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Abstract
A cascaded Sign Language Translation system first maps sign videos to gloss annotations and
then translates glosses into a spoken languages. This work focuses on the second-stage gloss
translation component, which is challenging due to the scarcity of publicly available parallel
data. We approach gloss translation as a low-resource machine translation task and investi-
gate two popular methods for improving translation quality: hyperparameter search and back-
translation. We discuss the potentials and pitfalls of these methods based on experiments on
the RWTH-PHOENIX-Weather 2014T dataset.

1 Introduction
More than 70 million deaf people around the world use sign language as their primary language
to communicate. In a society dominated by hearing people and spoken languages, there is a risk
that deaf people may experience inconvenience and isolation. In countries like India, Iran, and
Russia, lack of sign language interpreters hampers access to public services and courts (Kozik,
2019). Automatic Sign Language Translation (SLT) has recently gained increasing attention
from researchers and would help remove the communication barriers.

Sign language is not simply a visual form of spoken languages. It has its own linguis-
tic rules, including phonology, morphology, syntax and semantics that are different from other
languages (Valli et al., 2011). For example, in American Sign Language, the subject or ob-
ject might be omitted in certain situations. There is also a process called Topicalization, where
prominent information is signed first, resulting in an adjustment to the basic SVO word order.
Linguists use glossing to annotate signs, which can be viewed as a written form of sign lan-
guage. Glosses can be taken as intermediate representations when translating continuous sign
utterances to spoken language sentences.

Previous work on SLT adopts either an end-to-end system that maps sign language videos
directly to spoken languages, or a cascaded system, as shown in Figure 1, that first relies on
Continuous Sign Language Recognition (CSLR) to produce sign glosses and then passes the
glosses into a Neural Machine Translation (NMT) system (Camgoz et al., 2018, 2020; Yin and
Read, 2020). Importantly, Camgoz et al. (2018) reports that the cascaded system outperforms
the end-to-end system by a large margin (18.13 vs. 9.58 BLEU). In this work, we focus on
improving the NMT component of cascaded systems, which attracts much less attentions com-
pared to the CSLR component of cascaded systems (Cui et al., 2017; Huang et al., 2018; Yang
et al., 2019; Orbay and Akarun, 2020).

Sign language gloss translation is a challenging problem due to the scarcity of annotated
parallel data. The popular continuous SLT dataset, “RWTH-PHOENIX-Weather 2014T” (Cam-
goz et al., 2018) contains 7,096 gloss-text examples in training set. However, the state-of-the-art
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PAST-
[long-ago] YOURSELF LITTLE GIRL PRO-2 WANT GROW-UP FUTURE DO-WHAT

SIGN  
VIDEO

SIGN  
GLOSSES

ENGLISH  
TRANSLATION When   you   were   a   little   girl,   what   did   you   want   to   do   when   you   grow   up?

Continuous Sign Language Recognition

Neural Machine Translation

Figure 1: Cascaded sign language translation system2- First, CSLR converts sign video to a
sequence of sign glosses. Then, NMT converts the sign glosses to text in e.g. English.

NMT systems are known to be extremely data-hungry and usually require millions of training
examples to obtain a good translation performance (Koehn and Knowles, 2017). In this paper,
we approach gloss to text translation as a low-resource machine translation task and investigate
two methods that are widely explored by the machine translation community to alleviate the
need of large corpora, namely hyperparameter search and back-translation.

While NMT models, like Transformer (Vaswani et al., 2017) can perform well with default
hyperparameter settings on most of the publicly available large corpora, its performance is
highly sensitive to hyperparameters under low-resource scenarios (Araabi and Monz, 2020;
Duh et al., 2020). The optimal hyperparameter settings for a large corpus might lead to a
poor system trained on a small dataset (Zhang and Duh, 2020). In this work, we focus on
tuning 4 hyperparameters and find that hyperparameter search is necessary and helpful for gloss
translation.

Back-translation (Sennrich et al., 2016a) incorporates monolingual data in NMT which
can help in low-resource settings (Hoang et al., 2018; Lample et al., 2018; Feldman and Coto-
Solano, 2020). Our experiments show that it has potential on gloss translation when the addi-
tional monolingual data are from the same domain as the parallel data.

Overall, we conclude that the low-resource machine translation perspective is promising
but should not be taken as the ultimate solution for sign language gloss translation. It may be
more promising to first focus on creating larger gloss-text datasets.

2 Related Work

Most of the Sign Language Processing research has focused on Sign Language Recognition
(Yin et al., 2016; Wang et al., 2016; Camgöz et al., 2016; Vaezi Joze and Koller, 2019). Recent
work started to show an interest in CLSR (Koller et al., 2016; Cui et al., 2017; Huang et al.,
2018; Yang et al., 2019; Orbay and Akarun, 2020). However, only a few works move forward
to tackle this problem as a SLT task. Camgoz et al. (2018) formalized SLT in the framework
of NMT and released the first publicly available SLT dataset, PHOENIX14T. Based on this
dataset, Camgoz et al. (2020) and Yin and Read (2020) explored SLT with Transformers and
developed both end-to-end and cascaded systems where gloss annotations are used as interme-
diate representations. Ko et al. (2019) proposed a sign language translation system based on
human keypoint estimation and also introduced the KETI dataset, which consists of Korean

2Sign videos and glosses are from lifeprint.com.
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sign videos and annotations. KETI has only 105 gloss annotations. Also, the sentences in
KETI are relatively short as they are related to emergency situations. Othman and Jemni (2012)
introduced the ASLG-PC12 dataset, which consists of millions of English sentences and cor-
responding American sign language glosses. However, the glosses are generated by applying
transformation rules on English sentences and are not reliable for the study of SLT.

3 Data and Setup
We evaluate the effectiveness of hyperparameter search on a parallel gloss-text dataset. For
back-translation, we experiment with monolingual data from the same domain as the parallel
data and data from a different domain respectively. In this section, we will describe the datasets
and NMT models in detail. We will also introduce our experimental setup.

3.1 Parallel Data
We use “RWTH-PHOENIX-Weather 2014T” introduced by Camgoz et al. (2018) as our parallel
gloss-text dataset. PHOENIX14T collected the weather forecast airings of the German public
tv-station PHOENIX. It is a continuous SLT corpus, which contains sign videos, gloss annota-
tions and German translations. The data split for train/dev/test is 7,096/519/642 sentences. The
vocabulary size of the training set for glosses and German3 are 1,066 and 2,887 respectively.

3.2 Monolingual Data
To the best of our knowledge, there is no publicly available large corpus of weather forecast
subtitles in German. Since domain mismatch between the monolingual data and the parallel
data might hurt the performance of NMT systems (Koehn and Knowles, 2017), we adopt several
domain adaption methods to alleviate this problem. We use Moore-Lewis filtering (Moore and
Lewis, 2010) to select sentences similar to PHOENIX14T from a German TED Talk corpus
(Duh, 2018), which consists of 151,627 sentences.

3.3 NMT Model
Most NMT models in literature follow a encoder-decoder architecture. The conditional proba-
bility of generating the target sentence y given the source sentence x is decomposed as:

p(y | x) =
JY

j=1

p(yj | y<j ,x, ✓), (1)

where ✓ represents model parameters, yj is the j-th target word, and y<j is the prefix of words
before yj . The encoder of an NMT model transforms x into a sequence of hidden states, the
decoder then generates yj iteratively based on the hidden states and the history decoding states
to form the target sentence y. We choose Transformer (Vaswani et al., 2017) as it is the de
facto mainstream NMT architecture and has achieved the state-of-the-art performance on many
machine translation tasks. Transformer is an encoder-decoder based model with each layer
consisting of a multi-head attention mechanism, followed by a feed-forward network.

3.4 Experimental Setup
3.4.1 Data Preprocessing
All datasets are tokenized using the Moses (Koehn et al., 2007) tokenizer. We train the Byte-
Pair-Encoding (BPE) segmentation (Sennrich et al., 2016b) models separately for gloss and text.
For hyperparameter search experiments (Section 4), we learn BPE models from PHOENIX14T.
For back-translation tasks (Section 5), on the German side, we learn BPE models from the

3For the rest of this paper, we will refer to sign language gloss as gloss and the spoken German as German.
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Figure 2: Histograms of BLEU scores showing wide variance in performance with different
hyperparameter settings trained on PHOENIX14T gloss-text (left) and text-gloss (right).

concatenation of selected monolingual data and PHOENIX14T data. On the gloss side, we
learn BPE models from the concatenation of PHOENIX14T data and the back-translated TED
Talk glosses.

3.4.2 NMT Setup
Our NMT models are developed in Sockeye4 (Hieber et al., 2017). The number of attention
heads is set to 8 and the feed-forward layer dimension is set to 1024. We set the dropout
probability for source and target embeddings to 0.1. Our models apply Adam (Kingma and Ba,
2014) as the optimizer. The learning rate is multiplied by 0.9 whenever validation perplexity
does not surpass the previous best in 8 checkpoints, where checkpoints are encountered for
every 1000 updates/batches. And each batch consists of 2048 words. Training stops when the
perplexity on the development set has not improved for 32 checkpoints.

All the back-translation experiments in Section 5 adopt the best hyperparameter settings
obtained by a hyperparameter search (Section 4). Note that the optimal settings for gloss-text
translation is different from text-gloss translation.

4 Hyperparameter Search

Hyperparameter selection is crucial to build a good NMT system. It is especially the case for
low-resource scenarios when the default hyperparameter settings are very likely to be ineffec-
tive. As reported in Sennrich and Zhang (2019) and Zhang and Duh (2020), the NMT systems
developed for low-resource translation tasks disagree a lot with those trained on high-resource
corpora on the optimal hyperparameter choices. Furthermore, datasets in different domains
and language pairs all differ in their hyperparameter preference. They also show that adjusting
hyperparameters can cause BLEU differences of more than 20 in some datasets.

4.1 Important Hyperparameters
In this work, we focus on 4 hyperparameters of Transformer models: the number of BPE merge
operations, the number of layers, embedding dimensions and initial learning rate. These hy-
perparameters are recognized as important hyperparameters by Zhang and Duh (2020), where
the importance is computed as the variation in BLEU when changing a specific hyperparameter
with values of all the other hyperparameters fixed (Klein and Hutter, 2019).

BPE is a word segmentation approach that combines frequent sequence of characters so
that out-of-vocabulary words are handled. It is expected to improve the translation of rare
words and has been a standard preprocessing practice in NMT. According to Ding et al. (2019),
although 32k and 90k are popular choices in most machine translation literature, they found

4github.com/awslabs/sockeye
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gloss-text text-gloss
bpe #layer #embed init lr BLEU bpe #layer #embed init lr BLEU

best 1k 4 512 0.00005 24.385 1k 4 256 0.0005 16.43
worst 2k 1 512 0.0005 21.73 1k 1 512 0.0005 13.04

random 1k 2 256 0.0002 23.49 1k 2 256 0.0002 15.74

Table 1: Performance of selected Transformers. BLEU scores are evaluated on the test set
of PHOENIX14T. Best and worst are best and worst systems obtained from hyperparameter
search respectively. Random randomly picks a hyperparameter setting from our search space.

that the BPE of the best Transformer-based architectures in low-resource setting is somewhere
between 0-2k. We thus try 1k and 2k in our experiments.

Architecture design hyperparameters like the number of layers in encoder and decoder and
embedding size are important. A big and complex model is more susceptible to overfitting.
On the other hand, if the model is too small and simple, it might struggle to capture the mean-
ingful patterns of data and result in underfitting. Our search space includes 1, 2, 4 layers and
embedding size of 256 and 512.

The learning rate is another important hyperparameter that scales the gradient in gradient
descent training. A small initial learning rate may prolong the training process, whereas a large
one may get the model stuck in a sub-optimal solution. It is recommended to start training with
a low number (Koehn, 2020). We adjust it among 0.00005, 0.0002 and 0.0005.

We tune hyperparameters for NMT systems on both gloss-text and text-gloss directions.
This sums up to 72 systems in total.

4.2 Results
The BLEU scores obtained on our search space are illustrated in Figure 2, where a wide variance
is observed. As shown in Table 1, different choices of hyperparameters can increase the BLEU
score by as much as 2.65 on gloss-text and 3.39 on text-gloss. Training is not expensive due to
the small data size, so running a wide search over hyperparameters is recommended.

5 Back-translation

Back-translation proposed in Sennrich et al. (2016a) has shown its effectiveness in utilizing
monolingual data to improve the translation performance. It is particularly used in low-resource
scenarios. When it comes to sign language translation, the written text is always abundant,
whereas the glosses and parallel examples are expensive to get and are not sufficient to train a
robust NMT model. This sets a good stage for back-translation.

The workflow of back-translation is illustrated in Figure 3. In order to train a more robust
gloss-text translation model, one first trains a text-gloss model using the PHOENIX14T parallel
data (Figure 3, step 1). This model is then employed to translate monolingual German text in
the domain of TED Talk to glosses (Figure 3, step 2). This synthetic parallel corpus is then
concatenated with the PHOENIX14T data to train the final gloss-text system (Figure 3, step 3).

One problem with our implementation of back-translation is that TED Talk subtitles have
different styles compared to PHOENIX14T, which is composed of weather reports, in other
words, they are in different domains. Domain mismatch makes the translation task even more
challenging, as the synthetic parallel data might introduce noises to hurt the performance. In
order to alleviate this issue, we adopt two domain adaptation methods to aid back-translation.

5The best BLEU-4 score reported in Camgoz et al. (2020) and Yin and Read (2020) are 24.54 and 24.9, which are
comparable to our results.
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Figure 3: Back-translation workflow. Pink rectangles frame outputs of each step.

5.1 Domain Adaptation Methods
Domain adaptation leverages out-of-domain data to improve the domain-specific translation.
In this work, TED Talks are out-of-domain data and PHOENIX14T is the domain in interest
or in-domain data. We adopt a language model based data selection method to first select
examples from TED Talk corpus that are similar to PHOENIX14T. Next, those monolingual
examples are back-translated and form a synthetic parallel corpus. A model is then trained on
the concatenation of the synthetic data and the parallel PHOENIX14T data. This is not the
end. Finally, we continue training the model with only the PHOENIX14T data. This continued-
training process is also called fine-tuning, which is the conventional way for domain adaptation
(Luong et al., 2015; Sennrich et al., 2016a; Chu and Wang, 2018; Zhang et al., 2019).

5.1.1 Data Selection
We adopt the data selection method proposed in Moore and Lewis (2010). The main idea is to
score the out-of-domain data N using language models trained from the in-domain data I and
N and select top n training examples from N by a cut-off threshold on the resulting scores. To
be specific, each sentence s in N is assigned a cross-entropy difference score,

HI(s)�HN (s), (2)

where HI(s) is the per-word cross-entropy of s according to a language model trained on 1000
random samples of PHOENIX14T, and HN (s) is the per-word cross-entropy of s according to
a language model trained on 1000 random samples of TED Talks. A lower score indicates s is
more like a sentence in weather forecast then in TED Talks.

5.1.2 Fine-tuning
In conventional fine-tuning, a NMT model is trained on a high-resource out-of-domain corpus
until convergence, and then its parameters are fine-tuned on a low-resource in-domain corpus.
We approach it in a slightly different way. Instead of training on out-of-domain corpus at the
first step, we train on a shuffled combination of both in-domain and out-of-domain data, where
the small-sized in-domain data may be copied several times, and the size of the out-of-domain
data subset varies across experiments. This data size variation is intended to help us explore
how different weighting and combination of data impacts final results.

5.2 Experimental Comparison
In order to evaluate the effectiveness of back-translation on low-resource gloss-text translation,
we conduct experiments enhanced with data selection and fine-tuning techniques. We investi-
gate the effect of data ratio by varying both the size of monolingual TED Talk data and the size
of PHOENIX14T. For TED Talks, we adjust the cut-off threshold of the data selection score and
result in 10k, 50k and 100k most relevant examples. For PHOENIX14T, as it is a tiny dataset,
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Figure 4: Performance of NMT systems on gloss-text translation. BLEU scores are evaluated on
the test set of PHOENIX14T. Systems vary in whether fine-tuned on PHOENIX14T (bt vs. ft),
the size of synthetic TED Talk data (10k, 50k, 100k) and the number of copies of PHOENIX14T
added into the training data (0, 1, 2, 5, 10).

we simply balance the data ratio by making 0, 1, 2, 5 or 10 copies of it to combine with the
synthetic TED Talk data. This new corpus is used to train a gloss-text system, which we call bt
systems. Those systems are then fine-tuned on PHOENIX14T and result in ft systems.

5.3 Results on Out-Of-Domain Data Incorporation
We report the performance of different NMT systems in Figure 4.

Effect of fine-tuning Comparing ft to bt models, ft outperforms bf 10 out of 12 times. The
improvement ranges from 0.03 BLEU to 1.74 BLEU, with an average of 0.7 BLEU. The largest
improvement is achieved by ft 100k 16. This shows that although the large amount of noisy
out-of-domain data hurts the performance of the bt system, fine-tuning on only a small amount
of in-domain data still improves the performance to a great extent.

Effect of data selection In order to evaluate the influence of data selection, we train two extra
gloss-text systems and fine-tune them on PHOENIX14T. The difference is that system 1 uses
randomly sampled TED data, while system 2 uses TED data selected by the Moore-Lewis
method. It turns out that system 2 outperforms system 1 by 7.28 BLEU. Therefore, data
selection is crucial when incorporating out-of-domain data in NMT.

Effect of the amount of out-of-domain data With the size of PHOENIX14T data fixed,
ft 10k models are overall better than ft 100k models, which are better than ft 50k models.
This is not the case for bt models, where bt 100k models tend to be worse than bt 10k and
bt 50k models. This reveals one weakness of back-translation – it is prone to the quality of the

6This is short for a fine-tuned system that was trained on a concatenation of 100k TED data and 1 copy of
PHOENIX14T data.
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NMT System BLEU
gloss-text part1 19.13
text-gloss part1 9.96
gloss-text part1+synthetic part2 21.57

Table 2: Performance of NMT systems with in-domain monolingual data incorporation.

synthetic parallel data..

Effect of the amount of in-domain data Increasing the ratio of in-domain data in training
data is not always beneficial – too much in-domain data might even hurts the performance. In
practice, the data ratio can be taken as a tunable parameter and choose it wisely.

Effect of back-translation The best system enhanced with back-translation and domain adapta-
tion techniques achieves 24.31 BLEU, which is slightly worse than the best BLEU score (24.38)
achieved by hyperparameter search (Table 1). We wonder whether it would make a difference if
the domain issue is eliminated. In next section, we simulate a condition when extra in-domain
monolingual examples are available.

5.4 Results on In-Domain Data Incorporation

In order to evaluate back-translation on a less simpler situation, where domain mismatch is
not a concern, we divide the PHOENIX14T training set into 2 parts. Each part contains 3,548
samples. We treat part 1 as a parallel corpus, while for part 2, we discard all the glosses and
only keep the German text to simulate additional in-domain monolingual data.

We first train a gloss-text system on part 1 as a baseline (gloss-text part1). Next, we
train a text-gloss system on part 1 (text-gloss part1). We then use this system to translate the
German text from part 2 into synthetic glosses. The final gloss-text system is trained on the
concatenation of part 1 and the synthetic parallel data of part 2 (text-gloss part1+synthetic
part2). The performance of the 3 systems on PHOENIX14T test set is shown in Table 2. The
resulting gloss-text system improves over the baseline system by a margin of 2.44 BLEU. We
can expect that given high-quality in-domain monolingual data, back-translation still has a great
potential in improving the translation quality.

6 Conclusions

In this paper, we identify one challenging task in Sign Language Translation, that is the trans-
lation between sign language glosses and written languages. We argue that the obstacle lies in
the sparsity of parallel data. To conquer this problem, we propose to approach sign language
gloss translation as a low-resource machine translation task. We investigate the effectiveness of
hyperparameter search and back-translation, which are both widely used by machine translation
community for low-resource translations. We conclude that hyperparameter search is necessary,
whereas back-translation is susceptible to the quality of additional monolingual data. If there is
abundant in-domain monolingual data, back-translation is very promising. Otherwise, it should
be used with domain adaptation techniques, like data selection and fine-tuning to achieve a
reasonable performance.

Given limited parallel data, the upper bound of these low-resource methods is constrained.
We thus urge the sign language processing community to put in extra efforts in creating more
annotated parallel data.
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