their short-
term memory (Miller, 1956). Indeed, when we presented longer sentences in our pilot study
and asked participants to list the individual signs in these sentences, they had great trouble
reproducing the right sequence even if they had fully understood the meaning of the sentence
as a whole. Since our aim here is not to test participants’ short term memory capacity but just
comprehension, we have decided to keep all test sentences relatively short (4-7 signs). In the
evaluation sessions we are currently running this appears to work well.

4 Eliciting and transcribing responses

For a proper evaluation procedure (ensuring that responses are correctly understood by all par-
ties), the responses that participants provide in NGT have to be simultaneously interpreted into
Dutch. This is not straightforward if, as in our case, the experimenters are not fluent signers:
one is a new signer using NGT on a daily basis and the other has taken a number of NGT courses
but does not use the language daily. The online setting makes this issue even more acute. We are
addressing this issue as follows. During an evaluation session, the participant does not open the
questionnaire on their own computer. Rather, one of the experimenters opens the questionnaire
on their computer and shares their screen. An experienced sign language interpreter, with high
awareness of regional and generational variation, is present as well. Before getting started, we
make sure that both the questionnaire and the sign language interpreter are visible for the partic-
ipant. Participants answer questions in NGT, i.e., they do not need to type anything themselves.
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Figure 1: An example of an item in the questionnaire assessing comprehension of the avatar.
For illustration, the questions are formulated in English here; in reality they are in Dutch and
accompanied by instructions in NGT.

The interpreter interprets the answers into Dutch, one of the experimenters types the verbatim
interpretation visible for the participants, so that they can check that their responses are properly
interpreted. Typically, participants correct interpretations a few times each session and the tran-
script is then changed accordingly. In other cases, participants typically indicate explicitly that
the interpretation is correct (usually with a confirming head nod after the transcription appears
on the screen).

Finally, we turn to the issue of how to properly assess the extent to which participants
recognise the individual signs in the avatar translations. This issue is more specific than the
ones discussed above, but needs to be carefully addressed in any study that evaluates the com-
prehension of signing avatars. Indeed, the data obtained in our pilot study was uninterpretable
mostly because we had not addressed this issue carefully enough.

In the pilot study, we gave participants instructions (both in NGT and in written Dutch)
that they would be shown a video of an avatar signing a sentence and would then be asked
three questions (i) What are the individual signs in the sentence? (ii) What is the meaning of
the sentence as a whole? and (iii) How clearly was the sentence signed? Next, we showed
participants a video, and then questions (i)-(iii), in Dutch. Responses to the first two questions
(individual signs and sentence meaning) had to be entered in a textfield, while responses to the
third question (clarity) had to be given on a scale from 0 to 10. The problem was that participants
generally (with very few exceptions in fact) immediately started answering the second question.
It was not sufficiently clear what was intended with the first question.

We took two measures to address this issue. First, rather than a single textfield for listing
the individual signs in the sentence, we now present a separate textfield for each sign and la-
bel these textfields as ‘Sign 1’, ‘Sign 2’, etc (see Figure 1). Second, when giving instructions
beforehand we now present two examples: one of an avatar translation with ‘gloss subtitles’,
where the item in the gloss that corresponds to the current sign gets highlighted in yellow, and
a second example of an avatar translation with question marks in the subtitles (see Figure 1).
During the first sign the first question mark is highlighted, during the second sign the second
question mark etc. Together with this second example video we also show the first two questions
(concerning individual signs and sentence meaning, respectively), and exemplify what a pos-
sible response could look like. The question mark subtitles are also included in the actual test
items. These two revisions of the design appear to achieve the intended effect: in the evaluation
procedure we are currently running participants so far respond to all questions as intended.
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5 Conclusion

In this extended abstract, we have shared a number of methodological lessons we have learned
in designing and piloting an online procedure to evaluate the comprehensibility of an avatar
for text-to-sign translation. We hope that the recommendations we have made concerning the
structure, format, and length of the questionnaire and test items, as well as the elicitation and
transcription of responses will be helpful for other researchers in designing their evaluation pro-
cedures. In the long run, we hope that they contribute to the development of more standardised
methodologies and best practices for the evaluation of sign language technology.
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Abstract
One of the major challenges in sign language translation from a sign language to a spoken
language is the lack of parallel corpora. Recent works have achieved promising results on the
RWTH-PHOENIX-Weather 2014T dataset, which consists of over eight thousand parallel sen-
tences between German sign language and German. However, from the perspective of neural
machine translation, this is still a tiny dataset. To improve the performance of models trained
on small datasets, transfer learning can be used. While this has been previously applied in sign
language translation for feature extraction, to the best of our knowledge, pretrained language
models have not yet been investigated. We use pretrained BERT-base and mBART-50 models
to initialize our sign language video to spoken language text translation model. To mitigate
overfitting, we apply the frozen pretrained transformer technique: we freeze the majority of
parameters during training. Using a pretrained BERT model, we outperform a baseline trained
from scratch by 1 to 2 BLEU-4. Our results show that pretrained language models can be used
to improve sign language translation performance and that the self-attention patterns in BERT
transfer in zero-shot to the encoder and decoder of sign language translation models.

1 Introduction

Despite recent advancements in the domain of automated sign language translation (SLT), sub-
stantial challenges remain. One considerable issue is the lack of labeled data. Deep neural
networks are data-hungry and neural machine translation models are no exception. The widely
used SLT dataset RWTH-PHOENIX-Weather 2014T (Camgoz et al., 2018) contains only 8,257
parallel sentences. As a comparison: for translation between spoken languages, 6,000 parallel
sentences is considered a “tiny” amount (Gu et al., 2018).

In this work, we investigate how transfer learning can be used to improve the generalization
of video-to-text SLT models in the absence of large datasets. We integrate pretrained language
models such as BERT (Devlin et al., 2019) into our translation models, evaluating translation
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performance with BERT2RND and BERT2BERT models (Rothe et al., 2020). We also use
mBART-50 (Tang et al., 2020), which has been trained on corpora of 50 languages, including
German, as our goal is to translate from German sign language (DGS) to German.

These pretrained models are prohibitively large for currently available SLT datasets. The
base version of BERT, for example, consists of 12 layers compared to 3 layers in the encoder of
the translation model of Camgoz et al. (2020). Therefore, we perform aggressive layer pruning
and parameter freezing in the pretrained models.

We use the RWTH-PHOENIX-Weather 2014T dataset for which both gloss and text anno-
tations are available. We consider joint continuous sign language recognition (CSLR) and SLT,
or Sign2(Gloss+Text), as it is called by Camgoz et al. (2020). We compare several combina-
tions of pretrained transformers and transformers trained from scratch in terms of scores (WER
for CSLR and BLEU-4 for SLT) and number of trainable parameters.

Our results show that the BERT based models (BERT2RND, BERT2BERT) perform best.
These models allow us to outperform the baseline, i.e., transformers trained from scratch. Due
to overfitting, the large mBART-50 model results in significantly worse performance than the
baseline. This warrants further investigation in the incorporation of existing language models.
We discuss possible options for future work in Section 6.

The source code of this research project is available at https://github.com/
m-decoster/fpt4slt.

2 Neural Sign Language Translation

Several SLT systems have been proposed in the past, including rule-based systems (Zhao et al.,
2000) and statistical methods (Bungeroth and Ney, 2004). We focus specifically on translation
from a sign language to a spoken language. To perform this translation, the sign language first
needs to be converted into a written or computational form. Various notation systems exist, such
as glosses and HamNoSys (Prillwitz, 1989).

Bungeroth and Ney (2004) focus on Text2Gloss and Gloss2Text translation. Recent ad-
vancements in deep learning and computer vision now allow for Sign2Text translation, but
this requires sizable corpora. Several large datasets exist for sign language recognition tasks,
in which the goal is to classify glosses from sign language video, e.g., MS-ASL (Vaezi Joze
and Koller, 2019), WLASL (Li et al., 2020) and AUTSL (Sincan and Keles, 2020). RWTH-
PHOENIX-Weather 2014T is a large public dataset for sign language translation (Camgoz et al.,
2018). Along with it, a neural SLT model is formalized and introduced: a recurrent encoder-
decoder with Luong attention (Luong et al., 2015). This Sign2Gloss2Text model achieves a
BLEU-4 score of 18.13 on the test set.

In a follow-up work, the recurrent architecture is replaced by transformers (Camgoz
et al., 2020). The authors present a new study showing improvements in BLEU-4 scores for
Gloss2Text and Sign2Text translation. By jointly performing CSLR and SLT, they increase the
BLEU-4 test score to 21.32.

Yin and Read (2020) further improve the performance of sign language transformers by
using multiple cues (face, hand, full frame and pose information, rather than only full frame
information) for CSLR and performing Sign2Gloss2Text translation. They achieve a BLEU-4
test score of 24 (25.40 using an ensemble of 5 models). These improvements are related to
feature extraction rather than network architecture, whereas we aim to improve the translation
model by creating a more powerful encoder-decoder model (an orthogonal approach).

3 Transfer Learning and Frozen Pretrained Transformers

Transfer learning from high-resource to low-resource language pairs can result in better trans-
lation performance for low-resource language pairs (Zoph et al., 2016). Pretraining with huge
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monolingual corpora can also improve performance of downstream tasks such as sentiment clas-
sification and question answering (Devlin et al., 2019). Pretrained models such as BERT can
also be adapted as encoders or decoders in a machine translation model to improve translation
performance (Rothe et al., 2020).

Transfer learning between different sign languages has previously been used to improve
model performance in sign language recognition (Pigou et al., 2017; Albanie et al., 2020). The
use of a continuous sign language recognition model as feature extractor for SLT, as performed
by Camgoz et al. (2020), is also a form of transfer learning. To the best of our knowledge, so far
no one has leveraged transfer learning of encoders and decoders (rather than feature extractors)
for SLT from signed to spoken languages.

Lu et al. (2021) show that pretrained language models can replace transformers trained
from scratch for downstream tasks, even if those downstream tasks are not related to natural
language processing (NLP). This is contrary to earlier research, where language models were
used in a parameter-efficient transfer learning set-up from one NLP task to another (Houlsby
et al., 2019). Self-attention and feedforward layers are frozen and only the layer normalization
parameters are fine-tuned. These are, for large language models, only a tiny fraction of the pa-
rameters (often less than 1%). As a result, these models, called Frozen Pretrained Transformers
(FPTs), are more robust against overfitting. We combine the approaches of Rothe et al. (2020)
and Lu et al. (2021) for SLT: we aim to leverage pretrained language models, while freezing the
majority of the parameters to avoid overfitting on our extremely small dataset.

4 Methodology

We use the following experimental set-up. First, we reproduce the baseline of Camgoz et al.
(2020) using the code base provided by the authors1. Then, we lay out several experiments
with different models with either an FPT encoder or FPT encoder and decoder. We compare
several degrees of fine-tuning, ranging from only layer normalization to everything except the
self-attention layers. Due to computational constraints, we use a sequential approach for hyper-
parameter tuning. However, we tune two correlated hyperparameters together: the number of
layers and degree of fine-tuning.

4.1 Sign Language Translation
Our SLT approach follows that of Camgoz et al. (2020). We use a transformer encoder-decoder
model with 3 layers and 8 attention heads as a baseline. We use the same features, which
were obtained from a model trained on CSLR (Koller et al., 2019). Camgoz et al. (2020) report
BLEU-4 scores of 22.38 and 21.32 on the development and test set of RWTH-PHOENIX-
Weather 2014T, respectively. These scores are obtained for loss weights λR = 10 and λT = 1.
Our reproduction using the code base provided by the authors yields 20.18 and 19.86. The
difference is possibly due to a different random seed, resulting in a less than optimal weight
initialization in our case. From communication with the authors, we learned that they reported
the best result out of ten runs with different random seeds. We select only a single seed and
report all of our results using the resulting random initialization.

4.2 Frozen Pretrained Transformers
We run three experiments. We first aim to improve CSLR and SLT performance by integrat-
ing an FPT (BERT) in the encoder of the Sign2(Gloss+Text) model. The decoder is trained
from scratch. We name this method BERT2RND, according to the nomenclature of Rothe et al.
(2020). Secondly, we evaluate a BERT2BERT model, where a cross-attention module is added
to the BERT model integrated in the decoder; this module is trained from scratch. Finally, we

1https://github.com/neccam/slt
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Figure 1: Model variants and the degrees of freezing. BERT2RND only has a pretrained en-
coder, while for BERT2BERT and mBART-50 both the encoder and decoder are pretrained.

investigate whether integrating a language model pretrained on the target language (German)
improves the quality of translations (measured in BLEU-4 scores). We use mBART-50 to ini-
tialize both the encoder and decoder. We freeze the pretrained cross-attention module in the
decoder, but add a randomly initialized linear layer to transform the encoder outputs such that
they better align with the pretrained cross-attention patterns. The German target sentences are
tokenized using the mBART-50 tokenizer so that we are able to reuse the token embeddings in
the decoder. By default, we freeze the mBART-50 token embeddings as they contain over 250
thousand elements. However, we investigate the impact of freezing and fine-tuning them.

We wish to minimize the amount of trainable parameters to mitigate overfitting. We com-
pare different degrees of fine-tuning (ordered by increasing number of trainable parameters).
We name these the “model variants”. For BERT2RND and BERT2BERT there are two vari-
ants:

(i) fine-tune layer normalization parameters, positional embeddings, sign embeddings and
decoder token embeddings,

(ii) fine-tune all of the above and feedforward layers.

For mBART-50 there is an additional variant, because the token embeddings in the decoder are
not fine-tuned by default:

(i) fine-tune layer normalization parameters, positional embeddings and sign embeddings
only,

(ii) fine-tune all of the above and token embeddings,

(iii) fine-tune all of the above and feedforward layers.

A schematic overview of which layers are frozen and which are not is shown in Figure 1.
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For every model, we train a linear input layer for which the weights are initialized orthog-
onally in the encoder and as Gaussian in the decoder - based on findings by Lu et al. (2021). No
such input layer is trained for the decoder in BERT2RND as the decoder is trained from scratch.

4.3 Hyperparameter Tuning
We tune several hyperparameters, including the learning rate, number of layers, loss weights,
decoding beam size and beam alpha. Note that we aim to optimize the translation score (BLEU-
4) rather than the continuous sign language recognition score (WER). All hyperparameter tun-
ing and model selection is therefore performed based on the BLEU-4 score. We first tune the
learning rate per model architecture on a model with 3 layers in both encoder and decoder (the
same as the baseline model). We then perform all further tuning and experiments with the
learning rate that yields the highest development set BLEU-4 score. Ideally, one would tune the
learning rate together with the other hyperparameters (number of layers, loss weights), but the
computational cost prohibits this for our experiments. The optimal learning rates obtained for
each model are 3e−4 for BERT2RND, 1e−4 for BERT2BERT and 1e−3 for mBART-50.

We then perform simple layer pruning to reduce the model complexity. The amount of
layers that we keep is a hyperparameter n (between 1 and the number of layers in the pretrained
transformer) that is tuned to maximize the development set BLEU-4 score. When pruning,
we always keep the first n layers, and replace deeper ones by identity functions. The number
of layers n is tuned for all model variants as we hypothesize that freezing more parameters
per layer allows for deeper networks. Because of computational constraints, we cannot check
all values of n for all models. Because deeper models rapidly start overfitting, we choose
n = 1, 2, 3, 6, 12 (12 being the original number of layers in BERT-base and mBART-50). For
BERT2RND, the decoder is kept as it is in the original implementation: a 3 layer transformer
trained from scratch.

We select the optimal number of layers per experiment and tune the loss weight λR =
1, 5, 10, as Camgoz et al. (2020) show that this can have a large impact on the translation score.

After training of each experiment, the best beam size and alpha are found by tuning for
both WER and BLEU-4 on the development set. The results are reported on the development
set and test set using these parameters.

All models are optimized with a batch size of 32, with the Adam optimizer (Kingma and
Ba, 2015). The optimizer parameters are set to β = (0.9, 0.998) and the weight decay to 1e−3,
as per Camgoz et al. (2020). We also apply a similar learning rate scheduling approach: we
decrease the learning rate with a factor 0.7 whenever the development set BLEU-4 score has
not increased for 800 iterations. We stop training when the learning rate is smaller than 1e−7.

5 Results

We find an optimal number of layers and loss weights for the different models based on the
development set BLEU-4 score. We discuss the amount of trainable parameters for the optimal
models found for each variant, while at the same time listing the development set score for the
optimal models. We finally compare the development set and test set results with the baseline.

5.1 Optimal Number of Layers
We find that for all three model architectures, the optimal number of layers is low. This is
as expected due to the small dataset size. For BERT2RND, the difference in performance
between freezing approaches is small for a low layer count. For larger layer counts, fine-tuning
only the layer normalization parameters (model variant (i)) yields better performance, because
this model overfits less than the others. For BERT2BERT, fine-tuning the feedforward layers
consistently results in better performance. The gap between the model variants is larger than for
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Figure 2: BLEU-4 scores for different model sizes of the three architectures, for λR = λT =
1. The models reach the highest BLEU-4 scores for 1, 2 or 3 layers. The missing values
for BERT2BERT with 12 layers and for mBART-50 with 6 and 12 layers are due to VRAM
constraints.

Table 1: The number of trainable parameters of different models and their best obtained devel-
opment set BLEU-4 score. The best result is indicated in bold.

Model Variant Layers Trainable parameters BLEU-4
Transformer N/A 3 38,878,270 20.18
BERT2RND (i) 1 30,292,542 21.28

(ii) 2 39,740,478 22.47
BERT2BERT (i) 2 34,195,518 20.87

(ii) 2 53,085,246 21.26
mBART-50 (i) 2 7,180,606 10.64

(ii) 2 263,235,902 17.06
(iii) 3 313,608,510 16.92

BERT2RND. We assume that the decoder benefits more from having more degrees of freedom
than the encoder. The mBART-50 model underfits when the token embeddings are not fine-
tuned: model variant (i) only achieves a maximum BLEU-4 score of 9.95 for 2 layers. The
scores are consistently lower than for BERT2RND and BERT2BERT. Fine-tuning the decoder
token embeddings is clearly required. However, even then we are unable to achieve baseline
performance with mBART-50. An overview of the results is shown in Figure 2.

5.2 Amount of Trainable Parameters
We list the number of trainable parameters for every model variant in Table 1. We only consider
the optimal number of layers (see Figure 2). The baseline count is 39 million. While several of
our FPT models have more trainable parameters (including our best model with 40 million), we
are able to match the baseline performance using a 1-layer BERT2RND model where only the
layer normalization parameters are fine-tuned (30 million parameters). In this model, the self-
attention encoder only has 600 thousand trainable parameters (1 layer), compared to 9 million
when training a 3-layer encoder from scratch.
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Table 2: Comparison of WER and BLEU-4 scores for the baseline and our best FPT models.
The best results are indicated in bold.

Model Development Test
WER ↓ BLEU-4 ↑ WER ↓ BLEU-4 ↑

Transformer (Camgoz et al., 2020) 24.98 22.38 26.16 21.32
Transformer (reproduced) 30.48 20.18 29.96 19.86
BERT2RND (ii, 2 layers, λR = 5) 36.59 22.47 35.76 22.25
BERT2BERT (ii, 2 layers, λR = 10) 40.99 21.26 39.99 21.16
mBART-50 (ii, 2 layers, λR = 1) 40.25 17.06 39.43 16.64

5.3 Comparison with the Baseline
We compare the best results for each model architecture with the best results reported by Cam-
goz et al. (2020). The comparison is shown in Table 2. The best model is the 2-layer
BERT2RND model with fine-tuning of feedforward layers (variant (ii)). With a test BLEU-4
score of 22.25, it outperforms the baseline. We see an increase of 0.93 compared to the baseline
established by Camgoz et al. (2020) and of 2.39 compared to our reproduction of that model. A
2-layer BERT2BERT model with fine-tuning of feedforward layers outperforms the reproduced
baseline by 1.3 BLEU-4, and achieves comparable performance to the model reported in the
previous work. For mBART-50, we find that a 2-layer model with frozen attention patterns and
feedforward layers achieves 16.64 BLEU-4.

6 Discussion

In this work, we have proposed using FPTs for neural SLT. We have compared several encoder-
decoder architectures:

• BERT2RND, where the encoder is an FPT initialized from BERT-base

• BERT2BERT, where both encoder and decoder are FPTs initialized from BERT-base

• mBART-50, where encoder and decoder are FPTs initialized from mBART-50

6.1 Comparison Between Architectures
Out of these architectures, BERT2RND achieves the best results, with a BLEU-4 test score of
22.25 (an increase of 0.93 compared to the baseline established by Camgoz et al. (2020) and
of 2.39 compared to our reproduction of that model). The best BERT2BERT model achieves
21.16. When freezing more parameters, we see a larger performance drop than for BERT2RND.
Likely, the decoder benefits more from being trained from scratch or fine-tuned.

Contrary to our expectations, using mBART-50 pre-trained on (among others) German
text, did not improve the translation quality for SLT with German as the target language. In
fact, mBART-50 yields results below the baseline: 16.64 BLEU-4. We observe that fine-tuning
the token embeddings is essential: freezing them results in a catastrophic drop in performance.
Fine-tuning the cross-attention module to allow better alignment between the sign language
encoder representations and spoken language decoder representations could prove useful, but
brings with it the risk of overfitting.

6.2 Perspective and Future Work
The use of FPTs in low-resource scenarios such as SLT appears promising. FPTs can be in-
tegrated in translation models to improve translation performance. Our experiments show that
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for comparable performance, FPTs can be slightly shallower than transformers trained from
scratch. This could prove useful for reducing the computational cost during inference.

Techniques such as tokenization and (neural) embedding computation of written text have
matured more than feature extraction for SLT due to machine translation between spoken lan-
guages receiving more research attention than SLT. Furthermore, current state of the art machine
translation models are designed first and foremost for translation between spoken languages.
Architectural changes may prove beneficial or even necessary to obtain better SLT performance.
This is reflected in our results. Modelling sign language (in the encoder) appears to benefit more
from pretrained language models than the modelling of spoken languages (in the decoder).

Further research should investigate the use of smaller, bilingual, models as FPTs. Fine-
tuning the translation model on written texts concerning the topics present in the SLT data
(before training on actual sign language data) may also result in better translations. Finally,
another interesting research track is the integration of a translation model as a prior rather than
as an FPT (Baziotis et al., 2020).

Next to trying to find better architectures for sign language translation, better feature ex-
traction methods are also being researched. Any advancements in feature extraction for SLT
can be combined with architectural improvements such as FPTs to further increase the quality
of the translation model.

While SLT models have significantly improved in terms of translation metrics over the
past few years, there still remains a large gap to bridge before they can be applied in real-world
settings. In particular, these metrics, such as BLEU scores, do not always match well with the
perceived quality of the translations by human evaluators (Callison-Burch et al., 2006). For this
reason, future work will focus on identifying the main shortcomings that need to be addressed
in SLT in order to achieve its performance acceptable for Deaf and Hard of Hearing (DHH)
communities. This question needs to be addressed from, both, a technical and a linguistic
perspective, and in close collaboration with the end users of potential SLT applications. Co-
creation with DHH community members is therefore key.

7 Conclusion

We have presented and compared three different approaches to using pretrained language mod-
els for a Sign2(Gloss+Text) SLT task: BERT2RND, BERT2BERT and mBART-50. We outper-
form the baseline, which is a transformer trained from scratch, by replacing the encoder with
the first 2 layers of BERT-base. We freeze the attention patterns and show that the patterns
learned during the training of the BERT model transfer in zero-shot to SLT. The decoder can
also be initialized using a pretrained language model, but we obtain better results if the decoder
is trained from scratch. We attempt to integrate mBART-50, a multi-lingual translation model,
hoping to obtain translations of a higher quality due to this model having been pretrained on
German texts. However, we are unable to reach baseline performance with mBART-50. Further
research should investigate whether smaller translation models obtain better performance, or
whether language models can be used as priors to regularize the SLT model. Our best result, a
BLEU-4 score of 22.25 on the test set of RWTH-PHOENIX-Weather 2014T, is obtained using a
BERT2RND model. The BERT2RND methodology is easy to implement and can be combined
with other advances such as improvements in feature extraction.
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Abstract
This paper addresses the tasks of sign segmentation and segment-meaning mapping in the con-
text of sign language (SL) recognition. It aims to give an overview of the linguistic properties
of SL, such as coarticulation and simultaneity, which make these tasks complex. A better
understanding of SL structure is the necessary ground for the design and development of SL
recognition and segmentation methodologies, which are fundamental for machine translation
of these languages. Based on this preliminary exploration, a proposal for mapping segments to
meaning in the form of an agglomerate of lexical and non-lexical information is introduced.

1 Introduction

The first steps for a machine translation (MT) pipeline which targets signed languages are: 1)
defining a way to transcribe the sign stream that exhaustively describes all articulated features;
2) subdividing the transcriptions into units and 3) connecting these units to meaning.1

In this work, we employ Sign A (Murtagh, 2019) to address the first step. Sign A pro-
vides a detailed description of the (computational) phonological parameters that are essential
to articulate the various phonemes, morphemes and lexemes of a SL utterance. In Murtagh
(2019), Sign A transcriptions are combined with Role and Reference Grammar (RRG), a form
of syntactic representation that considers semantic and communicative functions (Valin, 1993),
i.e. addressing the third step; however, Sign A is not automatically connected to RRG currently.
So, how to connect Sign A transcriptions to meaning is an open question at this stage; it largely
depends on defining meaningful units that can be linked with meaning, i.e. step 2.

In order to know what kind (or format) of meaning needs to be mapped to Sign A (and
vice-versa) and how, we need to know how the utterance is subdivided into parts. For example, if
we consider a written utterance, the text is normally subdivided into tokens (words, punctuation

1While current deep learning methods allow for efficient end-to-end approaches, the complexity of SLs and the lack
of annotated data makes the use of such methods infeasible.
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marks, etc.), via tokenization; tokens can then be used in meaning mapping operations, such
as, e.g. Part of Speech tagging, MT, and others, to derive knowledge. In signed languages,
as well, it is necessary to define how to split the sign stream. Moryossef (2021)2, and Yin
et al. (2021) discuss the problems related to sign tokenization. Tokenization, as we know it for
spoken languages, cannot be easily applied to signed languages; some properties of these types
of languages, such as simultaneity and coarticulation, make the identification of single word-
like units in the signed stream not a viable task. Moryossef (2021) proposes to tackle this issue
through sign segmentation. Nevertheless, the difficulty in defining segment boundaries makes
this approach problematic as well. Some studies have explored this form of subdividing a signed
utterance but reliable and constant boundary predictors have still to be found (see Ormel and
Crasborn (2012); Yin et al. (2021) for details).

In this paper we first give an overview of the properties of SLs that make stream segmen-
tation problematic. Next, we introduce a work-in-progress possible approach for mapping sign
transcriptions (in Sign A) to meaning.

2 Why is segmentation difficult?

Stokoe (1960) described signs as being much more simultaneously organised than words:“Signs
are not holistic units, but are made up of specific formational units: hand configuration, move-
ment, and location.” Zeshan (2007) proposed that signs in SL are situated at an equivalent level
of organisation as words in spoken language. Following Brennan (1992), Leeson and Saeed
(2012) identify signs in SL as equivalent to words in spoken language in terms of grammatical
role. However, not every sign carries the same type of meaning that can make it comparable
to words in spoken languages. A distinction can be made between established signs — also
defined as Fully Lexical Signs, (Johnston, 2016), or Lexemes (Johnston and Schembri, 1999)
— and productive lexicon (Vermeerbergen and Van Herreweghe, 2018) — Partly-Lexical Signs
(Johnston, 2016). Established signs have a conventionalised form and meaning that are consis-
tent across contexts (Vermeerbergen and Van Herreweghe, 2018). The meaning to which these
lexemes are strongly associated is specific (Johnston and Schembri, 1999). Since they have
a clear citation form (Johnston and Schembri, 1999), they can also be easily identified within
a continuous sign stream. Productive signs, instead, are context-dependent; the possibility of
creating new not lexicalised signs is enormous and this practice is very productive in signed
languages (see Johnston and Schembri (1999); Belissen (2020). Using language components
for creating new forms is a property common to both signed and spoken languages; however,
the componentiality of signs allows signers to use innovative forms more frequently than it
could possibly happen in spoken languages. This productivity can constitute a problem for sign
segmentation, since new signs do not have a pre-defined form.

The most salient element in identifying a sign appears to be hand movement; however, we
find discordant opinions about using it for identifying a segment, since it is always realised in
combination with other elements (Johnston and Schembri, 1999; Khan, 2014). Nevertheless,
hand movement can be used for identification of established signs; but it cannot account for
productive signs and the extra information provided by other articulators.

Another trait of the sign that makes it different from the word in spoken languages is the
difficulty in identifying its edges in a sign stream. All speakers of one language are able to
easily subdivide an utterance into words; moreover, they will subdivide the same utterance in
the same way, by following the same phonetic and phonological properties (Brentari, 2006).
The same cannot be easily said for SL segmentation: studies on segmentation made by humans
show variability and multiplicity of cues at play, and the difficulty in identifying the dominant
cues; there is no agreement among researchers about whether signers (and non-signers) can

2https://www.youtube.com/watch?v=ayDKJ6_nKeY
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provide the same segmentation (Brentari, 2006; Fenlon, 2010; Brentari et al., 2011) or whether
they have discordant intuitions (Hanke et al., 2012; Khan, 2014; Gabarró-López and Meurant,
2014). In addition, the possibility for signers to identify cues by using lexical and grammatical
knowledge needs to be considered as well (Fenlon, 2010).

Various technical approaches to sign segmentation have been proposed, such as based on
minimum hand velocity and large directional variation, combining velocity with trajectory cur-
vature or temporal localisation, minimal pairs distinction (Khan, 2014), and transitional move-
ments removal (Hanke et al., 2012). A flaw of these approaches is that they do not specify what
kind of units are considered from a linguistic point of view, or simply refer to a generic ‘word’.

Perceptual studies generally focus on identifying boundaries of parts of the utterance
which are bigger than words, such as sentences or prosodic groups (Ormel and Crasborn, 2012;
Gabarró-López and Meurant, 2014). By looking at the prosodic structure (Selkirk, 1984; Nes-
por and Vogel, 1986) these studies follow the assumption that prosodic cues can contribute to
identifying syntactic structure.3 Prosodic cues can be part of manual and nonmanual articu-
lators; usually, the latter add semantic information to the former (Ormel and Crasborn, 2012).
Nonmanual articulators have been considered for prosodic boundaries detection: either by being
considered as markers of phrase edges or as domain markers based on their duration (Ormel and
Crasborn, 2012). Boundary markers occur at phrase boundaries, they can be pause, eye blinks,
head nods, reduplication, hand hold, and final lengthening; domain markers are spread across
signs within a phrase, they can be facial, head and body movements (see Nespor and Sandler
(1999); Brentari and Crossley (2002); Ormel and Crasborn (2012). Eye blinks are among the
most frequently mentioned boundary markers, often in combination with other cues; however,
if considered in isolation they are not a consistent boundary cue (Ormel and Crasborn, 2012).
Several and combined nonmanual cues can function as boundary markers and there seems to be
no evidence for one cue or a specific combination to play a dominant role (Nespor and Sandler,
1999; Fenlon, 2010; Ormel and Crasborn, 2012; Gabarró-López and Meurant, 2014).

Coarticulation appears to be the major obstacle to a straightforward boundary detection.4

There are more forms of coarticulation, such as: hold deletion, metathesis, assimilation and
movement epenthesis (Khan, 2014). Simultaneity of manual and nonmanual articulators might
also constitute a problem to segmentation; different types of information are communicated at
the same time, hence they cannot be easily subdivided. Simultaneity can also cause overlapping
of complex structures like sentences; in which case differentiating and splitting the two sentence
layers can be challenging (Crasborn, 2007). Vermeerbergen et al. (2007) define three types of
simultaneity, namely manual simultaneity, manual-oral simultaneity and simultaneous use of
other (manual and nonmanual) articulators.

3 Representations of signs

To date, there is no tradition of writing signed languages (Frishberg et al., 2012). Several sign
notation systems have been developed, but none of them evolved into being widely accepted
and used. In the 1960s Stokoe (1960) defined a set of symbols to notate the components of
each sign of American Sign Language (mostly intended for dictionary entries). Later, in the
1970s, Valerie Sutton introduced a writing system for SL based on a dance notation, called

3As in spoken languages, syntactic and prosodic constituents are non-isomorphic (Nespor and Vogel, 1986); how-
ever, intonation and rhythm can provide useful information for sentence segmentation (Ormel and Crasborn, 2012).

4However, checking whether a coarticulation process only occurs within a prosodic domain and not across bound-
aries can be evidence of the existence of these boundaries and might be used for linguistic segmentation (in this respect,
see Nespor and Sandler (1999). A limit to this approach is the optionality of coarticulation phenomena generally, which
might prevent them from being reliable cues.
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SignWriting.5 It is made up of schematized iconic symbols for the hands, face and body, with
additional notations for location and direction and intents to capture gestural behaviour in the
flow of performance. More recently, the Hamburg Notation System (HamNoSys) was created
to transcribe signs from many different signed languages (Prillwitz, 1989). It is a very detailed
transcription system that was developed in conjunction with a standard computer font, mainly to
be used for linguistic analysis. The notation of signs or a SL using any of these notation/writing
systems results in a (more or less detailed) representation of the signs for their physical forms.

Representing the meaning of signs is most commonly done by using glosses consisting of
words drawn from the spoken language of the surrounding community or in books and articles
of the language of publication. Glosses are most often used for representing the manual signs.
Typically, established signs are represented by capital letters glosses, and productive signs with
several words. The use of glosses to annotate natural signed discourse is not without difficulty
nor risk (Vermeerbergen, 2006; Frishberg et al., 2012). For example, using words from a spoken
language to represent the meaning of a sign can lead to an inappropriate semantic of grammat-
ical analysis of that sign. Another important problem is that there is no standardized way of
glossing, and that gloss annotations differ between - and sometimes even within - corpora.

The Sign A framework (Murtagh, 2019) was developed in the pursuit of defining a lexicon
architecture that is sufficiently robust in nature to accommodate SL. The “A” in Sign A refers
to Articulatory Structure Level. This level of lexical meaning aims to represent the essential
(computational) phonological parameters of an object as defined by the lexical item. These
parameters will be used to account for various linguistic phenomena pertaining to manual and
non-manual features.

RRG can be described as a structural functionalist theory of grammar and a functional
model of language. RRG is a monostratal theory positing only one level of syntactic represen-
tation, the actual form of the sentence. Therefore, there is only one syntactic representation
for a sentence. This representation corresponds to the actual form of the sentence. Leveraging
RRG in combination with Sign A allows for the development of a lexicon architecture capable
of accommodating SL in computational linguistic terms.

While our work focuses on Sign A as a representation of a signed message, we acknowl-
edge that the proposed method can be applied, after some adaptation, to signed messages rep-
resented in other notations.

4 Provisional proposal

Since nonmanual articulators add semantic information to manual articulators (Ormel and Cras-
born, 2012), it might be possible to use the manual articulators as bases for a segment, i.e. as
a ‘root’ of an environment bigger than a word. We propose to map the Sign A transcription
to an ‘enriched glosses’ structure, where the lexical entry is enriched with the surrounding
features conveying meaning (so having blocks like noun phrases or verb phrases). These en-
riched glosses can be compatible with and resemble glosses used for spoken languages (see The
Leipzig Glossing Rule6). Meaning can be implemented with RRG specifications or morpholog-
ical information. These glosses (enriched with RRG) from one signed or spoken language
could then be reconverted in either a spoken or a SL output through an MT approach (see, for
instance, Zhou et al. (2020). Using enriched glosses might prevent information loss that takes
place when glosses for signed languages are used (Stokoe, 1980; Yin et al., 2021). Glosses
for signed languages are mostly used to transcribe lexemes only, while enriched glosses would
include other pieces of information; for instance, the morphological suffixation that modifies
the lexeme. With this approach, SL glosses would be similar to those of agglutinative lan-

5www.signwriting.org
6www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf
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guages (e.g. Turkish), which express grammatical information in an agglomerate of sub-units
(i.e. many morphemes attach to one root); of course, a significant distinction remains: aggluti-
native languages units behave in a linear way like other spoken languages (i.e. one morpheme
is attached next to the other, in a flat structure), while signs have simultaneous components.

Enriched glosses aim to address the structural complexity of these languages and to provide
an exhaustive form of denoting meaning. Being able to account for any meaningful element of
the sign stream is a fundamental aspect for the preservation of the message, and for its efficient
translation.

5 Conclusion

In this paper we discussed the challenges to sign segmentation and to segment-meaning map-
ping. After an overview of the SL properties which need to be considered when addressing
segmentation, we outlined a proposal, employing the Sign A formalism, for connecting seg-
ments to meaning into an agglomerate of lexical and non-lexical information.
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