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Preface

The International Conference on Spoken Language Translation (IWSLT) is the premiere annual scientific
conference for the study, development and evaluation of spoken language translation technology.
Launched in 2004 and spun out from the C-STAR speech translation consortium before it (1992-2003),
IWSLT is the main venue for scientific exchange on all topics related to speech-to-text translation,
speech-to- speech translation, simultaneous and consecutive translation, speech dubbing, cross-lingual
communication including all multimodal, emotional, paralinguistic, and stylistic aspects and their
applications in the field. The conference organizes evaluations around challenge areas, and presents
scientific papers and system descriptions.

This year, IWSLT features four shared tasks: (i) Simultaneous Speech Translation; (ii) Offline Speech
Translation; (iii) Multilingual Speech Translation; and (iv) Low-Resource Speech Translation. These
topics represent open problems toward effective cross-lingual communication and we expect the
community effort and discussion will greatly advance the state of the field. Each shared task was
coordinated by a chair. The resulting evaluation campaigns attracted a total of 22 teams, from academy,
research centers and industry. System submissions resulted in system papers that will be presented
at the conference. Following our call for papers, this year 40 submissions were received. In a blind
review process, 11 research papers were selected out of 19 for oral presentation (58%) in addition to 21
system papers. The program this year will also host 4 so-called ACL findings papers (not included in
this proceedings), that expressed interest in being presented at IWSLT 2021. The program committee
is excited about the quality of the accepted papers and expects lively discussion and exchange at the
conference.

The conference chairs and organizers would like to express their gratitude to everyone who contributed
and supported IWSLT. We thank the shared tasks chairs, organizers, and participants, the program chair
and committee members, as well as all the authors that went the extra mile to submit system and research
papers to IWSLT, and make this year’s conference a most vibrants event. We also wish to express our
sincere gratitude to ACL for hosting our conference and for arranging the logistics and infrastructure that
allow us to hold IWSLT 2021 as a virtual online conference.

Welcome to IWSLT 2021 wherever you are joining from!

Marta R. Costa-jussà, Program Chair
Marcello Federico and Alex Waibel, Conference co-Chairs
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Dealing with training and test segmentation mismatch: FBK@IWSLT2021
Sara Papi, Marco Gaido, Matteo Negri and Marco Turchi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

The NiuTrans End-to-End Speech Translation System for IWSLT 2021 Offline Task
Chen Xu, Xiaoqian Liu, Xiaowen Liu, Tiger Wang, Canan Huang, Tong Xiao and Jingbo Zhu . . 92

ESPnet-ST IWSLT 2021 Offline Speech Translation System
Hirofumi Inaguma, Brian Yan, Siddharth Dalmia, Pengcheng Guo, Jiatong Shi, Kevin Duh and

Shinji Watanabe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

End-to-End Speech Translation with Pre-trained Models and Adapters: UPC at IWSLT 2021
Gerard I. Gállego, Ioannis Tsiamas, Carlos Escolano, José A. R. Fonollosa and Marta R. Costa-jussà

110

VUS at IWSLT 2021: A Finetuned Pipeline for Offline Speech Translation
Yong Rae Jo, Youngki Moon, Minji Jung, Jungyoon Choi, Jihyung Moon and Won Ik Cho . . . . 120

KIT’s IWSLT 2021 Offline Speech Translation System
Tuan Nam Nguyen, Thai Son Nguyen, Christian Huber, Ngoc-Quan Pham, Thanh-Le Ha, Felix

Schneider and Sebastian Stüker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

FST: the FAIR Speech Translation System for the IWSLT21 Multilingual Shared Task
Yun Tang, Hongyu Gong, Xian Li, Changhan Wang, Juan Pino, Holger Schwenk and Naman Goyal

131

vii



Maastricht University’s Multilingual Speech Translation System for IWSLT 2021
Danni Liu and Jan Niehues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

ZJU’s IWSLT 2021 Speech Translation System
Linlin Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Multilingual Speech Translation with Unified Transformer: Huawei Noah’s Ark Lab at IWSLT 2021
Xingshan Zeng, Liangyou Li and Qun Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Multilingual Speech Translation KIT @ IWSLT2021
Ngoc-Quan Pham, Tuan Nam Nguyen, Thanh-Le Ha, Sebastian Stüker, Alexander Waibel and Dan

He . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Edinburgh’s End-to-End Multilingual Speech Translation System for IWSLT 2021
Biao Zhang and Rico Sennrich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

ON-TRAC’ systems for the IWSLT 2021 low-resource speech translation and multilingual speech trans-
lation shared tasks

Hang Le, Florentin Barbier, Ha Nguyen, Natalia Tomashenko, salima mdhaffar, Souhir Gabiche
Gahbiche, Benjamin Lecouteux, Didier Schwab and Yannick Estève . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

IMS’ Systems for the IWSLT 2021 Low-Resource Speech Translation Task
Pavel Denisov, Manuel Mager and Ngoc Thang Vu. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

The USYD-JD Speech Translation System for IWSLT2021
Liang Ding and Dacheng Tao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

mixSeq: A Simple Data Augmentation Methodfor Neural Machine Translation
Xueqing Wu, Yingce Xia, Jinhua Zhu, Lijun Wu, Shufang Xie, Yang Fan and Tao Qin . . . . . . . . 192

On Knowledge Distillation for Translating Erroneous Speech Transcriptions
Ryo Fukuda, Katsuhito Sudoh and Satoshi Nakamura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Self-Guided Curriculum Learning for Neural Machine Translation
Lei Zhou, Liang Ding, Kevin Duh, Shinji Watanabe, Ryohei Sasano and Koichi Takeda. . . . . . .206

Between Flexibility and Consistency: Joint Generation of Captions and Subtitles
Alina Karakanta, Marco Gaido, Matteo Negri and Marco Turchi . . . . . . . . . . . . . . . . . . . . . . . . . . . .215

Large-Scale English-Japanese Simultaneous Interpretation Corpus: Construction and Analyses with
Sentence-Aligned Data

Kosuke Doi, Katsuhito Sudoh and Satoshi Nakamura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226

Inverted Projection for Robust Speech Translation
Dirk Padfield and Colin Cherry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Towards the evaluation of automatic simultaneous speech translation from a communicative perspective
Claudio Fantinuoli and Bianca Prandi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245

Tag Assisted Neural Machine Translation of Film Subtitles
Aren Siekmeier, WonKee Lee, Hongseok Kwon and Jong-Hyeok Lee . . . . . . . . . . . . . . . . . . . . . . . 255

A Statistical Extension of Byte-Pair Encoding
David Vilar and Marcello Federico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

viii



Integrated Training for Sequence-to-Sequence Models Using Non-Autoregressive Transformer
Evgeniia Tokarchuk, Jan Rosendahl, Weiyue Wang, Pavel Petrushkov, Tomer Lancewicki, Shahram

Khadivi and Hermann Ney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Data Augmentation by Concatenation for Low-Resource Translation: A Mystery and a Solution
Toan Q. Nguyen, Kenton Murray and David Chiang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

ix





Conference Program

Day 1

Evaluation Overview

FINDINGS OF THE IWSLT 2021 EVALUATION CAMPAIGN
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Abstract

The evaluation campaign of the International
Conference on Spoken Language Translation
(IWSLT 2021) featured this year four shared
tasks: (i) Simultaneous speech translation, (ii)
Offline speech translation, (iii) Multilingual
speech translation, (iv) Low-resource speech
translation. A total of 22 teams participated
in at least one of the tasks. This paper de-
scribes each shared task, data and evaluation
metrics, and reports results of the received sub-
missions.

1 Introduction

The International Conference on Spoken Lan-
guage Translation (IWSLT) is the premier an-
nual scientific conference for all aspects of spo-
ken language translation. For 18 years running
(Akiba et al., 2004; Eck and Hori, 2005; Paul,
2006; Fordyce, 2007; Paul, 2008, 2009; Paul et al.,
2010; Federico et al., 2011, 2012; Cettolo et al.,
2013, 2014, 2015, 2016, 2017; Niehues et al.,
2018, 2019; Ansari et al., 2020), the conference or-
ganizes and sponsors open evaluation campaigns
around key challenges in simultaneous and con-
secutive translation, under real-time/low latency
or offline conditions and under low-resource or

multilingual constraints. System descriptions and
results from participants’ systems and scientific
papers related to key algorithmic advances and
best practice are published in proceedings and
presented at the conference. IWSLT is also the
venue of the SIGSLT, the Special Interest Group
on Spoken Language Translation of ACL, ISCA
and ELRA. With its long track record, IWSLT
benchmarks and proceedings serve as reference
for all researchers and practitioners working on
speech translation and related fields.

This paper reports on the evaluation campaign
organized by IWSLT 2021, which features four
shared tasks:

• Simultaneous speech translation, address-
ing low latency translation of talks, from En-
glish to German and English to Japanese, ei-
ther from a speech file into text, or from a
ground-truth transcript into text;

• Offline speech translation, proposing
speech translation of talks from English into
German, using either cascade architectures or
end-to-end models, able to directly translate
source speech into target text;

• Multilingual speech translation, focusing

1
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Table 1: List of Participants

on the use of multiple languages to improve
supervised and zero-shot speech translation
between four Romance languages and En-
glish;

• Low-resource speech translation, focus-
ing on resource-scarce settings for translat-
ing two Swahili varieties (Congolese and
Coastal) into English and French.

The shared tasks were attended by 22 partic-
ipants (see Table 1), including teams from both
academic and industrial organizations. The fol-
lowing sections report on each shared task in de-
tail, in particular: the goal and automatic met-
rics adopted for the challenge, the data used for
training and testing data, the received submissions
and the summary of results. Detailed results for
each challenge are reported in a corresponding ap-
pendix.

2 Simultaneous Speech Translation

Simultaneous translation is the task of translat-
ing incrementally with partial text or speech in-
put only. Such capability enables multilingual live

communication and access to multilingual multi-
media content in real-time. The goal of this chal-
lenge, organized for the second consecutive year,
is to examine systems that translate text or audio
in a source language into text in a target language
from the perspective of both translation quality
and latency.

2.1 Challenge
Participants were given three parallel tracks to en-
ter and encouraged to enter all tracks:

• text-to-text: translating ground-truth tran-
scripts in real time from English to German
and English to Japanese.

• speech-to-text: translating speech into text in
real time from English to German.

For the speech-to-text track, participants were en-
couraged to submit systems either based on cas-
caded or end-to-end approaches. In addition,
the systems were run on a segmented and non-
segmented version of the test set, i.e. processing
one sound segment corresponding to an input sen-
tence at a time, or processing the whole speech
in one sound stream. Participants were required

2



to upload their system as a Docker image so that
it could be evaluated by the organizers in a con-
trolled environment. We also provided an example
implementation and a baseline system.1

2.2 Data and Metrics

For tracks related to English-German, participants
were allowed to use the same training and devel-
opment data as in the Offline Speech Translation
track. More details are available in §3.2.

For the English-Japanese text-to-text track, par-
ticipants could use the parallel data and mono-
lingual data available for the English-Japanese
WMT20 news task (Barrault et al., 2020). For
development, participants could use the IWSLT
2017 development sets,2 the IWSLT 2021 devel-
opment set3 and the simultaneous interpretation
transcripts for the IWSLT 2021 development set.4

The simultaneous interpretation was recorded as
a part of NAIST Simultaneous Interpretation Cor-
pus (Doi et al., 2021).

Systems were evaluated with respect to quality
and latency. Quality was evaluated with the stan-
dard BLEU metric (Papineni et al., 2002a). La-
tency was evaluated with metrics developed for
simultaneous machine translation, including av-
erage proportion (AP), average lagging (AL) and
differentiable average lagging (DAL, Cherry and
Foster 2019), and later extended to the task of si-
multaneous speech translation (Ma et al., 2020b).

The evaluation was run with the SIMULEVAL

toolkit (Ma et al., 2020a). For the latency mea-
surement of speech input systems, we contrasted
computation-aware and non computation-aware
latency metrics. The latency was calculated at the
word level for English-German systems and at the
character level for English-Japanese systems.

The systems were ranked by the translation
quality (measured by BLEU) in different latency
regimes, low, medium and high. Each regime
was determined by a maximum latency threshold
measured by AL on the Must-C English-German
test set (tst-COMMON) for English-German or on
the IWSLT21 dev set for English-Japanese. The

1https://github.com/pytorch/fairseq/
blob/master/examples/speech_to_text/
docs/simulst_mustc_example.md

2https://wit3.fbk.eu/2017-01-c
3https://drive.google.com/drive/

folders/1uSkOT-XqbICMohnvfXdEFffKLdaQX0X7
4https://drive.google.com/drive/

folders/1bB1s9PKNoRoDFfc567J5zDMcYj_
lFFEB

thresholds were set to 3, 6 and 15 for the English-
German text track, to 1000, 2000 and 4000 for
the English-German speech track and to 8, 12 and
16 for English-Japanese text track, and were cali-
brated by the baseline system. Participants were
asked to submit at least one system per latency
regime and were encouraged to submit multiple
systems for each regime in order to provide more
data points for latency-quality trade-off analyses.
The organizers confirmed the latency regime by
running the systems on tst-COMMON and the
IWSLT21 dev set.

2.3 Differences with the First Edition
English-to-Japanese Task This year, we added
a new task of English-to-Japanese simultaneous
translation. English-Japanese is a challenging lan-
guage pair for simultaneous translation because of
the large word order differences; a simultaneous
machine translation model has to wait for the latter
part of an English sentence in Subject-Verb-Object
order to generate a Japanese sentence in Subject-
Object-Verb order.

SimulEval We standardized the latency evalua-
tion aspect of the task by leveraging the SIMULE-
VAL toolkit. In addition, speech input systems
were run in a controlled environment (a p3.2xlarge
AWS instance) in order to be able to fairly com-
pare computation-aware AL.

Unsegmented input Based on feedback from
the participants in the first edition of the task, for
the speech track, systems were run on both seg-
mented and unsegmented input. The latter setting
required participants to implement a segmentation
logic in their systems, which is closer to a real-
world setting.

2.4 Submissions
The simultaneous task received submissions from
5 teams: 4 teams entered the English-German text
track; 3 teams entered the English-Japanese text
track and 2 teams entered the English-German
speech track. Teams followed the suggestion to
submit multiple systems per regime, which re-
sulted in a total of 162 systems overall.

UEDIN (Sen et al., 2021) submitted systems to
the text-to-text English-German track. In order to
be able to reuse an offline system, UEDIN adapts
the re-translation strategy to the simultaneous task.
Re-translation is triggered based on a language
model applied to the source input. In addition, a
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dynamic masking method is employed to stabilize
the output translation.

VOLCTRANS (Zhao et al., 2021) submit-
ted systems to the text-to-text English-German
and English-Japanese tracks. The participants
adopt the efficient wait-k strategy (Elbayad et al.,
2020). They augment the training data using back-
translation and knowledge distillation. During in-
ference, a look ahead beam search strategy is in-
vestigated but the final submission uses greedy
search.

USTC-NESLIP (Liu et al., 2021) submit-
ted systems to all tracks, including both end-to-
end and cascaded system for the speech tracks.
The participants design a novel model architec-
ture, Cross-Attention Augmented Transducer, that
modifies RNN-T in order to support reordering be-
tween languages. They augment the training data
using self-training, back-translation and by syn-
thesizing the source side of the parallel corpora.

APPTEK (Bahar et al., 2021b) submitted sys-
tems to the English-German speech and text
tracks, using a cascaded system for the speech
track. Chunks that preserve monotonicity are ex-
tracted from a statistical word aligner. A classi-
fier, part of the overall model, is trained on the
boundaries in order to control the policy. To bet-
ter control the latency quality tradeoff, consecutive
chunks can be merged according to a probability.

NAIST (Fukuda et al., 2021) submitted sys-
tems to the text English-Japanese track. The par-
ticipants employ the wait-k method and sequence-
level knowledge distillation. Because Japanese
does not have a strict word order, they randomly
shuffle chunks on the target side to augment the
training data. An alternative method, next con-
stituent label prediction, was investigated but not
submitted to the task.

2.5 Results

We discuss results for the text and speech tracks.
More details are available in Appendix A.1.

2.5.1 Text Track
Results for the text track are summarized
in the first two tables of Appendix A.1.
Four teams (USTC-NESLIP, VOLCTRANS,
APPTEK, UEDIN) submitted systems for English-
German and three teams (USTC-NESLIP,
VOLCTRANS, NAIST) for English-Japanese.
In the table, only the models with the best BLEU
score for a given latency regime are reported. In

Figure 1: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for the
systems submitted to the English-German text track.

Figure 2: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for the
systems submitted to the English-Japanese text track.

order to obtain a broader sense of latency-quality
tradeoffs, we also plot all submitted systems for
quality and latency.
English-German The ranking is consistent
over all the regimes: 1. USTC-NESLIP
2. VOLCTRANS 3. APPTEK 4. UEDIN. We
plot all the submitted English-German systems in
Figure 1.
Japanese-English The ranking is consistent over
all the regimes: 1. USTC-NESLIP 2. APPTEK

3. NAIST. We plot all the submitted English-
Japanese systems in Figure 2.

2.5.2 Speech Track (English-German Only)

Results for the speech track are summarized in
the third table of Appendix A.1. Two teams
(USTC-NESLIP, APPTEK) submitted systems,
with both segmented and unsegmented speech in-
put. Latency regimes were defined for segmented
input systems only. We plan to define latency
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Figure 3: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for the
systems submitted to the speech track with segmented
input. AL is measured in seconds.

Figure 4: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for
the systems submitted to the speech track with seg-
mented input. AL is considering the computation time
and measured in seconds.

regimes for unsegmented input in the next edi-
tion. The ranking is consistent over all the regimes
in segmented systems and unsegmented systems:
1. USTC 2. AppTek We also report four latency-
quality trade-off curves:

• Segmented input systems without consider-
ing computation time in Figure 3.

• Segmented input systems considering com-
putation time in Figure 4.

• Unsegmented input systems without consid-
ering computation time in Figure 5.

• Unsegmented input systems considering
computation time in Figure 6.

Figure 5: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for
the systems submitted to the speech track with unseg-
mented input. AL is measured in seconds.

Figure 6: Latency-quality trade-off curves, measured
by AL and BLEU, reported on the blind test set, for
the systems submitted to the speech track with unseg-
mented input. AL is considering the computation time
and measured in seconds.

3 Offline Speech Translation

Offline speech translation, declined in various
forms over the years, is one of the speech tasks
with the longest tradition at the IWSLT campaign.
Like in the last two evaluation rounds, this year5

it focused on the translation of English audio data
extracted from TED talks6 into German.

3.1 Challenge

In recent years, offline speech translation (ST) has
seen a rapid evolution, characterized by the steady
advancement of direct end-to-end models (build-
ing on a single neural network that directly trans-
lates the input audio into target language text) that
were able to significantly reduce the performance

5http://iwslt.org/2021/offline
6http://www.ted.com
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gap with respect to the traditional cascade ap-
proach (integrating ASR and MT components in
a pipelined architecture). In light of last year’s
IWSLT results (Ansari et al., 2020) and of the find-
ings of recent works (Bentivogli et al., 2021) at-
testing that the gap between the two paradigms has
substantially closed, also this year a key element
of the evaluation was to set up a shared framework
for their comparison. For this reason, and to re-
liably measure progress with respect to the past
rounds, the general evaluation setting was kept un-
changed. This stability mainly concerns two as-
pects: the allowed architectures and the test set
provision.

On the architecture side, participation was al-
lowed both with cascade and end-to-end (also
known as direct) systems. In the latter case, valid
submissions had to be obtained by models that:
i) do not exploit intermediate symbolic represen-
tations (e.g., source language transcription or hy-
potheses fusion in the target language), and ii) rely
on parameters that are all jointly trained on the
end-to-end task.

On the test set provision side, also this year
participants could opt for processing either a pre-
computed automatic segmentation of the test set
or a version of the same test data segmented
with their own approach. This option was main-
tained not only to ease participation (by remov-
ing one of the obstacles in audio processing) but
also to gain further insights about the importance
of a proper segmentation of the input speech. As
highlighted in (Ansari et al., 2020), effective pre-
processing to reduce the mismatch between the
provided training material (often “clean” corpora
split into sentence-like segments) and the supplied
unsegmented test data is in fact a common trait of
top-performing systems.

Multiple submissions were allowed, but par-
ticipants had to explicitly indicate their “pri-
mary” (one at most) and “contrastive” runs,
together with the corresponding type of sys-
tem (cascade/end-to-end), training data condition
(constrained/unconstrained), and test set segmen-
tation (own/given).

3.2 Data and Metrics

Training and development data. Also this year,
participants had the possibility to train their sys-
tems using several resources available for ST, ASR
and MT. The major novelty on the data front

is that a new TED-derived resource was added
to the training corpora usually allowed to sat-
isfy the “constrained” data condition. The new
data come from the English-German section of the
MuST-C V2 corpus7 and include training, dev, and
test (Test Common), in the same structure of the
MuST-C V1 corpus (Cattoni et al., 2021) used last
year. Since the 2021 test set was processed using
the same pipeline applied to create MuST-C V2,
the use of the new training resource was strongly
recommended. The main differences with respect
to MuST-C v1 are:

• More talks, which results in 20k more au-
dio/text segments;

• Improved cleaning strategies able to better
discard low-quality triplets (audio, transcript,
translation), in particular when the text is not
well-aligned with the audio and the audio is
shorter than 50 millisecs;

• The talks were downloaded from the
YouTube TED channel,8 where higher qual-
ity audio/videos are available with respect
to the TED website used for the previous
version of MuST-C. The downloading was
performed by means of youtube-dl,9 the
well-known open-source download manager,
specifying the “-f bestaudio option”. The au-
dios were finally converted from two (stereo)
to one (mono) channel and downsampled
from 48 to 16 kHz, using FFmpeg.10 Upon
inspection of the spectrograms of the same
talks in the two versions of MuST-C, it
clearly emerges that the upper limit band
in the audios used in MuST-C V1 is 5 kHz,
while it is at 8 kHz in the latest version,
coherently with the 16 kHz sample rate.
This difference does not guarantee the
fully compatibility between V1 and V2 of
MuST-C.

Besides MuST-C V2, also this year the allowed
training corpora include:

• MuST-C V1 (Di Gangi et al., 2019);

• CoVoST (Wang et al., 2020);

7http://ict.fbk.eu/must-c/
8http://www.youtube.com/c/TED/videos
9http://youtube-dl.org/

10http://ffmpeg.org/
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• WIT3 (Cettolo et al., 2012) ;

• Speech-Translation TED corpus11;

• How2 (Sanabria et al., 2018)12;

• LibriVoxDeEn (Beilharz and Sun, 2019)13;

• Europarl-ST (Iranzo-Sánchez et al., 2020);

• TED LIUM v2 (Rousseau et al., 2014) and v3
(Hernandez et al., 2018);

• WMT 201914 and 202015;

• OpenSubtitles 2018 (Lison et al., 2018);

• Augmented LibriSpeech (Kocabiyikoglu
et al., 2018)16

• Mozilla Common Voice17 ;

• LibriSpeech ASR corpus (Panayotov et al.,
2015).

The list of allowed development data includes
the dev set from IWSLT 2010, as well as the
test sets used for the 2010, 2013, 2014, 2015
and 2018 IWSLT campaigns. Using other train-
ing/development resources was allowed but, in
this case, participants were asked to mark their
submission as an “unconstrained” one.

Test data. This year’s new test set was built
from 17 TED talks that are not included yet in the
public release of the corpus. Similar to last year,
participants were presented with the option of pro-
cessing either an unsegmented version (to be split
with their preferred segmentation method) or an
automatically segmented version of the audio data.
For the segmented version, the resulting number of
segments is 2,336 (corresponding to about 4h15m
of translated speech from 17 talks). To measure
technology progress with respect to last year’s
round, participants were asked to process also the
undisclosed 2020 test set that, in the segmented
version, consists of 2,263 segments (correspond-
ing to about 4.1 hours of translated speech from
22 talks).

11http://i13pc106.ira.uka.de/˜mmueller/
iwslt-corpus.zip

12only English - Portuguese
13only German - English
14http://www.statmt.org/wmt19/
15http://www.statmt.org/wmt20/
16only English - French
17http://voice.mozilla.org/en/datasets –

English version en 1488h 2019-12-10

Metrics. Systems’ performance was evaluated
with respect to their capability to produce trans-
lations similar to the target-language references.
Differently from previous rounds, where such sim-
ilarity was measured in terms of multiple auto-
matic metrics,18 this year only the BLEU met-
ric (computed with SacreBLEU (Post, 2018) with
default settings) has been considered. Instead of
multiple metrics, the attention focused on consid-
ering two different types of target-language refer-
ences, namely:

• The original TED translations. Since these
references come in the form of subtitles, they
are subject to compression and omissions to
adhere to the TED subtitling guidelines.19

This makes them less literal compared to
standard, unconstrained translations;

• Unconstrained translations. These references
were created from scratch20 by adhering to
the usual translation guidelines. They are
hence exact (more literal) translations, with-
out paraphrasing and with proper punctua-
tion.

Lang Sentences Words
EN 2,037 41,214

DE - Orig 2,037 33,925
DE - Uncon. 2,037 40,239

Table 2: Statistics of the official test set for the offline
speech translation task (tst2021).

As shown in Table 2, the different approaches
to generate the human translations lead to sig-
nificantly different references. While the uncon-
strained translation has a similar length (counted
in words) compared to the corresponding source
sentence, the original is ∼15% shorter in order to
fulfil the additional constraints for subtitling.

Besides considering separate scores for the two
types of references, results were also computed by
considering both of them in a multi-reference set-
ting. Similarly to last year, the submitted runs

18These were: case-sensitive/insensitive BLEU (Papineni
et al., 2002b), case-sensitive/insensitive TER (Snover et al.,
2006), BEER (Stanojevic and Sima'an, 2014), and Charac-
TER (Wang et al., 2016)

19http://www.ted.com/participate/
translate/subtitling-tips

20We would like to thank Facebook, and in particular Juan
Pino, for providing us with this new set of references.
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were ranked based on case-sensitive BLEU cal-
culated on the test set by using automatic re-
segmentation of the hypotheses based on the ref-
erence translations by mwerSegmenter.21

3.3 Submissions
We received submissions from 12 teams, which is
a slight increase (+2) over last year’s round. Also
this year, participants come from the industry (the
majority), the academia and other research insti-
tutions. In terms of ST paradigms, though quite
evenly distributed, architectural choices show a
slight preference for the cascade approach, which
highlights a countertrend strategy with respect to
the 2020 round, in which half of the participants
opted for end-to-end submissions only. In detail:

• 5 teams (BUT, HW-TSC, LI, OPPO, VUS)
participated only with cascade systems;

• 3 teams (FBK, NIUTRANS, UPC) partici-
pated only with end-to-end systems;

• 4 teams (APPTEK, VOLCTRANS,
ESPNET-ST,KIT) participated with both
cascade and end-to-end systems.

In total, 55 runs were evaluated: 24 ob-
tained from cascade systems and 31 obtained
from end-to-end systems. Concerning the seg-
mentation of the test data (own/given), most of
the primary submissions (7 out of 12) were ob-
tained with “own” segmentation strategies aimed
to improve the given automatic audio splits pro-
vided to participants like in last year’s round of
the task. As regards the data condition (con-
strained/unconstrained), all participants but two
(BUT and UPC) opted for “constrained” submis-
sions obtained by building their ST models only
using the provided training resources.

In the following, we provide a bird’s-eye de-
scription of each participant’s approach.

APPTEK (Bahar et al., 2021b) participated with
both cascade and end-to-end speech translation
systems fed with “own” automatic segmentation
of the test data. The primary cascade system is
akin to the conventional cascade systems where
source transcriptions are generated as an interme-
diate representation. ASR exploits an attention-
based model (Bahdanau et al., 2015; Vaswani
et al., 2017) trained following Zeyer et al. (2018),

21http://www-i6.informatik.rwth-aachen.
de/web/Software/mwerSegmenter.tar.gz

while the MT component is based on the big
Transformer model model. Passing on the re-
normalized ASR posteriors into the MT model, the
model is trained in an end-to-end fashion (inspired
by the posterior tight integrated model by Bahar
et al. 2021a) using all ASR, MT, and ST available
training data. The system uses an improved auto-
matic segmentation based on voice activity detec-
tion (VAD) and endpoint detection (EP). The pri-
mary end-to-end system also processes the speech
input with “own” automatic segmentation. It is
based on an ensemble of 4 models combining an
LSTM speech encoder and a big Transformer de-
coder, as well as a pure Transformer model for
both the encoder and the decoder. The mod-
els are trained using CTC attention loss, spec-
trogram augmentation, pretraining, synthetic data
using forward translation, and fine-tuned on the
in-domain TED talks. Following Gaido et al.
(2020a), the direct model is also fine-tuned on au-
tomatically segmented data to increase its robust-
ness against sub-optimal non-homogeneous utter-
ances.

BUT (Vydana et al., 2021) participated with
a cascade system fed with the “given” automatic
segmentation of the test data. The primary sub-
mission is obtained from a system exploiting joint
training of the ASR and MT components, model
ensembling and tight ASR-MT coupling. Both
ASR and MT are pre-trained on pre-processed
clean data and rely on Transformer-based com-
ponents. Two different ASR models are respec-
tively trained to generate normalized and punctu-
ated text, the latter leading to better results. In the
proposed joint training procedure, the context vec-
tors from the final layer of the ASR-decoder are
used as inputs by the MT module, and both mod-
els are jointly optimized using a multi-task loss.
At inference time, beam search is used to obtain
the ASR hypotheses, and the corresponding con-
text vectors obtained from the ASR model are used
by the MT model for generating translations. The
MT model also uses a beam search to produce the
hypothesis and the final ST hypothesis is obtained
by a coupled search using the joint likelihood from
ASR and MT.

ESPNET-ST (Inaguma et al., 2021) participated
with both cascade and end-to-end speech transla-
tion systems, with primary focus on the direct ap-
proach. Both systems are fed with “own” auto-
matic segmentation of the test data. The primary
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cascade system exploits an ASR component based
on Conformer (Gulati et al., 2020a) and an MT
component built with Transformer-base trained
without case information and punctuation marks.
The primary end-to-end system is based on the
Conformer encoder, a stacked multi-block archi-
tecture including a multi-head self-attention mod-
ule, a convolution module, and a pair of position-
wise feed-forward modules in the Macaron-Net
style (Lu et al., 2019). The baseline conformer is
improved by training with sequence-level knowl-
edge distillation and by adopting a Multi-Decoder
architecture (which equips dedicated decoders for
speech recognition and translation tasks in a uni-
fied encoder-decoder model enabling search in
both source and target language spaces during in-
ference), model ensembling and improved VAD-
based audio segmentation (a “bottom-up” variant
of (Potapczyk and Przybysz, 2020; Gaido et al.,
2021)).

FBK (Papi et al., 2021) participated with an
end-to-end-system fed with “own” automatic seg-
mentation of the test data. The primary submis-
sion is obtained from a Transformer-based archi-
tecture trained with a pipeline involving data aug-
mentation (SpecAugment (Park et al., 2019) and
MT-based synthetic data) and characterized by
knowledge distillation and a two-step fine-tuning
procedure. Both knowledge distillation and the
first fine-tuning step (optimized by combining la-
bel smoothed cross entropy and the CTC scoring
function described in Gaido et al. 2020b) are car-
ried out on manually segmented real and synthetic
data. The second fine-tuning step is carried out on
a random segmentation of the MuST-C v2 En-De
dataset, aimed to make the system robust to auto-
matically segmented test audio data (Gaido et al.,
2020a). For the same purpose, a custom hybrid
segmentation procedure (Gaido et al., 2021) is ap-
plied to the test data before passing them to the
system.

HW-TSC participated with a cascade system
fed with “own” automatic segmentation of the test
data. The ASR component is a Transformer-large
model, which is trained on the combination of Lib-
riSpeech, MUST-C v2 and COVOST, where tran-
scriptions are pre-pended by a label indicating the
source corpus to make them distinguishable. Dur-
ing inference, the model is forced to decode in the
MUST-C alike style by setting the first token as the
MUST-C tag. The MT model is a Transformer-

large model trained on the WMT19 corpus and
fine-tuned on IWSLT-2017 text translation corpus.

KIT (Nguyen et al., 2021) participated with
both cascade and end-to-end speech translation
systems fed with “own” automatic segmentation
of the test data (obtained from the WerRTCVAD
toolkit22). The primary cascade system exploits
sequence-to-sequence ASR models trained with
three architectures (LSTM, Transformer and Con-
former). Before MT, a Transformer-based seg-
mentation module is in charge to (monolingually)
translate disfluent, broken, uncased ASR outputs
into more fluent, written-style text with punctua-
tion in order to match the data conditions of the
translation system. This is done in a shifting win-
dow manner, in which decisions are drawn by
means of a simple voting mechanism. For MT,
the systems relies on an ensemble of Transformer-
large models trained on both clean and noisy syn-
thetic (TED-derived) data. The primary end-to-
end system is an improved version of last year’s
Speech Relative Transformer architecture (Pham
et al., 2020c). Its encoder self-attention layer
uses Bidirectional relative attention (Pham et al.,
2020a) to model the relative distance between
one position and other positions in the sequence.
Three models, trained with SpecAugment (Park
et al., 2019) and different activation functions
(GeLU, SiLU and ReLU), are eventually com-
bined in an ensemble.

LI participated with a cascade system fed with
the “given” automatic segmentation of the test
data. Both the ASR (three models) and the MT
components (two models) are based on fairseq
(Ott et al., 2019)23 and were trained on MuST-C
data.

NIUTRANS (Xu et al., 2021b) participated with
an end-to-end-system fed with “own” automatic
segmentation of the test data. The primary sub-
mission relies on a deep Transformer model im-
plemented in fairseq and improved by adding the
CTC loss as auxiliary loss on the encoders. The
system is also enhanced with Conformer (used to
replace the Transformer blocks in the encoder),
relative position encoding (to improve acoustic
modeling and generalize better for unseen se-
quence lengths; Shaw et al., 2018), and stacked
acoustic and textual encoding (to better encode the

22http://github.com/wiseman/
py-webrtcvad

23http://github.com/pytorch/fairseq.git
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speech features; Xu et al., 2021a). Data augmenta-
tion is also applied via spectrogram augmentation,
speed perturbation and sequence-level knowledge
distillation, as well as by generating new synthetic
speech from MT data and by translating into Ger-
man the English transcriptions of ASR and ST
data. Finally, ensemble decoding is applied to in-
tegrate the predictions from several models trained
with the different datasets.

OPPO participated with a cascade system fed
with the “given” automatic segmentation of the
test data. The primary submission is based on
Transformer for both the ASR and MT compo-
nents, which are trained on part of allowed train-
ing datasets (MUSTC, LibriSpeech, CoVost, and
WMT20). Structured dropout is applied to in-
crease the differences between different models,
which are eventually combined via average en-
sembling.

UPC (Gállego et al., 2021) participated with an
end-to-end-system fed with “own” automatic seg-
mentation of the test data (inspired by (Potapczyk
et al., 2019)). The primary submission combines
a Wav2Vec 2.0 encoder and an mBART decoder,
which are respectively pre-trained on the ASR and
MT tasks. A length adaptor module, consisting
of a stack of convolutional layers, alleviates the
length discrepancy between the speech and text
modalities. Model fine-tuning to the ST task was
carried out following the LNA strategy proposed
in (Li et al., 2021). In addition, based on the ST
improvements reported in (Escolano et al., 2020),
an Adapter module was added to extract richer
representations from the output of the encoder
(Bapna and Firat, 2019). Data augmentation is
also performed via randomized on-the-fly pertur-
bations obtained by adding an echo effect and by
modifying tempo and pitch, as well as by apply-
ing masking to the output of the Wav2Vec 2.0 fea-
ture extraction module. Different approaches were
explored to combine the fine-tuning of the pre-
trained models and the training of the intermedi-
ate modules. The best performance was obtained
with a two-stage strategy, where: 1) the Wav2Vec
and mBART models are frozen and the interme-
diate modules are forced to learn how to couple
them; 2) model fine-tuning follows the LNA strat-
egy, starting from the solid initial point obtained
in the previous step.

VOLCTRANS (Zhao et al., 2021) participated
with both cascade and end-to-end speech transla-

tion systems fed with the “given” automatic seg-
mentation of the test data. The primary cascade
system exploits a Transformer-based ASR trained,
using spectrogram augmentation, on both clean
and filtered noisy data. MT processing relies on
Transformer-based models trained with data aug-
mentation (via back-translation, knowledge dis-
tillation and ASR output adaptation) and com-
bined with model ensemble techniques. The pri-
mary end-to-end system is trained by exploiting
knowledge distillation (leveraging ASR datasets
and four MT models) for data augmentation. The
encoder and the decoder are pre-trained in a pro-
gressive multi-task learning framework, also ex-
ploiting a fbank2vec network to learn contextual-
ized audio representations from log Mel-filterbank
features.

VUS (Jo et al., 2021) participated with a cas-
cade system fed with the “given” automatic seg-
mentation of the test data. For the ASR compo-
nent, a pretrained wav2vec 2.0 model (Baevski
et al., 2020) was used for the embeddings, and
the training was conducted with a Transformer
augmented on the output layer of the wav2vec
module. Following Potapczyk and Przybysz
(2020), data pre-processing was made to remove
training samples (laughters, applauses and erro-
neous scripts) that can lower the ASR perfor-
mance. ASR output post-processing was also car-
ried out to obtain an accurate sentence-level out-
put, such as setting the sentence boundary be-
tween the fragment texts and re-aggregating some
wrongly merged sentences. The MT compo-
nent, also based on Transformer, was trained on a
pre-processed version (language identification and
length-based filtering and written-to-spoken text
conversion through lowercasing, punctuation re-
moval and abbreviations’ expansion similar to Ba-
har et al., 2020) of the WMT 20 en-de news task
dataset.

3.4 Results

Detailed results for the offline ST task are pro-
vided in Appendix A.2. Specifically, two sep-
arate tables respectively show the BLEU scores
of participants’ primary submissions computed on
this year’s tst2021 and last year’s tst2020 test sets.
In each table, three BLEU scores are reported,
namely:

• BLEU NewRef – computed on the new (ex-
act, literal) translations described in Section
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3.2;

• BLEU TEDRef – computed on the original
(subtitle-like) TED translations;

• BLEU MultiRef – computed using both
references in a multi-reference setting.

Systems are ranked according to their
BLEU NewRef score. Background colours
are used to differentiate between cascade (white
background) and end-to-end architectures (gray
background). Additionally, the segmentation
strategy (Own vs Given) and the training data
condition (Constrained vs Unconstrained) char-
acterising each primary submission are shown in
separate columns.

Official results. In terms of this year’s
BLEU NewRef primary metric, the top-ranked
system achieved a BLEU score of 24.6, which
is slightly below the one obtained by last year’s
winning system (25.3). Also the average (19.8)
and median scores (21.7) are inferior compared
to last year’s round of the evaluation (average:
20.15; median: 21.81). These results, however,
are not comparable since they are computed on a
different test set (built from different TED talks),
which also comprises reference translations that
are not the original ones. The evaluation of this
year’s systems on tst2020, which is discussed
below, is hence more informative if we want
to get an idea about the actual evolution of ST
technology.

Computing BLEU on the original TED trans-
lations (BLEU TEDRef) results in overall scores
that are significantly lower (top submission: 20.3;
average: 16.6; median: 18.2). This large drop
indicates the difficulty for all systems to gener-
ate translations that are similar to the subtitle-like
ones characterising the recent TED talks included
in this year’s test set.

Unsurprisingly, the BLEU MultiRef results
are considerably higher due to the positive effect
of combining more references (top submission:
34.0; average: 27.7; median: 30.5). However, it is
worth remarking that, in this multi-reference set-
ting, 12 primary submissions out of 16 reached a
BLEU score above 30.0.

Cascade vs end-to-end. A major finding from
last year (Ansari et al., 2020) was about the com-
plete reduction of the performance gap between

cascade and end-to-end systems. In the same di-
rection, the analysis proposed in (Bentivogli et al.,
2021) has recently shown through manual analy-
ses and post-editing-based evaluations that the two
paradigms are now substantially on par. In appar-
ent contradiction, this year’s results depict a dif-
ferent situation: the two top ranked submissions
in the official ranking (based on BLEU NewRef)
are in fact produced with cascade systems (re-
spectively scoring 24.6 and 23.4 BLEU). The first
end-to-end submission (obtained under the same
segmentation and training data conditions) is two
BLEU points below (22.6) the top-ranked system.
However, it is interesting to note that the type of
reference translations used for evaluation makes a
big difference in terms of final results. While all
systems perform significantly worse when BLEU
is computed against the original TED translations,
some low-ranked submissions would climb the
rankings if BLEU TEDRef were used as primary
metric. Although this year’s winner would remain
the same, the 12th and 13th submission would
jump respectively to the 3rd and 2nd position. No-
tably, with a ranking based on BLEU TEDRef, 7
of the top 10 positions would be occupied by the
end-to-end submissions.24

All in all, in terms of performance distance be-
tween the two paradigms, our findings support
those of (Bentivogli et al., 2021) about relying on
automatic scores computed against independent
references. Across metrics, test sets and language
directions, they are less coherent than those com-
puted on human post-edits. Different from last
year, in this round the clear winner according to
all possible rankings is a cascade system. How-
ever, its distance from the other end-to-end sys-
tems varies considerably depending on the type
of reference translations used (down to 0.7 BLEU
points in the ranking based on BLEU TEDRef).
In light of this variability, manual analyses and
post-editing-based evaluations like the ones pre-
sented in (Bentivogli et al., 2021), would help to
precisely assess if the observed BLEU score dif-
ferences (marginal with BLEU TEDRef) actually
make one approach preferable to the other by final
users.

24System’s ranking based on BLEU NewRef would end
up similarly, with 6 end-to-end submissions in the top 10 po-
sitions (the top 2 still being the same cascade systems domi-
nating the official ranking).
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The importance of input segmentation. An-
other important finding from last year’s evaluation
concerned the importance of properly segmenting
the input speech at test time, so to feed the systems
with inputs that are closer to the sentence-like seg-
ments present in the clean corpora on which they
are trained. Also this year, the top five primary
runs submitted are all obtained by systems oper-
ating with “own” segmentation strategies, which
prove to be helpful independently of the under-
lying paradigm. This is confirmed by the fact
that the three lowest BLEU scores are achieved
by participants opting for the “given” segmen-
tation. Similar trends emerge with all possible
rankings (BLEU NewRef, BLEU TEDRef, and
BLEU MultiRef). The importance of a proper
segmentation of the input speech is even more ev-
ident if we look at the results computed on the
tst2020 test set, where the top seven runs are ob-
tained with custom segmentation and the worst
5 with the given one. These findings are in line
with last year’s observations and motivate further
efforts on improving this critical pre-processing
step.

Progress wrt 2020. Overall results computed on
tst2020 are higher compared to those obtained on
tst2021. However, being the two test sets differ-
ent as discussed above, the scores are not directly
comparable to draw reliable conclusions about the
ST technology evolution (which might wrongly
be considered as an involution by merely com-
paring raw BLEU scores on the two benchmarks).
Rather, more can be said if we only focus on how
this year’s systems behave on tst2020. The im-
provement is evident both if we look at the average
performance (increasing by more than 1 BLEU
point from 20.15 to 21.17) and if we concentrate
on the best systems. Specifically, with “own” test
data segmentation methods, three teams achieved
BLEU scores that are higher (up to 0.7 points) than
the one obtained by the 2020 winner under this
condition (25.3). With the “given” automatic au-
dio splits, two teams improved (up to 1.8 points)
the highest score obtained last year under this con-
dition (22.49). Interestingly, similar to last year,
the best system is an end-to-end one. The per-
formance distance with respect to the best cas-
cade result on tst2020 is even larger (0.6 BLEU
points) compared to the one observed last year
(0.24). On one side, these results confirm that, on
last year’s test data (and with BLEU scores com-

puted on the original TED translations), the end-
to-end paradigm has an edge on the cascade one.
On the other side, they confirm the above observa-
tions about the variability of automatic evaluation
outcomes, which are highly affected by the overall
testing conditions.

Final remarks. By inspecting this year’s results,
we can draw two final observations that, with an
eye at the future, provide us with possible indi-
cations for the next rounds of the IWSLT offline
ST task. One is about the training data condi-
tion: additional training resources did not yield
visible advantages. Unfortunately, having only
two “unconstrained” submissions makes it hard to
draw reliable conclusions on this aspect. How-
ever, one might wonder if differentiating between
constrained and unconstrained submissions still
makes sense if the general goal is to boost research
on a rapidly evolving technology. Is it a good
source of interesting observations or has it become
an irrelevant distinction? Reasoning on this ques-
tion might yield indications for future rounds of
the task.

The other observation is about how perfor-
mance is distributed with respect to the two ST
paradigms: while the results of cascade systems
are spread across the whole performance interval
(3.6 – 24.6 for BLEU NewRef), the scores ob-
tained by end-to-end models are concentrated in a
two-point interval (20.6 – 22.6). Such a close per-
formance of direct models should stimulate reflec-
tion on the fact that either the architectural restric-
tions posed to define the “end-to-end” setting (i.e.
bypass any intermediate symbolic representation),
or other limitations of current technology, result
in systems that are quite similar to each other. Is it
still reasonable, for the good of ST, limiting partic-
ipant’s freedom with arbitrary, pre-defined archi-
tectural constraints? Setting less restrictive con-
ditions to experiment with, thus opening to partic-
ipation with alternative approaches (e.g. by avoid-
ing explicit architectural constraints) is a possi-
ble direction to promote more innovation in future
rounds of the evaluation campaign.

4 Multilingual Speech Translation

While multilingual translation is an established
task, until recently, few parallel resources ex-
isted for speech translation and most remain only
for translation from English speech. Multilin-
gual models enable transfer from related tasks,
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which is particularly important for low-resource
languages; however, parallel data between two
otherwise high-resource languages can also often
be rare, making multilingual and zero-shot trans-
lation important for many resource settings.

In addition to parallel speech and translations,
many sources of data may be useful for speech
translation: monolingual speech and transcripts,
parallel text, and data from other languages or lan-
guage pairs. While cascades of separately trained
automatic speech recognition (ASR) and machine
translation (MT) models can leverage all of these
data sources, how to most effectively do so with
end-to-end models remains an open and exciting
research question.

Speech Target Languages
en es fr pt it

es Supervised Supervised Supervised Supervised Supervised
fr Supervised Supervised Supervised Supervised —
pt Supervised Zero-shot — Supervised —
it Zero-shot Zero-shot — — Supervised

Table 3: Multilingual task language pairs. Lan-
guages are represented by their ISO 639-1 code.
Speech, transcripts, and translations were provided for
all Supervised tasks; for Zero-shot ST tasks, only
speech and transcripts were provided during training,
though target language text may be seen with other
source languages. Participants were required to submit
translations for all official translation directions.

4.1 Challenge

Motivated by the above, the multilingual speech
translation task provided data for two condi-
tions: supervised, and zero-shot. We provided
speech and transcripts for four languages (Span-
ish, French, Portuguese, Italian) and translations
in a subset of five languages (English, Span-
ish, French, Portuguese, Italian) as shown in Ta-
ble 3. For zero-shot language pairs, data for
ASR (speech and transcripts) was released for
training, but not translations; the target languages
could be observed in other language pairs in train-
ing. Both translation directions for one source
language (Italian) and one of two translation di-
rections for another (Portuguese) were chosen to
be zero-shot to enable comparison between su-
pervised and zero-shot conditions with the same
source language, and to measure the impact of
having no supervised ST data at all. Participants
could use the provided resources in any way.

At evaluation time, we provided speech in the

four source languages and asked participants to
generate translations in both English and Spanish.
Both constrained submissions (using the provided
data only, e.g., no models pretrained on external
data) and unconstrained submissions were encour-
aged and evaluated separately. Submitting transla-
tions for additional optional language pairs as well
as generated transcripts (ASR) for evaluation was
not mandatory but encouraged as a useful point of
analysis.

4.2 Data and Metrics

For this task we use the Multilingual TEDx data
(mTEDx) (Salesky et al., 2021). The data is
derived from TEDx talks and translations. The
mTEDx data is segmented and aligned at the
sentence-level (using automatically generated seg-
mentations and alignments). mTEDx is publicly
available on OpenSLR.25 The data released dur-
ing the training period contained train, valida-
tion, and progress test sets. For the purposes of
this task, ST data for three language pairs was
withheld until after the evaluation period (Zero-
shot in Table 3). Use of any of resources be-
yond Multilingual TEDx made a submission un-
constrained. Any publicly available additional
data or pretrained models were permitted for train-
ing unconstrained systems.

We evaluated translation output using BLEU
as computed by SACREBLEU (Post, 2018) and
WER for ASR output. We computed all scores
using the provided utterance segmentations from
Multilingual TEDx. WER was computed on low-
ercased text with punctuation removed.

4.3 Submissions

We received 15 submissions from 7 teams.
FAIR (Tang et al., 2021a) submitted uncon-

strained end-to-end models which leverage pre-
trained multilingual wav2vec 2.0 and mBART
models, and finetune on the provided mTEDx MT
and ST data as well as additional corpora. They
compare different wav2vec 2.0 models trained
on different multilingual corpora and either text
(Baevski et al., 2020) or IPA targets (Wang et al.,
2021), and mBART with BPE (Liu et al., 2020)
or IPA representations (Tang et al., 2021b). They
combine different joint and speech-only finetun-
ing, and add an adaptor layer (Li et al., 2021)
between the two pretrained models for adapta-

25http://openslr.org/100/
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tion and downsampling. They ultimately ensem-
ble three models for their final submission.

HWN (Zeng et al., 2021) used a unified
Transformer architecture in which audio and text
data can be featurized separately by a Conv-
Transformer (Huang et al., 2020) and text embed-
dings, before being fused and used as input to a
single encoder and decoder. They use curriculum
learning by first training the unified model for the
ASR and MT tasks, then continue training adding
the ST task and finally fine-tuning using the ST
task data only. They also use multiple data aug-
mentation techniques and model ensembling.

KIT (Pham et al., 2021) trained deep Trans-
former models with relative attention for ASR and
ST (Pham et al., 2019, 2020b) to create both cas-
caded and E2E models. They used additional tech-
niques such as distillation, Macaron feed-forward
layers, and the creation of synthetic data to signif-
icantly improve both models’ performance. Their
final submission is an ensemble of their cascade
and E2E systems.

UM-DKE (Liu and Niehues, 2021) trained
multilingual cascade and E2E models with a va-
riety of techniques to improve performance. They
start with a multilingual ASR model, which incor-
porates language embeddings, speed perturbation,
and ensembling. They improve their multilin-
gual MT by removing residual connections in the
Transformer architecture, and further ensembling.
Finally they train an E2E ST system which ben-
efits from joint training with ASR, pseudo-labels
for synthetic data to improve zero-shot pairs, and
‘multi-view ensembling,’ which ensembles prob-
abilities based on three different speed perturba-
tions.

ON-TRAC (Le et al., 2021) used a dual-
decoder Transformer architecture (Le et al., 2020),
which includes a single encoder for speech data
and separate decoders (that interact with each
other) for each of the ASR and ST tasks. They
trained ASR and MT models to initialize the ST
model and used SpecAugment augmentation. No
synthetic data was created for zero-shot transla-
tion.

UEDIN (Zhang and Sennrich, 2021) trained
multilingual Transformer models with adaptive
feature selection (Zhang et al., 2020) to reduce
data dimensionality by selecting the most informa-
tive speech features. They create pseudo-speech
translation data which provides significant im-

provements on all language pairs, not only zero-
shot. They additionally use sparsified linear at-
tention, RMSNorm, scheduling language-specific
modeling, and multi-task learning to improve their
models, and ensemble models of multiple sizes for
their final submission.

ZJU (Zhang, 2021) submitted an ensemble of
cascaded ST models, using a Conformer (Gulati
et al., 2020b) for ASR and a multilingual Trans-
former MT model. They use back-translation to
create data for zero-shot pairs, add noised data to
adapt their MT model to ASR output, and include
masked training. They additionally compared end-
to-end models with data augmentation and multi-
task training.

4.4 Results

Results for the Multilingual Task are shown in Ap-
pendix A.3. We calculated task results using the
average BLEU on all official ST language pairs:
all primary submissions are shown in Table 5.
The unconstrained submission from FAIR outper-
formed all other primary submissions on both su-
pervised and zero-shot language pairs. The KIT
submission was the strongest constrained system,
aided in part by strong ASR pretraining: ASR re-
sults are shown in Table 8. All but one primary
submission were ensembles of either multiple end-
to-end systems, or end-to-end and cascaded mod-
els. We saw a mix of end-to-end and cascaded sub-
missions across primary and constrastive submis-
sions (Table 6); in general, the end-to-end models
outperformed cascaded submissions, particularly
under zero-shot conditions. We discuss different
aspects of the task and submissions further below.

Constrained vs unconstrained. Use of addi-
tional data beyond mTEDx appeared to be a clear
benefit on all ST pairs, as the FAIR system per-
formed best on all language pairs. Interestingly,
the performance difference between the best un-
constrained and constrained systems across su-
pervised and zero-shot tasks was similar. When
we look at the constrastive submissions and ASR,
however, the underlying reason appears not to be
the additional data but rather how it is used. The
FAIR baseline is initialized from the multilingual
wav2vec2.0 model XLSR-53 and the mBART de-
coder, and is outperformed by many constrained
systems. The other FAIR submissions used co-
training with the text-to-text MT task and IPA rep-
resentations for ASR and/or MT models for sig-
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nificant improvements.

Zero-shot performance. Overall we saw very
encouraging performance on the zero-shot pairs,
with very little degradation from the supervised
language pairs for many systems. Three lan-
guage pairs were zero-shot: pt-es, it-en, and it-
es. While Portuguese speech was observed in an-
other translation pair, Italian speech was only ob-
served for ASR. The Italian pairs proved more
challenging, but most systems nonetheless out-
perform the supervised end-to-end baselines in
Salesky et al. (2021) through some combination
of decoder pretraining, auto-encoding ASR data,
or back-translation. Comparing supervised and
zero-shot performance with the same source lan-
guage (pt), we saw stronger performance on the
zero-shot than supervised condition, likely indica-
tive of the relatedness of the source and target lan-
guages, facilitating zero-shot translation. Though
much more English target data has been seen (for
constrained systems), pt-es and it-es are both more
closely-related languages, and all but one system
show better results on these two zero-shot lan-
guage pairs than it-en. For teams which submit-
ted both end-to-end and cascaded models, there
were small but consistent improvements on zero-
shot with end-to-end; this may suggest that E2E
models more easily transfer from observed re-
lated languages and pairs, or perhaps that end-to-
end models were more optimized. The systems
with the greatest relative difference between su-
pervised and zero-shot pairs were FAIR, HWN,
and ON-TRAC. HWN had better performance
for languages with more ASR data, and ON-
TRAC struggled without e.g. auto-encoding text.

ASR performance impact. Interestingly, ASR
performance was not necessarily indicative of ST
performance; HWN and KIT ASR outperformed
the FAIR ASR without additional training data or
ensembling, with the exception of French where
both systems struggled, particularly KIT. This
was shown in ST performance; UEDIN outper-
formed KIT on language pairs where French was
the source language, precisely where UEDIN had
better ASR. All submitted ASR systems outper-
formed the end-to-end ASR in Salesky et al.
(2021), in part through better optimization and use
of multilingual models, and in particular use of
the CTC objective. Their hybrid LF-MMI mod-
els remain generally stronger for Portuguese and

French; not necessarily correlated with data size.

Ensembling. Most primary systems were en-
sembles of 2+ models, which provided improve-
ments of up to 2 BLEU compared with the indi-
vidual systems, some of which were submitted as
constrastive (Table 6). We saw different ensem-
bling techniques, using joint decoding or averag-
ing model output probabilities. Ensembled mod-
els were alternatively models of different sizes
(UEDIN), trained on different data (FAIR), dif-
ferent combinations of fine-tuning and knowledge
distillation (HWN), system with back-translations
and with ASR noise added (ZJU), speed perturba-
tions of the same input (UM-DKE), or cascaded
and end-to-end models (KIT).

Unofficial language pairs. The unofficial lan-
guage pairs (Table 7) have the same source lan-
guages as the official language pairs, but different
target languages. The test sets are parallel with
the official blind evaluation sets. The relative per-
formance between primary systems on these ad-
ditional targets remains similar. Performance on
more closely related languages (es-pt) was in fact
generally higher, and language pairs with less-
observed target languages (es-fr, es-it) were lower.
The exception was FAIR, where average perfor-
mance was almost exactly the same as on the offi-
cial supervised pairs; the additional datasets used
for pretraining likely erase some of these resource
differences, supported by the differences between
their constrastive submissions which use different
pretraining sources.

End-to-End vs Cascade. Three groups submit-
ted an end-to-end system and a cascaded sys-
tem. In all three cases, the end-to-end system out-
performs the cascaded approach. Since the ten-
dency in the offline translation task (section 3)
is different (there the cascaded approaches typi-
cally perform better than the end-to-end models),
this opens up several interesting research ques-
tions that should be investigated further. There
are several differences between the two tasks that
could influence the ranking between the end-to-
end and cascaded models: First of all, the amount
of ASR and MT training data that is available in
addition to end-to-end training data is different.
In the offline task, there is significantly more data
available for the auxiliary tasks (particularly MT),
which may benefit cascaded models more. Sec-
ondly, the multilingual task uses provided auto-
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matic sentence segmentation which is consistent
across train and test, while the offline task does
not provide segmentation at test time, requiring
teams to perform segmentation to translate, similar
to online or simultaneous conditions, which cas-
caded models may be more robust to. And finally,
the ability to facilitate multilingual and zero-shot
speech translation might be different in end-to-end
and cascaded models.

5 Low-Resource Speech Translation

The goal of the low-resource speech translation
task is to investigate pathways for developing
speech translation systems for currently under-
served languages. The majority of the world’s lan-
guages are predominantly oral, hence the need for
speech-based language tools (translation included)
is paramount for them to be of any use to the lan-
guage community. At the same time, most of these
languages are also under-resourced, with little to
no data being available for speech transcription
and translation.

While offline speech translation has a long-
standing tradition at the IWSLT campaign and
both monolingual and multilingual models of-
fer impressive promises for downstream model
deployment, the majority of recent advances in
speech translation both require large amounts of
data and are typically benchmarked on language
pairs with such data abundance. However, for the
vast majority of the world’s languages there exist
little speech-translation parallel data at the scale
needed to train modern speech translation mod-
els. Instead, in a real-world situation one will have
access to limited, disparate resources (e.g. word-
level translations, speech recognition, small par-
allel text data, monolingual text, raw audio, etc).
The low-resource track aims to fill this gap, by
encouraging and facilitating research on speech-
translation for data-scarce language pairs.

5.1 Challenge

As described above, the shared task focused
on the problem of developing speech transcrip-
tion and translation tools for under-resourced lan-
guages. This year’s iteration in particular focused
on speech translation tools that would match the
real-world needs of humanitarian organizations.

There were no restrictions on the type of mod-
els (e.g. end-to-end vs. cascade) or additional
data that were allowed, the goal for the partic-

ipants being producing the best possible system
under these challenging settings. In collaboration
with the Translators without Border, we provided
newly collected speech and transcripts in two lan-
guages, Coastal Swahili (ISO code: swh) and Con-
golese Swahili (ISO code: swc), as well as trans-
lations in English and French respectively. In ad-
dition, we provided pointers to other monolingual
speech datasets in the source Swahili varieties, as
well as textual parallel corpora between the source
and target languages.

5.2 Data and Metrics

The Swahili Varieties Speech Translation
Dataset For the purposes of the task we created
and released a new speech translation dataset for
the two Swahili varieties. The new dataset is pub-
licly available.26

The training data were derived from the
Gamayun minikits that the Translators without
Borders had released for Congolese and Coastal
Swahili text translation (Öktem et al., 2020),
which included sentence-level translations be-
tween Coastal Swahili and English as well as Con-
golese Swahili and French.27 We additionally col-
lected read versions for 5,000 sentences from this
dataset. For each variety the training set includes
voices from 6 speakers (3 male and 3 female). The
collection was carried out using mobile phones, as
opposed to clean studio settings, to better match
the real-world use-case scenarios the shared task
envisions.

The development and test data are derived from
the TICO-19 dataset (Anastasopoulos et al., 2020),
which is a multi-parallel evaluation benchmark on
the COVID-19 domain in more than 33 languages.
The original English sentences were translated
into Coastal Swahili and French, and the French
translations were then translated into Congolese
Swahili. All translations were performed by pro-
fessional translators and an extensive quality as-
surance process was followed. For the purposes of
the shared task we additionally collected read ut-
terances in the two Swahili varieties for all 3k sen-
tences. We follow the original dev and test splits.
The dev set utterances encompass 2 speakers (1

26https://drive.google.com/file/d/
1lhifoEY0Kzj6s11W_taKoVW_mAvzzZ04/view?
usp=sharing

27This dataset was previously used for developing text-
based translation systems for humanitarian response (Öktem
et al., 2021).

16



Language Train Dev Test
Pair #utt. #speakers #utt. #speakers #utt. #speakers

swh-eng 4599 6 (3M, 3F) 868 2 (1M, 1F) 1063 3 (2M, 1F)
swc-fra 5000 6 (3M, 3F) 868 2 (1M, 1F) 2124 6 (3M, 3F)

Table 4: Statistics of the newly-released Swahili varieties speech translation corpus.

male, 1 female) in each language, and the test set
includes 3 (2M, 1F) and 6 (3M, 3F) speakers for
swh and swc respectively.

Statistics on the whole dataset used for the
shared task following cleaning and preprocessing
are listed in Table 4. The final dataset is 4-way par-
allel; the English and French sides are translations
of each other, creating opportunities for the evalu-
ation of multilingual systems, as well as, in the fu-
ture, speech-to-speech translation between the two
Swahili varieties.

Additional Data Last, we reiterate that we al-
lowed the use of any other available data, such as
any data from the Offline and Multilingual Shared
Tasks, any speech recognition corpora like the
Swahili ALFFA dataset (Gelas et al., 2012) or
the Mozilla Common Voice datasets (Ardila et al.,
2020), as well as any text translation datasets like
the Gamayun minikits (Öktem et al., 2020). We
also allowed the use of pre-trained models like
wav2vec (Schneider et al., 2019; Baevski et al.,
2020) or mBART (Liu et al., 2020) (among oth-
ers).

Metrics Systems’ performance was evaluated
with respect to their capability to produce trans-
lations similar to the target-language references.
We used the BLEU metric computed with Sacre-
BLEU, in a case-insensitive setting. In addition,
we invited participants who produced speech tran-
scriptions in the Swahili variety as a by-product of
their system (e.g. if they use a ASR+MT cascade
approach) to also submit them. These were evalu-
ated using case-insensitive word error rate (WER).
The choice of case-insensitivity is due to our focus
on producing usable output that aids comprehen-
sion; we deem that the effect of proper casing is
largely minor in such challenging settings.

5.3 Submissions

The shared task received 4 submissions (9 total
runs across the {swh,swc}×{eng,fra} pairs) from
3 teams. All teams followed a cascade ASR→MT

approach in their primary submission – this indi-
cates that end-to-end learning is still very chal-
lenging in such data-scarce settings, and leaves a
lot of room for further future exploration.28

In the following, we provide an overview of
each submission.

USYD-JD (Ding et al., 2021) uses a pipeline
approach, focusing in the MT component and its
ability to handle ASR errors. The ASR compo-
nent is trained on the Swahili Varieties dataset,
the ALFFA corpus, and the IARPA Babel Swahili
Language Pack using the default settings in Kaldi,
also lowercasing all sentences and removing punc-
tuation. The final ASR is post-corrected with
the SlotRefine method (Wu et al., 2020). The
MT component is a Transformer (Vaswani et al.,
2017) that operates in a non-autoregressive man-
ner, trained on almost all available OPUS swa-
eng datasets, but additionally utilizing denoising
pre-training and bidirectional self-training, tagged
back-translation, transductive fine-tuning, output
reranking and output post-processing. This NMT
system is the only that explores extensive strate-
gies for denoising and pre-training, reaching a

IMS (Denisov et al., 2021) uses a pipeline ap-
proach. The ASR component for the primary
submission is a Conformer (Gulati et al., 2020b)
in its ESPnet implementation, trained by fine-
tuning a pretrained SPGISpeech model (O’Neill
et al., 2021) on both Swahili varieties using the
Swahili Varieties dataset, Gamayun samples, the
ALFFA corpus, and the IARPA Babel Swahili
Language Pack, also applying some preprocessing
steps like converting all numbers to words and re-
moving punctuation. The MT system is a Trans-
former (Vaswani et al., 2017) using multi-task
learning by tagging the input (to distinguish clean
text vs. ASR output). They also attempted an end-

28We note that the shared task received more than 20 initial
registrations. We suspect that the limited amount of received
submissions was exactly because of how challenging it can
be to create a system that produces decent outputs in these
extremely low-resource settings.
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to-end ST system which however performed sig-
nificantly worse.

ON-TRAC (Le et al., 2021) used a pipeline
approach, using a hybrid HMM/TDNN au-
tomatic speech recognition system fed by
wav2vec (Schneider et al., 2019) features, with its
output then provided to a neural MT system. The
ASR system was trained on the Swahili Varieties
dataset, the ALFFA corpus, and the IARPA Babel
Swahili Language Pack. The NMT system uses
LSTMs with attention, with the swa-eng also us-
ing subwords, while the swc-fra system operates
at the word level. The swa-eng MT system was
trained on 2.2M sentence pairs, resulting from the
filtering through langID of all data available on
OPUS.29 The swc-fra NMT system was trained
on 1.1M parallel sentences.

5.4 Results
Out of the submitted systems, the USYD-JD sub-
mission that explored pre-training strategies was
the clear winner of the eng-swa task achieving a
BLEU score (case insensitive) of 25.3. Notably,
they only focused on the MT component of the
pipeline, making it robust to ASR errors and utiliz-
ing monolingual data effectively through denois-
ing and pre-training. For the swc-fra pair, the IMS
system was the best performing submission for
the swc-fra pair with a BLEU score of 13.5. The
evaluation of all submissions (including optional
language pairs and ASR transcription accuracy) is
provided in the Appendix.

The difference in accuracy between the two lan-
guage pairs could potentially be attributed to the
lack of data in Congolese Swahili (as most avail-
able datasets are in the Coastal variety). How-
ever, the pre-training approaches that the USYD-
JD submission uses seem very promising towards
building robust MT systems also for the Con-
golese variety. A clear path for future work to-
wards even better ST systems could explore a
pipeline of the improved ASR systems of the ON-
TRAC or IMS submissions with the NMT system
of the USYD-JD submission. The lack of end-to-
end approaches in the submissions (and the evi-
dence from the IMS contrastive submission) sug-
gest that additional research is needed in order to
achieve competitive results in such data-scarce set-
tings with end-to-end models.

29https://opus.nlpl.eu/
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Overview of the IWSLT 2012 Evaluation Campaign.
In Proceedings of the International Workshop on
Spoken Language Translation, pages 11–27, Hong
Kong, HK.

Cameron Shaw Fordyce. 2007. Overview of the
IWSLT 2007 evaluation campaign. In Proceedings
of the International Workshop on Spoken Language
Translation, pages 1–12, Trento, Italy.

Ryo Fukuda, Yui Oka, Yausumasa Kano, Yuki Yano,
Yuka Ko, Hirotaka Tokuyama, Kosuke Doi, Sakri-
ani Sakti, Katsuhito Sudoh, and Satoshi Nakamura.
2021. NAIST English-to-Japanese Simultaneous
Translation System for IWSLT 2021 Simultaneous
Text-to-text Task. In Proceedings of the 18th Inter-
national Conference on Spoken Language Transla-
tion (IWSLT).

Marco Gaido, Mattia Antonino Di Gangi, Matteo Ne-
gri, Mauro Cettolo, and Marco Turchi. 2020a. Con-
textualized translation of automatically segmented
speech. In Proceedings of Interspeech 2020, 21st
Annual Conference of the International Speech
Communication Association, pages 1471—-1475,
Shanghai, China.

Marco Gaido, Mattia Antonio Di Gangi, Matteo
Negri, and Marco Turchi. 2020b. End-to-End
Speech-Translation with Knowledge Distillation:
FBK@IWSLT2020. In Proceedings of the 17th In-
ternational Conference on Spoken Language Trans-
lation (IWSLT).

Marco Gaido, Matteo Negri, Mauro Cettolo, and
Marco Turchi. 2021. Beyond voice activity detec-
tion: Hybrid audio segmentation for direct speech
translation.

Gerard I. Gállego, Ioannis Tsiamas, Carlos Escolano,
and Marta R. Costa-jussà José A. R. Fonollosa.
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A.1. Simultaneous Speech Translation
⋅ Summary of the results of the simultaneous speech translation text track.⋅ Results are reported on the blind test set and systems are grouped by latency regime (set on tst-COMMON v2 or IWSLT21 dev set)⋅ Raw system logs are also provided on the task web site.30

English-German tst-COMMON v2 Blind Test Set

BLEU AL AP DAL BLEU AL AP DAL

Low Latency

USTC-NESLIP 33.16 2.66 0.64 4.38 26.89 2.81 0.63 4.72
VOLCTRANS 28.76 2.86 0.69 4.22 23.24 3.08 0.68 4.25
APPTEK 30.03 2.94 0.68 4.40 22.84 3.12 0.66 4.66
UEDIN 25.06 2.33 0.63 3.69 22.30 4.22 0.71 5.54

Medium Latency

USTC-NESLIP 34.82 5.80 0.80 8.89 29.40 5.94 0.78 9.29
VOLCTRANS 32.88 5.80 0.83 9.05 27.22 6.30 0.81 9.24
APPTEK 31.73 5.89 0.80 9.57 25.70 6.22 0.78 10.40
UEDIN 30.58 5.89 0.80 7.20 24.56 6.92 0.81 8.20

High Latency

USTC-NESLIP 35.47 12.21 0.95 15.18 30.03 12.35 0.93 16.33
VOLCTRANS 33.23 11.03 0.93 11.40 26.82 12.03 0.92 12.39
APPTEK 33.16 11.19 0.92 14.44 26.62 12.00 0.91 16.05
UEDIN 33.10 14.69 0.98 15.17 26.50 15.41 0.96 16.04

English-Japanese IWSLT 21 DEV Blind Test Set

BLEU AL AP DAL BLEU AL AP DAL

Low Latency

USTC-NESLIP 16.36 4.90 0.79 10.30 17.54 4.92 0.78 8.18
VOLCTRANS 15.80 6.34 0.89 13.57 16.91 6.54 0.89 11.26
NAIST 13.77 7.29 0.88 8.07 14.41 7.21 0.88 7.97

Medium Latency

USTC-NESLIP 17.53 8.42 0.92 11.81 18.30 7.61 0.90 10.59
VOLCTRANS 15.80 6.34 0.89 13.57 16.91 6.54 0.89 11.26
NAIST 15.22 11.48 0.97 11.98 16.20 11.54 0.97 11.98

High Latency

USTC-NESLIP 17.28 11.67 0.97 11.14 18.17 11.71 0.97 13.72
VOLCTRANS 15.85 11.19 0.97 0.97 16.97 11.27 0.97 11.90
NAIST 15.57 13.70 0.99 13.91 16.19 13.83 0.99 14.01

30https://iwslt.org/2021/simultaneous
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⋅ Summary of the results of the simultaneous speech translation (segmented and unsegmented) speech track⋅ Results are reported on the blind test set and systems are grouped by latency regime (set on tst-COMMON v2, only segmented input.)⋅ Raw logs are also provided on the task web site.

English-German tst-COMMON v2

BLEU AL AP DAL AL(CA) AP(CA) DAL(CA)

Low Latency

USTC-NESLIP 27.40 0.92 0.68 1.42 2.33 1.33 4.38

Medium Latency

USTC-NESLIP 29.68 1.86 0.82 2.65 3.66 1.48 5.36
APPTEK 24.88 1.96 0.88 3.08 3.37 1.17 4.10

High Latency

USTC-NESLIP 30.75 2.74 0.90 3.63 5.05 1.56 6.23
APPTEK 26.77 3.00 0.99 5.48 6.66 1.32 6.93

English-German Blind Test Set

BLEU AL AP DAL AL(CA) AP(CA) DAL(CA)

Low Latency

USTC-NESLIP 21.85 1.04 0.66 1.47 2.99 1.52 6.41

Medium Latency

USTC-NESLIP 24.83 1.96 0.80 2.79 4.49 1.63 7.15
APPTEK 16.60 1.95 0.80 2.73 2.86 1.06 3.86

High Latency

USTC-NESLIP 25.62 2.86 0.88 3.85 6.10 1.68 7.93
APPTEK 21.08 3.99 0.94 5.06 5.00 1.16 6.12

Unsegmented

USTC-NESLIP 25.31 30.91 0.51 26.47 264.28 1.10 536.54
APPTEK 15.03 107.11 0.44 32.92 149.52 0.63 175.79
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A.2. Offline Speech Translation

Speech Translation: TED English-German tst 2021⋅ Systems are ordered according to BLEU NewRef: BLEU score computed on the NEW reference set (literal translations).⋅ BLEU scores are given as percent figures (%).⋅ End-to-end systems are indicated by gray background.⋅ The “segm.” column indicates the segmentation strategy (Own vs Given).⋅ The “data condition” indicates the training data condition (Constrained vs Unconstrained).⋅ The † symbol indicates an end-to-end submission exploiting pre-trained models (not all parameters are jointly trained).

System segm. data condition BLEU NewRef BLEU TEDRef BLEU MultiRef
HW-TSC Own Constrained 24.6 20.3 34.0
KIT Own Constrained 23.4 19.0 32.0
APPTEK Own Constrained 22.6 18.3 31.0
KIT Own Constrained 22.0 18.1 30.3
APPTEK Own Constrained 21.9 18.1 30.4
VOLCTRANS Given Constrained 21.8 17.1 29.5
UPC† Own Unconstrained 21.8 18.3 30.6
VOLCTRANS Given Constrained 21.7 18.7 31.3
ESPNET-ST Own Constrained 21.7 18.2 30.6
FBK Own Constrained 21.6 18.4 30.6
OPPO Given Constrained 21.5 17.8 30.2
ESPNET-ST Own Constrained 21.2 19.3 31.4
NIUTRANS Own Constrained 20.6 19.6 30.3
VUS Given Constrained 15.3 12.4 20.9
BUT Given Unconstrained 11.7 9.8 16.1
LI Given Constrained 3.6 2.7 4.8

Speech Translation: TED English-German tst 2020⋅ Systems are ordered according to BLEU TEDRef: BLEU score computed on the ORIGINAL reference set.⋅ BLEU scores are given as percent figures (%).⋅ End-to-end systems are indicated by gray background.⋅ The “segm.” column indicates the segmentation strategy (Own vs Given).⋅ The “data condition” indicates the training data condition (Constrained vs Unconstrained).⋅ The † symbol indicates an end-to-end submission exploiting pre-trained models (not all parameters are jointly trained).

System segm. data condition BLEU TEDRef
ESPNET-ST Own Constrained 26.0
HW-TSC Own Constrained 25.4
KIT Own Constrained 25.4
ESPNET-ST Own Constrained 24.7
FBK Own Constrained 24.7
UPC† Own Unconstrained 24.6
APPTEK Own Constrained 24.5
VOLCTRANS Given Constrained 24.3
KIT Own Constrained 23.2
APPTEK Own Constrained 23.1
NIUTRANS Own Constrained 22.8
OPPO Given Constrained 22.6
VOLCTRANS Given Constrained 22.2
VUS Given Constrained 13.7
BUT Given Unconstrained 11.4
LI Given Constrained 0.2
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A.3. Multilingual Speech Translation
⋅ Submissions are ordered according to average ST performance across all official language pairs.⋅ ST systems are scored using the BLEU↑ metric as computed by SACREBLEU (Post, 2018).⋅ ASR systems are scored using WER↓ computed on lowercased text with punctuation removed.

Official Results:

Condition Supervised Zero-shot Avg

System Constrained E2E Ensemble es-en fr-en fr-es pt-en pt-es it-en it-es

FAIR ✓ ✓ 42.2 38.7 36.5 31.0 38.2 29.4 37.3 36.2

KIT ✓ ✓ 39.3 27.1 29.2 30.7 37.3 26.5 32.4 31.8
UEDIN ✓ ✓ ✓ 36.2 26.4 29.5 27.0 34.5 23.0 31.1 29.7

UM-DKE ✓ ✓ ✓ 33.9 25.4 27.6 25.7 33.7 22.8 29.4 28.4
ZJU ✓ ✓ 34.5 25.2 27.4 25.7 31.6 20.8 27.3 27.5

HWN ✓ ✓ ✓ 35.4 26.7 27.0 26.7 27.0 17.6 15.4 25.1
ON-TRAC ✓ ✓ 20.2 14.4 15.0 13.2 3.0 4.2 4.6 10.7

Table 5: Multilingual ST: Results of primary submissions on official language pairs in BLEU↑
All Submissions:

Condition Supervised Zero-shot Avg

System Constrained E2E Ensemble es-en fr-en fr-es pt-en pt-es it-en it-es

FAIR primary ✓ ✓ 42.2 38.7 36.5 31.0 38.2 29.4 37.3 36.2
FAIR joint U W ✓ 41.5 37.4 35.2 29.2 36.8 29.1 36.8 35.1
FAIR joint U ✓ 40.4 36.4 34.4 29.0 38.2 28.4 34.6 33.9
FAIR joint X ✓ 40.6 36.5 34.7 28.2 38.2 27.8 33.3 33.5
KIT contrastive ✓ ✓ 38.9 28.5 29.7 30.2 37.1 25.8 33.0 31.9
KIT primary ✓ ✓ 39.3 27.1 29.2 30.7 37.3 26.5 32.4 31.8

UEDIN primary ✓ ✓ ✓ 36.2 26.4 29.5 27.0 34.5 23.0 31.1 29.7
UEDIN contrastive ✓ ✓ 35.0 25.5 28.8 26.2 33.3 22.4 30.1 28.8

UM-DKE primary ✓ ✓ ✓ 33.9 25.4 27.6 25.7 33.7 22.8 29.4 28.4
ZJU primary ✓ ✓ 34.5 25.2 27.4 25.7 31.6 20.8 27.3 27.5

UEDIN contrastive ✓ 33.3 23.7 26.9 23.6 30.0 19.7 26.7 26.3
UM-DKE contrastive ✓ ✓ 34.5 21.9 24.3 24.3 29.3 21.7 26.8 26.1

FAIR baselines R ✓ 34.1 28.4 29.3 19.8 25.3 20.0 25.8 26.1
HWN primary ✓ ✓ ✓ 35.4 26.7 27.0 26.7 27.0 17.6 15.4 25.1

ON-TRAC primary ✓ ✓ 20.2 14.4 15.0 13.2 3.0 4.2 4.6 10.7

Table 6: Multilingual ST: Results of all submissions (primary and contrastive) on official language pairs in BLEU↑
Additional Results (Unofficial Language Pairs and ASR):

Condition Supervised

System Const. E2E Ens. es-fr es-it es-pt fr-pt

FAIR ✓ ✓ 33.7 33.0 46.5 35.5
KIT ✓ ✓ 32.4 32.3 46.6 28.8

UEDIN ✓ ✓ ✓ 30.3 32.9 44.5 30.1
HWN ✓ ✓ ✓ 27.0 30.8 43.2 26.9

ON-TRAC ✓ ✓ 8.2 11.1 25.6 14.9

Table 7: Multilingual ST: Results of primary submis-
sions on unofficial language pairs in BLEU↑ (optional)

Condition ASR Avg

System Const. E2E Ens. es fr it pt

HWN ✓ ✓ 11.1 22.2 16.2 23.8 18.3
KIT ✓ ✓ 10.0 26.5 15.5 22.1 18.5

FAIR ✓ ✓ 11.2 18.7 19.6 27.4 19.2
UEDIN ✓ ✓ 12.0 23.4 18.7 25.9 20.0

Table 8: ASR: Results of primary submissions on ASR
in WER↓ (optional), sorted by average WER
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A.4. Low-Resource Speech Translation

Official Results:

System swh-eng swc-fra swc-eng

IMS.primary 14.9 13.5 7.7
IMS.contrastive 6.7 2.7 3.9

ON-TRAC 12.9 9.1 –
USYD-JD 25.3 – –

Table 9: Low-Resource ST: Results of all speech translation submissions (case-insensitive BLEU↑). The swc-eng
and swa-fra pairs were optional.

System Coastal Swahili (swh) Congolese Swahili (swc)

ON-TRAC 31.2 36.8
USYD-JD 34.4 –

Table 10: ASR: Results of all (optional) speech transcriptions submissions (case-insensitive WER↓).
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Abstract
This paper describes USTC-NELSLIP’s sub-
missions to the IWSLT2021 Simultaneous
Speech Translation task. We proposed a novel
simultaneous translation model, Cross Atten-
tion Augmented Transducer (CAAT), which
extends conventional RNN-T to sequence-to-
sequence tasks without monotonic constraints,
e.g., simultaneous translation. Experiments
on speech-to-text (S2T) and text-to-text (T2T)
simultaneous translation tasks shows CAAT
achieves better quality-latency trade-offs com-
pared to wait-k, one of the previous state-of-
the-art approaches. Based on CAAT architec-
ture and data augmentation, we build S2T and
T2T simultaneous translation systems in this
evaluation campaign. Compared to last year’s
optimal systems, our S2T simultaneous trans-
lation system improves by an average of 11.3
BLEU for all latency regimes, and our T2T si-
multaneous translation system improves by an
average of 4.6 BLEU.

1 Introduction

This paper describes the submission to IWSLT
2021 Simultaneous Speech Translation task by Na-
tional Engineering Laboratory for Speech and Lan-
guage Information Processing (NELSLIP), Univer-
sity of Science and Technology of China, China.

Recent work in text-to-text simultaneous transla-
tion tends to fall into two categories, fixed policy
and flexible policy, represented by wait-k (Ma et al.,
2019) and monotonic attention (Arivazhagan et al.,
2019; Ma et al., 2020b) respectively. The draw-
back of fixed policy is that it may introduce over
latency for some sentences and under latency for
others. Meanwhile, flexible policy often leads to
difficulties in model optimization.

Inspired by RNN-T (Graves, 2012), we aim
to optimize the marginal distribution of all ex-
panded paths in simultaneous translation. How-
ever, we found it’s impossible to calculate the

marginal probability based on conventional Atten-
tion Encoder-Decoder (Sennrich et al., 2016) ar-
chitectures (Transformer (Vaswani et al., 2017) in-
cluded), which is due to the deep coupling between
source contexts and target history contexts. To
solve this problem, we propose a novel architecture,
Cross Attention augmented Transducer (CAAT),
and a latency loss function to ensure CAAT model
works with an appropriate latency. In simultane-
ous translation, policy is integrated into translation
model and learned jointly for CAAT model.

In this work, we build simultaneous translation
systems for both text-to-text (T2T) and speech-
to-text S2T) task. We propose a novel archi-
tecture, Cross Attention Augmented Transducer
(CAAT), which significantly outperforms wait-k
(Ma et al., 2019) baseline in both text-to-text and
speech-to-text simultaneous translation task. Be-
sides, we adopt a variety of data augmentation
methods, back-translation (Edunov et al., 2018),
Self-training (Kim and Rush, 2016) and speech
synthesis with Tacotron2 (Shen et al., 2018). Com-
bining all of these and models ensembling, we
achieved about 11.3 BLEU (in S2T task) and 4.6
BLEU (in T2T task) gains compared to the best
performance last year.

2 Data

2.1 Statistics and Preprocessing

EN→DE Speech Corpora The speech datasets
used in our experiments are shown in Table 1,
where MuST-C, Europarl and CoVoST2 are speech
translation specific (speech, transcription and trans-
lation included), and LibriSpeech, TED-LIUM3
are speech recognition specific (only speech and
transcription). After augmented with speed and
echo perturbation, we use Kaldi (Povey et al., 2011)
to extract 80 dimensional log-mel filter bank fea-
tures, computed with a 25ms window size and a
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10ms window shift, and specAugment (Park et al.,
2019) were performed during training phase.

Corpus Segments Duration(h)

MuST-C 250.9k 448
Europarl 69.5k 155
CoVoST2 854.4k 1090

LibriSpeech 281.2k 960
TED-LIUM3 268.2k 452

Table 1: Statistics of speech corpora.

Text Translation Corpora The bilingual paral-
lel datasets for Englith to German(EN→DE) and
English to Japanese (EN→JA) used are shown in
Table 2, and the monolingual datasets in English,
German and Japanese are shown in Table 3. And
we found the Paracrawl dataset in EN→DE task is
too big to our model training, we randomly select
a subset of 14M sentences from it.

Corpus Sentences

EN→DE

MuST-C(v2) 229.7k
Europarl 1828.5k

Rapid-2019 1531.3k
WIT3-TED 209.5k

Commoncrawl 2399.1k
WikiMatrix 6227.2k
Wikititles 1382.6k
Paracrawl 82638.2k

EN→JA

WIT3-TED 225.0k
JESC 2797.4k
kftt 440.3k

WikiMatrix 3896.0k
Wikititles 706.0k
Paracrawl 10120.0k

Table 2: Statistics of text parallel datasets.

Language Corpus Sentences

EN
Europarl-v10 2295.0k

News-crawl-2019 33600.8k

DE
Europarl-v10 2108.0k

News-crawl-2020 53674.4k

JA
News-crawl-2019 3446.4k
News-crawl-2020 10943.3k

Table 3: Statistics of monolingual datasets.

For EN→DE task, we directly use Sentence-
Piece (Kudo and Richardson, 2018) to generate
a unigram vocabulary of size 32,000 for source
and target language jointly. And for EN→JA task,
sentences in Japanese are firstly participled by
MeCab (Kudo, 2006), and then a unigram vocab-
ulary of size 32,000 is generated for source and
target jointly similar to EN→DE task.

During data preprocessing, the bilingual datasets
are firstly filtered by length less than 1024 and
length ratio of target to source 0.25 < r < 4. In
the second step, with a baseline Transformer model
trained with only bilingual data, we filtered the
mismatched parallel pairs with log-likelihood from
the baseline model, threshold is set to −4.0 for
EN→DE task and −5.0 for EN→JA task. At last
we keep 27.3 million sentence pairs for EN-DE
task and 17.0 sentence pairs for EN→JA task.

2.2 Data Augmentation
For text-to-text machine translation, augmented
data from monolingual corpora in source and target
language are generated by self-training (He et al.,
2019) and back translation (Edunov et al., 2018)
respectively. Statistics of the augmented training
data are shown in Table 4.

Data EN→DE EN→JA

Bilingual data 27.3M 17.0M
+back-translation 34.3M 22.0M
+self-training 41.3M 27.0M

Table 4: Augmented training data for text-to-text trans-
lation.

We further extend these two data augmentation
methods to speech-to-text translation, detailed as:

1. Self-training: Maybe similar to sequence-
level distillation (Kim and Rush, 2016; Ren
et al., 2020; Liu et al., 2019). Transcriptions
of all speech datasets (both speech recogni-
tion and speech translation specific) are sent
to a text translation model to generate text y

′

in target language, the generated y
′

with its
corresponding speech are directly added to
speech translation dataset.

2. Speech Synthesis: We employ Tacotron2
(Shen et al., 2018) with slightly modified by
introducing speaker representations to both en-
coder and decoder as our text-to-speech (TTS)
model architecture, and trained on MuST-
C(v2) speech corpora to generate filter-bank
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speech representations. We randomly select
4M sentence pairs from EN→DE text trans-
lation corpora and generate audio feature by
speech synthesis. The generated filter bank
features and their corresponding target lan-
guage text are used to expand our speech trans-
lation dataset.

The expanded training data are shown in Table 5.
Besides, during the training period for all the
speech translation tasks, we sample the speech data
from the whole corpora with fixed ratio and the
concrete ratio for different dataset is shown in Ta-
ble 6.

Dataset Segements Duration(h)

Raw S2T dataset 1.17M 1693
+self-training 2.90M 4799

+Speech synthesis 7.22M 10424

Table 5: Expanded speech translation dataset with self-
training and speech synthesis.

Dataset Sample Ratio

MuST-C 2
Europarl 1
CoVoST2 1

LibriSpeech 1
TED-LIUM3 2

Speech synthesis 5

Table 6: Sample ratio for different datasets during train-
ing period.

3 Methods and Models

3.1 Cross Attention Augmented Transducer

Let x and y denote the source and target se-
quence, respectively. The policy of simultane-
ous translation is denoted as an action sequence
p ∈ {R,W}|x|+|y| where R denotes the READ
action and W the WRITE action. Another repre-
sentation of policy is extending target sequence
y to length |x| + |y| with blank symbol φ as
ŷ ∈ (v ∪ {φ})|x|+|y|, where v is the vocabulary
of the target language. The mapping from y to sets
of all possible expansion ŷ denotes as H(x,y).

Inspired by RNN-T (Graves, 2012), the loss func-
tion for simultaneous translation can be defined as
the marginal conditional probability and expecta-

tion of latency metric through all possible expanded
paths:

L(x, y) = Lnll(x, y) + Llatency(x, y)
= − log

∑

ŷ

p(ŷ|x) + Eŷl(ŷ)

= − log
∑

ŷ

p(ŷ|x) +
∑

ŷ

Pr(ŷ|y, x)l(ŷ)
(1)

Figure 1: Expanded paths in simultaneous translation.

Where Pr(ŷ|y, x) = p(ŷ|x)∑
ŷ
′∈H(x,y)

p(ŷ′ |x) , and ŷ ∈
H(x, y) is an expansion of target sequence y, and
l(ŷ is the latency of expanded path ŷ.

However, RNN-T is trained and inferenced
based on source-target monotonic constraint,
which means it isn’t suitable for translation
task. And the calculation of marginal probabil-
ity
∑

ŷ∈H(x,y) Pr(ŷ|x) is impossible for Attention
Encoder-Decoder framework due to deep coupling
of source and previous target representation. As
shown in Figure 1, the decoder hidden states for
the red path ŷ1 and the blue path ŷ2 is not equal at
the intersection s12 6= s22. To solve this, we sepa-
rate the source attention mechanism from the target
history representation, which is similar to joiner
and predictor in RNN-T. The novel architecture
can be viewed as a extension version of RNN-T
with attention mechanism augmented joiner, and is
named as Cross Attention Augmented Transducer
(CAAT). Figure 2 is the implementation of RAAT
based on Transformer.

Computation cost of joiner in CAAT is signif-
icantly more expensive than that of RNN-T. The
complexity of joiner is O(|x| · |y|) during train-
ing, which meansO(|x|) times higher than conven-
tional Transformer. We solve this problem by mak-
ing decisions with decision step size d > 1, and
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Figure 2: Architecture of CAAT based on Transformer.

reduce the complexity of joiner from O(|x| · |y|)
to O(|x|·|y|)d . Besides, to further reduce video mem-
ory consumption, we split hidden states into small
pieces before sent into joiner, and recombine it for
back-propagation during training.

As the latency loss is defined as marginal expec-
tation over all expanded paths ŷ, mergeable is also
a requirement to the latency loss definition, which
means latency loss through path ŷ may be defined
as l(ŷ) =

∑|x|+|y|
k=1 l(ŷk) and l(ŷk) is independent

of ŷj′ 6=j . However, both Average Lagging (Ma
et al., 2019) and Differentiable Average Lagging
(Arivazhagan et al., 2019) do not meet this require-
ment. We hence introduce a novel latency function
based on wait-0 as oracle latency as follows:

d(i, j) =
1

|y| max

(
i− j · |x|

|y| , 0
)

l(ŷk) =

{
0 if ŷk = φ

d(ik, jk) else

(2)

Where ik =
∑k

k′=1
I(ŷk′ = φ) and jk =∑k

k′=1
I(ŷk′ 6= φ) denote READ and WRITE ac-

tions number before ŷk. The latency for the whole
expanded path ŷ can be defined as

l(ŷ) =

|ŷ|∑

k=1

l(ŷk) (3)

Based on Eq. (3) the expectation of latency loss
through all expanded paths may be defined as :

Llatency(x, y) = Eŷ∈H(x,y)l(ŷ)

=
∑

ŷ

Pr(ŷ|y, x)l(ŷ) (4)

Latency loss and its gradients can be calculated
by the forward-backward algorithm, similar to Se-
quence Criterion Training in ASR (Povey, 2005).

At last, we add the cross entropy loss of offline
translation model as an auxiliary loss to CAAT
model training for two reasons. First we hope the
CAAT model fall back to offline translation in the
worst case; second, CAAT models is carried out
in accordance with offline translation when source
sentence ended. The final loss function for CAAT
training is defined as follows:

L(x, y) = LCAAT (x, y) + λlatencyLlatency(x, y)
+ λCELCE(x, y)

= − log
∑

ŷ

p(ŷ|x)

+ λlatency
∑

ŷ

Pr(ŷ|y, x)d(ŷ)

− λCE

∑

j

log p(yj |x, y<j) (5)

Where λlatency and λCE are scaling factors cor-
responding to the Llatency and LCE . And we set
λ1 = λ2 = 1.0 if not specified.

3.2 Streaming Encoder
Unidirectional Transformer encoder (Arivazhagan
et al., 2019; Ma et al., 2020b) is not effective for
speech data processing, because of the closely re-
lated to right context for speech frame xi. Block
processing (Dong et al., 2019; Wu et al., 2020) is
introduced for online ASR, but they lacks directly
observing to infinite left context.

We process streaming encoder for speech data
by block processing with right context and in-
finite left context. First, input representations
h is divided into overlapped blocks with block
step m and block size m + r. Each block
consists of two parts, the main context mn =[
hm∗n+1, · · · , h(m+1)∗n

]
and the right context

rn =
[
h(m+1)∗n, · · · , h(m+1)∗n+r

]
. The query,

key and value of block bn in self-attention can
be described as follows:

Q = Wq [mn, rn] (6)

K = Wk [m1, · · · ,mn, rn] (7)

V = Wv [m1, · · · ,mn, rn] (8)

By reorganizing input sequence and designed
self-attention mask, training is effective by reusing
conventional transformer encoder layers. And uni-
directional transformer can be regarded as a special
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case of our method with {m = 1, r = 0}. Note
that the look-ahead window size in our method is
fixed, which ensures increasing transformer layers
won’t affect latency.

3.3 Text-to-Text Simultaneous Translation

We implemented both CAAT in Sec. 3.1 and wait-k
(Ma et al., 2019) systems for text-to-text simulta-
neous translation, both of them are implemented
based on fairseq (Ott et al., 2019).

All of wait-k experiments use the parameter set-
tings based on big transformer (Vaswani et al.,
2017) with unidirectional encoders, which corre-
sponds to a 12-layer encoder and 6-layer decoder
transformer with a embedding size of 1024, a feed
forward network size of 4096, and 16 heads atten-
tion.

Hyper-parameters of our CAAT model architec-
tures are shown in Table 7. CAAT training re-
quires significantly more GPU memory than con-
ventional Transformer (Vaswani et al., 2017), for
the O

(
|x|·|y|

d

)
complexity of joiner module. We

mitigate this problem by reducing joiner hidden
dimension for lower decision step size d.

3.4 Speech-to-Text Simultaneous Translation

3.4.1 End-to-End Systems
The main system of End-to-End Speech-to-Text
simultaneous Translation is based on the aforemen-
tioned CAAT structure. For speech encoder, two
2D convolution blocks are introduced before the
stacked 24 Transformer encoder layers. Each con-
volution block consists of a 3-by-3 convolution
layer with 64 channels and stride size as 2, and a
ReLU activation function. Input speech features are
downsampled 4 times by convolution blocks and
flattened to 1D sequence as input to transformer lay-
ers. Other hyper-parameters are shown in Table 7.
The latency-quality trade-off may be adjusted by
varying the decision step size d and the latency
scaling factor λlatency. We submitted systems with
best performance in each latency region.

3.4.2 Cascaded Systems
The cascaded system consists of two modules, si-
multaneous automatic speech recognition (ASR)
and simultaneous text-to-text Machine Translation
(MT). Both simultaneous ASR and MT system are
built with CAAT proposed in Sec. 3.1. And we
found the cascaded systems outperforms end-to-
end system in medium and high latency region.

3.5 Unsegmented Data Processing

To deal with unsegmented data, we segment the
input text based on sentence ending marks for T2T
track. For S2T task, input speech is simply seg-
mented into utterances with duration of 20 sec-
onds and each segmented piece is directly sent to
our simultaneous translation systems to obtain the
streaming results. We found an abnormally large
average lagging (AL) on IWSLT tst2018 test set
based on existed SimuEval toolkit(Ma et al., 2020a)
and segment strategy, so relevant results are not pre-
sented here. A more reasonable latency criterion
may be needed for unsegmented data in the future.

4 Experiments

4.1 Effectiveness of CAAT

To demonstrate the effectiveness of CAAT architec-
ture, we compare it to wait-k with speculative beam
search (SBS) (Ma et al., 2019; Zheng et al., 2019b),
one of the previous state-of-the-art. The latency-
quality trade-off curves on S2T and T2T tasks are
shown in Figure 3 and Figure 4(a). We can find that
CAAT significantly outperforms wait-k with SBS,
especially in low latency section(AL < 1000ms
for S2T track and AL < 3 for T2T track).
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Figure 3: Comparison of CAAT and wait-k with
SBS systems on EN→DE Speech-to-Text simultane-
ous translation.

4.2 Effectiveness of data augmentation

In order to testify the effectiveness of data augmen-
tation, we compare the results of different data aug-
mentation methods based on the offline and simulta-
neous speech translation task. As demonstrated in
Table 8, adding new generated target sentences into
the training corpora by using Self-training gives
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Parameters S2T config T2T config-A T2T config-B

Encoder

layers 24 12 12
attention heads 8 16 16
FFN dimension 2048 4096 4096
embedding size 512 1024 1024

Predictor

attention heads 8 16 16
FFN dimension 2048 4096 4096
embedding size 512 1024 1024

output dimension 512 512 1024

Joiner

attention heads 8 8 16
FFN dimension 1024 2048 4096
embedding size 512 512 1024

/ decision step size {16,64} {4,10,16,32} {10,32}
latency scaling factor {1.0,0.2} {1.0,0.2} 0.2

Table 7: Parameters of CAAT in T2T and end-to-end S2T simultaneous translation. Noted that both predictor and
joiner have 6 layers for T2T and S2T tasks, and the additional two parameters for end-to-end 2T simultaneous
translation, which is the main context and right context described in Sec.3.2, are set m = 32 and r = 16 .

Dataset BLEU

Original speech corpora 21.24
+self-training 28.21

+Speech systhesis 29.72

Table 8: Performance of offline speech translation on
MuST-C(v2) tst-COMMON with different datasets.

a boost of nearly 7 BLEU points and speech syn-
thesis provides the other 1.5 BLEU points increase
on MuST-C(v2) tst-COMMON. As illustrated in
Figure 3, all the data augmentation methods are
employed and provide nearly 3 BLEU points on
average in the simultaneous task at different la-
tency regimes. Note that our data augmentation
methods alleviate the scarcity of parallel datasets
in the End-to-End speech translation task and make
a significant improvement.

4.3 Text-to-Text Simultaneous Translation

EN→DE Task The performances of text-to-text
EN→DE task is shown in Figure 4(a). We can
see that the performance of proposed CAAT is al-
ways better than that of wait-k with SBS and the
best results from ON-TRAC in 2020 (Elbayad
et al., 2020), especially in low latency regime, and
the performance of CAAT with model ensemble
is nearly equivalent to offline result. Moreover, it
can be further noticed from Figure 4(a) that the
model ensemble can also improve the BLUE score

more or less under different latency regimes, and
the increase is quite obvious in low latency regime.
Compared with the best result in 2020, we finally
get improvement by 6.8 and 3.4 BLEU in low and
high latency regime respectively.

En→JA Task Results of Text-to-Text simultane-
ous translation (EN→JA) track are plotted in Fig-
ure 4(b), where the curve naming CAAT bst is best
performances in this track with or without model-
ensembling method. Curves in this sub-figure show
the similar conclusion to the former subsection,
that the result of proposed CAAT significantly out-
performs that of wait-k with SBS. While we can
also find that the gap between CAAT and offline is
more obvious (nearly 0.4 BLEU), this is mainly be-
cause parameters of joiner block for EN→JA track
in high-latency regime is reduced a lot from that
for EN→DE track, due to the unstable EN→JA
training.

4.4 Speech-to-Text Simultaneous Translation

End-to-End System In this section, we discuss
about our final results of End-to-End system based
on CAAT. We tune the decision step size d and
latency scaling factor λlatency to meet different la-
tency regime requirements. For low, medium and
high latency, the corresponding d and λlatency are
set to (16,64,64) and (1.0,1.0,0.2) respectively. We
show our final latency-quality trade-offs in Figure 5.
Combined with our data augmentation methods and
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Figure 4: Latency-quality trade-offs of Text-to-Text simultaneous translation.

new CAAT model structure, it can be seen that our
single model system has already outperformed the
best results of last year in all latency regimes and
provides 9.8 BLEU scores increase on average. En-
sembling different models can further boost the
BLEU scores by roughly 0.5-1.5 points at different
latency regimes.

Cascaded System Under the cascaded setting,
we paired two well-trained ASR and MT systems,
where the WER of ASR system’s performance is
6.30 with 1720.20 AL, and the MT system is fol-
lowed by the config-A in Table 7, whose results
are 34.79 BLEU and 5.93 AL. We found the best
medium and high-latency systems at decision step
size pair (dasr, dmt) with (6, 10) and (12, 10) re-
spectively. Performance of cascaded systems are
shown in Figure 5. Note that under current con-
figuration of ASR and MT systems, we can not
provide valid results that satisfy the requirement of
AL at low latency regime since cascaded system
usually has a larger latency compared to End-to
End system. During the online decoding of the
cascaded system, only after specific tokens are rec-
ognized by the ASR system, the translation model
can further translate them to obtain the final result.
The decoded results from ASR model first has a
delay compared to the actual contents of the audio,
and the two-steps decoding further accumulates the
delay, which contributes to the higher latency com-
pared to the End-to-End system. However, it still
can be seen that cascaded system has significant
advantages over End-to-End system at medium and
high latency regime and it still has a long way to go
for End-to-End system in the simultaneous speech

translation task.
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Figure 5: Latency-quality trade-offs of Speech-to-
Text simultaneous translation on MuST-C(v2) tst-
COMMON.

5 Related Work

Simultaneous Translation Recent work on si-
multaneous translation falls into two categories.
The first category uses a fixed policy for the
READ/WRITE actions and can thus be easily inte-
grated into the training stage, as typified by wait-
k approaches (Ma et al., 2019).The second cate-
gory includes models with a flexible policy learned
and/or adaptive to current context, e.g., by Rein-
forcement Learning (Gu et al., 2017), Supervise
Learning (Zheng et al., 2019a) and so on. A special
sub-category of flexible policy jointly optimizes
policy and translation by monotonic attention cus-
tomized to translation model, e.g., Monotonic Infi-
nite Lookback (MILk) attention (Arivazhagan et al.,
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2019) and Monotonic Multihead Attention (MMA)
(Ma et al., 2020b). We propose a novel method
to optimize policy and translation model jointly,
which is motivated by RNN-T (Graves, 2012) in
online ASR. Unlike RNN-T, the CAAT model re-
moves the monotonic constraint, which is critical
for considering reordering in machine translation
tasks. The optimization of our latency loss is moti-
vated by Sequence Discriminative Training in ASR
(Povey, 2005).

Data Augmentation As described in Sec. 2, the
size of training data for speech translation is sig-
nificantly smaller than that of text-to-text machine
translation, which is the main bottleneck to im-
prove the performance of speech translation. Self-
training, or sequnece-level knowledge distillation
by text-to-text machine translation model, is the
most effective way to utilize the huge ASR train-
ing data (Liu et al., 2019; Pino et al., 2020). On
the other hand, synthesizing data by text-to-speech
(TTS) has been demonstrated to be effective for
low resource speech recognition task (Gokay and
Yalcin, 2019; Ren et al., 2019). To the best of our
knowledge, this is the first work to augment data
by TTS for simultaneous speech-to-text translation
tasks.

6 Conclusion

In this paper, we propose a novel simultane-
ous translation architecture, Cross Attention Aug-
mented Transducer (CAAT), which significantly
outperforms wait-k in both S2T and T2T simulta-
neous translation task. Based on CAAT architec-
ture and data augmentation, we build simultaneous
translation systems on text-to-text and speech-to-
text simultaneous translation tasks. We also build
a cascaded speech-to-text simultaneous translation
system for comparison. Both T2T and S2T systems
achieve significant improvements over last year’s
best-performing systems.
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Abstract

This paper describes NAIST’s system for
the English-to-Japanese Simultaneous Text-to-
text Translation Task in IWSLT 2021 Eval-
uation Campaign. Our primary submission
is based on wait-k neural machine translation
with sequence-level knowledge distillation to
encourage literal translation.

1 Introduction

Automatic simultaneous translation is an attractive
research field that aims to translate an input before
observing its end for real-time translation similar to
human simultaneous interpretation. Starting from
early attempts using rule-based machine translation
(Matsubara and Inagaki, 1997; Ryu et al., 2006)
and statistical methods using statistical machine
translation (Bangalore et al., 2012; Fujita et al.,
2013), recent studies successfully applied neural
machine translation (NMT) into this task (Gu et al.,
2017; Ma et al., 2019; Arivazhagan et al., 2019).

The simultaneous translation shared task in the
IWSLT evaluation campaign started on 2020 with
English-to-German (Ansari et al., 2020) speech-
to-text and text-to-text tasks, and a new language
pair of English-to-Japanese has been included on
2021 only in text-to-text task. English-to-Japanese
is much more challenging than English-to-German
due to the large language difference in addition to
data scarsity.

We developed an automatic text-to-text simulta-
neous translation system for this shared task. We
applied some extensions to a standard wait-k NMT
in the training time: sequence-level knowledge dis-
tillation and target-side chunk shuffling. However,
these techniques showed mixed results in different
latency regimes on the IWSLT21 development set,
so we configured the system differently for each
latency regime. This paper describes the details of
the system and the results on the development sets.

We also describe our another attempt to include
incremental constitutent label prediction that was
not included in the primary system.

2 Simultaneous Neural Machine
Translation with wait-k

Let X = x1, x2, . . . , x|X| be an input sequence in
a source language and Y = y1, y2, . . . , y|Y | be an
output sequence in a target language. Here, the in-
put can be speech or text, but we assume the input
is text because this paper discusses the text-to-text
task. The task of simultaneous translation is to
translate X to Y incrementally. In other words,
each output prediction of Y is made upon partial
input observations of X . Suppose an output pre-
fix subsequence Y j

1 = y1, y2, ..., yj has already
been predicted from prefix observations of the in-
put Xi

1 = x1, x2, ..., xi. When we predict the next

output subsequence Y j
′

j+1 = yj+1, ..., yj′ after fur-

ther partial observations Xi
′

i+1 = xi+1, ..., xi′ , the
prediction is made based on the following formula:

Y j
′

j+1 = argmax
Ŷ

P (Ŷ |Xi
1, X

i
′

i+1, Y
j
1 ) (1)

where Ŷ is a possible prediction of the subsequence.
In a usual consecutive machine translation, we can
use the whole input sequence X anytime in the
prediction of Y . The limitation of available in-
put information is a key challenge of simultaneous
translation.

Wait-k delays the decoding process in k input
tokens (Ma et al., 2019). The wait-k model trans-
lates a token sequence of the source language X
into that of the target language Y as follows.

Hi = Encoder(x1, . . . , xi+k−1), (2)

ŷi = Decoder(Hi, ŷ1, . . . , ŷi−1).

The decoder has to predict an output token based on
the attention over an observed portion of the input
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tokens. k is a hyperparameter for the fixed delay
in this model; setting k larger causes longer de-
lays, while smaller k would result in worse output
predictions due to the poor context information.

3 Knowledge Distillation

Knowledge Distillation (KD) (Hinton et al., 2015)
is a method that uses the distilled knowledge
learned by a stronger teacher model in the learning
of a weaker student model. When teacher distribu-
tion is q(y|x; θT ), we minimize the cross-entropy
with the teacher’s probability distribution instead
of reference data, as follows:

LKD(θ; θT ) = −
|V|∑

k=1

q(y = k|x; θT )×

log p(y = k|x; θ) (3)

where θT parameterizes the teacher distribution.
Sequence-level Knowledge Distillation (SKD),

which gives the student model the output of the
teacher model as knowledge, propagates a wide
range of knowledge to the student model and trains
it to mimic its knowledge (Kim and Rush, 2016).
The teacher distribution q(Y |X) is approximated
by its mode q(Y |X) ≈ 1{Y = argmax

X∈T
q(Y |X)},

and the loss objectives as follows:

LSKD = −Ex∼data
∑

Y ∈T
q(Y |X) log p(Y |X)

≈ −E
X∼data,Ŷ=argmax

Y ∈T

q(Y |X)
[log p(y = Ŷ |X)] (4)

where p(Y |X) is the sequence-level distribution,
and Y ∈ T is the space of possible target sentences.
SKD can be implemented simply by training the
student model using (X, Ŷ ), where Ŷ is derived
from the teacher model outputs for the source lan-
guage portion of the training corpus.

We use SKD for reduction of colloquial expres-
sions in the spoken language corpus. Such col-
loquial expressions are highly dependent on lan-
guages and difficult to translate by NMT, which
usually generates literal translations. Here, we
firstly train a teacher, Transformer-based offline
NMT model using the training corpus and use it to
obtain pseudo-reference translations in the target
language. Then, we train a student, Transformer-
based simultaneous NMT model using the pseudo-
parallel corpus with the original source language
sentences and the corresponding translation re-
sults by the teacher model. The pseudo-references

should consist of more literal and NMT-friendly
translations, therefore the training of the student
model becomes easier than that using the original
parallel corpus. Since we have to train simultane-
ous translation using less context information than
an offline translation model, the SKD would be
helpful. This is motivated by the recent success
of non-autoregressive NMT using SKD (Gu et al.,
2018).

4 Target-side chunk shuffling

Chunk shuffling is a kind of data augmentation that
reorders Japanese chunks (called bunsetsu). Our
motivation for this one is to encourage monotonic
IMT utilizing a characteristic of Japanese as an
agglutinative language, in which the order of bun-
setsu chunks is not so strict. When we have a target
language sequence T = t1, . . . , t|T | in the training
set, we apply greedy left-to-right chunking to it; T
is divided as a chunk sequence T̄ = C1, . . . , CQ,
in which each chunk consists of k (i.e., delay hy-
perparameter in wait-k) tokens Cq = tq1 , . . . , tqk .
Note that the last chunk CQ may be shorter than k
according to the length of T . Then, we choose to
shuffle or keep the chunks in T̄ with a probability
pr, defined as a hyperparameter. We tried only the
random shuffling with the fixed chunk size of k
in this time; More linguistically-motivated chunk
reordering would be worth trying as future work.

5 Primary system

5.1 Implementation
Our system implementation was based on the of-
ficial baseline1 using fairseq (Ott et al., 2019) and
SimulEval (Ma et al., 2020).

5.2 Setup
Data All of the models were based on Trans-
former, trained using 17.9 million English-
Japanese parallel sentences from WMT20 news
task and fine-tuned using 223 thousand parallel
sentences from IWSLT 2017. During fine-tuning,
we examined the effectiveness of knowledge distil-
lation and chunk shuffling with several hyperparam-
eter settings and reported the results by the models
that resulted in the higher BLEU on IWSLT 2021
development set. The text was preprocessed by
Byte Pair Encoding (BPE) (Sennrich et al., 2016)

1https://github.com/pytorch/fairseq/
blob/master/examples/simultaneous_
translation/docs/enja-waitk.md
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System BLEU AL
offline 16.8 -
Baseline
wait-10 11.8 7.27
wait-20 14.69 11.47
wait-30high 15.57 13.7
Proposed
wait-10 + CShuflow 13.77 7.29
wait-10 + SKD 13.5 7.28
wait-20 + SKDmedium 15.22 11.48
wait-30 + SKD 15.21 13.71

Table 1: In-house results of our systems on IWSLT
2021 En-Ja development set. Superscripts low, medium

and high represent the systems submitted for low-,
medium-, and high-latency regimes, respectively.

for subword segmentation. The vocabulary was
shared over English and Japanese, and its size was
16,000.

Model The hyperparameters of the model almost
followed the Transformer Base settings (Vaswani
et al., 2017). The encoder and decoder were com-
posed of 6 layers. We set the word embedding
dimensions, hidden state dimensions, feed-forward
dimensions to 512, 512, and 2,048, respectively.
We performed the sub-layer’s dropout with a prob-
ability of 0.1. The number of attention heads was
eight for both the encoder and decoder. The model
was optimized using Adam with an initial learning
rate of 0.0007, β1 = 0.9, and β2 = 0.98, following
Vaswani et al. (2017).

Evaluation To evaluate the performance, we cal-
culated BLEU and Average lagging (AL) (Ma et al.,
2019) with SimulEval on IWSLT 2021 develop-
ment set.

5.3 Results on the development set
Table 1 shows the excerpt of system results for
the full-sentence topline (offline), wait-k baselines
(wait-k), and our extensions: SKD (+ SKD) and
chunk shuffling (+ CShuf).

We tried some different latency hyperparameter
values k = {10, 12, 14, . . . , 32} for comparison.
Figure 1 plots our BLEU-AL results for wait-k
and wait-k+SKD. It shows that the use of SKD
gave some improvements in low-latency settings
with k = {10, 12, 14}, however, the results with
larger k were mixed. These results support our
assumption on the difficulty of the translation into
colloquial expressions discussed in Section 3.
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Figure 1: Translation quality against latency for wait-k
and SKD-based wait-k on IWSLT 2021 En-Ja develop-
ment set. The broken line shows the score of the offline
model.

System pr BLEU lenhyp lenref

Baseline 0 11.80 34,376 27,891
+ CShuf 0.01 10.57 38,257 27,891

0.02 13.77 29,369 27,891
0.03 9.87 42,296 27,891

Table 2: Target-side chunk shuffling result in pr =
{0, 0.01, 0.02, 0.03}

We also tried chunk shuffling with different hy-
perparameter values2 pr = {0, 0.01, 0.02, 0.03}.
Table 2 shows the result using the target-side chunk
shuffling. Here, the chunk shuffling results are only
shown for wait-10. The use of larger latency hyper-
parameter k did not show remarkable differences
from the baseline. Chunk shuffling with pr = 0.02
resulted in the best BLEU and outperformed the
baseline, but the other values 0.01, 0.03 did not
work. These differences should be due to the out-
put length shown in lenhyp column in Table 2; the
output length became much shorter than the base-
line using the chunk shuffling with pr = 0.02. In
contrast, pr = 0.01 and pr = 0.03 increased the
output length.

Table 3 shows translation examples by the base-
line and chunk-shuffling (pr = 0.02). Here,
the baseline translation results do not have end-
of-sentence expressions like です (desu), ます
(masu),ですよね (desuyone). These differences
were not straightforward with the chunk shuffling,
but a certain value of pr = 0.02 worked in our
experiment.

The results above suggest that the target-side
2Higher values of pr resulted in much worse results and

are not included in this paper.
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En-input I see other companies that say, “I’ll win the next innovation cycle, whatever it takes.”
Baseline 他の会社が「次 のイノベーションサイクルに <unk>」と言うのはどんなものであれ
CShuf 他の会社が「次 のイノベーションサイクルに勝てる」と言うのを見ます

Ja-ref 私の経験でも沢山の企業が同じように「何がなんでも次のイノベーションサイクルを制覇する」と

言い続けてます

En-input She’s a musical instrument maker, and she does a lot of wood carving for a living.
Baseline 彼女は楽器の製造者で木彫りをして生きている間に

CShuf 彼女は楽器の製作者で木彫りをしています

Ja-ref 彼女は楽器の制作技師です木を削ることで生計を立てています

En-input Humans are very good at considering what might go wrong if we try something new, say, ask for a raise.
Baseline 人間は何がうまくいけば何がうまくいけば何がうまくいけば何がうまくいけば何が

うまくいけば何がうまくいけば何がうまくいけば何がうまくいけば何がうまくいけば何が

うまくいけば何がうまくいけば何がうまくいけば何がうまくいけば何が起きても何が起きても

何が起きても何が起きても何が起きても何が起きても何が起きて

CShuf 人間は何が間違っているのかを考えるのが得意です新しいことを試してみてもいいですよね

Ja-ref 昇給を求めるというような何か新しいことを試みようというとき人はどうまずいことになり得るか

考えることに長けています

Table 3: Translation examples by wait-k baseline and wait-k with chunk shuffling (pr = 0.02).

System BLEU AL
wait-10 + CShuflow 14.41 7.21
wait-20 + SKDmedium 16.20 11.54
wait-30high 16.19 13.83

Table 4: Official results of our submissions on IWSLT
2021 En-Ja test set.

chunk shuffling may work as a perturbation, and
we need further investigation.

5.4 Official results on the test set

Table 4 shows BLEU and AL results on the test
set. The system with the medium latency regime
(wait-20 + SKD) worked relatively well; it achived
a comparable BLEU result with wait-30. However,
the results were worse than those of the other teams
by around two points in BLEU in all the latency
regimes.

6 Another attempt: Incremental Next
Constituent Label Prediction

We tried another technique described below in the
shared task, but it was not included in our primary
submission because it did not outperform the base-
line. Here, we also describe this for further investi-
gation in future.

For simultaneous machine translation, deciding
how long to wait for input before translation is
important. Predicting what kind of phrase comes
next is a part of useful information in determining
the timing. In this study, we tried incremental Next
Constituent Label Prediction (NCLP).

In SMT-based simultaneous translation, Oda
et al. (2015) proposed a method to predict unseen
syntactic constituents to determine when to start

train dev eval
2,762,408 27,903 21,941

Table 5: Number of NCLP instances.

translation for partially-observed input, using a
multi-label classifier based on linear SVMs (Fan
et al., 2008). Motivated by this study, we used a
neural network-based classifier using BERT (De-
vlin et al., 2019) for NCLP. The problem of NCLP
is defined as the label prediction of a syntactic con-
stituent coming next to a given word subsequence
in the pre-order tree traversal. In this work, we
used 1-lookahead prediction, so the problem was
relaxed into the prediction of a label of a syntactic
constituent given its preceding words and the first
word composing it. A predicted constituent label
was inserted at the corresponding position in the in-
put word sequence, immediately after its preceding
word. That doubled the length of input sequences.
For subword-based NMT, we applied BPE only
onto words in the input sequences and put dummy
labels after subwords other than end-of-word ones,
to order the input in an alternating way.

We used Huggingface transformers (Wolf et al.,
2020) for our implementation of NCLP with
bert-base-uncased. We used Penn Treebank
3 (Marcus et al., 1993) for the NCLP training and
development sets, and NAIST-NTT TED Talk Tree-
bank (Neubig et al., 2014) for the NCLP evaluation
set. Table 5 shows the number of training, develop-
ment, and evaluation instances extracted from the
datasets. Note that we can extract many instances
from a single parse tree.

Table 6 shows the results of the 5 most frequent
labels in the NCLP training data. NP and VP are
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Figure 2: Translation quality against latency for wait-
k and NCLP-based wait-k on IWSLT21 En-Ja dev set.
The broken line shows the score of the offline model.

Label Precision Recall F1
NP 0.90 0.94 0.92
VP 0.89 0.97 0.93
NN 0.95 0.97 0.96
, 0.98 1.00 0.99
PP 0.85 0.93 0.89

Table 6: NCLP results on the evaluation set.

important clues of the sentence structure, and their
F1 scores were over 90% on the NCLP evaluation
data.

However, the results by wait-k using NCLP re-
sults as its input did not outperform the baseline
wait-k, as shown in Figure 2. We can observe
NCLP-based wait-k gave smaller ALs with the
same latency hyperparameter k. One possible prob-
lem of current NCLP-based wait-k is that the length
of an input length is doubled by the additional
constitutent labels. Since we ran wait-k-based si-
multaneous NMT for such an augmented input se-
quence, the decoder using NCLP-augmented input
has roughly half of the information compared to the
decoder using original input if we use the same k.
This forces the decoder to perform very aggressive
anticipation with limited information from an input
prefix.

Table 7 shows the translation input and output
examples of baseline and NCLP. Input sentences in-
clude constituents labels. The first example shows
that NCLP could translate “publication” before a
verb “work” following the Japanese sentence order.
Second example shows NCLP output is constructed
naturally in terms of grammar, while the baseline
has repetitive and unnatural phrases. We observed
NCLP sentences are tend to be shorter and more

natural than baseline like these examples. However,
many sentences are not informative and missing
details compared to the baseline. We’ll investigate
a more effective way to use NCLP in our future
work.

7 Conclusion

In this paper, we described our English-to-Japanese
text-to-text simultaneous translation system. We ex-
tended the baseline wait-k with the knowledge dis-
tillation to encourage literal translation and target-
side chunk shuffling to relax the output order in
Japanese. They achieved some improvements on
IWSLT 2021 development set in certain latency
regimes.

Acknowledgments

Part of this work was supported by JSPS KAK-
ENHI Grant Number JP17H06101.

References
Ebrahim Ansari, Amittai Axelrod, Nguyen Bach,
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Abstract

We describe our submission to the IWSLT
2021 shared task1 on simultaneous text-to-text
English-German translation. Our system is
based on the re-translation approach where
the agent re-translates the whole source pre-
fix each time it receives a new source token.
This approach has the advantage of being able
to use a standard neural machine translation
(NMT) inference engine with beam search,
however, there is a risk that incompatibility be-
tween successive re-translations will degrade
the output. To improve the quality of the
translations, we experiment with various ap-
proaches: we use a fixed size wait at the begin-
ning of the sentence, we use a language model
score to detect translatable units, and we apply
dynamic masking to determine when the trans-
lation is unstable. We find that a combination
of dynamic masking and language model score
obtains the best latency-quality trade-off.

1 Introduction

In spoken language translation (SLT), there is often
a need to produce translations simultaneously, with-
out waiting for the speaker to finish. For example,
we may be targeting live events such as conferences
or meetings where excessive latency will disrupt
the user experience. In order to achieve low la-
tency SLT, however, translation systems must be
able to cope well with incomplete utterances, and
we find that we need to trade off latency for trans-
lation quality. In research on simultaneous SLT,
we would like to understand how to produce the
best possible trade-off between these two measures.
In the IWSLT 2021 shared task on simultaneous
translation, the aim was to build and evaluate si-
multaneous SLT systems at three different latency
regimes (low, medium and high), as measured us-
ing the Average Lagging (AL; Ma et al. (2019)).

1https://iwslt.org/2021/

There are two main approaches to simultaneous
translation: streaming (Cho and Esipova, 2016; Ma
et al., 2019) where the system appends the output
to a growing hypothesis as new inputs are avail-
able, and re-translation (Niehues et al., 2016, 2018;
Arivazhagan et al., 2020a,b), where, as the name
suggests, the system re-translates the whole prefix
on every update to a completely new output. Re-
translation approach has the advantage that we can
use an unmodified, general purpose, optimised MT
engine with beam-search, but we have to address
the problem of flicker. That is to say, the translation
of a prefix may be changed by the translation of
an extended prefix. Recent work by Arivazhagan
et al. (2020a) has shown that, if measures are taken
to mitigate flicker, then re-translation produces re-
sults comparable to streaming approach. Since the
shared task does not permit any revision of a com-
mitted hypothesis (i.e. flicker is not allowed) we
focus on adapting the re-translation approach for
our submission without introducing any flicker into
a growing hypothesis.

2 Overview of Our Submission

We participated in the English→German text-to-
text simultaneous task. Since we re-translate the
incomplete input (know as a prefix) each time it is
updated, our system will try to modify the trans-
lations produced from earlier prefixes. But as the
task is evaluated using SimulEval (Ma et al., 2020)
which does not permit the modification of com-
mitted output (also known as flickering), we use a
simple approach to generate incremental output at
each re-translation step.

Concretely, we apply a method inspired by the
wait-k streaming approach (Ma et al., 2019) in
our re-translation system in the following manner.
In the task, a simultaneous SLT system is imple-
mented as an agent which must choose between
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READ (read more input) and WRITE (append to
the current translation hypothesis) operations. Our
overall approach is shown in Algorithm 1. The
agent first performs k consecutive READ opera-
tions and then alternatively READs and WRITEs
until the full input sentence is read. Once the input
is consumed, the agent keeps performing WRITE
operations until it reaches the end of the trans-
lated sentence. The WRITE operation involves
re-translating the prefix S and finding the next out-
put word w from output prefix T . If the output
prefix T has a length longer than the committed
hypothesis H , it picks the (i+1)th word of T , else
sends READ signal to the agent, i being the length
of the current hypothesis.

Algorithm 1 Our Re-translation Approach

Require: NMT system φ, k
1: Initialize: S ← {}, H ← {}, w ← ε
2: while w is not 〈eos〉 do
3: if |S| − |H| < k and not finished reading

then
4: READ next input s
5: S ← S ∪ {s}
6: else
7: T ← φ(S)
8: if |T | > |H| then
9: w ← T [|H|+ 1]

10: else
11: w ← ε
12: end if
13: if w is not ε or finished reading then
14: H ← H ∪ {w}
15: WRITE w
16: end if
17: end if
18: end while

However, there is a potential problem with this
approach. In each WRITE step, the output word
w is selected from the (|H|+ 1)th position of out-
put prefix T . Thus if any correction is made by a
re-translation in the initial |H| words, the WRITE
operation won’t be able to recover the mistake. In
other words, our approach is able to suppress the
flicker caused by re-translation, but could end up
gluing together incompatible fragments of the hy-
pothesis. This problem can be worse when the out-
put prefix T flickers too much. To improve trans-
lation quality, we employ two approaches which
aim at detecting meaningful units (MU) and allow-

ing extra READs when inside an MU. An MU is a
chunk of words that has a definite translation and
can be translated independently without having to
wait for more input words (Zhang et al., 2020).

Our first method of detecting MUs relies on the
language model (LM) score. The agent keeps track
of the language model (LM) score of the previous
token and compares it with the score of the current
token. If the LM score is higher than the previous
token, it keeps reading more tokens and does a
re-translation only when this condition is not met.
Here the LM score is the log probability of the
current token given the context. Though LM score
doesn’t guarantee to find meaningful unit every
time but this simple approach shows it is better than
the baseline approach in terms of BLEU score.

Our second method of stabilising the re-
translation approach is based on the idea of dy-
namic masking (Yao and Haddow, 2020). The
dynamic mask approach finds the stable part of the
target prefix by comparing the translation of the
current prefix, with the translation of an extension
of the current prefix. The longest common prefix
(LCP) of the two translations is taken as the sta-
ble part. Figure 1 shows how dynamic masking
works in general. Yao and Haddow (2020) showed
that using dynamic mask could give a better flicker-
latency trade-off than using a fixed mask, without
affecting the translation quality of full sentences.

For our IWSLT submission, we generate the ex-
tended prefixes for dynamic mask simply by ap-
pending UNK (i.e the unknown word symbol) to
the prefix. In Figure 2, we show an example of how
dynamic mask stabilises the translation, by mask-
ing the least stable part of the MT output. This
translation-with-dynamic-mask provides a drop-in
replacement for the MT system φ() in line 7 of
Algorithm 1, except when the agent has read the
full input sentence, when we do not need to apply
any mask.

3 Experimental Details

We use only the officially allowed IWSLT 2021
data sets. The training data include high quality
English-German parallel data from WMT 2020
(Barrault et al., 2020), English-German data from
MuST-C.v2 (Di Gangi et al., 2019), the TED corpus
(Cettolo et al., 2012) and OpenSubtitle (Lison and
Tiedemann, 2016). For development, we use the
concatenation of IWSLT test sets from 2014 and
2015. We test on IWSLT 2018 test set and tst-
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S = a bASR

S′ = a b c

T = p q r

T ′ = p q s t

T ∗ = p qextend

translate

translate

LCP

Figure 1: Dynamic Masking. The string a b is provided as input to the agent (in a full SLT system it would come
from ASR). The MT system then produces translations of the string and its extension, compares them, and outputs
the longest common prefix (LCP)

Source Translation MT Output
prefix Back in New York, Zurück in New York,

extension Back in New York, UNK Damals in New York, in
prefix Back in New York, I Damals in New York have ich

extension Back in New York, I UNK Damals in New York war I Damals in New York

Figure 2: An example of dynamic mask applied during translation. For the first prefix, the translation of the prefix
and its extension disagree, so no output is produced (i.e. all output is masked). For the second prefix, the translation
is more stable.

COMMON from MuST-C.v2. As the there is a
significant overlap between MuST-C.v2 and tst-
20{14,15,18}, we remove the overlaps from the
MuST-C.v2 training data before training.

For preprocessing we rely only on Sentence-
Piece tokenization (Kudo and Richardson, 2018);
no other preprocessing tools are applied. We use
a shared vocabulary size of 32k. Standard NMT
models perform well when translation is done on
a full sentence but as our approach is based on re-
translation, we use training data that is a 1:1 mix
of full sentences and prefix pairs (Niehues et al.,
2018; Arivazhagan et al., 2020a). This ensures that
our model can translate both full sentences and
prefixes. To create prefix pairs, we first randomly
choose a position in the source sentence and then
take the proportionate length of the target sentence.
Along with that we also add modified prefix pairs
in which the source side has a shorter target prefix
appended with the source prefix. The purpose of
these modified prefix pairs was to investigate an
alternative type of stabilisation, where the previous
target prefix is fed into the translation of the current
source prefix, but in early testing this method did
not work well, so we did not pursue it further. The
validation data is also pre-processed similarly to
the training set. Note that this preprocessed val-
idation set is used at training for early stopping
and not for reporting the validation scores in the
Table 2.

For training, we use the Marian toolkit (Junczys-
Dowmunt et al., 2018) with the ‘base’ transformer
architecture (Vaswani et al., 2017). First, we train
a model using the aforementioned pre-processed
training data and then fine-tune the model using
MuST-C.v2 training data which is more of a do-
main specific data for simultaneous translation task.
To train the language model for stabilisation, we
use KenLM (Heafield, 2011) to train a 6-gram lan-
guage model on the source-side training data. We
have shown the number of sentences in each corpus
in Table 1.

Corpus Sentence pairs
Europarl 1.79 M
Rapid 1.45 M
News Commentary 0.35 M
OpenSubtitle 22.51 M
TED corpus 206 K
MuST-C.v2 248 K

Table 1: Corpora used in training the systems

4 Result and Analysis

We evaluate the model’s performance on the full
sentence translation before doing actual simultane-
ous translation. For this evaluation we use Sacre-
BLEU (Post, 2018) on the MuST-C.v2 and TED
2018 test sets. The results on full sentence is shown
in the Table 2. We see there is a significant improve-
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Figure 3: BLEU vs AL plots for English-German with different beam sizes and length normalization.
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Figure 4: BLEU vs DAL plots for English-German with different beam sizes and length normalization.

ment after fine-tuning. For full sentence (or prefix
in case of re-translation) translation we set beam
size 12 and length normalization 1.0 in Marian.

Validation Test
TED 2014,15 TED 2018 MuST-C.v2

Baseline 30.8 27.5 32.7
Fine-tuned 31.9 29.4 33.6

Decoder settings: Beam size = 12; Normalization = 1.0

Table 2: BLEU scores on full sentence translation,
computed with SacreBLEU.a
a BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.1

For evaluating the simultaneous translation, we
use SimulEval (Ma et al., 2020) which calculates
SacreBLEU for quality and Average Lagging (AL)
(Ma et al., 2019), differential AL (DAL) (Cherry
and Foster, 2019), and average proportion (AP)
(Cho and Esipova, 2016) for latency. The official
evaluation uses a blind test set, however, for sub-
mission purpose, we evaluate it on the MuST.v2
test set (tst-COMMON) set. We have following
settings for re-translation:

Type k AL BLEU Approach
Full Sentence - - 33.60 -
High 20 14.73 33.09 lm
High 21 14.94 33.2 mask
High 20 14.8 33.3 lm+mask
Medium 6 5.98 30.58 lm
Medium 6 5.72 30.92 mask
Medium 5 5.49 31.55 lm+mask
Low 2 2.38 25.16 lm
Low 2 2.32 26.77 mask
Low 1 2.48 27.57 lm+mask

Table 3: AL vs BLEU scores for three regimes (Low,
Medium, High) on MuST-C.v2 test set using beam size
12 and normalization 1.0. Best scores are in bold.

• baseline: The agent waits for initial k to-
kens and then alternates between READ and
WRITE (using re-translation). This is similar
to the wait-k approach by Ma et al. (2019).

• lm: After the initial k tokens, the agent uses
the language model to determine the “mean-
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ingful unit” boundaries, and only WRITEs
when at a boundary.

• mask: This is similar to the baseline, except
that the agent applies dynamic masking to
produce a more stable translation.

• lm+mask: Combination of lm and mask. Thus
in this approach, the agent first uses the lm
score to decide whether to translate, and then
uses dynamic mask to obtain a more stable
translation.

The official evaluation has three regimes of latency:
low (AL≤ 3), medium (AL≤ 6) and high (AL≤
15). In Table 3, we show the AL and BLEU scores
for the three regimes with different approaches.
We find that LM score and Dynamic masking com-
bined achieve the best AL-BLEU trade-off.

To gain a fuller comparison of approaches, we
calculate AL vs. BLEU and DAL vs. BLEU for
a range of k values, and different stabilisation ap-
proaches and plot them as shown in Figures 3 and 4.
Whilst for any given k, the lm+mask approach has
higher AL (because it adds WAIT operations), we
can see from the trajectory of the plot in Figure 3
that the lm+mask approach has the best AL-BLEU
trade-off. While training the models, we set the
length normalization to 0.6 which is used for scor-
ing the development set for the purpose of early-
stopping. However, we find that a normalization
1.0 performs slightly better than normalization 0.6
when doing re-translation. We show the plots for
both normalization values in figures 3 and 4.

When the AL is 15, for many sentences it is a
full sentence translation and thus all the approaches
have similar BLEU scores. We also notice many
sentences have negative AL scores. As the corpus
AL scores is the average of the sentence level AL
scores, negative scores can reduce the actual AL
score. To address this shortcoming of AL, Cherry
and Foster (2019), propose Differentiable Average
Lagging (DAL) as an alternative. In Figure 4, we
show the DAL vs BLEU scores. In Figure 4, we
also observe that the proposed LM and masking
improve the baseline by a significant margin in
DAL-BLEU trade-off.

5 Conclusion

In this paper, we describe our submission to the
IWSLT 2021 shared task on simultaneous text-to-
text German-English translation. We work with

a re-translation approach, enabling use to use an
unmodified MT inference engine, together with an
adaptation of wait k to trade off quality and latency.
Additionally we proposed two techniques (dynamic
masking and LM score) to improve translation qual-
ity by reducing the potential for flicker. We find
that the combination of the proposed approaches
achieves the best AL-BLEU trade-off.
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ber, Sebastian Stüker, and Alex Waibel. 2016. Dy-
namic transcription for low-latency speech transla-
tion. In Interspeech, pages 2513–2517.

Jan Niehues, Ngoc-Quan Pham, Thanh-Le Ha,
Matthias Sperber, and Alex Waibel. 2018. Low-
latency neural speech translation. arXiv preprint
arXiv:1808.00491.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Yuekun Yao and Barry Haddow. 2020. Dynamic mask-
ing for improved stability in online spoken language
translation. In Proceedings of the 14th Conference
of the Association for Machine Translation in the
Americas (Volume 1: Research Track), pages 123–
136, Virtual. Association for Machine Translation in
the Americas.

Ruiqing Zhang, Chuanqiang Zhang, Zhongjun He, Hua
Wu, and Haifeng Wang. 2020. Learning adaptive
segmentation policy for simultaneous translation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 2280–2289, Online. Association for Computa-
tional Linguistics.

51



Proceedings of the 18th International Conference on Spoken Language Translation, pages 52–63
Bangkok, Thailand (Online), August 5–6, 2021. ©2021 Association for Computational Linguistics

Without Further Ado: Direct and Simultaneous Speech Translation
by AppTek in 2021

Parnia Bahar∗, Patrick Wilken∗, Mattia di Gangi, Evgeny Matusov
Applications Technology (AppTek), Aachen, Germany
{pbahar,pwilken,mdigangi,ematusov}@apptek.com

Abstract

This paper describes the offline and simulta-
neous speech translation (ST) systems devel-
oped at AppTek for IWSLT 2021. Our of-
fline ST submission includes the direct end-
to-end system and the so-called posterior tight
integrated model, which is akin to the cas-
cade system but is trained in an end-to-end
fashion, where all the cascaded modules are
end-to-end models themselves. For simultane-
ous ST, we combine hybrid automatic speech
recognition (ASR) with a machine translation
(MT) approach whose translation policy deci-
sions are learned from statistical word align-
ments. Compared to last year, we improve
general quality and provide a wider range of
quality/latency trade-offs, both due to a data
augmentation method making the MT model
robust to varying chunk sizes. Finally, we
present a method for ASR output segmentation
into sentences that introduces a minimal addi-
tional delay.

1 Introduction

In this paper, we describe the AppTek speech trans-
lation systems that participate in the offline and
simultaneous tracks of the IWSLT 2021 evaluation
campaign. This paper is organized as follows: In
Section 2, we briefly address our data preparation.
Section 3 describes our offline ST models followed
by the experimental results in Section 3.6. For the
offline end-to-end translation task, we train deep
Transformer models that benefit from pretraining,
data augmentation in the form of synthetic data
and SpecAugment, as well as domain adaptation
on TED talks. Motivated by Bahar et al. (2021),
we also collapse the ASR and MT components into
a posterior model which passes on the ASR pos-
teriors as input to the MT model. This system is
not considered a direct model since it is closer to

∗equal contribution

the cascade system while being end-to-end train-
able. Our simultaneous translation systems are
covered in Section 4 with discussions on experi-
mental results in Section 4.5. We resume the work
on our streaming MT model developed for IWSLT
2020, which is based on splitting the stream of in-
put words into chunks learned from statistical word
alignment. Most notably, we can implement a flexi-
ble quality/latency trade-off by simulating different
latencies at training time. We also meet this year’s
requirement to support unsegmented input by de-
veloping a neural sentence segmenter that splits the
ASR output into suitable translation units, using a
varying number of future words as context which
minimizes the latency added by this component.

The experiments have been done using RASR
(Wiesler et al., 2014), RETURNN (Zeyer et al.,
2018a), and Sisyphus (Peter et al., 2018).

2 Data Preparation

2.1 Text Data

We participate in the constrained condition and
divide the allowed bilingual training data into in-
domain (the TED and MuST-C v2 corpora), clean
(the NewsCommentary, Europarl, and WikiTitles
corpora), and out-of-domain (the rest). The con-
catenation of MuST-C dev and IWSLT tst2014 is
used as our dev set for all experiments. Our data
preparation includes two main steps: data filtering
and text conversion. We filter the out-of-domain
data based on similarity to the in-domain data in the
embedding space, reducing the size from 62.5M
to 30.0M lines. For the details on data filtering,
please refer to our last year’s submission (Bahar
et al., 2020).

For a tighter coupling between ASR and MT in
the cascade system, we apply additional text nor-
malization (TN) to the English side of the data.
It lowercases the text, removes all punctuation
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marks, expands abbreviations, and converts num-
bers, dates, and other digit-based entities into their
spoken form. This year, our TN approach includes
a language model to score multiple readings of
digit-based entities and randomly samples one of
the top-scoring readings. We refer to it as ASR-like
preprocessing. The target text preserves the casing
and punctuation such that the MT model is able to
implicitly handle the mapping.

2.2 Speech Data
We use almost all allowed ASR data, including Eu-
roParl, How2, MuST-C, TED-LIUM, LibriSpeech,
Mozilla Common Voice, and IWSLT TED corpora
in a total of approximately 2300 hours of speech.
The MuST-C and IWSLT TED corpora are chosen
to be the in-domain data. For the speech side of the
data, 80-dimensional Mel-frequency cepstral coef-
ficients (MFCC) features are extracted every 10ms.
The English text is lower-cased, punctuation-free,
and contains no transcriber tags.

3 Offline Speech Translation

3.1 Neural Machine Translation
Our MT model for the offline task is based on the
big Transformer model (Vaswani et al., 2017). Both
self-attentive encoder and decoder are composed
of 6 stacked layers with 16 attention heads. The
model size is 1024 with a ReLu layer equipped
with 4096 nodes. The effective batch size has been
increased by accumulating gradient with a factor
of 8. Adam is used with an initial learning rate of
0.0003. The learning rate decays by a factor of 0.9
in case of 20 checkpoints of non-decreased dev set
perplexity. Label smoothing (Pereyra et al., 2017)
and dropout rates of 0.1 are used. SentencePiece
(Kudo and Richardson, 2018) segmentation with a
vocabulary size of 30K is applied to both the source
and target sentences. We use a translation factor to
predict the casing of the target words (Wilken and
Matusov, 2019).

3.2 Automatic Speech Recognition
We have trained attention-based models (Bahdanau
et al., 2015; Vaswani et al., 2017) for the offline task
mainly following (Zeyer et al., 2019). To enable
pre-training of the ST speech encoder with differ-
ent architectures, we have trained two attention-
based models. The first model is based on the
6-layer bidirectional long short-term memory (BiL-
STM) (Hochreiter and Schmidhuber, 1997) in the
encoder and 1-layer LSTM in the decoder with

# Model TED MuST-C MuST-C
tst2015 tst-HE tst-COMMON

1 LSTM 6.9 7.5 9.7
2 Transformer 5.2 5.5 7.3

Table 1: ASR word error rate results in [%].

1024 nodes each. Another model is based on the
Transformer architecture with 12 layers of self-
attentive encoder and decoder. The model size is
chosen to be 512, while the feed-forward dimen-
sion is set to 2048. Both models employ layer-wise
network construction (Zeyer et al., 2018b, 2019),
SpecAugment (Park et al., 2019; Bahar et al., 2019)
and the connectionist temporal classification (CTC)
loss (Kim et al., 2017) during training. We further
fine-tune the models on the in-domain data plus
TED-LIUM. As shown in Table 1, the models ob-
tain low word error rates without using an external
language model (LM). These attention-based mod-
els also outperform the hybrid LSTM/HMM model
used in our simultaneous speech translation task.

3.3 Speech Translation

The ST models are trained using all the speech
translation English→German corpora i.e. IWSLT
TED, MuST-C, EuroParl ST, and CoVoST. After
removing the off-limits talks from the training data,
we end up with 740k segments. 5k and 32k byte-
pair-encoding (BPE) (Sennrich et al., 2016) is ap-
plied to the English and German texts, respectively.
We have done the data processing as described in
Section 2. We also fine-tune on the in-domain data,
using a lower learning rate of 8× 10−5.

3.3.1 End-to-End Direct Model
Following our experiments from last year, the direct
ST model uses a combination of an LSTM speech
encoder and a big Transformer decoder. The speech
LSTM encoder has 6 BiLSTM layers with 1024
nodes each. We refer to this model as LSTM-enc
Transformer-dec. The model is initialized by the
encoder of LSTM-based ASR (line 1 in Table 1)
and the decoder of the MT Transformer model.

We also experiment with the pure Transformer
model both in the encoder and decoder. The
Transformer-based ST models follow the network
configuration used for speech recognition in Sec-
tion 3.2. In order to shrink the input speech se-
quence, we add 2 layers of BiLSTM interleaved
with max-pooling on top of the feature vectors in
the encoder with a total length reduction of 6.

Layer-wise construction is done including the de-
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coder: we start with two layers in the encoder and
decoder and double the number of layers after ev-
ery 5 sub-epochs (approx. 7k batches). During this,
we linearly increase the hidden dimensions from
256 to 512 nodes and disable dropout, afterwards it
is set to 10%. Based on our initial observation, the
layer-wise construction helps convergence, in par-
ticular for such deep architectures. The CTC loss
is also applied on top of the speech encoder during
training. The Transformer-based model uses 10
steps of warm-up with an initial learning rate of
8× 10−4. We set the minimum learning rate to be
50 times smaller than this initial value. We also
apply SpecAugment without time warping to the
input frame sequence to reduce overfitting.

3.3.2 Posterior Tight Integration

The posterior model is inspired by Bahar et al.
(2021) where the cascade components, i.e. the end-
to-end ASR and MT models, are collapsed into a
single end-to-end trainable model. The idea is to
benefit from all types of available data, i.e. the
ASR, MT, and direct ST corpora, and optimize all
parameters jointly. To this end, we concatenate the
trained Transformer-based ASR and MT models,
but instead of passing the one-hot vectors for the
source words to the MT model, we pass on the
word posteriors as a soft decision. We sharpen the
source word distribution by an exponent γ and then
renormalize the probabilities.

A value of γ = 1 produces the posterior distri-
bution itself, while larger values produce a more
peaked distribution (almost one-hot representation).
To convey more uncertainty, we use γ = 1.0 in
training and γ = 1.5 in decoding to pick the most
plausible token. We further continue training of
the end-to-end model using the direct ST parallel
data as a fine-tuning step. The constraint is that
the ASR output and the MT input must have the
same vocabulary. Therefore, we need to train a new
MT model with the appropriate English vocabulary
with 5K subwords. The ASR model is trained with
SpecAugment, the Adam optimizer with an initial
learning rate of 1× 10−4, and gradient accumula-
tion of 20 steps. We also apply 10 steps of learning
warm-up. We employ beam search with a size of
12 to generate the best recognized word sequence
and then pass it to MT with the corresponding word
posterior vectors.

3.4 Synthetic Data
To provide more parallel audio-translation pairs,
we translate the English side of the ASR data (Jia
et al., 2019) with our MT model. From our initial
observations, we exclude those corpora for which
we have the ground-truth target reference and only
add those with the missing German side. There-
fore, combining the real ST data with the synthetic
data generated from the How2, TED-LIUM, Lib-
riSpeech corpora, and the English→French part of
MuST-C (Gaido et al., 2020b), we obtain about
1.7M parallel utterances corresponding to 33M En-
glish and 37M German words, respectively.

3.5 Speech Segmentation
To comply with the offline evaluation conditions
for a direct speech translation system with unseg-
mented input, we cannot rely on ASR source tran-
scripts for sentence segmentation. Thus, we train a
segmenter aiming to generate homogeneous utter-
ances based on voice activity detection (VAD) and
endpoint detection (EP). The segmenter is a frame-
level acoustic model that applies a 5-layer feed-
forward network and predicts 3530 class labels,
including one silence and 3529 speech phonemes.
It compares the average silence score of 10 succes-
sive frames with the average of the best phoneme
score from each of those frames to classify silence
segments. We wait for a minimum of 20 consecu-
tive silence frames between two speech segments,
whereas the minimal number of continuous speech
frames to form a speech segment is 100.

Besides improving audio segmentation, follow-
ing the idea by Gaido et al. (2020a), we fine-tune
the direct model on automatically segmented data
to increase its robustness against sub-optimal non-
homogeneous utterances. To resegment the Ger-
man reference translations, we first use the baseline
direct model to generate the German MT output
for the automatically determined English segments.
Then, we align this MT output with the reference
translations and resegment the latter using a variant
of the edit distance algorithm implemented in the
mwerSegmenter tool (Matusov et al., 2005).

3.6 Offline Speech Translation Results
The offline speech translation systems results in
terms of BLEU (Papineni et al., 2002) and TER

(Snover et al., 2006) are presented in Table 2. The
first group of results shows the text translation us-
ing the ASR-like processing. By comparing lines 1
and 3, we see an improvement in our MT develop-
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TED MuST-C MuST-C
tst2015 tst-HE tst-COMMON

# System BLEU TER BLEU TER BLEU TER

Text MT (ASR-like source processing)
1 AppTek 2020 submission 32.7 57.3 31.0 59.4 32.7 55.0
2 Transformer 32.4 57.8 30.8 60.0 33.1 54.5
3 + fine-tuning 33.8 56.5 32.0 58.6 34.5 53.1

Cascaded ASR→MT
4 AppTek 2020 submission (single) 30.9 61.0 29.3 61.7 30.0 58.0
5 AppTek 2020 submission (ensemble) 31.0 61.2 29.5 61.8 30.8 57.3
6 Transformer 31.4 59.3 30.1 60.7 31.4 56.9

7 Posterior ASR→MT 31.3 59.8 29.2 60.7 31.8 56.3

Direct ST
8 AppTek 2020 submission (single) 26.4 64.7 24.7 66.9 29.4 58.6
9 LSTM-enc Transformer-dec 28.8 62.7 28.5 61.9 31.4 56.9
10 + fine-tuning 28.3 64.8 27.8 62.8 33.1 55.6
11 + resegmentation 28.0 63.3 27.3 62.8 31.1 57.1
12 Transformer 29.7 62.5 28.6 62.1 30.7 57.3
13 + fine-tuning 29.5 62.7 28.6 62.4 31.0 57.1

Ensemble
14 AppTek 2020 submission 28.0 63.2 27.4 63.3 30.4 57.8
15 lines 10(2x), 13(2x) 30.4 61.7 29.6 60.2 33.8 54.5

Table 2: Offline speech translation results measured in BLEU [%] and TER [%].

ment over time. As intended, fine-tuning using the
in-domain data brings a significant gain. The MT
model in line 3 and the Transformer-based ASR
model from Table 1 make up the cascade system
that outperforms our last year’s submission, which
ranked first on tst2020 using given segmentation.
However, note that this year’s cascade system is a
single-shot try without careful model choice and
fine-tuning. This result indicates fast progress of
the speech translation task. As discussed in Section
3.3.2, passing ASR posteriors into the MT model,
we further fine-tune the cascade model on the direct
ST data. Therefore, the posterior model guarantees
better or equal performance compared to the cas-
cade system. Line 7 shows its competitiveness.

Regarding direct ST, we observe that the pure
Transformer model (line 12) performs on par with
the model with the LSTM-based encoder (line 9).
Our main goal has been to employ different model
choices to potentially capture different knowledge.
These models already use synthetic data. The di-
rect model with the LSTM encoder uses pretraining
of components, while all pretraining experiments
on the Transformer model degrade the translation
quality. The reason might be partly attributed to
the fact that we use a deep encoder (12 layers with
size 512) and a large decoder (6 layers with model

size 1024) with 3 to 6 layers of adaptors in be-
tween. The training deals with a more complex
error propagation, causing a sub-optimal solution
for the entire optimization problem. Again, fine-
tuning helps both models in terms of the translation
quality, in particular on tst-COMMON. Using the
resegmeted MuST-C training data (line 11) leads
to degradation; however, we have observed that
this model generates less noise and fewer repeated
phrases.

Finally, we ensemble 4 models (two checkpoints
each from lines 10 and 13) constituting our primary
submission for the 2021 IWSLT evaluation. In
comparison to the 2020 submission, improvements
of more than 2% in BLEU can be observed for both
single and ensemble models.

4 Simultaneous Speech Translation

For the IWSLT 2021 simultaneous speech trans-
lation English→German tracks, we continue ex-
ploring our last year’s alignment-based approach
(Wilken et al., 2020), which uses a cascade of a
streaming ASR system and an MT model.

4.1 Simultaneous MT Model

This section gives a short summary of (Wilken
et al., 2020). Our simultaneous MT method is
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based on the observation that latency in transla-
tion is mainly caused by word order differences
between the source and target language. For exam-
ple, an interpreter might have to wait for a verb at
the end of a source sentence if it appears earlier in
the target language. We therefore extract such word
reordering information from statistical word align-
ments (generated using the Eflomal tool (Östling
and Tiedemann, 2016)) by splitting sentence pairs
into bilingual chunks such that word reordering
happens only within chunk boundaries.

For the MT model, we use the LSTM-based at-
tention model (Bahdanau et al., 2015). We make
the following changes to support streaming decod-
ing: 1. We only use a forward encoder.1 2. We add
a binary softmax on top of the encoder trained to
predict source chunk boundaries as extracted from
the word alignment. Importantly, we add a delayD
to the boundaries such that a detection at position
j corresponds to a chunk boundary after position
j−D. The future context available this way greatly
increases the prediction accuracy. 3. We add an-
other softmax on top of the decoder to predict the
target-side chunk boundaries. They are needed as a
stopping criterion in beam search. 4. We mask the
attention energies such that when generating the
k-th target chunk only the source words encoding
in the chunks 1 to k can be accessed.

Inference happens by reading source words until
a chunk boundary is predicted. Then the decoder is
run using beam search until all hypotheses have pre-
dicted chunk end. During this, all source positions
of the current sentence read so far are considered
by the attention mechanism. Finally, the first best
hypothesis is output and the process starts over.

4.2 Random Dropping of Chunk Boundaries

One evident limitation of our IWSLT 2020 sys-
tems (Bahar et al., 2020; Wilken et al., 2020) has
been that we could not provide a range of different
quality-latency trade-offs. This is because basing
translation policy on hard word alignments leads to
a fixed ”operation point” whose average lagging is
solely determined by the amount of differences in
word order between the source and target language.

To overcome this, we make the observation that
two subsequent chunks can be merged without
violating the monotonicity constraint. This cor-
responds to skipping a chunk boundary at infer-
ence time and waiting for further context, at the

1Although we experiment with a BiLSTM encoder in
streaming, we are unable to achieve an improved performance.

cost of higher latency. The number of skipped
chunk boundaries can be controlled by adjusting
the threshold probability tb which is used to make
the source chunk boundary decision. In (Wilken
et al., 2020), we have found that a threshold tb
different than 0.5 hurts MT performance because
the decoder strongly adapts to the chunks seen in
training, such that longer merged chunks are not
translated well.

To solve this issue, we simulate higher detec-
tion thresholds tb at training time by dropping each
chunk boundary in the data randomly with a proba-
bility of pdrop. In fact, we create several duplicates
of the training data applying different values of
pdrop and shuffle them. This way the model learns
to translate (merged) chunks with a wide variety
of lengths, in the extreme case of pdrop = 1 even
full sentences. This goes in the direction of gen-
eral data augmentation by extracting prefix-pairs as
done by Dalvi et al. (2018); Niehues et al. (2018).
Importantly, we still train the source chunk predic-
tion softmax on all boundaries to not distort the
estimated probabilities.

4.3 Streaming ASR

As the ASR component, we use the same hy-
brid LSTM/HMM model (Bourlard and Wellekens,
1989) as in last year’s submission (Bahar et al.,
2020). The acoustic model consists of four BiL-
STM layers with 512 units and is trained with the
cross-entropy loss on triphone states. A count-
based n-gram look-ahead language model is used.
The streaming recognizer implements a version of
chunked processing (Chen and Huo, 2016; Zeyer
et al., 2016), where the acoustic model processes
the input audio in fixed-length overlapping win-
dows. The initial state of the backward LSTM is
initialized for each window, while – as opposed
to last year’s system – the forward LSTM state is
propagated among different windows. This state
carry-over improves general recognition quality
and allows us to use smaller window sizes WASR

to achieve lower latencies.

4.4 Sentence Segmentation

This year’s simultaneous MT track also requires
supporting unsegmented input. To split the unseg-
mented source word stream into suitable translation
units, we employ two different methods for the text
and speech input condition.
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4.4.1 Text Input
For the text-to-text translation task, the input con-
tains punctuation marks that can be used for reli-
able sentence segmentation. We heuristically insert
sentence ends whenever the following conditions
are fulfilled:

1. the current token ends in sentence final punctu-
ation (. ? ! ;), or punctuation plus quote (."
?" !" ;"), yet is not contained in a closed
list of abbreviations (Mrs. Dr. etc., ...);

2. the first character of the next word is not lower-
cased.

Those heuristics are sufficient to recover the orig-
inal sentence boundaries of the MuST-C dev set
with a precision of 96% and a recall of 82%, where
most of the remaining differences can be attributed
to lines with multiple sentences in the original seg-
mentation. The described method uses one future
word as context and therefore does not introduce ad-
ditional delay into the system compared to awaiting
a sentence end token. We enable this kind of sen-
tence splitting also in the case of segmented input
as we find that splitting lines with multiple sen-
tences slightly increases translation performance.

4.4.2 Speech Input
For the speech-to-text translation task, sentence
segmentation is a much harder problem. Our
streaming ASR system does not require segmenta-
tion of the input; however, its output is lower-cased
and punctuation-free text.

In the literature, the problem of segmenting
ASR output into sentences has been approached
using count-based language models (Stolcke and
Shriberg, 1996), conditional random fields (Liu
et al., 2005), and other classical models. Recently,
recurrent neural networks have been applied, either
in the form of language models (Wang et al., 2016)
or sequence labeling (Iranzo-Sánchez et al., 2020).
These methods either are meant for offline segmen-
tation or require a fixed context of future words,
thus increasing the overall latency of the system.

Wang et al. (2019) predict sentence boundaries
with a various number of future words as context
within the same model, allowing for dynamic seg-
mentation decisions at inference time depending
on the necessary context. We adopt the proposed
model, which is a 3-layer LSTM with a hidden
size of 512, generating softmax distributions over
the labels y(k), k ∈ {0, . . . ,m}, where m is the

maximum context length. For each timestep t, y(k)t

represents a sentence boundary at position t − k,
i.e. k words in the past. y(0) represents the case of
no boundary. To generate training examples, each
sentence is extended with the first m words of the
next sentence, and those words are labelled with
y(1) to y(m).

However, we make a crucial change on how the
model is applied: instead of outputting words only
after a sentence end decision2, we output words
as soon as the model is confident that they still
belong to the current sentence. For this purpose,
we reinterpret the threshold vector θ(k) such that
p(y

(k)
t ) > θ(k) detects a possible instead of a defi-

nite sentence boundary at position t− k. The idea
is that as long as no incoming word is considered a
possible sentence end, all words can be passed on to
MT without any delay. Only if p(y(1)) > θ(1), the
current word is buffered, and we wait for the second
word of context to make a more informed decision.
If for k = 2 the boundary is still possible, a third
word is read, and so on. A final sentence end deci-
sion is only made at the maximum context length
(k = m). In this case, a sentence end token is emit-
ted and the inference is restarted using the buffered
words. If during the process p(y(k)) < θ(k) for
any k, the word buffer is flushed, except for words
still needed for pending decisions at later positions.
Note that false negative decisions are not corrected
later using more context because the corresponding
words in the output stream have already been read
and possibly translated by the MT system.

4.5 Simultaneous MT Experiments
4.5.1 MT Model Training
We use the data described in Section 2.1 to train
the simultaneous MT models. For the text input
condition, no ASR-like preprocessing is applied
as the input is natural text. SentencePiece vocab-
ularies of size 30K are used for source and target.
We create copies of the training data with dropped
chunk boundaries (Section 4.2) with probabilities
of pdrop = 0.0, 0.2, 0.5 and 1.0. 6 encoder and
2 decoder layers with a hidden size of 1000 are
used, the word embedding size is 620. The chunk
boundary delay is set to D = 2. Dropout and la-
bel smoothing is used as for the offline MT model.
Adam optimizer is used with an initial learning
rate of 0.001, decreased by factor 0.9 after 10 sub-
epochs of non-decreasing dev set perplexity. Train-

2This is only appropriate in their scenario of an offline MT
system as the next step in the pipeline.

57



ing takes 150 and 138 sub-epochs of 1M lines each
for text and speech input, respectively.

4.5.2 Latency/Quality Trade-Off Parameters
As described in Section 4.2, we can vary the bound-
ary prediction threshold probability tb to set dif-
ferent latency/quality trade-offs at inference time.
In our experiments, we observe that the longer
a chunk gets the less confident the model is in
predicting its boundary, leading in some cases
to very large chunks and thus high latency. To
counteract this effect, we introduce another meta-
variable ∆tb which defines a decrement of the
threshold per source subword in the chunk, making
the current threshold t′b at a given chunk length
l: t′b = tb − ∆tb · (l − 1). This usually leads to
chunks of reasonable length, while also setting a
theoretical limit of l ≤ dtb/∆tbe+ 1.

For the speech input condition, we vary the ASR
window size WASR of the acoustic model in the
ASR system between 250ms, 500ms and 1000ms.

Finally, we apply length normalization by di-
viding the model scores by Iα, I being the chunk
translation length in subwords, and tune α to values
≤ 1 for low latency trade-offs as we notice the MT
model tends to overtranslate in this range.

4.5.3 Fine-tuning
We fine-tune all simultaneous MT models on in-
domain data described in Section 2. We also add a
copy of MuST-C where the transcriptions produced
by our hybrid ASR system are used as source to
make MT somewhat robust against ASR errors.

Furthermore, we create low latency systems
by fine-tuning as above, but changing the chunk
boundary prediction delay D from 2 to 1. This
way the latency of the MT component is pushed
to a minimum; however, at the cost of reduced
translation quality caused by unreliable chunking
decisions with a context of only one future word.

4.5.4 Sentence Segmenter
We train the sentence segmenter for unsegmented
audio input (Section 4.4.2) on the English source
side of the MT training data to which we ap-
ply ASR-like preprocessing and subword splitting.
Note that the sentence splitting of the MT data it-
self is not perfect, and a better data selection might
have improved results.

We set the maximum length of the future con-
text to m = 3 as the baseline results in Wang
et al. (2019) indicate no major improvement for
longer contexts. Adam is used with a learning rate

WASR (ms) dev tst-HE tst-COMMON

250 11.7 11.1 12.4
500 10.7 10.3 10.8

1000 10.4 9.7 10.4

Table 3: WER [%] of streaming hybrid ASR on
MuST-C test sets for various window sizes WASR

of 0.001, reduced by factor 0.8 after 3 epochs of
non-improved dev set perplexity. Training takes 27
sub-epochs of 690K sentences each. For inference,
we set the threshold vector to θ = (0.05, 0.1, 0.5)
by analysing the amount of false negatives depend-
ing on θ(k) for k = 1, 2 and by determining a good
recall/precision trade-off for k = 3. The resulting
segmenter has a recall of 61.4% and a precision
of 64.1% on the original tst-COMMON sentence
boundaries. Words are buffered for only 0.4 posi-
tions on average.

4.5.5 Simultaneous MT Results

The simultaneous MT systems are evaluated with
the SimulEval tool (Ma et al., 2020). The BLEU

and Average Lagging (AL) (Ma et al., 2019) met-
rics are used to score the different latency/quality
trade-offs. Beam size 12 is used in all cases.

Figure 1 shows the results for the text input con-
dition for MuST-C tst-HE and tst-COMMON. The
filled data points correspond to the main text-input
MT model. The points without fill show the re-
sults after low-latency fine-tuning with D = 1.
The different trade-offs are achieved by varying
the boundary threshold tb from 0.3 to 0.9 using
various decrements ∆tb. The full list of trade-off
parameters is given in the appendix, Table 6. With
the low-latency system an AL value of 2 words is
achieved; however, at the cost of low BLEU scores
of 22.2 and 25.1 on tst-HE and tst-COMMON, re-
spectively. A reasonable operation point could for
example be at an AL of 4, where BLEU scores
of around 29.8 and 31.6 are achieved. For higher
latency values, translation quality increases less
rapidly, peaking at 31.0 and 33.1 BLEU for the two
test sets. On tst-COMMON, a bump in the graph
can be observed between 4 and 6 AL. This corre-
lates with a problem of too short translations of up
to 3% less words than the reference in this range.
Below 4 AL, we are able to tune the hypothesis
lengths via the length normalization exponent α.
But above 4 AL, the optimal α is already 1, and
setting α > 1 does not yield improvements.

Figure 2 shows the results for the speech input
condition. The trade-offs are achieved using sim-
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Figure 1: Results for English→German text-to-text simultaneous translation
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Figure 2: Results for English→German speech-to-text simultaneous translation

ilar parameters as for the text input (Table 7 in
the appendix shows the full list). Additionally, we
vary the ASR window size: for the 7 data points
with lowest latency WASR = 250ms is used, for
the highest 3 WASR = 1000ms. The remaining
points use a value of 500ms. The word error rates
for different WASR are shown in Table 3. On tst-
COMMON, the general shape of the curve is sim-
ilar to text input. The lowest obtained AL is 1.8s.
For high latencies, BLEU saturates at 26.8. On tst-
HE, quality improves less rapidly with increased
latency and even decreases slightly for AL values
> 5s. This indicates that the trade-off parameters,
which have been tuned on dev, do not translate
perfectly to other test sets in all cases. When com-
paring text and speech input results for high latency
values, we conclude that recognition errors in the
ASR system lead to a drop in translation quality by
about 5-6% absolute in terms of BLEU.

Figure 2 also shows results for unsegmented in-
put3. Since no official scoring conditions have been
defined, we therefore create partly unsegmented
test sets ourselves by concatenating every 10 subse-

3For tst-COMMON we skip the 3 points with highest la-
tency for better visibility of the other points.

quent sentences of the test sets. The AL scores are
taken as-is from SimulEval, the BLEU scores were
computed using the mwerSegmenter tool. (Scoring
the segmented results with mwerSegmenter leads
to unaltered scores.) In general, the missing seg-
mentation seems to lead to a drop of 2-3% BLEU.
For tst-HE, unsegmented input leads to better re-
sults in the low latency range which is unrealistic
and indicates that the AL values computed for sin-
gle and multiple sentences are not comparable. In
future work, we will analyze the scoring of the
unsegmented case further and use trade-off param-
eters which are tuned for this case.

5 Final Results

In comparison to last year’s submission (Bahar
et al., 2020), the result of offline speech transla-
tion models have improved. The official results on
the tst2020 and tst2021 test sets are shown in Ta-
ble 4, as evaluated by the IWSLT 2021 organizers.
This year, there are two references along with the
BLEU score using both of them together. Ref1 is
the original one from the TED website, while Ref2
has been created to simulate shorter translations as
used in subtitles.
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Our end-to-end direct (an ensemble of 4 models),
cascade (a single model) and posterior (a single
model) systems correspond to the lines 15, 6 and 7
of Table 2, respectively. We observe that the pro-
vided reference segmentation negatively affects the
ST quality regardless of the systems themselves. In
contrast, the segmentation obtained by our segmen-
tation model provides segments which apparently
are more sentence-like including less noise and
thus can be better translated. We note that our end-
to-end direct primary and contrastive systems have
the identical model parameters with an ensemble
of 4 models while they utilize different speech seg-
mentations. In the direct contrastive system, we
apply our last year’s segmentation which seems to
be slightly better than that of this year. Similar to
the MuST-C tst-COMMON set in Table 2, the di-
rect model outperforms the cascaded-wise systems
on tst2020 whereas it is behind on tst2021 with
automatic segmentation. On the condition with ref-
erence segmentation, the difference between our
cascade and direct models is lower where both sys-
tems almost preform the same. More results can be
found in (Anastasopoulos et al., 2021).

System
TED TED

tst2020 tst2021
Ref1 Ref2 both

reference segmentation
direct (submission 2020) 20.5 - - -
direct 22.2 20.2 17.1 28.7
cascade 21.4 20.7 17.1 28.6
posterior 20.6 20.1 16.8 28.3

automatic segmentation
direct (submission 2020) 23.5 - - -
direct primary 24.5 22.6 18.3 31.0
direct contrastive 25.1 22.8 18.9 32.0
cascade 24.0 23.3 19.2 32.1
posterior† 23.1 21.9 18.1 30.4

Table 4: AppTek IWSLT 2021 submission for offline
speech translation measured by BLEU [%]. †: our cas-
cade primary system at the time of submission.

Table 5 shows the official results for our simul-
taneous speech translation submission. The classi-
fication into different latency regimes is done by
the organizers based on results on tst-COMMON.
Due to dropping chunk boundaries in training, this
year we are able to provide systems in all latency
regimes, except for the speech track where a low-
latency system (AL < 1s) is not possible to achieve
with our cascade approach where the individual
components already have a relatively high minimal

latency regime BLEU [%] AL
text-to-text
low 22.8 3.1
mid 25.7 6.2
high 26.6 12.0

speech-to-text
mid 16.6 2.0s
high 21.0 4.0s

Table 5: AppTek IWSLT 2021 official simultaneous
speech translation results on the blind text and speech
input test sets.

latency.

6 Conclusion

This work summarizes the results of AppTek’s par-
ticipation in the IWSLT 2021 evaluation campaign
for the offline and simultaneous speech translation
tasks. Compared to AppTek’s systems at IWSLT
2020, the cascade and direct systems present an
improvement of 0.9% and 2.6% in BLEU and TER,
respectively, averaging over 3 test sets. This shows
that we further decreased the gap in MT quality
between the cascade and direct models. We have
also explored the posterior model, which enables
generating translations along with transcripts. This
is particularly important for applications when both
sequences have to be displayed to users.

For the simultaneous translation systems, this
year we are able to provide configurations in a wide
latency range, starting at AL values of 2 words and
1.8s for text and speech input, respectively. For
speech input, a maximal translation quality of 25.8
BLEU is achieved on tst-HE, 3% BLEU improve-
ment compared to the previous system at a similar
latency. By using future context of variable length
we are able to do reliable sentence segmentation
of ASR output designed to introduce minimal addi-
tional delay to the system.
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mann Ney. 2021. Tight integrated end-to-end train-
ing for cascaded speech translation. In IEEE Spo-
ken Language Technology Workshop, pages 950–
957, Shenzhen, China.

Parnia Bahar, Patrick Wilken, Tamer Alkhouli, An-
dreas Guta, Pavel Golik, Evgeny Matusov, and
Christian Herold. 2020. Start-before-end and end-to-
end: Neural speech translation by apptek and rwth
aachen university. In Proceedings of the 17th Inter-
national Conference on Spoken Language Transla-
tion, pages 44–54.

Parnia Bahar, Albert Zeyer, Ralf Schlüter, and Her-
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A Appendix

trade-off id D tb ∆tb α

1’ 1 0.3 0.006 0.3
2’ 1 0.4 0.008 0.6
3’ 1 0.5 0.012 0.8
4’ 1 0.6 0.012 1.0

1 2 0.3 0.006 0.3
2 2 0.4 0.008 0.4
3 2 0.5 0.012 0.6
4 2 0.6 0.012 0.8
5 2 0.6 0.008 0.8
6 2 0.7 0.012 1.0
7 2 0.9 0.032 1.0
8 2 0.9 0.027 1.0
9 2 0.9 0.023 1.0
10 2 0.9 0.017 1.0
11 2 0.9 0.012 1.0
12 2 0.9 0.008 1.0

Table 6: Trade-off parameters for submitted text in-
put simultaneous MT systems, sorted from low to high
latency. D = 1 refers to low latency fine-tuning
described in Section 4.5.3. Other parameters are ex-
plained in Section 4.5.2.

trade-off id D WASR (ms) tb ∆tb α

1’ 1 250 0.3 0.006 0.3
2’ 1 250 0.4 0.008 0.6
3’ 1 250 0.5 0.012 0.8

1 2 250 0.3 0.006 0.3
2 2 250 0.4 0.008 0.6
3 2 250 0.5 0.012 0.8
4 2 250 0.6 0.012 1.0
5 2 500 0.4 0.008 0.6
6 2 500 0.5 0.012 0.8
7 2 500 0.6 0.012 1.0
8 2 500 0.6 0.008 1.0
9 2 500 0.9 0.032 1.0
10 2 500 0.9 0.027 1.0
11 2 500 0.9 0.023 1.0
12 2 500 0.9 0.017 1.0
13 2 500 0.9 0.012 1.0
14 2 1000 0.9 0.017 1.0
15 2 1000 0.9 0.012 1.0
16 2 1000 0.9 0.008 1.0

Table 7: Trade-off parameters for submitted speech
input simultaneous MT systems, sorted from low to
high latency. D = 1 refers to low latency fine-tuning
described in Section 4.5.3. Other parameters are ex-
plained in Section 4.5.2.
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Abstract
This paper describes the systems submitted to
IWSLT 2021 by the Volctrans team. We partic-
ipate in the offline speech translation and text-
to-text simultaneous translation tracks. For of-
fline speech translation, our best end-to-end
model achieves 7.9 BLEU improvements over
the benchmark on the MuST-C test set and is
even approaching the results of a strong cas-
cade solution. For text-to-text simultaneous
translation, we explore the best practice to op-
timize the wait-k model. As a result, our
final submitted systems exceed the benchmark
at around 7 BLEU on the same latency regime.
We release our code and model to facilitate
both future research works and industrial ap-
plications1.

1 Introduction

This paper describes the neural speech translation
systems submitted to IWSLT 2021 by the Volctrans
team (also known as the team from ByteDance
AI Lab), including cascade and end-to-end speech
translation (ST) systems for the offline ST track and
a simultaneous neural machine translation (NMT)
system. We aim at finding the best practice for
these two tracks.

For offline ST, the cascaded system often out-
performs the fully end-to-end approach. Recent
studies on the fully end-to-end approaches obtain
promising results and attract a lot of interest. Last
year’s results have shown that an end-to-end model
achieves an even better performance (Ansari et al.,
2020) compared with the cascaded competitors.
However, they introduce pre-training (Bansal et al.,
2019; Stoian et al., 2020; Wang et al., 2020; Aline-
jad and Sarkar, 2020) and data augmentation tech-
niques (Jia et al., 2019; Pino et al., 2020) to end-to-
end models, while the cascaded is not that strong

1Code and models are available at https:
//github.com/bytedance/neurst/tree/
master/examples/iwslt21

enough. Hence, in this paper, we would like to
optimize the speech translation model in two as-
pects. First, we are devoted to building a strong
cascade competitor and learns the best practice
from WMT evaluation campaigns (Li et al., 2019;
Wu et al., 2020), such as back translation (Sennrich
et al., 2016a) and ensemble. Second, we explore
various self-supervised learning methods and in-
troduce as much semi-supervised data as possible
towards finding the best practice of training end-
to-end ST models. In our settings, ASR data, MT
data, and monolingual text data are all considered
in a progressively training framework. The results
are very promising, and the final performance on
the MuST-C test set surpasses the end-to-end base-
line by 7.9 BLUE scores, while it is still lagging
behind our cascade model by 1.5 BLUE scores. It
is not surprising since some well-optimized meth-
ods for MT can not be easily used on ST, such as
back translation. However, our experience shows
that the external data can effectively close the gap
between end-to-end models and cascade models.

In parallel, we also participate in the simultane-
ous NMT track, which translates in real-time. Our
system is based on an efficient wait-k model (El-
bayad et al., 2020). We investigate large-scale
knowledge distillation (Kim and Rush, 2016; Fre-
itag et al., 2017) and back translation methods. Spe-
cially, we develop a multi-path training strat-
egy, which enables a unified model serving differ-
ent wait-k paths. Our target is to obtain the best
translation quality at different latency levels.

The remaining part of the paper proceeds as fol-
lows. Section 2 and section 3 describe our cas-
cade and end-to-end systems respectively. Sec-
tion 4 presents the implementation of simultaneous
NMT models. Each section starts from the training
sources and how we synthesize large-scale data.
And then, we give details about the model structure
and techniques for training and inference. We con-
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Dataset #samples #hours

MuST-C 250,942 450
LibriSpeech 281,241 961
Common Voice 562,517 899
iwslt-corpus 157,909 231
TED-LIUM 3 111,600 165

Table 1: The statistics of audio datasets to train the
ASR model. The iwslt-corpus and TED-LIUM 3 are
filtered by an ASR model trained on MuST-C, Lib-
riSpeech and Common Voice.

duct experiments using only the provided datasets
by IWSLT 2021, and results are shown in Section 5.

2 Cascaded Speech Translation

2.1 Automatic Speech Recognition

The ASR model is transformer-like and trained on
paired speech and transcript data

Datasets and Preprocessing We divide the al-
lowed ASR datasets into two parts: clean and noisy
and consider MuST-C2, LibriSpeech (Panayotov
et al., 2015), and Mozilla Common Voice as the
clean datasets, and use them for training an ASR
system to filter the noisy part, i.e., iwslt-corpus3

and TED-LIUM 3 (Hernandez et al., 2018). We
remove the training samples where the word error
rate (WER) score between the ASR output and En-
glish transcript exceeds 75%. The statistics of the
ASR datasets are shown in Table 1.

For model training, we extract 80-channel log
Mel-filterbank coefficients with windows of 25ms
and steps of 10ms on the audio input. The tran-
scripts are lowercased and we remove all punctua-
tion marks. Then, we apply Moses tokenizer4 and
byte pair encoding (BPE) (Sennrich et al., 2016b)5

to the transcripts with 8,000 merge operations.

End-to-End ASR Model We refer to the recent
progress of transformer-based ASR (Dong et al.,
2018; Karita et al., 2019) and implement the speech
transformer model, as illustrated in Figure 1 a).
The feature extractor consists of two-layer CNN
with 256 channels, 3 × 3 kernel, and stride size

2In this paper, MuST-C denotes the newly released English-
German ST dataset (v2) by IWSLT 2021.

3The training corpus for IWSLT evaluation campaign over
the last years.

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

5https://github.com/rsennrich/
subword-nmt

Fbank Feature
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Transformer
Encoder

Transformer
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⨁
Positional
Encoding
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Embedding Layer

Transformer
Encoder

Transformer
Decoder

⨁

Positional
Encoding

Hallo zusammen.

<ASR> hello everyone

a) speech to text b) text to text

Figure 1: Overview of the cascaded speech translation
model.

2, each of which is followed by a layer normaliza-
tion and ReLU activation. The major architecture
is the same as the transformer model, including
12 layers for the encoder and 6 layers for the de-
coder. The model width is 768, and the hidden
size of the feed-forward layer is 3,072. The at-
tention head is set to 12 for both self-attention
and cross-attention. To train the model, we use
Adam optimizer (Kingma and Ba, 2015) and set
the warmup steps to 25,000. Empirically, we scale
up the learning rate by 5.0 to accelerate the conver-
gence. The ASR model is trained on 8 NVIDIA
Tesla V100 GPUs with 320,000 frames per batch.
And we truncate the audio frames to 3,000 and
remove training samples whose transcript length
exceeds 120 for GPU memory efficiency. To fur-
ther improve the performance, we apply SpecAug-
ment technique (Park et al., 2019) with frequency
masking (mF = 2, F = 27) and time masking
(mT = 2, T = 70, p = 0.2).

2.2 Neural Machine Translation

All MT models are based on transformer (Vaswani
et al., 2017). We employ data augmentation and
model ensemble techniques to improve the final
performance.

Datasets and Preprocessing We utilize English-
German (EN-DE) parallel sentences from WMT
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20206, OpenSubtitles 20187, MuST-C and iwslt-
corpus for training. We filter the parallel corpora
following the rules listed in Li et al. (2019), with
a much stricter constrain on word alignment. Ad-
ditionally, we randomly select 10% sentences sep-
arately from both sides of the original WMT and
OpenSubtitles corpus for data augmentation (see
below), along with the transcripts in ASR datasets
described in sec 2.1.

As for text preprocessing, we apply Moses tok-
enizer and BPE with 32,000 merge operations on
each side.

Tagged Back-Translation Back-translation
(Sennrich et al., 2016a) is an effective way to
improve the translation quality by leveraging a
large amount of monolingual data and has been
widely used in WMT evaluation campaigns. In our
setting, we add a “<BT>” tag to the source side
of back-translated data to prevent overfitting on
the synthetic data, which is also known as tagged
back-translation (Caswell et al., 2019; Marie et al.,
2020).

Knowledge Distillation Sequence-level knowl-
edge distillation (Kim and Rush, 2016; Freitag
et al., 2017) is another useful technique to improve
performance. In this way, we enlarge the training
data by translating English sentences to German
using a good teacher model.

ASR Output Adaptation Traditionally, the out-
put of ASR systems is lowercased with no punctu-
ation marks, while the MT systems receive natural
texts. In our system, we attempt to make the MT
systems robust to these irregular texts. A simple
way to do so is to apply the same rules on the source
side of the MT training set. However, empirical
study shows it causes performance degradation. In-
spired by the tagged back-translation method, we
enhance the regular MT models with transcripts
from both ASR systems and the ASR datasets, as
illustrated in Figure 1 b). An extra tag “<ASR>”
indicates the irregular input. Note that the basic
idea to bridge the gap between the ASR output and
the MT input involves additional sub-systems, like
case and punctuation restoration. In our cascade
system, we prefer to use fewer sub-systems, and
the detailed comparison would be our future work.

Data Combination and Sampling Strategy We
train transformer models with different combina-

6http://www.statmt.org/wmt20/
translation-task.html, including Common Crawl,

tions of data sets because increasing the model’s
diversity can benefit the model ensemble. The de-
tailed setups are listed in Table 2. We over-sample
the in-domain datasets (i.e., MuST-C/iwslt-corpus-
related portions) to improve the in-domain perfor-
mance. Specifically, to control the ratio of samples
from different data sources, we sample a fixed num-
ber of sentences being proportional to ( Ns∑

s Ns
)

1
T ,

where Ns is the number of sentences from data
source s, and sampling temperature T is set to 5.
Note that the MT#1 is trained on lowercased source
texts without punctuation marks, while MT#2-5 use
the tagged transcripts.

Model Setups We follow the transformer big set-
ting, except that

• we deepen the encoder layers to 16.
• the dropout rate is set 0.15.
• the model width is changed to 768, the hidden

size of the feed-forward layer is 3,072, and
the attention head is 12 for MT#5 only.

We use Adam optimizer with the same schedule
algorithm as Vaswani et al. (2017). All models are
trained with a global batch size of 65,536.

2.3 Inference
We average the latest 10 checkpoints of a single
training process for all the above experiments. And
during inference, the “<ASR>” tag is added to the
front of the ASR output. The beamwidth is set to
10 for both ASR and MT tasks.

3 End-to-End Speech Translation

Recent studies show that the fully end-to-end so-
lution achieves promising performance when com-
pared with the cascaded models (Ansari et al.,
2020). This section will introduce how we build
our end-to-end models for the offline ST task.

3.1 Training Data
The end-to-end model is trained on paired speech
and translation data. We collect MuST-C and iwslt-
corpus (after filtering described in section 2), with
a total of only 681 hours transcribed and trans-
lated speech. To address the data scarcity problem,
we explore the knowledge distillation technique
to augment the data by leveraging ASR datasets
and MT models, also known as pseudo labeling.
In detail, we distill from four MT models: MT#1,

Europarl v10, News Commentary v15, and ParaCrawl v5.1
7https://opus.nlpl.eu/

OpenSubtitles2018.php
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Dataset Size MT#1 MT#2 MT#3 MT#4 MT#5pretrain fine-tune

WMT 2020 13.7M P P / P / P
OpenSubtitles 2018 10.7M P P / P P /
MuST-C 0.25M P P/BT/SR P/BT/SR P/SR/KD P/BT/SR P/BT/SR
iwslt-corpus 0.16M / P/BT/SR P/BT/SR P/SR/KD P/SR P/BT/SR
TED-LIUM 3 (EN) 0.11M / / / KD / /
Common Voice (EN) 0.56M / / / KD / /
extra monolingual (EN/DE) 6.77M / / BT KD BT BT

Table 2: The statistics of MT datasets after data filtering and the detailed combination modes of datasets for
difference MT models (MT#1-5). The MT#1 setting is used for training both DE→EN and EN→DE directions.
“P” denotes the parallel corpus. “BT” is the back-translated data using MT#1 (DE→EN). “SR” indicates the
irregular data from both ASR datasets and the ASR model. “KD” is the synthetic data generated by MT#2.

Dataset #samples #hours

MuST-C 1,198,056 2,186
iwslt-corpus 746,714 1,112
LibriSpeech 1,117,394 3,833
Common Voice 2,212,581 3,546
TED-LIUM 3 384,389 577

Table 3: The size of audio datasets with data augmenta-
tion to train the end-to-end ST model.

MT#2, an ensemble of MT#3-5, and MT#3-R2L
which is trained with the same setting as MT#3
and generates the target translations in the right to
left fashion. We filter the augmented samples with
bad alignment scores as the same as data filtering
in MT. The statistics of training data is shown in
Table 3.

Moreover, two additional copies of the original
and the augmented training data are created by
modifying the speed to 110% and 90% of the initial
rate, which makes a 3-fold training set.

3.2 Speech Transformer for End-to-End ST

As a baseline system, the model architecture and
training configurations are the same as the end-to-
end ASR in our cascade system, except for the
learning rate, which is scaled up by 3.0 for ST. We
initialize the feature extractor and encoder from the
corresponding component of ASR.

We keep the cases and punctuation marks on the
target side and apply Moses tokenizer and BPE to
the translations with 32,000 merge operations.

3.3 Progressive Multi-task Learning

Inspired by the multi-task learning framework for
ST and the progressive training strategy (Tang et al.,
2020; Ye et al., 2021), we introduce PMTL-ST,
a progressive multi-task learning framework for
speech translation, which can leverage additional

Fbank Feature

Feature Extractor

Transformer
Encoder

Embedding Layer

Hello everyone.

Modality
Embedding Layer

⨁
Positional Encoding

Transformer
Decoder

<EN> Hello …

Hello everyone …

Transformer
Decoder

<DE> Hallo …

Hallo zusammen …

a) encoder with multi-modal input

b) decoding for ASR task

c) decoding for MT/ST tasks

Figure 2: Overview of the end-to-end ST model with
progressive multi-task learning. Note that the audio
and text inputs are unnecessary to be aligned during
training.

ASR and MT data for training. As illustrated in
Figure 2 a), the encoder accepts both audio and
text inputs. Then we add a modality embedding
to the representation to indicate audio input or text
before passing to the shared transformer encoder.
For decoding, we involve “<EN>” and “<DE>”
tokens to make the decoder compatible with ASR
and translation (MT/ST) tasks, as shown in 2 b)/c).

For progressive training, we separately train
an ASR model and an MT model via different
branches in Figure 2. Then, we initialize the fea-
ture extractor and the audio modality embedding
from the ASR model, and the rest of the model
parameters are initialized by the MT model. The
final model is trained jointly with ASR, MT, and
ST.

All other training configurations, such as batch
size and learning rate, are the same as the corre-
sponding single task described before. Addition-
ally, for the PMTL-ST models, we jointly learn the
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Figure 3: The proposed fbank2vec network for audio
feature encoding.

sentencepiece8 model with 16,000 tokens on the
mixture of English and German texts.

3.4 Fbank2vec

Inspired by the recent progress of speech represen-
tation learning, like wav2vec 2.0 (Baevski et al.,
2020), we introduce a fbank2vec network to learn
contextualized audio representations from log Mel-
filterbank features, as shown in Figure 3.

Convolutional Feature Encoder The encoder
consists of two blocks containing a convolution
followed by layer normalization and a GELU ac-
tivation (Hendrycks and Gimpel, 2016). The con-
volution in each block has 512 channels with 3×3
kernel and stride size 2.

Relative Positional Encoding We use a group
convolution layer to model the relative positional
embeddings as Baevski et al. (2020) does. The
kernel size is 128, and the number of groups is 16.

Contextualized Encoder The final contextual-
ized audio representations are generated by several
transformer encoder blocks. In our setting, we
stack 6 layers of the post-norm transformer, and
the inner activation function for the feed-forward
layers is GELU. In turn, the number of shared en-
coder layers in Figure 2 is changed to 6.

We insert the fbank2vec network in the front of
the feature extractor. The feature extractor further
reduces the dimension of audio representations by
one convolution layer with 5×5 kernel and stride
size 2. The number of channels keeps the same as
the dimension of fbank2vec output.

8https://github.com/google/
sentencepiece

We experiment with two setups, fbank2vec-768
and fbank2vec-512. The fbank2vec-768 means that

• the dimension of fbank2vec output is 768;
• inner the contextualized encoder, the hidden

size of feed-forward layers is 3,072, and the
head of the self-attention layers is 12.

For the fbank2vec-512, the numbers are 512, 2,048,
and 8, respectively. Note that the fbank2vec mod-
ule is pretrained by an ASR task and the overall
model follows the progressive multi-task learning
framework, so the configurations of word embed-
dings, the shared encoder and decoder vary accord-
ingly.

4 Simultaneous Translation

This section describes our submissions to the
text-to-text simultaneous speech translation track
for English to German (EN2DE) and English to
Japanese (EN2JA). For versatility, we adopt identi-
cal methods for these two language pairs.

4.1 Training Data

The training data for EN→DE is from MuST-C,
OpenSubtitles 2018, and WMT 2020 datasets. And
for EN→JA, we use the parallel and monolingual
data from the WMT 2020 news task.

Data Preprocessing We follow the data filtering
process proposed in WMT works (Li et al., 2019;
Wu et al., 2020), including language detection,
length ratio filtering, dictionary alignment, and so
on. For pre-processing, we first apply MeCab9 tok-
enizer to the Japanese sentences. Then, words are
segmented into subword units using sentencepiece
toolkit for both language pairs. We jointly learn
on the source and target side with a vocabulary of
10,000 tokens.

Data Augmentation Similar to section 2.2, we
utilize tagged back-translation (BT) and knowledge
distillation (KD) strategies to improve the perfor-
mance of simultaneous NMT. We experiment with
both LightConv (Wu et al., 2018) and transformer
models. The model with the best BLEU score on
the development set is chosen for data augmenta-
tion. The statistics of all training data and model
settings are presented in Table 4 and Table 5 re-
spectively.

9https://github.com/taku910/mecab
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Dataset Size MT#0 MT#1 MT#2 MT#3 MT#4 MT#5

EN→ DE
WMT 2020(EN→ DE) 41.14M P P P P P/FT FT
OpenSubtitles 2018 13.84M P P P P P/BT/FT FT/BT
MuST-C 0.23M P P/BT P/BT P/BT P/BT/FT FT/BT
monolingual(EN/DE) 10.25M P BT BT BT BT BT

EN→ JA
WMT 2020(EN→ JA) 18.19M P P/BT P/BT P/BT P/BT/FT BT/FT

Table 4: The statistics of MT datasets and the combination modes of datasets for simultaneous NMT models. “P”
indicates the parallel corpus. “BT” means the back-translated data generated by MT#0. “FT” is the forward-
translated data generated by MT#1-3.

# Model Arch Enc Dec Emb

0 Transformer 6 6 1024
1 Transformer 6 6 1024
2 Transformer 50 6 1024
3 LightConv 6 6 1024
4 Transformer 16 3 768
5 Transformer 16 3 768

Table 5: The model setups. “Enc”, “Dec” denote the
number of encoder and decoder layers. “Emb” means
the embedding size and the hidden size.

4.2 Efficient wait-k Model

Our simultaneous NMT systems are based on trans-
former wait-k models, which first read k source
tokens and then alternate between reading and writ-
ing (translating). Formally, when decoding the
sentence x, the number of visible source tokens is
constrained within min(k+ t− 1, |x|) at decoding
step t, where k is the hyper-parameter controlling
the latency. Furthermore, to avoid recomputing the
hidden states of the encoder each time a token is
read, we implement incremental unidirectional en-
coders (Elbayad et al., 2020). And multi-path
training is also applied to leverage more possible
wait-k paths which refers that hyper-parameter
k ∈ [3, 9] is random selected at each batch during
training.

Models are trained with a batch size of 32,000
tokens on Tesla V100 GPUs. We average the last 6
checkpoints once the model converges.

4.3 Inference

We explore the look-ahead beam search strategy for
inference. Specifically, we apply beam search to
generate M(M > 1) tokens at each decoding step
and pick the first token in the one with the highest
log-probability out of multiple decoding paths. The
look-ahead beam search achieves consistent perfor-
mance improvement when keval is small while its

performance improvement is insignificant with a
large keval. This search method is excluded from
our final submissions due to its higher latency, and
we choose the greedy search instead.

Additionally, we split the source sentences into
sub-sentences once the end-of-sentence punctua-
tion is recognized. Though it may result in a slight
performance drop due to the lack of context, we
can obtain a much lower latency.

For the final submissions, we use ensemble mod-
els. We train several models with different ktrain
values and disjoint subsets of training data for data
diversity. Each model produces different latency-
quality trade-offs.

5 Experimental Results

We conduct all our experiments using NeurST
(Zhao et al., 2020) and report results for the sub-
mitted speech translation tasks in this section. It is
worth noting that all transcripts and translations in
the test sets are removed from the training data.

When evaluating the offline ST models, tags
such as applause and laughing are removed from
both hypothesis and reference. We use word error
rate (WER) to evaluate the ASR model and re-
port case-sensitive detokenized BLEU10 for MT.
No other data segmentation techniques are ap-
plied to the dev/test sets. Results on MuST-C
dev and tst-COMMON, as well as dev(v1) and
tst-COMMON(v1) from MuST-C v1 (Gangi et al.,
2019) are listed together, which serve as strong
baselines for comparison purpose in the end-to-end
speech translation field.

When evaluating the simultaneous translation,
we use the official SimulEval (Ma et al., 2020)
toolkit and report case-sensitive detokenized BLEU
(Post, 2018) and Average Lagging (Ma et al., 2019)

10https://github.com/jniehues-kit/
sacrebleu
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# System dev tst-COM dev(v1) tst-COM(v1) Training data composition

Pure MT
1 MT (w/o punc. & lc) 32.0 34.1 32.2 34.0

MT (see Table 2)2 MT (w/ punc. & tc) 33.8 36.2 33.7 35.9
3 ensemble MT (w/o punc. & lc) 33.8 35.2 33.8 35.3
4 ensemble MT (w/ punc. & tc) 34.7 36.7 34.6 36.2

Cascaded ASR→MT
5 AppTek/RWTH (Bahar et al., 2020) - - - 29.7 /
6 ASR→MT 29.9 32.1 28.4 31.3 ASR+MT
7 ASR→ ensemble MT 31.7 33.3 30.1 32.3 /

End-to-End ST
8 direct ST baseline 23.9 23.9 - - MuST-C ONLY
9 direct ST 28.9 29.9 27.9 29.5 ST+ST Augm. by MT#1&2
10 direct ST++ 29.6 30.4 28.3 29.7 ST All
11 direct ST++* 30.0 30.2 28.2 29.6 ST All

12 XSTNet-768 (Ye et al., 2021) 30.4 31.1 - 30.3 ASR+MT+ST All
13 direct ST + fbank2vec-512 28.7 29.1 26.7 27.6 ST All
14 PMTL-ST + fbank2vec-768 29.6 29.6 26.9 28.1 ASR+MT+ST All
15 PMTL-ST + fbank2vec-768 ++ 30.8 31.1 28.8 30.1 ASR+MT+ST All+speed pertub
16 PMTL-ST + fbank2vec-768 ++* 30.9 31.1 28.8 30.1 ASR+MT+ST All+speed pertub

17 ensemble (9, 10, 11) 30.4 31.2 29.0 30.6 /
18 ensemble (15, 16) 31.0 31.1 28.8 30.1 /
19 ensemble (14, 15, 16) 31.4 31.5 29.3 30.6 /
20 ensemble (13, 14, 15, 16) 31.6 31.8 29.5 30.8 /

Table 6: The overall results of the offline speech translation. The MT model used in the cascade approach is
MT#2 and the ensemble MT model is formed by MT#2-MT#5. The direct ST++* is the same as direct ST++ with
different random seed for in-domain data over-sampling. The PMTL-ST + fbank2vec-768 ++* is continuously
trained from PMTL-ST + fbank2vec-768 ++. tst-COM is the abbreviation for tst-COMMON.

Testset WER

dev 5.2
tst-COMMON 5.7
dev(v1) 10.6
tst-COMMON(v1) 7.4

Table 7: The WER of the ASR system for the offline
ST.

on MuST-C tst-COMMON (EN2DE) and IWSLT21
dev set (EN2JA).

5.1 Offline Speech Translation

The overall performance of the offline ST and the
ASR component used in the cascade system are
listed in Table 6 and Table 7 respectively.

In Table 6, line 1-4 show the performance of our
pure MT systems, which translate the lowercased
ground truth transcripts with no punctuation marks,
and the natural texts. As seen, there may be no
essential improvements with the “<ASR>” tag on
the irregular input (up to 2 BLEU gap on the single
model), and it suggests that text restoration has the
potential to narrow the gap. Line 6-7 present the
results of translating the ASR output, and we see
our cascaded approach surpasses last year’s best

cascade system (line 5) by 2.6 BLEU. However,
there is still a significant loss of up to 3 BLEU
scores than line 1/3 due to ASR errors.

The results of our end-to-end solutions are pre-
sented in line 8-20, where line 8 is a benchmark
model (Zhao et al., 2020) trained on the MuST-
C dataset only. With the growth of model capac-
ity (256d→768d) and data augmentation, we obtain
6 BLEU improvement on the tst-COMMON over
the benchmark (line 8). Then, increasing the size
of augmented data gains slight improvement, as
comparing line 9 to line 10/11 (+0.3∼0.5 BLEU
scores). Line 13-16 show the results of our pro-
posed fbank2vec. As shown in line 15, we achieve
31.1 BLEU on tst-COMMON, the best single model
with fbank2vec, progressive multi-task learning,
and speed perturbation. We obtain 31.8 BLEU (line
20) for the final ensemble model, which surpasses
the end-to-end benchmark by 7.9 BLEU scores and
is approaching the cascade system with a nearly
1.5 BLEU gap.

Lastly, our primary cascade system is line 7,
and the primary end-to-end system is line 20 for
submission, which achieves higher performance
via model ensemble.
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Figure 4: Latency-quality trade-offs of the simultaneous NMT. k7/9 means ktrain = 7/9. MT#X indicate the
aforementioned training datasets and model settings in Table 4 and 5. beam refers to our look-ahead beam search
strategy. seg means that the sentences are pre-splited during inference. multipath means that k is random
selected during training.

Low Medium High

EN→ DE Ensemble 25.86 31.73 33.21
+seg 28.75 32.87 32.97

EN→ JA Ensemble 14.81 15.85 15.85
+seg 15.79 15.79 15.79

Table 8: Performance of our final submissions mod-
els on MuST-C tst-COMMON for English-German and
IWSLT21 dev set for English-Japanese.

5.2 Simultaneous Translation

We evaluate the simultaneous NMT systems with
different combinations of strategies and present our
results in Figure 4. Then we report the performance
on different latency regimes in Table 8.

As shown in Figure 4, we can obtain remark-
able BLEU improvements by training with only
the knowledge distilled data (black) comparing to
the filtered parallel data (green) and back-translated
data (magenta), on average 1.0 BLEU improvement
on EN→DE and 0.5 on EN→JA. The possible rea-
sons may be: 1) Noise in origin data is migrated,
like non-parallel sentence pairs. 2) Complex sen-
tences with diverging word order are excluded, and
the machine-translated texts, i.e., translationese,
sometimes have simpler expressions.

We can see that the proposed look-ahead beam
search (red) is competitive when keval is relatively
small but is comparable with the greedy search
when keval is large. So overall considering transla-
tion latency, we use the greedy search for our final
submissions. As for multi-path training, we
see it achieves limited BLEU improvement in our
experiments.

# - System tst2020 tst2021
ref2 ref1 both

7 - Cascade (ensemble) 22.2 21.8 17.1 29.5
6 - Cascade (single) 21.0 20.3 16.4 27.7

20 - Direct (ensemble) 24.3 21.7 18.7 31.3
16 - Direct (single) 23.5 21.6 18.2 30.6
17 - Direct (ensemble) 22.4 21.1 17.5 29.2
10 - Direct (single) 21.6 20.4 17.0 28.1

Table 9: BLEU of the IWSLT 2021 submissions for of-
fline speech translation task. The rows in bold are our
primary systems. The ref1 of tst2021 is originally
from the TED website, while the ref2 is newly cre-
ated for this year’s campaign.

For our final submission of EN→DE, we use
the ensemble model, which consists of three trans-
former models trained on different dataset combi-
nations, with ktrain = 7. For EN→JA, the submit-
ted model is formed by two transformer models,
with ktrain = ∞ (trained on full sentences) and
multi-path training respectively. As presented
in Figure 4, the model ensemble technique leads
to at least 0.5 BLEU improvement on average (yel-
low). Additionally, with the sentence segmentation
(bleu), the average lagging is significantly reduced.
As a result, our final submitted systems exceed the
baseline system at around 7 BLEU on the same
latency regime.

6 Final Results

Table 9 lists the final results of the IWSLT 2021
offline ST track. Surprisingly, we find that our end-
to-end models significantly surpass the cascade sys-
tems, which is different from our conclusions on
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System BLEU AL AP DAL

EN→ DE
MT(Low Latency) 23.24 3.08 0.68 4.25
MT(Mid Latency) 27.22 6.30 0.81 9.24
MT(High Latency) 26.82 12.03 0.92 12.39

EN→ JA
MT(Low Latency) 16.91 6.54 0.89 11.26
MT(Mid Latency) 16.91 6.54 0.89 11.26
MT(High Latency) 16.97 11.27 0.97 11.90

Table 10: Performance of the IWSLT 2021 submissions
for simultaneous NMT on the blind test set.

the MuST-C test sets. We think this may be caused
by the reference of tst2021. Since the ref1 of
tst2021 is the original one from the TED website,
the translations could be much shorter for subti-
tling, and our end-to-end models may fit well on
it.

Table 10 shows the official evaluation for our
simultaneous NMT systems.

7 Conclusion

This paper summarizes the results of the shared
tasks in the IWSLT 2021 produced by the Volctrans
team. We investigate the performance of the end-to-
end solutions with data augmentation and progres-
sively training framework for the offline ST task.
Our end-to-end approach surpasses the last year’s
best cascaded system by 1 BLEU, but it is still
lagging behind our cascade model by 1.5 BLEU
scores on MuST-C test sets. However, our end-
to-end solutions achieve promising performance
on tst2020 and tst2021. Afterwards, we develop
the efficient wait-k model with multi-path
training, and large-scale knowledge distillation and
back translation methods. The final submitted sys-
tems exceed the baseline systems at 7 BLEU on
the same regime. We see the data augmentation
technique plays the most important role in these
tasks. In the future, we would like to explore a
more extensive data condition on both modality
and quantity. We hope our practice could facilitate
batch research works and industrial applications.
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Abstract

The paper describes BUT’s English to Ger-
man offline speech translation (ST) systems
developed for IWSLT2021. They are based on
jointly trained Automatic Speech Recognition-
Machine Translation models. Their perfor-
mances is evaluated on MustC-Common test
set. In this work, we study their efficiency
from the perspective of having a large amount
of separate ASR training data and MT train-
ing data, and a smaller amount of speech-
translation training data. Large amounts of
ASR and MT training data are utilized for pre-
training the ASR and MT models. Speech-
translation data is used to jointly optimize
ASR-MT models by defining an end-to-end
differentiable path from speech to translations.
For this purpose, we use the internal continu-
ous representations from the ASR-decoder as
the input to MT module. We show that speech
translation can be further improved by training
the ASR-decoder jointly with the MT-module
using large amount of text-only MT training
data. We also show significant improvements
by training an ASR module capable of gener-
ating punctuated text, rather than leaving the
punctuation task to the MT module.

1 Introduction

Speech Translation (ST) systems are intended
to generate text in target language from the
audio in source language. The conventional
ST systems are cascade ones, including (in the
most popular form) three blocks i.e., an ASR,
punctuation/segmentation module and an MT
model (Ngoc-Quan Pham, 2019; Pham et al.,
2020b; Jan et al., 2019; Ansari et al., 2020). Both
Automatic Speech Recognition system (ASR) and
Machine Translation (MT) models are indepen-
dently trained, and the MT model processes the
ASR output text (ASR hypotheses) to generate
translations. In a cascade system, the advance-

ments in ASR and MT can be directly extended to
ST. These models can also leverage on the avail-
ability of large ASR and MT data-sets, and some
of the state-of-the art ST systems are still cascade
ones.

Recently, End-to-End ST systems have become
widely popular. An End-to-End ST can directly
generate text in target language from the audio
in source language. These models are simpler
in structure and they are more suitable for op-
erating in streaming fashion. Most End-to-End
speech translation systems are variants of encoder-
decoder architecture with attention models (Bah-
danau et al., 2015; Di Gangi et al., 2019; Zhao
et al., 2020). This category includes the popu-
lar Transformer models, which have been adapted
for training End-to-End ST in (Di Gangi et al.,
2019). In (Inaguma et al., 2020), a better perfor-
mance of ST was achieved by initializing the en-
coder and decoder modules from pre-trainied ASR
and MT systems, respectively. Very-deep trans-
former models have been trained with stochastic
depth for training End-to-End ST models in (Pham
et al., 2019). The use of relative positional embed-
dings has also improved the performance of trans-
former (Pham et al., 2020a).

One major drawback or end-to-end ST is the
data availability, i.e., paired speech-to-translation
data is scarce compared to ASR or MT data. Data
augmentations and use of synthetic data have been
explored in (Bahar et al., 2019, 2020) to mitigate
the issue. Unlike End-to-End ST systems, the data
for training cascade systems is easily available and
less costly.

A brief survey of existing approaches and their
principal limitations are discussed in (Sperber and
Paulik, 2020). Despite multiple advantages, the
cascade systems suffer from a major drawback:
propagating erroneous early decisions into MT
models, which then cause degradation in the trans-
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lation performance. To mitigate this degradation,
rather than passing a single ASR output sequence
to MT model, other forms such as lattices, n-best
hypotheses and continuous representations have
been explored in (Anastasopoulos and Chiang,
2018; Zhang et al., 2019; Sperber et al., 2019; Vy-
dana et al., 2021; Dong et al., 2020).

In this work, we use our jointly trained Au-
tomatic Speech Recognition-Machine Transla-
tion (Joint-ASR-MT) model previously described
in (Vydana et al., 2021). Joint-ASR-MT model
is a cascade system, but it has a differentiable
path between ASR and MT modules. To cre-
ate such differentible path, the continuous hidden
representations (corresponding to each output to-
ken) from the ASR decoder are passed to the MT-
Model. The hidden continuous tokens correspond-
ing to each output token are the attention-weighted
value vectors in the last layer of the transformer
decoder. We refer to these continuous representa-
tions as“context vectors” as proposed in (Sperber
et al., 2019).

Existing large separate ASR training data and
MT training data can be used to pre-train these
modules; then, the pre-trained modules are jointly
optimized using a small amount of speech trans-
lation data. The joint optimization mitigates the
degradation in performance due to erroneous early
decisions.

In this paper, we generate German translation
from English speech, and we focus on two main
contributions: (1) We train different MT mod-
els that can translate normalized text or punctu-
ated text. It is known that MT-models translat-
ing punctuated text provide superior performance,
therefore, we propose to train an ASR system that
can generate the punctuated text. We confirm that
such ASR system provides superior performance
in ASR-MT pipeline. (2) We use the internal con-
tinuous representations from the ASR-decoder as
the input to MT module. In section 6, we show
that speech translation can be further improved by
adapting ASR-decoder to the MT module. This is
achieved by training the ASR-decoder jointly with
the MT-module using a large amount of text-only
MT training data.

2 Datasets and Pre-processing

The Datasets used for training various models are
described in Table. 1. ASR-Train-set and MT-
Train-set are used for pre-training ASR and MT

models respectively. The pre-trained models are
fine-tuned using ASR-MT-Train-set. All models
are evaluated using MustC-Common test set.

Table 1: Data used for training various models.

Corpora #Sentences Audio
Source

text
Target
Text

MT
-Train-set

ParaCrawl v3 31M - X X
OpenSubtitles 2018 12M - X X
Rapid 2019 1.5M - X X
Europarl v9 1.81M - X X
News Commentary 365K - X X
Common Crawl 2.4M - X X
Wikititles 1.3M - X X
WIT3 196K - X X
TED Talks 220K - X X

ASR-MT
-Train-set

Europarl-ST 32K X X X
Must-C V2 230K X X X
IWSLT2018 171K X X X

ASR
-Train-set

Tedlium3 264K X X -

Librispeech 281K X X -

2.1 Pre-processing and Feature Extraction

From audio data, 80-Dimensional Mel-Filter bank
energies along with pitch features are extracted.
The Moses toolkit is used for text tokenization
and other standard text pre-processing. The um-
lauts from the German text are replaced by the
special tokens. All the non ASCII characters are
removed from the text data. The repetitions of
the same sentences are removed from the corpora.
We cleaned up the MT training data by identify-
ing and manually removing the sentences where
successive words were erroneously concatenated
in to very long erroneous words. Sentence-piece
models (Kudo and Richardson, 2018) are used for
training BPE-tokenizers. 40M lines of text are
used for training each BPE-tokenizer and all the
tokenizers have a vocabulary of 20K units. Three
separate tokenizers are trained using normalized
English text, punctuated English text and punctu-
ated German text. The output of MT module is al-
ways punctuated text, while input to MT (as well
as ASR output) can be either normalized or punc-
tuated text (see norm-MT and Punc-MT in sec-
tions 4).

2.2 Pruning Noisy ASR corpus

Some of the utterances in ASR-MT-Train-
set (MustC, IWSLT and Europarl) sets are erro-
neous due to the shift in alignments between audio
and text. Training an End-to-End ASR on this data
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directly did not lead to convergence. To remove er-
roneous transcripts, a hybrid TDNN-LFMMI ASR
system based on KALDI (Povey et al., 2011, 2016)
was trained and this ASR system was used to de-
code the ASR-MT-train set. The Word Error Rate
(WER) for each sentence is computed and the sen-
tences with more than 50% WER are deleted from
the ASR-MT-Train-set (Potapczyk et al., 2019).
Even with this cleaning, training the ASR systems
only on ASR-MT-Train-set did not lead to con-
vergence. Pre-training the ASR models on ASR-
Train-set turned out to be crucial for convergence
as described in section 3.

3 Automatic Speech Recognition (ASR)

ASR systems trained in this work are built on
Transformer ASR models (Dong et al., 2018;
Karita et al., 2019; Vydana et al., 2021; Vaswani
et al., 2017). The ASR models have 12 encoder
and 6 decoder layers with 4096 feed-forward
units and 1024 attention dimension with 16 heads.
Models are initially trained with ASR-Train-set
and are later fine-tuned with ASR-MT-Train-set.
A thresholding mechanism is used for pruning
away the noisy end-of-sequence (EOS) tokens
from beam search (Kahn et al., 2019). Models are
trained with 30K warm-up updates and a check-
point is saved after every 8K updates. The train-
ing is stopped with an early stopping criterion. 8-
best check-points are averaged and the averaged
weights are used for decoding the hypothesis. Vec-
torized beam search (Seki et al., 2019) was used
for decoding the ASR hypotheses with a beam size
of 10. Further in this paper, ASR models described
in this section are referred to as Ext.ASR models
(Externally trained ASR models).

Two different ASR systems were trained for
generating normalized text (Norm-ASR) and
punctuated text (Punc-ASR), and their perfor-
mances are reported in Table 2. It can be observed
that the WER of Punc-ASR appears to be higher
than Norm-ASR. Punc-ASR is a obviously more
difficult task than Norm-ASR — the punctuation
tokens are considered as extra words and each er-
ror in those words contributes to the WER.

ASR-LM: A Transformer language model was
trained on English text (Irie et al., 2019). The
model has 6 layers, with 4096 feed-forward units
and 1024 attention dimension with 8 heads. The
model is initially pre-trained on Librispeech LM
corpus and it is later fine-tuned on English text

Table 2: Performance of trained ASR systems reported
on MustC-Common set. For Punc-ASR, the errors in
punctuation tokens are considered, which makes it a
more difficult task.

Model WER
Norm-ASR 18.20

+LM 17.35
Punc-ASR 21.20

from MT-train-set and ASR-MT-train-set. An im-
provement in the performance is observed by shal-
low fusion of the ASR and language model (ASR-
LM). Performances of these language models are
presented in column 2 of Table. 5.

4 Machine Translation Systems(MT)

Transformer models (Vaswani et al., 2017) are also
at the core of MT-systems. They have 6-encoder
and 6-decoder layers with 4096 feed-forward units
and 1024 attention dimensions and have 16 heads.
The models are optimized with 30K warm-up up-
dates and a check-point is saved every 8k updates.
Training is stopped using an early stopping cri-
terion. 8-best check-points are averaged and the
averaged weights are used for decoding the hy-
potheses. The noisy EOS tokens are pruned out
using (Kahn et al., 2019). Vectorized beam (Seki
et al., 2019) search has been used for decoding
the hypotheses with a beam size of 8. A large
variance in the performance is observed w.r.t the
decoding hyper-parameters such as maximum tar-
get sequence length and length-bonus. The maxi-
mum length of the target sequence is computed by
multiplying the input sequence length with length-
ratio: 1.2 was found as optimal on the develop-
ment set. To control the length of the output se-
quence, the log-likelihood scores of the hypothe-
ses are penalized by additive token insertion penal-
ties. The optimal value for this penalty is tuned as
a hyper-parameter on the development set. The
hypothesis text is de-tokenized and BLEU score
is evaluated using Moses Toolkit. All the BLEU
scores reported in this paper are computed us-
ing the de-tokenized, punctuated German text us-
ing multi-bleu-detok.perl. The perfor-
mances of the MT systems are reported in Table. 3.
All BLEU scores reported in this paper are com-
puted using punctuated text as reference.

In Table 3, Norm-MT, Punc-MT are MT models
trained to predict punctuated German text. Norm-
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Table 3: Performances of the MT systems reported on
MustC-Common set.

Model BLEU
Norm-MT
+pretrain 27.18
+finetune 27.98
+MT-LM 28.12

Punc-MT
+pretrain 31.02
+finetune 35.00
+MT-LM 35.04

MT uses the normalized English text as input
while the Punc-MT uses the punctuated English
text. Punc-MT model has performed better than
Norm-MT. From Table 3, it can be observed that
the punctuation tokens in the text are adding ad-
ditional information for training the MT model.
Fine-tuning the Punc-MT on in-domain text has
improved the performance significantly. Further in
this paper, MT models described in this section are
referred to as Ext.MT models (Externally trained
MT models).

MT-LM: A transformer language model has
been trained on German text from MT-Train-set,
ASR-MT-train-set. This LM is also used while
decoding with the MT model (Irie et al., 2019).
The architecture of the model is same as ASR-LM
mentioned in section 3. A shallow fusion between
the MT-model and the MT-LM Language model is
performed. As shown in Table 3 and column 2 of
Table 5, the additional language model (MT-LM)
did not improve the performance significantly.

5 Jointly Trained ASR-MT Systems

The model has two modules: ASR and MT; their
architecture is same as described in sections 3 and
4 respectively – see block diagram in Figure 1 and
full description of the model in (Vydana et al.,
2021). The context vectors from the final layer
of the ASR-decoder are used as inputs to the MT
module. Passing context vectors from ASR to
MT models while training has also been explored
in (Sperber et al., 2019). Both the models are
jointly optimized using a multi-task cross-entropy
(ASR cross-entropy and MT cross-entropy) – both
losses are also shown in Figure 1. During the in-
ference, beam search has been used to obtain the
ASR hypotheses, and the corresponding context
vectors obtained from the ASR model are used by

Figure 1: Joint-training of ASR-MT system using
multi-task loss.

the MT model for generating translations. The MT
model also uses a beam search, and the final ST
hypotheses is obtained by a coupled search (Vy-
dana et al., 2021) using the joint-likelihood from
ASR and MT:

y∗ = argmax
y

∑

z∈Ẑ(x)

P (y|z)P (z|x)

≡ argmax
y

arg max
z∈Ẑ(x)

(log(P (y|z))

+ log(P (z|x))), (1)

where x is the speech abnd z,y are the source
and target sequences respectively. Ẑ is the n-best
source sequence and y∗ is most likely decoded hy-
pothesis. In this equation, y∗ is always a discrete
sequence, while z is a discrete sequence when
we are using Ext.MT and a continuous one when
using Joint-MT. Note that similar coupled search
was used in (Tu et al., 2017), where the back trans-
lation likelihoods are used for re-scoring the hy-
pothesis of the MT-system.

6 Adapting ASR decoder to the MT
module

Joint-ASR-MT models are jointly optimized by
having an end-to-end differentiable path from
speech to translations. The internal continuous
representations from the ASR-decoder are used
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as the input to MT module. Speech transla-
tion can be further improved by adapting ASR-
decoder to the MT module. This is achieved by
training the ASR-decoder jointly with the MT-
module using large amount of text-only MT train-
ing data. The weights for the model are initialized
from trained Joint-ASR-MT model. Speech trans-
lation data (ASR-MT-Train-set) is used to fine-
tune Joint-ASR-MT model using a multi-task loss.
Apart from that, the data from the MT-Train-set is
used to jointly train the ASR-decoder and the MT-
module of Joint-ASR-MT model. We alternately
update the model using multi-task loss described
in section 4 and the adaptation loss as described in
this section.

A block diagram describing this training is pre-
sented in Figure 2. The input text sequence is
given to the ASR-decoder and a sequence of zeros
is considered as the encoder output sequence of
the ASR model (i.e.,HASR in Figure 2). The con-
text vectors computed from these two sequences
are used for training the MT-module. Note that
similar method has been adopted in (Potapczyk
et al., 2019) for improving the performance of
ASR system using only text data. This training
further improves the performance as will be shown
in section 7.

Figure 2: Adaptation of ASR-decoder to the MT-
module in the Joint-ASR-MT model.

7 Speech Translation Results

Results for the various configurations of speech
translation systems are given in Table 4. First,
we focus on column A, where the Joint-ASR-MT
models are trained using ASR-MT-Train-set (only
speech translation data) with a multi-task loss
as described in section 5. Note, however, that
Ext.ASR and Ext.MT systems are trained on large
amounts of data and finetuned to ASR-MT-Train-
set as described in sections 3 and 4 respectively.
For systems in column-A, normalized (unpunc-
tuated) text is passed from ASR to MT model.

Row 1 corresponds to the conventional cascade
system, where the Ext.ASR systems generates the
n-best hypotheses of discrete token sequences and
an Ext.MT uses these token sequences for gener-
ating the translations as described in Eq. 1. We
consider this system achieving BLEU 23.20 as a
baseline.

Usually, transformer-ASR decoder uses the par-
tial output hypothesis and extends it by a new
token with every autoregressive decoding step.
For the system in row 2, Ext.ASR generates the
complete hypothesis and ASR module from Joint-
ASR-MT is “asked” to extend it by one more to-
ken. As a byproduct “context vectors” (the contin-
uous representations) are generated for the whole
sequence — these are then passed to the MT-
module in joint-ASR-MT model to generate trans-
lation. Compared to row 1 of column A, we see a
degradation in performance (BLEU-20.19). This
can be attributed to having only small amount of
speech translation training data, which is not suffi-
cient for robustly training the Joint-ASR-MT sys-
tems.

For the systems in row 3, Ext.ASR generates the
ASR hypotheses which are used by Ext.MT simi-
lar to the system described in row 1; the hypothe-
ses from Ext.ASR are used by Joint-MT similarly
to the system described in row 2. To generate the
translation, the hypotheses form both models are
ensembled as follows: For each output token, a
weighted average of Log-softmax outputs from the
two MT models is computed. This weighted av-
erage is used in the beam-search to compute the
n-best partial hypotheses. These partial hypothe-
ses are further extended by both the models to
generate the Log-softmax outputs for next tokens.
We can see that this ensembling system achieves
a BLEU score of 24.02 and outperforms the cas-
caded baseline.

The systems in rows 4-6 are essentially the same
as the ones in rows 1-3, respectively, except that
now, the ASR module from joint-ASR-MT sys-
tem is directly used to produce the n-best ASR
hypotheses and the corresponding context vec-
tors. Rows 4-6 show the same trend as rows 1-
3 with slightly improved performance; these im-
provements are mainly due to better performing
ASR system: As described in Section 2.2, train-
ing ASR systems only on ASR-MT-Train-set (data
from Mustc, IWSLT and Europarl with erroneous
transcriptions) did not lead to convergence. How-
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Table 4: Performances of Joint-ASR-MT systems under various ensemble combinations, the results are reported
on MustC-Common test set.

A B C D

no-pretraining
+Norm-ASR/MT

pre-training
+Norm-ASR/MT

pre-training
+Punc-ASR/MT

pretraining
+Punc-ASR/MT+

tightly-coupled

[ASR]⇒[MT] BLEU WER BLEU WER BLEU WER BLEU WER

1. [Ext-ASR]⇒[Ext-MT] 23.20 18.20 23.20 18.20 26.15 21.54 26.15 21.54

2. [Ext-ASR]⇒[Joint-MT] 20.19 - 22.59 - 28.56 - 29.00 -

3. [Ext-ASR]⇒[Joint-MT + Ext-MT] 24.02 - 24.13 - 29.07 - 29.44 -

4. [Joint-ASR]⇒[Ext-MT] 23.86 16.14 23.86 13.01 29.70 15.71 30.24 15.63

5. [Joint-ASR]⇒[Joint-MT] 20.75 - 23.97 - 31.23 - 32.68 -

6. [Joint-ASR]⇒[Joint-MT + Ext-MT] 24.65 - 25.95 - 32.51 - 33.68 -

7. [Ext-ASR + Joint-ASR]⇒[Ext-MT] 24.60 14.84 25.00 13.54 29.00 16.46 29.35 16.19

8. [Ext-ASR + Joint-ASR]⇒[Joint-MT] 20.89 - 23.59 - 30.52 - 31.58 -

9. [Ext-ASR + Joint-ASR]⇒[Joint-MT + Ext-MT] 25.11 - 25.65 - 31.86 - 32.67 -

10.
[Ext-ASR + Joint-ASR]⇒[Joint-MT + Ext-MT]

+ens* 25.35 14.61 26.14 13.05 32.67 15.71 33.78 15.63

Table 5: Comparing the performance of Joint-ASR-MT systems while processing n-best hypotheses from the ASR.

A B C D

no-pretraining
+Norm-ASR/MT

pre-training
+Norm-ASR/MT

pre-training
+Punc-ASR/MT

pretraining
+Punc-ASR/MT+

tightly-coupled

[ASR]⇒[MT] BLEU WER BLEU WER BLEU WER BLEU WER
[Ext-ASR + Joint-ASR]⇒[Joint-MT + Ext-MT]

+ens* 25.35 14.61 26.14 13.05 32.67 15.71 33.78 15.63

+ASR-LM 26.90 12.80

+MT-LM 27.16

+2-best-input - - 27.24 - 32.69 - 33.82 -

+4-best-input - - 27.35 - 32.80 - 33.87 -

+6-best-input - - 27.35 - 32.85 - 33.86 -

+8-best-input - - 27.46 - 32.94 - 33.77 -

+10-best-input - - 27.51 - 32.87 - 33.79 -

ever, when the same data is used to train Joint-
ASR-MT model for speech translation task, we
observe that the ASR module in this model trained
well. The reason for that is that the ASR-module
is not directly trained on erroneous transcriptions,
instead, it is trained to produce transcriptions that
lead to good translations. This training can be
seen as a form of light supervision which can miti-
gate the problem with the erroneous transcriptions.

At the end, this system trained only on ASR-MT-
Train-set achieves better ASR performance (WER
16.14%) compared to Ext.ASR (WER 18.20%),
Which is pre-trained on ASR-Train-set (Approx
2000hrs) and fine-tuned on erroneous ASR-MT-
Train-set. Similar trend will be observed with the
systems in columns B, C and D.

The systems described in rows 7-9 are similar
to those from rows 1-3, except that the ASR hy-
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potheses are obtained by ensembling the Ext.ASR
and ASR-module in Joint-ASR-MT model. The
ensembling is performed in a similar way as de-
scribed for the MT-system (row 2). All the ensem-
ble systems in rows 3, 6, and 7-9 are ensembled
giving equal weight to both the systems, except
for row 10, where the ensemble weights are tuned
on the development set. For all these systems, we
can see that the ensembling consistently improves
the performances.

The systems in column B are similar to the ones
in Column A, but for the Joint-ASR-MT model,
the weights of ASR and MT module are initial-
ized from the Ext.ASR and Ext.MT. Only then, the
Joint-ASR-MT model is fine-tuned using ASR-
MT-Train-set. Comparing column-A and column-
B, we can see that such pre-training has signifi-
cantly improved the performance.

We also see that the MT system using contin-
uous representations (Joint-MT) (row 5; BLEU
23.97) outperforms the system with the Ext.MT
(row 4; BLEU-23.86) and similar trend can be
seen in columns C and D. This is in contrast to the
system in column A where we did not use enough
data for training the Joint-ASR-MT model; now,
with the pre-training, the joint-ASR-MT model is
effectively trained on the same amount of data as
the Ext.MT systems.

The systems in column C are similar to the
ones in Column B, but the ASR and MT modules
used here are Punc-ASR (ASR systems which can
generate punctuated text) and Punc-MT (MT sys-
tems which can process punctuated text as input),
respectively. We can see that the systems from
column-C perform significantly and consistently
better than the corresponding ones in column-B.
This shows that it is more effective to train an
ASR module to generate punctuated text rather
than leaving the punctuation task to the MT mod-
ule. Note that the ASR performances reported in
columns C and D is computed including the punc-
tuation symbols, which results in higher WERs.

Finally, the systems in column D are the same
as the ones in column C except that we addition-
ally use the ASR decoder adaptation scheme de-
scribed in section 6. The consistent improvements
observed in column D as compared to column C
show the effectiveness of this adaptation scheme.
They are able to make use of the large amount of
text-only MT training data to train also the ASR
decoder in order to tighten the coupling between

ASR-decoder and MT-module. Apart from im-
proving MT-module, this adaptation has also im-
proved the performance of ASR-decoder on its
own. This can be observed by comparing WER’s
of row 4 in columns C and D.

The results of passing the n-best hypotheses
from ASR to MT models are presented in Table 5.
Passing the n-best hypothesis from ASR to MT
module has better performance, but not signifi-
cantly. This result is not in line with out previous
studies (Vydana et al., 2021), where we have seen
significant gains from switching from 1-best to n-
best.

8 Conclusion

In this work, we have explored joint-training of
ASR-MT models for speech translation. Initializ-
ing these models from pre-trained ASR and MT
models has helped in better optimization. The
joint training has improved the performance of the
ASR module significantly as the additional MT
module has provided better (light) supervision in
the context of erroneous ASR transcripts. Adding
the punctuation information into the input text im-
proves the performance of the MT-model greatly.
In line with this observation, use of ASR system
generating punctuated text also improves the MT
performance significantly in a cascade pipeline.
Use of the MT text only data to adapt the ASR
decoder to the MT module in the joint-ASR-MT
model further improves the performances of these
systems. The systems trained in this work are of-
fline models and their performances needs to be
studied from the perspective of online or stream-
ing models.
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Abstract

This paper describes FBK’s system submis-
sion to the IWSLT 2021 Offline Speech Trans-
lation task. We participated with a direct
model, which is a Transformer-based architec-
ture trained to translate English speech audio
data into German texts. The training pipeline
is characterized by knowledge distillation and
a two-step fine-tuning procedure. Both knowl-
edge distillation and the first fine-tuning step
are carried out on manually segmented real
and synthetic data, the latter being generated
with an MT system trained on the available cor-
pora. Differently, the second fine-tuning step
is carried out on a random segmentation of the
MuST-C v2 En-De dataset. Its main goal is to
reduce the performance drops occurring when
a speech translation model trained on manu-
ally segmented data (i.e. an ideal, sentence-
like segmentation) is evaluated on automati-
cally segmented audio (i.e. actual, more re-
alistic testing conditions). For the same pur-
pose, a custom hybrid segmentation procedure
that accounts for both audio content (pauses)
and for the length of the produced segments
is applied to the test data before passing them
to the system. At inference time, we com-
pared this procedure with a baseline segmenta-
tion method based on Voice Activity Detection
(VAD). Our results indicate the effectiveness
of the proposed hybrid approach, shown by a
reduction of the gap with manual segmentation
from 8.3 to 1.4 BLEU points.

1 Introduction

Speech translation (ST) is the task of translating
a speech uttered in one language into its textual
representation in a different language. Unlike si-
multaneous ST, where the audio is translated as
soon as it is produced, in the offline setting the au-
dio is entirely available and translated at once. In
continuity with the last two rounds of the IWSLT
evaluation campaign (Niehues et al., 2019; Ansari

et al., 2020), the IWSLT2021 Offline Speech Trans-
lation task (Anastasopoulos et al., 2021) focused
on the translation into German of English audio
data extracted from TED talks. Participants could
approach the task either with a cascade architecture
or with a direct end-to-end system. The former rep-
resents the traditional pipeline approach (Stentiford
and Steer, 1988; Waibel et al., 1991) comprising
an automatic speech recognition (ASR) followed
by a machine translation (MT) component. The
latter (Bérard et al., 2016; Weiss et al., 2017) relies
on a single neural network trained to translate the
input audio into target language text bypassing any
intermediate symbolic representation steps.

The two paradigms have advantages and disad-
vantages. Cascade architectures have historically
guaranteed higher translation quality (Niehues
et al., 2018, 2019) thanks to the large corpora avail-
able to train their ASR and MT sub-components.
However, a well-known drawback of pipelined so-
lutions is represented by error propagation: tran-
scription errors are indeed hard (and sometimes
impossible) to recover during the translation step.
Direct models, although being penalized by the
paucity of training data, have two theoretical com-
petitive advantages, namely: i) the absence of error
propagation as there are no intermediate processing
steps, and ii) a less mediated access to the source ut-
terance, which allows them to better exploit speech
information (e.g. prosody) without loss of informa-
tion.

The paucity of parallel (audio, translation) data
for direct ST has been previously addressed in dif-
ferent ways, ranging from model pre-training to
exploit knowledge transfer from ASR and/or MT
(Bérard et al., 2018; Bansal et al., 2019; Aline-
jad and Sarkar, 2020), knowledge distillation (Liu
et al., 2019; Gaido et al., 2021a), data augmenta-
tion (Jia et al., 2019; Bahar et al., 2019b; Nguyen
et al., 2020), and multi-task learning (Weiss et al.,
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2017; Anastasopoulos and Chiang, 2018; Bahar
et al., 2019a; Gaido et al., 2020b). Thanks to these
studies, the gap between the strong cascade models
and the new end-to-end ones has gradually reduced
during the last few years. As highlighted by the
IWSLT 2020 Offline Speech Translation challenge
results (Ansari et al., 2020), the rapid evolution of
the direct approach has eventually led it to perfor-
mance scores that are similar to those of cascade
architectures. In light of this positive trend, we de-
cided to adopt only the direct approach (described
in Section 3) for our participation in the 2021 round
of the offline ST task.

Another interesting finding from last year’s cam-
paign concerns the sensitivity of ST models to dif-
ferent segmentations of the input audio. The 2020
winning system (Potapczyk and Przybysz, 2020)
shows that, with a custom segmentation of the test
data, the same model improved by 3.81 BLEU
points the score achieved when using the basic seg-
mentation provided by the task organizers. This
noticeable difference is due to a well-known prob-
lem in MT, ST and in machine learning at large:
any mismatch between training and test data (in
terms of domain, text style or a variety of other
aspects) can cause unpredictable, often large, per-
formance drops at test time. In ST, this is a crit-
ical issue, inherent to the nature of the available
resources: while systems are usually trained on
corpora that are manually segmented at sentence
level, test data come in the form of unsegmented
continuous speech.

A possible solution to this problem is to automat-
ically segment the test data with a Voice Activity
Detection (VAD) tool (Sohn et al., 1999). This
strategy tries to mimic the sentence-based segmen-
tation observed in the training data using pauses as
an indirect (hence known to be sub-optimal) cue for
sentence boundaries. Custom segmentation strate-
gies, which are allowed to IWSLT participants, typ-
ically go in this direction with the aim to reduce the
data mismatch by working on evaluation data. An
opposite way to look at the problem is to work on
the training data. In this case, the goal is to “robus-
tify” the ST model to noisy inputs (i.e. sub-optimal
segmentations) at training time, by exposing it to
perturbed data where sentence-like boundaries are
not guaranteed. Our participation in the offline
ST task exploits both solutions (see Section 4): at
training time, by fine-tuning the model with a ran-
dom segmentation of the available in-domain data;

at test time, by feeding it with a custom hybrid
segmentation of the evaluation data.

In a nutshell, our participation can be summa-
rized as follows. After a preliminary model selec-
tion phase that was carried out in order to select
the best architecture, we adopted a pipeline con-
sisting of: i) ASR pre-training, ii) ST training with
knowledge distillation with an MT teacher, and iii)
two-step fine-tuning by varying the type and the
amount of data between the two steps. The second
fine-tuning step, which was carried out on artifi-
cially perturbed data to increase model robustness,
represents the main aspect characterizing our par-
ticipation to this year’s round of the offline ST task
together with our custom automatic segmentation
of the test set (see Section 4). Our experimental
results proved the effectiveness of our solutions:
compared to a standard ST model and a baseline
VAD-based method, on the MuST-C v2 English-
German test set (Cattoni et al., 2021), the gap with
optimal manual segmentation is reduced from 8.3
to 1.4 BLEU.

2 Training data

To build our models, we used most of the training
data allowed for participation.1 They include: MT
corpora (English-German text pairs), ASR corpora
(English audios and their corresponding transcripts)
and ST corpora (English audios with corresponding
English transcripts and German translations).

MT. Among all the available datasets, we se-
lected those allowed for WMT 2019 (Barrault et al.,
2019) and OpenSubtitles2018 (Lison and Tiede-
mann, 2016). Some pre-processing was required
to isolate and remove different types of potentially
harmful noise present in the data. These include
non-unicode characters, both on the source and tar-
get side of the parallel sentence pairs, which would
have led to an increased dictionary size hindering
model training, and whole non-German target sen-
tences (mostly in English). The cleaning of this two
types of noise, which was respectively performed
using a custom script and Modern MT (Bertoldi
et al., 2017), resulted in the removal of roughly
25% of the data, with a final dataset of∼49 million
sentence pairs.

ASR. ASR corpora, together with the ST ones
described below, were collected for the ASR train-
ing. In detail, the allowed native ASR datasets are:

1https://iwslt.org/2021/offline
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LibriSpeech (Panayotov et al., 2015), TEDLIUM
v3 (Hernandez et al., 2018) and Mozilla Common
Voice.2 In all of them, English texts were lower-
cased and punctuation was removed.

ST. The ST benchmarks we used are essentially
three: i) Europarl-ST (obtained from European Par-
liament debates – Iranzo-Sánchez et al. 2020), ii)
MuST-C v2 (built from TED talks – Cattoni et al.
2021), and iii) CoVoST 2 (containing the transla-
tions of a portion of the Mozilla Common Voice
dataset – Wang et al. 2020a). To cope with the
scarcity of ST data, we complemented these native
ST corpora with synthetic data. To this aim, we
used the MT system trained on the available MT
data to translate into German the English transcripts
of the aforementioned ASR datasets. The resulting
texts were used as reference material during the
ST model training. The combination of native and
generated data resulted in a total of about 1.26 mil-
lion samples. The transcription-translation pairs
were tokenized using, respectively, source/target-
language SentencePiece (Sennrich et al., 2016) un-
igram models trained on the MT corpora with a
vocabulary size of 32k tokens. Similar to our last
year’s IWSLT submission (Gaido et al., 2020b),
the entire dataset was used for training in a multi-
domain fashion, where the two domains were na-
tive (original ST data) and generated (synthetic
data).

Prior to the extraction of the speech features, the
audio was pre-processed with the SpecAugment
(Park et al., 2019) data augmentation technique,
which masks consecutive portions of the input both
in frequency and in time dimensions. From all
the audio files, 80 log Mel-filter banks features
were extracted using PyKaldi (Can et al., 2018),
filtering out those samples containing more than
3,000 frames. Finally, we applied utterance level
Cepstral Mean and Variance Normalization both
during ASR pre-training and ST training phases.
The configuration parameters used are the default
ones as set in (Wang et al., 2020b).

3 Model and training

In order to select the best performing architec-
ture, we trained several Transformer-based models
(Vaswani et al., 2017), which consist of 12 encoder
layers, 6 decoder layers, 8 attention heads, 512
features for the attention layers and 2,048 hidden

2https://commonvoice.mozilla.org/en/
datasets

units in the feed-forward layers. The ASR and ST
models are based on a custom version of the model
by (Wang et al., 2020b), which is a Transformer
whose encoder has two initial 1D convolutional lay-
ers with gelu activation functions (Hendrycks and
Gimpel, 2020). Also, the encoder self-attentions
were biased using a logarithmic distance penalty in
favor of the local context as per (Di Gangi et al.,
2019). A Connectionist Temporal Classification
(CTC) scoring function was applied as described
in (Gaido et al., 2020b). This was done by adding
a linear layer to either the 6th, 8th or 10th encoder
layer to map the encoder states to the vocabulary
size and compute the CTC loss. The choice of the fi-
nal architecture, depending on where the CTC loss
is applied, was made based on sacreBLEU score
(Post, 2018) after training the models on MuST-C
v1 En-De (Cattoni et al., 2021). ST results com-
puted on the test set are reported on Table 1. As it
can be seen from the table, two models obtained the
highest, identical BLEU score (21.21): they both
use logarithmic distance penalty but apply CTC
loss to the 6th or the 8th encoder layer.

3.1 Training pipeline

In the following, we describe the pipeline used to
build our ST models, as anticipated in Section 1. In
details, the ASR model is trained and its encoder
used as starting point for the ST model, which is
first trained via knowledge distillation and then
fine-tuned on native and synthetic data. Then, a
second fine-tuning step is performed on a perturbed
version of a subset of the native data, focused on re-
ducing the model performance drop over different
segmentations. For the initial ST training, we opti-
mized KL divergence (Kullback and Leibler, 1951)
and CTC losses. For the first fine-tuning step, we
optimized label smoothed cross entropy (LSCE) or
CTC+LSCE while, for the second fine-tuning step,
the models were refined using LSCE only, with
a lower learning rate in order not to override the
knowledge acquired during the previous phases.

ASR pre-training. Due to the identical BLEU
score obtained by applying the CTC loss to the 6th
and 8th layer during the ST model selection phase,
we opted for training the ASR system using both
these architectures, and selected the final model by
looking at the Word Error Rate (WER) achieved
by averaging 7 checkpoints around the best one.
As shown in Table 2, the best overall performing
architecture is the one where the CTC is applied to
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architecture CTC encoder layer distance penalty BLEU
2d convolutional 6 no 19.04
1d convolutional 6 no 21.16
1d convolutional 6 log 21.21
1d convolutional 8 log 21.21
1d convolutional 10 log 21.08

Table 1: Results of 1d convolutional architectures trained computing CTC loss at different layers and with/without
distance penalty. Also the result of a 2d convolutional architecture is reported where the structure is exactly the
same except for the use of a different type of convolution.

model dev test
CTC on 6th encoder layer 8.67 12.19
CTC on 8th encoder layer 7.52 10.70

Table 2: Results of ASR pre-training in terms of WER.
The dev and test sets used are, respectively, dev and
tst-COMMON of MuST-C v1 En-De.

the 8th encoder layer. Accordingly, we used this
architecture to perform all the successive training
phases.

Training with knowledge distillation. Two ST
models, one with 12 and one with 15 encoder lay-
ers, were trained by loading the pre-trained ASR
encoder weights and applying word-level Knowl-
edge Distillation (KD) as in (Kim and Rush, 2016).
In KD, a student model is trained with the goal of
learning how to produce the same output distribu-
tion as a teacher model, and this is obtained by
computing the KL divergence between the two out-
put distributions. In our setting, the student and the
teacher are respectively the ST system and an MT
system that we trained on the MT data described in
Section 2. It consists in a plain Transformer model
with 6 layers for both the encoder and the decoder,
16 attention heads, 1,024 features for the attention
layers and 4,096 hidden units in the feed-forward
layers. Evaluated on the MuST-C v2 En-De test set,
it achieved a BLEU score of 33.3. For ST training
with KD, we extracted only the top 8 tokens from
the teacher distribution. According to (Tan et al.,
2019), this choice results in a significant reduction
of the memory required, with no loss in final per-
formance. At the end of this phase, we decided to
keep the model with 15 encoder layers as it per-
forms better than the one with 12 encoder layers
by 1 BLEU point.

Fine-tuning step #1: using native and synthetic
data. Once the KD training phase was concluded,
we performed a multi-domain fine-tuning where

the ST model was jointly trained on native and
synthetic data optimizing LSCE or its combination
with the CTC loss.

4 Coping with training/test data
mismatch

As mentioned in Section 1, the segmentation of
audio files is a crucial aspect in ST. In fact, mis-
matches between the manual segmentation of the
training data and the automatic one required when
processing the unsegmented test set can produce
significant performance drops. To mitigate this risk,
we worked on two complementary fronts: at train-
ing and inference time. At training time, we tried to
robustify our model by fine-tuning it on a randomly
segmented subset of the training data. At inference
time, we applied an automatic segmentation proce-
dure to the test set in order to feed the model with
input resembling, as much as possible, the gold
manual segmentation. These two solutions, which
characterize our final submission, are explained in
the following.

Fine-tuning step #2: using randomly seg-
mented data. For the second fine-tuning step,
we re-segmented the MuST-C v2 En-De training
set following the procedure described in (Gaido
et al., 2020a). The method consists in choosing
a random word in the transcript of each sample,
and using it as sentence boundary instead of the
linguistically-motivated (sentence-level) splits pro-
vided in the original data. The corresponding audio
segments are then obtained by means of audio-
text alignments performed with Gentle.3 Similarly,
the German translation of each re-segmented tran-
script is extracted with cross-lingual alignments
generated by a fast align (Dyer et al., 2013) model
trained on all the MT data available for the task and
on MuST-C v2. In case either of the alignments is

3https://github.com/lowerquality/
gentle/
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model MuST-C2 MuST-C2 MuST-C2 IWSLT2015 IWSLT2015
manual VAD (WebRTC) hybrid VAD (LIUM) hybrid

1-FT LSCE 27.6 20.8 24.8 16.1 21.9
2-FT LSCE - 23.4 (+2.6) 26.4 (+1.6) 20.7 (+4.6) 22.7 (+0.8)
1-FT LSCE+CTC 27.7 19.9 25.3 14.0 21.7
2-FT LSCE+CTC - 23.7 (+3.8) 26.3 (+1.0) 20.9 (+6.9) 23.1 (+1.4)

Table 3: Results of the best architectures deriving from KD training after one or two fine-tuning steps. 1-FT stands
for one-step fine-tuning and 2-FT stands for two-step fine-tuning (see Section 3). MuST-C v2 results on manual
segmentation have been not computed for the 2-step fine-tuned models as we were interested in the evaluation of
the improvement on automatically segmented data.

not possible (because fast align is not able to align
enough words or Gentle does not recognize the
position of the word in the audio), the sentence is
discarded. The resulting material, which contains
∼ 5% less segments than the original MuST-C
release, was then used for our second (and final)
fine-tuning step. As already stated, we used only
the LSCE loss for this stage.

Automatic segmentation of the test data. At in-
ference time, the test set was segmented with an
hybrid approach that considers both the audio con-
tent and the length of the resulting segment (Gaido
et al., 2021b). Specifically, every segment is en-
sured to be at least 17s and at most 20s long, but the
exact splitting position is determined by the longest
pause detected within this interval. Pauses are iden-
tified with the WebRTC VAD tool (Johnston and
Burnett, 2012), using 20ms as frame duration and
2 as aggressivity level.

5 Experimental settings

Our implementation is built on top of fairseq Py-
torch library (Ott et al., 2019). All our models were
trained using the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98. During training,
the learning rate was set to increase linearly from
0 to 2e-3 for the first 10,000 warm-up steps and
then to decay with an inverse square root policy.
Differently, the learning rate was kept constant for
model fine-tuning, with a value of 1e-3 for the first
fine-tuning step and 1e-4 for the second one.

All the trainings were performed on 2 Tesla
V100 GPUs with 32GB RAM. We set the max-
imum number of tokens to 10k per batch and 8 as
update frequency. For generation, the maximum
number of tokens was increased to 50k, using a
single Tesla V100 GPU and by applying a standard
5-beam search strategy.

6 Results

For the evaluation of the fine-tuned models we
considered three different test sets: MuST-C v2
En-De tst-COMMON, IWSLT 2015 and 2019 test
sets (available on the Offline ST task Evaluation
Campaign web page4). While for MuST-C v2 we
originally had a manual segmentation of the audio
files, for the IWSLT 2015 and 2019 test sets the
organizers provided only automatic segmentations
obtained by the LIUM VAD tool (Meignier and
Merlin, 2010). Furthermore, we segmented MuST-
C v2 tst-COMMON using the WebRTC VAD tool
to have a comparable framework. Table 3 reports
the results before and after the second fine-tuning
step, which clearly show that performing the addi-
tional training on randomly segmented data highly
improves the performance in the non-manual seg-
mentation case, by up to 6 BLEU points. We also
created an ensemble with the best two models re-
ported in Table 3, whose KD training also used
CTC loss. Results are not reported here since en-
sembling did not bring any improvement in terms
of BLEU score compared to the two separate mod-
els. A possible motivation is that our two-step
fine-tuning process is already sufficient to build
a robust model, which is capable of generalizing
without the need of combining two or more model
outputs.

For our primary submission, we chose the two-
step fine-tuned model that uses the LSCE+CTC
losses for the first fine-tuning step (2-FT
LSCE+CTC) since it achieved the highest BLEU
on automatically segmented data. In order to mea-
sure the contribution of fine-tuning on randomly
segmented data also on the official evaluation set,
we selected the same model before the second fine-
tuning step (1-FT LSCE+CTC) as our contrastive
submission.

4https://iwslt.org/2021/offline
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Our primary submission scored 30.6 BLEU on
the tst2021 test set considering both references
while our contrastive scored 29.3 BLEU, showing
the effectiveness of our fine-tuning step. In addi-
tion, our primary submission scored 24.7 BLEU on
the tst2020 test set.

7 Conclusions

We described FBK’s participation in the
IWSLT2021 Offline Speech Translation task
(Anastasopoulos et al., 2021). Our work focused
on a multi-step training pipeline involving data
augmentation (SpecAugment and MT-based syn-
thetic data), multi-domain transfer learning (KD
training first and then fine-tuning on synthetic and
native data) and ad-hoc fine-tuning on randomly
segmented data. Based on the experimental results,
our submission was characterized by the use of
the CTC loss on transcripts during word-level
knowledge distillation training, followed by a
two-stage fine-tuning aimed to fill the gap between
the performance of models when tested on manual
and automatically segmented data. This huge gap
was pointed out in our last year submission (Gaido
et al., 2020b), where we highlighted that some
strategies should have been adopted in order to
mitigate the problem. This paper demonstrates that,
following the above-mentioned pipeline, together
with some data-driven techniques, we can obtain
significant improvements in the performance of
end-to-end ST systems. Research in this direction
will help us to build models that are not only
competitive with cascaded solutions, but also able
to handle different segmentation strategies which
are going to be more frequently used in the future.
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Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, Christof Monz, Mathias Müller,
Santanu Pal, Matt Post, and Marcos Zampieri. 2019.
Findings of the 2019 conference on machine transla-
tion (WMT19). In Proceedings of the Fourth Con-
ference on Machine Translation (Volume 2: Shared
Task Papers, Day 1), pages 1–61, Florence, Italy. As-
sociation for Computational Linguistics.

Alexandre Bérard, Laurent Besacier, Ali Can Ko-
cabiyikoglu, and Olivier Pietquin. 2018. End-to-
End Automatic Speech Translation of Audiobooks.
In Proc. of ICASSP 2018, pages 6224–6228, Cal-
gary, Alberta, Canada.

Nicola Bertoldi, Roldano Cattoni, Mauro Cettolo,
Amin Farajian, Marcello Federico, Davide Caroselli,
Luca Mastrostefano, Andrea Rossi, Marco Trom-
betti, Ulrich Germann, and David Madl. 2017. Mmt:
New open source mt for the translation industry. In
The 20th Annual Conference of the European Asso-
ciation for Machine Translation (EAMT). 20th An-
nual Conference of the European Association for

89



Machine Translation, EAMT 2017 ; Conference
date: 29-05-2017 Through 31-05-2017.

Alexandre Bérard, Olivier Pietquin, Christophe Servan,
and Laurent Besacier. 2016. Listen and Translate:
A Proof of Concept for End-to-End Speech-to-Text
Translation. In NIPS Workshop on end-to-end learn-
ing for speech and audio processing, Barcelona,
Spain.

Dogan Can, Victor R. Martinez, Pavlos Papadopou-
los, and Shrikanth S. Narayanan. 2018. Pykaldi:
A python wrapper for kaldi. In Acoustics, Speech
and Signal Processing (ICASSP), 2018 IEEE Inter-
national Conference on. IEEE.

Roldano Cattoni, Mattia A. Di Gangi, Luisa Bentivogli,
Matteo Negri, and Marco Turchi. 2021. MuST-C:
A multilingual corpus for end-to-end speech transla-
tion. Computer Speech & Language, 66:101155.

Mattia A. Di Gangi, Matteo Negri, and Marco Turchi.
2019. Adapting Transformer to End-to-End Spoken
Language Translation. In Proc. Interspeech 2019,
pages 1133–1137.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A Simple, Fast, and Effective Reparameter-
ization of IBM Model 2. In Proc. of the 2013 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (NAACL-HLT), pages 644–648,
Atlanta, Georgia.

Marco Gaido, Mattia A. Di Gangi, Matteo Negri,
Mauro Cettolo, and Marco Turchi. 2020a. Con-
textualized Translation of Automatically Segmented
Speech. In Proc. Interspeech 2020, pages 1471–
1475.

Marco Gaido, Mattia A. Di Gangi, Matteo Ne-
gri, and Marco Turchi. 2020b. End-to-end
speech-translation with knowledge distillation:
FBK@IWSLT2020. In Proceedings of the 17th
International Conference on Spoken Language
Translation, pages 80–88, Online. Association for
Computational Linguistics.

Marco Gaido, Mattia A. Di Gangi, Matteo Negri, and
Marco Turchi. 2021a. On Knowledge Distillation
for Direct Speech Translation . In Proceedings of
CLiC-IT 2020, Online.

Marco Gaido, Matteo Negri, Mauro Cettolo, and
Marco Turchi. 2021b. Beyond voice activity detec-
tion: Hybrid audio segmentation for direct speech
translation.

Dan Hendrycks and Kevin Gimpel. 2020. Gaussian Er-
ror Linear Units (GELUs).

François Hernandez, Vincent Nguyen, Sahar Ghannay,
Natalia A. Tomashenko, and Yannick Estève. 2018.
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Abstract

This paper describes the submission of the Ni-
uTrans end-to-end speech translation system
for the IWSLT 2021 offline task, which trans-
lates from the English audio to German text di-
rectly without intermediate transcription. We
use the Transformer-based model architecture
and enhance it by Conformer, relative position
encoding, and stacked acoustic and textual en-
coding. To augment the training data, the En-
glish transcriptions are translated to German
translations. Finally, we employ ensemble de-
coding to integrate the predictions from sev-
eral models trained with the different datasets.
Combining these techniques, we achieve 33.84
BLEU points on the MuST-C En-De test set,
which shows the enormous potential of the
end-to-end model.

1 Introduction

Speech translation (ST) aims to learn models that
can predict, given some speech in the source lan-
guage, the translation into the target language. End-
to-end (E2E) approaches have become popular re-
cently for its ability to free designers from cascad-
ing different systems and shorten the pipeline of
translation (Duong et al., 2016; Berard et al., 2016;
Weiss et al., 2017). This paper describes the sub-
mission of the NiuTrans E2E ST system for the
IWSLT 2021 (Anastasopoulos et al., 2021) offline
task, which translates from the English audio to the
German text translation directly without intermedi-
ate transcription.

Our baseline model is based on the DLCL Trans-
former (Vaswani et al., 2017; Wang et al., 2019)
model with Connectionist Temporal Classification
(CTC) (Graves et al., 2006) loss on the encoders
(Bahar et al., 2019). We enhance it with the supe-
rior model architecture Conformer (Gulati et al.,

2020), relative position encoding (RPE) (Shaw
et al., 2018), and stacked acoustic and textual en-
coding (SATE) (Xu et al., 2021). To augment the
training data, the English transcriptions of the auto-
matic speech recognition (ASR) and speech trans-
lation corpora are translated to the German trans-
lation. Finally, we employ the ensemble decoding
method to integrate the predictions from multiple
models (Wang et al., 2018) trained with the differ-
ent datasets.

This paper is structured as follows. The training
data is summarized in Section 2, then we describe
the model architecture in Section 3 and data aug-
mentation in Section 4. We present the ensemble
decoding method in Section 5. The experimental
settings and final results are shown in Section 6.

2 Training Data

Our system is built under the constraint condition.
The training data can be divided into three cate-
gories: ASR, MT, and ST corpora1.
ASR corpora. ASR corpora are used to gener-
ate synthetic speech translation data. We only use
the Common Voice (Ardila et al., 2020) and Lib-
riSpeech (Panayotov et al., 2015) corpora. Fur-
thermore, we filter the noisy training data in the
Common Voice corpus by force decoding and keep
1 million utterances.
MT corpora. Machine translation (MT) corpora
are used to translate the English transcription. We
use the allowed English-German translation data
from WMT 2020 (Barrault et al., 2020) and Open-
Subtitles2018 (Lison and Tiedemann, 2016). We
filter the training bilingual data followed Li et al.
(2019), which includes length ratio, language de-
tection, and so on.

1We only described the training data used in our system.
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ST corpora. The ST corpora we used include
MuST-C (Gangi et al., 2019) English-German2,
CoVoST (Wang et al., 2020), Speech-Translation
TED corpus3, and Europarl-ST (Iranzo-Sánchez
et al., 2020).

The statistics of the final training data are shown
in Table 1. We augment the quantity of the ST
training data by translating the English transcrip-
tion (the details are unveiled in Section 4).

Task Corpora Size Time

ASR
LibriSpeech 281241 960h
Common Voice 1000000 1387h

Total 1281241 2347h

MT

CommonCrawl 2014304 -
Europarl 1802849 -
ParaCrawl 31528317 -
Wiki 5714363 -
OpenSubtitles 14449099 -

Total 55508932 -

ST

MuST-C 249462 435h
CoVoST 289411 329h
ST TED 170133 254h
Europarl 69537 155h

Total 778543 1173h

Table 1: Data statistics of the ASR, MT, and ST cor-
pora.

3 Model Architecture

In this section, we describe the baseline model
and the architecture improvements. Then, the ex-
perimental results are shown to demonstrate the
effectiveness.

3.1 Baseline Model

Our system is based on deep Transformer (Vaswani
et al., 2017) implemented on the fairseq toolkit (Ott
et al., 2019). Furthermore, dynamic linear combina-
tion of layers (DLCL) (Wang et al., 2019) method
is employed to train the deep model effectively (Li
et al., 2020a,b).

To reduce the computational cost, the input
speech features are processed by two convolutional
layers, which have a stride of 2. This downsamples

2We use the latest MusST-C v2 dataset released by IWSLT
2021.

3http://i13pc106.ira.uka.de/˜mmueller/ iwslt-corpus.zip
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Figure 1: The baseline model architecture.

the sequence by a factor of 4 (Weiss et al., 2017).
For strong systems, we use Connectionist Tempo-
ral Classification (CTC) (Graves et al., 2006) as
the auxiliary loss on the encoders(Watanabe et al.,
2017; Karita et al., 2019; Bahar et al., 2019). The
weight of CTC objective α is set to 0.3 for all ASR
and ST models. The model architecture is showed
in Figure 14.

3.2 Conformer
Conformer (Gulati et al., 2020) models both local
and global dependencies by combining the Convo-
lutional Neural Network and Transformers. It has
shown superiority and achieved promising results
in ASR tasks.

We replace the Transformer blocks in the en-
coder by the conformer blocks, which include
two macaron-like feed-forward networks, multi-
head self attention modules, and convolution mod-
ules. Note that we use the RPE proposed in Shaw
et al. (2018) rather than Transformer-XL (Dai et al.,
2019).

3.3 Relative Position Encoding
Due to the non-sequential modeling of the origi-
nal self attention modules, the vanilla Transformer
employs the position embedding by a deterministic
sinusoidal function to indicate the absolute posi-
tion of each input element (Vaswani et al., 2017).
However, this scheme is far from ideal for acoustic
modeling (Pham et al., 2020).

4https://github.com/NiuTrans/MTBook
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Model tst-COMMON

Baseline 23.98
+ Conformer 24.43
+ RPE 24.69
+ SATE 25.35

Table 2: Effects of the architecture improvements.
We report SacreBLEU scores [%] on the MuST-C tst-
COMMON set.

The latest work (Pham et al., 2020; Gulati et al.,
2020) points out that the relative position encod-
ing enables the model to generalize better for the
unseen sequence lengths. It yields a significant im-
provement on the acoustic modeling tasks. We re-
implement the relative position encoding scheme
(Shaw et al., 2018). The maximum relative position
is set to 100 for the encoder and 20 for the decoder.
We use both absolute and relative positional repre-
sentations simultaneously.

3.4 Stacked Acoustic and Textual Encoding

The previous work (Bahar et al., 2019) employs the
CTC loss on the top layer of the encoder, which
forces the encoders to learn soft alignments be-
tween speech and transcription. However, the CTC
loss demonstrates strong preference for locally at-
tentive models, which is inconsistent with the ST
model (Xu et al., 2021).

In our systems, we use the stacked acoustic-and-
textual encoding (SATE) (Xu et al., 2021) method
to encode the speech features. It calculates the CTC
loss based on the hidden states of the intermediate
layer rather than the top layer. The layers below
CTC also extract the acoustic representation like an
ASR encoder, while the upper layers with no CTC
encode the global representation for translation. An
adaptor layer is introduced to bridge the acoustic
and textual encoding.

3.5 Experimental Results

We use the architecture described in Section 3.1
as the baseline model. The encoder consists of 12
layers and the decoder consists of 6 layers. Each
layer comprises 256 hidden units, 4 attention heads,
and 2048 feed-forward size. The encoder of SATE
includes an acoustic encoder of 8 layers and a tex-
tual encoder of 4 layers. The model is trained with
MuST-C English-German dataset and we test the
results on the tst-COMMON set based on the Sacre-
BLEU. The other experimental details are shown

Data Corpora Size Time

Synthetic

LibriSpeech 281241 960h
Common Voice 1000000 1387h
MuST-C 249462 435h
ST TED 170133 254h

Total 1700836 3036h

Real Total 778543 1173h

Total 2479379 4209h

Table 3: All available ST corpora.

in Section 6.
We report the experimental results after applying

each architecture improvement in Table 2. Ben-
efitting the power of the deep Transformer, our
baseline model achieves 23.98 BLEU points. The
Conformer and RPE methods strengthen the encod-
ing and achieve an improvement of 0.45 and 0.26
BLEU points. SATE achieves a remarkable im-
provement by encoding the acoustic representation
and textual representation respectively. We will
explore better architecture designs in the future.

4 Data Augmentation

A large amount of the training data is necessary for
a strong neural model. However, unlike the ASR
and MT tasks, annotated speech-to-translation data
is scarce, which prevents well-trained ST models.
This is the main reason why cascaded systems are
the dominant approach in the industrial scenarios.
In this section, we describe our data augmentation
method.

We train a deep DLCL Transformer (Wang et al.,
2019) with the 25 encoder layers on all available
MT data. To keep the domain consistency with the
original ST data, we finetune the MT model on the
MuST-C dataset. The model achieves the Sacre-
BLEU of 35.89 of the MuST-C tst-COMMON test
set. For the case-insensitive LibriSpeech dataset,
we train a similar MT model except for lower-
casing the source text without punctuation during
training.

Then, we generate the German translation from
English transcription in the LibriSpeech and Com-
mon Voice ASR datasets. Furthermore, sequence-
level knowledge distillation (Kim and Rush, 2016)
is applied to augment the training data. We gen-
erate the translation of the MuST-C and Speech-
Translation TED ST datasets which are more re-
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lated to the target domain.
Corrupting the acoustic feature is another data

augmentation method, including SpecAugment,
speed perturbation, and so on. SpecAugment (Park
et al., 2019) is a simple data augmentation applied
on the input acoustic features. The time masking
and the frequency masking are applied in our sys-
tems. Speed perturbation transforms the audio by
a speed rate, which changes the duration of the au-
dio signal. Limited by the size of GPU resources,
we do not use this method. Compared with the
perturbed data, we think the synthetic samples im-
prove the robustness more effectively. All available
ST corpora are shown in Table 3.

5 Ensemble Decoding

Ensemble decoding is an effective method to im-
prove performance by integrating the predictions
from multiple models. It has been proved in the
WMT competitions (Wang et al., 2018; Li et al.,
2019). In our systems, we train multiple ST models
with different training data for diverse ensemble
decoding. The models are chosen based on the per-
formance of the development set. This leads to a
significant improvement over a single model.

6 Experiments

6.1 Preprocessing
We remove the utterances with more than 3000
frames or less than 5 frames. The 80-channel log-
mel filterbank features are extracted from the au-
dio file by torchaudio5 library. We use the lower-
cased transcriptions without punctuations for CTC
loss computation. We learn SentencePiece6 sub-
word segmentation with a size of 10,000 based on a
shared source and target vocabulary for all datasets.

6.2 Model Settings
All experiments are implemented based on the
fairseq toolkit7. We use Adam optimizer and adopt
the default learning schedule in fairseq. We ap-
ply dropout with a rate of 0.1 and label smoothing
εls = 0.1 for regularization. We also set the acti-
vate function dropout to 0.1 and attention dropout
to 0.1, which improves the regularization and over-
comes the overfitting.

We use the best model architecture that com-
bines all the improvements described in Section

5https://github.com/pytorch/audio
6https://github.com/google/sentencepiece
7https://github.com/pytorch/fairseq

3. The encoder includes an acoustic encoder of 12
conformer layers and a textual encoder of 6 trans-
former layers. The decoder consists of 6 Trans-
former layers. Each layer comprises 512 hidden
units, 8 attention heads, and 2048 feed-forward
size. Pre-norm is applied for training a deep model.
The weight of CTC objective α for multitask learn-
ing is set to 0.3 for all models. All the models
are trained for 50 epochs on one machine with 8
NVIDIA 2080Ti GPUs.

During inference, we average the model param-
eters on the final 10 checkpoints. We use beam
search with a beam size of 5 for all models. The co-
efficient of length normalization is tuned on the de-
velopment set. We report the case-sensitive Sacre-
BLEU (Post, 2018) on the MuST-C tst-COMMON
set, IWSLT tst2019 and tst2020 test set.

The organizers provide the segmentation of the
test sets and allow the participants to use the own
segmentation. We simply use the segmentation
provided by the WerRTCVAD8 toolkit.

6.3 Experimental Results

Firstly, We train the model on all training corpora,
including real and synthetic speech-to-translation
paired data. As shown in Table 4, we achieve a
high BLEU on the tst-COMMON test set, but a low
performance on the tst2019 test set compared with
the previous work (Gaido et al., 2020). A possible
reason is that the data distribution between IWSLT
test sets and the synthetic data is different.

tst-COMMON tst2019

32.65 14.16

Table 4: Performance of the model trained on all train-
ing corpora.

To verify this assumption, we pick some sub-
sets from the available datasets for training, includ-
ing MuST-C and ST TED from the real corpora
and MuST-C and LibriSpeech from the synthetic
corpora. We present the results in Table 5. Al-
though the performance on the tst-COMMON test
set drops by 0.8 BLEU points, the model achieves
a reasonable performance on the tst2019 test set.
Furthermore, we finetune the model on the MuST-
C dataset with a small learning rate. This yields a
slight improvement.

8https://github.com/wiseman/py-webrtcvad
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Model tst-COMMON tst2019

Base 31.85 20.64
+ finetune 32.31 20.73

Table 5: Performance of the model trained with the sub-
sets of all available corpora.

Test sets Given Own

tst-COMMON 33.84 -
tst2019 22.68 23.76
tst2020 21.8 22.8
tst2021† 19.0 19.6
tst2021‡ 20.7 20.6
tst2021? 30.7 30.3

Table 6: Final results with ensemble decoding. We
report the results with given and own segmentation.
There are two references on the tst2021 test set: TED
reference (†) and IWSLT reference (‡). The final results
are based on both references (?) together.

We train multiple models with different training
data for diverse ensemble decoding. We select a
part of the synthetic corpora randomly, then mix
them with the whole real training data. Finally, we
use the ensemble decoding with 6 models for the
final results and achieve a substantial improvement
over a single model. As shown in Table 6, we
achieve an excellent performance of 33.84 BLEU
points on the MuST-C En-De tst-COMMON set.

The best end-to-end system of last year achieves
20.1 BLEU points on the tst2019 test set and 21.49
BLEU points on the tst2020 test set with the given
segmentation. We achieve remarkable improve-
ments of 2.58 and 0.31 BLEU points, which demon-
strates the superiority of our systems.

There are two references available for tst2021
test set. The TED reference is the original one from
the TED website. Since new regulations for the of-
ficial regulation lead to translations that are much
shorter, they created a second reference translation,
called the IWSLT reference. The final results are
based on both references. We achieve better per-
formance with the own segmentation on the TED
reference, which is consistent with the results on
the previous test sets. However, the results with the
own segmentation are worse on the IWSLT refer-
ence. A possible reason is that we do not optimize
the segmentation tool for IWSLT test sets. We will
explore better segmentation methods in the future.

7 Conclusion

This paper describes the submission of the Niu-
Trans E2E ST systems for the IWSLT 2021 offline
task, which translates the English audio to German
translation directly without intermediate transcrip-
tion. We build our final submissions considering
two mainstreams:

• Model architecture improvements for the
speech translation task.

• Data augmentation by translating the English
transcription to German translation.

We also find that the distribution of the training
data has a great impact on the performance and alle-
viate it by ensemble decoding. Using the given seg-
mentation, we achieve remarkable improvements
over the best end-to-end system of last year.
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Abstract

This paper describes the ESPnet-ST group’s
IWSLT 2021 submission in the offline speech
translation track. This year we made various
efforts on training data, architecture, and au-
dio segmentation. On the data side, we inves-
tigated sequence-level knowledge distillation
(SeqKD) for end-to-end (E2E) speech transla-
tion. Specifically, we used multi-referenced
SeqKD from multiple teachers trained on dif-
ferent amounts of bitext. On the architecture
side, we adopted the Conformer encoder and
the Multi-Decoder architecture, which equips
dedicated decoders for speech recognition and
translation tasks in a unified encoder-decoder
model and enables search in both source and
target language spaces during inference. We
also significantly improved audio segmenta-
tion by using the pyannote.audio toolkit
and merging multiple short segments for long
context modeling. Experimental evaluations
showed that each of them contributed to large
improvements in translation performance. Our
best E2E system combined all the above tech-
niques with model ensembling and achieved
31.4 BLEU on the 2-ref of tst2021 and 21.2
BLEU and 19.3 BLEU on the two single refer-
ences of tst2021.

1 Introduction

This paper presents the ESPnet-ST group’s
English→German speech translation (ST) system
submitted to the IWSLT 2021 offline speech trans-
lation track. ESPnet (Watanabe et al., 2018)
has been widely used for many speech applica-
tions; automatic speech recognition (ASR), text-
to-speech (Hayashi et al., 2020), speech transla-
tion (Inaguma et al., 2020), machine translation
(MT), and speech separation/enhancement (Li et al.,
2021). The purpose of this submission is not only
to show the recent progress on ST researches, but

∗*Equal contribution

also to encourage future research by building strong
systems along with the open-sourced project.

This year we focused on (1) sequence-level
knowledge distillation (SeqKD) (Kim and Rush,
2016), (2) Conformer encoder (Gulati et al., 2020),
(3) Multi-Decoder architecture (Dalmia et al.,
2021), (4) model ensembling, and (5) better seg-
mentation with a neural network-based voice activ-
ity (VAD) system (Bredin et al., 2020) and a novel
algorithm to merge multiple short segments for
long context modeling. Our primary focus was
E2E models, although we also compared them
with cascade systems with our best effort. All
experiments were conducted with the ESPnet-ST
toolkit (Inaguma et al., 2020), and the recipe is pub-
licly available at https://github.com/espnet/
espnet/tree/master/egs/iwslt21.

2 Data preparation

In this section, we describe data preparation for
each task. The corpus statistics are listed in
Table 1. We removed the off-limit talks fol-
lowing previous evaluation campaigns1. To fit
the GPU memory, we excluded utterances hav-
ing more than 3000 speech frames or more than
400 characters. All sentences were tokenized
with the tokenizer.perl script in the Moses
toolkit (Koehn et al., 2007).

2.1 ASR

We used Must-C (Di Gangi et al., 2019), Must-C
v22, ST-TED (Jan et al., 2018), Librispeech (Panay-
otov et al., 2015), and TEDLIUM2 (Rousseau et al.,
2012) corpora. We used the cleaned version of ST-
TED following (Inaguma et al., 2019). The speech

1https://sites.google.com/
view/iwslt-evaluation-2019/
speech-translation/off-limit-ted-talks

2https://ict.fbk.eu/
must-c-release-v2-0/
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#Hour #Sentence

ASR
Must-C 408 × 3 0.68M
Must-C v2 458 × 3 0.74M
ST-TED (cleaned) 200 × 3 0.40M
Librispeech 960 0.28M
TEDLIUM2 210 × 3 0.27M

E2E-ST
Must-C 408 × 3 0.68M
Must-C v2 458 × 3 0.74M
ST-TED (cleaned) 200 × 3 0.40M

MT
Must-C

-

0.68M
Must-C v2 0.74M
ST-TED (cleaned) 0.40M
Europarl 1.82M
Commoncrawl 2.39M
Paracrawl 34.37M
NewsCommentary 0.37M
WikiTitles 1.38M
RAPID 1.63M
WikiMatrix 1.57M

Table 1: Corpus statistics

data was augmented by three-fold speed pertur-
bation (Ko et al., 2015) with speed ratios of 0.9,
1.0, and 1.1 except for Librispeech. We removed
case information and punctuation marks except for
apostrophes from the transcripts. The 5k unit vo-
cabulary was constructed based on the byte pair
encoding (BPE) algorithm (Sennrich et al., 2016)
with the sentencepiece toolkit3 using the En-
glish transcripts only.

2.2 E2E-ST

We used Must-C, Must-C v2, and ST-TED only.
The shared source and target vocabulary of BPE16k
units was constructed using cased and punctuated
transcripts and translations.

2.3 MT

We used available bitext for WMT204 in addition to
the in-domain TED data used for E2E-ST systems.
We first performed perplexity-based filtering with
an in-domain n-gram language model (LM) (Moore
and Lewis, 2010). We controlled the WMT data
size by thresholding and obtained three data pools:
5M, 10M, and 20M sentences. Next, we removed
non-printing characters and performed language
identification with the langid.py toolkit (Lui
and Baldwin, 2012)5 and kept sentences whose lan-

3https://github.com/google/
sentencepiece

4Europarl, Commoncrawl, Paracrawl, NewsCommentary,
WikiTitles, RAPID and WikiMatrix

5https://github.com/saffsd/langid.py

Filtering method #Sentence

WMT5M WMT10M WMT20M

In-domain LM 5.00M 10.00M 20.00M
+ langid 3.42M 7.90M 15.33M
+ length/character 3.15M 7.77M 15.01M

Table 2: MT bitext filtering
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Figure 1: Block diagram of Conformer architecture

guage IDs were identified correctly on both English
and German sides. We also removed sentences hav-
ing more than 250 tokens in either language or a
source-target length ratio of more than 1.5 with the
clean-corpus-n.perl script in Moses. Fi-
nally, we removed sentences having CJK and other
unrelated characters in either language with the
built-in regex module in Python. The resulting
data size is shown in Table 2. We found that our
filtering strategy removed 22-37% of data. Note
that the above filtering process was performed over
the WMT data only. For each data size, the joint
source and target vocabulary of BPE32k units was
constructed using cased and punctuated sentences
after the filtering. We did not use additional mono-
lingual data.

3 System

3.1 Conformer encoder
Conformer encoder (Gulati et al., 2020) is a stacked
multi-block architecture and has shown consistent
improvement over a wide range of E2E speech
processing applications (Guo et al., 2020). The
architecture of each block is depicted in Figure 1.
It includes a multi-head self-attention module, a
convolution module, and a pair of position-wise
feed-forward modules in the Macaron-Net style.
While the self-attention module learns the long-
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Figure 2: The Multi-Decoder (MD) architecture de-
composes the overall ST task with ASR and MT sub-
nets while maintaining E2E differentiability.

range global context, the convolution module aims
to model the local feature patterns synchronously.
Recent studies have shown improvements by intro-
ducing Conformer in the E2E-ST task (Guo et al.,
2020; Inaguma et al., 2021b), which motivated us
to adopt this architecture as our system.

3.2 SeqKD

Sequence-level knowledge distillation (Se-
qKD) (Kim and Rush, 2016) is an effective
method to transfer knowledge in a teacher model
to a student model via discrete symbols. Our
recent studies (Inaguma et al., 2021a,b) showed a
large improvement in ST performance with this
technique. Unlike the previous studies, however,
we used more training data than bitext in ST
training data to train teacher MT models. We
translated source transcripts in the ST training
data by the teacher MT models with a beam width
of 5 and then replaced the original ground-truth
translation with the generated translation. We used
cased and punctuated transcripts as inputs to the
MT teachers. We also combined both the original
and pseudo translations as data augmentation
(multi-referenced training) (Gordon and Duh,
2019).

3.3 Multi-Decoder architecture

The Multi-Decoder is an E2E-ST model using
Searchable Hidden Intermediates to decompose
the overall ST task into ASR and MT sub-
tasks (Dalmia et al., 2021). As shown in Figure 2,
the Multi-Decoder consists of two encoder-decoder
models, an ASR sub-net and a subsequent MT sub-
net, where the hidden representations of the ASR
decoder are passed as inputs to the encoder of the
MT sub-net. During inference, the best ASR de-
coder hidden representations are retrieved using
beam search decoding at this intermediate stage.

Since this framework decomposes the overall
ST task, it brings several advantages of cascaded

approaches into the E2E setting. For instance, the
Multi-Decoder allows for greater search capabil-
ities and separation of speech and text encoding.
However, one trade-off is a greater risk of error
propagation from the ASR sub-net to the down-
stream MT sub-net. To alleviate this issue, we
condition the decoder of the MT sub-net on the
ASR encoder hidden representations in addition to
the MT encoder hidden representations using multi-
source cross-attention. This improved variant of
the architecture is called the Multi-Decoder with
Speech Attention.

3.4 Model ensembling

We use posterior probability combination to ensem-
ble models trained with different data and archi-
tectures. During inference, we perform a posterior
combination at each step of beam search decoding
by first computing the softmax normalized poste-
rior probabilities for each model in the ensemble
and then taking the mean value. In this ensembling
approach, a single unified beam search operates
over the combined posteriors of the models to find
the most likely decoded sequence.

3.5 Segmentation

How to segment audio during inference signif-
icantly impacts ST performances (Gaido et al.,
2020; Pham et al., 2020; Potapczyk and Przybysz,
2020; Gaido et al., 2021). This is because the ST
systems are usually trained with utterances seg-
mented based on punctuation marks (Di Gangi
et al., 2019) while the audio segmentation by voice
activity detection (VAD) at test time does not ac-
cess such meta information. Since VAD splits a
long speech recording into chunks by silence re-
gions, it would prevent models from extracting se-
mantically coherent contextual information. There-
fore, it is very important to seek a better segmen-
tation strategy in order to minimize this gap in
training and test conditions and evaluate models
correctly. In fact, the last year’s winner obtained
huge improvements by using their own segmenta-
tion strategy.

Motivated by this fact, we investigated two
VAD systems apart from the provided segmenta-
tion. Specifically, we used WebRTC6 and pyan-
note.audio (Bredin et al., 2020)7 toolkits. For We-

6https://github.com/wiseman/
py-webrtcvad

7https://github.com/pyannote/
pyannote-audio
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Algorithm 1 Merge short segments after VAD for
long context modeling
1: function MERGESEGMENT(x,Mdur,Mint)
2: Q← V AD(x) . {(s1, e1), · · · , (sM , eM )}
3: while True do
4: Nmerge ← 0
5: Qnext ← {} . Queue
6: S, T ← s1, e1 . Start/End time
7: for (sm, em) ∈ Q do
8: if em−S < Mdur and sm−E < Mint then
9: Nmerge ← Nmerge +1 . Merge segments

10: else
11: Qnext.enqueue((S,E))
12: S ← sm . Reset
13: end if
14: E ← em
15: end for
16: Q← Qnext

17: if Nmerge = 0 then
18: break
19: end if
20: end while
21: return Q
22: end function

bRTC, we set the frame duration, padding duration,
and aggressive mode to 10ms, 150ms, and 3, re-
spectively. For pyannote.audio, we used a publicly
available model pre-trained on the DIHARD cor-
pus (Ryant et al., 2019).

However, we observed that VAD systems are
more likely to generate short segments because
they do not take contextual information into ac-
count. Therefore, we propose a novel algorithm to
merge multiple short segments into a single chunk
to enable long context modeling by self-attention
in both encoder and decoder modules. The pro-
posed algorithm is shown in Algorithm 1. We first
perform VAD and obtain multiple segments. Then,
we check the segments in a greedy way from left
to right and merge adjacent segments if (1) the to-
tal utterance duration is below a threshold Mdur

[10ms] and (2) the time interval of the two seg-
ments is below a threshold Mint [10ms]. This pro-
cess continues until no segment is merged in an
iteration. Although recent studies proposed simi-
lar methods (Potapczyk and Przybysz, 2020; Gaido
et al., 2021), our algorithm is a bottom-up approach
while theirs are top-down.

4 Experimental setting

In this section, we describe the experimental setting
for each task. The detailed configurations for each
task are summarized in Table 3.

Configuration ASR
E2E-ST

MT
non-MD MD

Warmup step 25k 25k 25k 8k
Learning rate factor 10.0 2.5 12.5 1.0
Batch size 200 utt 128 utt 120 utt 65k tok
Epoch 30 30 30 40
Validation metric Accuracy BLEU BLEU BLEU
Model average 5 5 5 5
Beam width 10 4 16, 10 4

Table 3: Summary of training configuration

4.1 Feature extraction

We extracted 80-channel log-mel filterbank coef-
ficients computed with 25-ms window size and
shifted every 10-ms with 3-dimensional pitch fea-
tures using the Kaldi toolkit (Povey et al., 2011).
The features were normalized by the mean and the
standard deviation calculated on the entire train-
ing set. We applied SpecAugment (Park et al.,
2019) with mask parameters (mT ,mF , T, F ) =
(2, 2, 40, 30) and time-warping for both ASR and
E2E-ST tasks.

4.2 ASR

We used both Transformer and Conformer archi-
tectures. The encoder had two CNN blocks fol-
lowed by 12 Transformer/Conformer blocks fol-
lowing (Karita et al., 2019; Guo et al., 2020). Each
CNN block consisted of a channel size of 256 and
a kernel size of 3 with a stride of 2 × 2, which
resulted in time reduction by a factor of 4. Both
architectures had six Transformer blocks in the de-
coder. In both encoder and decoder blocks, the
dimensions of the self-attention layer dmodel and
feed-forward network dff were set to 512 and 2048,
respectively. The number of attention heads H was
set to 8. The kernel size of depthwise separable con-
volution in Conformer blocks was set to 31. We op-
timized the model with the joint CTC/attention ob-
jective (Watanabe et al., 2017) with a CTC weight
of 0.3. We also used CTC scores during decod-
ing but did not use any external LM for simplicity.
We adopted the best model configuration from the
Librispeech ASR recipe in ESPnet.

4.3 MT

We used the Transformer-Base and -Big configura-
tions in (Vaswani et al., 2017).

4.4 E2E-ST

We used the same Conformer architecture as ASR
except for the vocabulary. We initialized the en-
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Model
WER (↓)

Librispeech TEDLIUM2 Must-C
test-other test tst-COMMON

Transformer 9.4 6.4 7.0
Conformer 7.1 6.2 5.6

Table 4: Word error rate (WER) of ASR systems

VAD Mdur Mint
WER (↓)

tst2010 tst2015 tst2018 tst2019 Avg.

Provided

– – 18.2 32.1 23.5 20.8 23.65
1500 200 14.4 29.3 18.4 15.5 19.40
2000 200 12.7 27.7 16.4 11.5 17.08
2500 200 14.5 29.9 15.1 12.2 17.93

WebRTC

– – 35.3 35.1 44.0 22.7 34.28
1500 200 19.4 26.7 27.7 13.8 21.90
2000 200 19.8 27.7 27.1 11.9 21.63
2500 200 22.9 29.5 27.1 11.6 22.78

pyannote

– – 9.5 24.0 15.5 7.3 14.08
1500 200 8.0 23.0 12.4 7.3 12.68
1500 100 7.5 22.2 12.4 6.5 12.15
2000 200 10.3 22.5 12.2 6.5 12.88
2000 150 9.6 21.8 12.3 6.1 12.45
2000 100 8.1 21.5 12.0 5.8 11.90
2000 50 7.3 21.9 12.4 5.9 11.88

Table 5: Impact of audio segmentation for ASR

coder parameters with those of the Conformer ASR.
On the decoder side, we initialized parameters like
BERT (Devlin et al., 2019), where weight parame-
ters were sampled fromN (0, 0.02), biases were set
to zero, and layer normalization parameters were
set to β = 0, γ = 1. This technique led to better
translation performance and faster convergence.

5 Results

5.1 ASR

5.1.1 Architecture
We compared Transformer and Conformer ASR ar-
chitectures in Table 4. We observed that Conformer
significantly outperformed Transformer. Therefore,
we use the Conformer encoder in the following
experiments.

5.1.2 Segmentation
Next, we investigated the VAD systems and the pro-
posed segment merging algorithm for long context
modeling in Table 5. We used the same decoding
hyperparameters tuned on Must-C. We firstly ob-
served that merging short segments was very effec-
tive probably because it alleviated frame classifica-
tion errors in the VAD systems. Among three audio
segmentation methods, we confirmed that pyan-
note.audio significantly reduced the WER while
WebRTC had negative impacts compared to the
provided segmentation. Specifically, we found that

the dihard option in pyannote.audio worked very
well while the rest options did not. The optimal
maximum duration Mdur was around 2000 frames
(i.e., 20 seconds). In the last experiments, we tuned
the maximum interval Mint among {50, 100, 150,
200} and found 50 and 100 (i.e., 0.5 and 1 second)
was best on average. Compared to the provided
segmentation, we obtained a 49.6% improvement
on average.

5.2 MT

In this section, we show the results of our MT
systems used for cascade systems and pseudo la-
beling in SeqKD. We report case-sensitive detok-
enized BLEU scores (Papineni et al., 2002) with the
multi-bleu-detok.perl script in Moses.
We carefully investigated the effective amount of
WMT training data to improve the performance of
the TED domain. The results are shown in Table 6.
We confirmed that adding the WMT data improved
the performance by more than 4 BLEU. Regarding
the WMT data size, using up to 10M sentences was
helpful, but 20M did not show clear improvements,
probably because of the undersampling of the TED
data. Oversampling as in multilingual NMT (Ari-
vazhagan et al., 2019) could alleviate this problem,
but this is beyond our scope.

After training with a mix of the WMT and TED
data, we also tried to finetune the model with the
TED data only, but this did not lead to clear im-
provement, especially for the IWSLT test sets. In-
creasing the model capacity was not helpful, al-
though the conclusion might change by adding
more training data and evaluating the model in
other domains such as news. Because our primary
focus to use MT systems was pseudo labeling for
SeqKD, we decided to use the Base configuration
to speed up decoding.

Finally, we checked the BLEU scores on the
Must-C training data used for SeqKD. We observed
that adding more WMT data decreased the BLEU
score, from which we can conclude that using more
WMT data gradually changed the MT output from
the TED style. Therefore, we decided to use the
models trained on WMT5M and WMT10M as teachers
for SeqKD.

5.3 Speech translation

5.3.1 E2E-ST
SeqKD The results are shown in Table 7. We
first observed the baseline Conformer model
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Model
BLEU (↑)

Must-C Must-C v2 tst2010 tst2015 tst2018 tst2019 Must-C
dev tst-COMMON tst-COMMON Train

Base (Must-C only) – 30.02 29.86 27.28 24.92 21.13 20.37

Base (WMT5M) 31.31 34.13 33.85 31.61 32.44 28.30 28.28 45.68
+ Big 27.32 29.11 28.85 27.61 28.44 24.42 23.92 –

Base (WMT10M) 33.28 35.09 34.80 33.58 33.26 29.24 28.87 38.31
+ In-domain finetune 30.67 35.50 35.30 30.79 31.43 25.35 26.10 –

Base (WMT20M) 33.15 35.06 34.87 33.26 33.56 29.94 29.08 33.60

Table 6: BLEU scores of text-based MT systems

ID Model
BLEU (↑)

Must-C Must-C v2
tst2010 tst2015 tst2018 tst2019

dev tst-COMMON tst-HE tst-COMMON

-

Bidir SeqKD (E2E) (Inaguma et al., 2021b) 25.67 27.01 25.36 – – – – –
Multi-Decoder (E2E) (Dalmia et al., 2021) – 26.4 – – – – – –
RWTH (Cascade) (Bahar et al., 2021) – 26.50 26.80 – – 28.4 – –
KIT (E2E) (Pham et al., 2020) – 30.60 – – 24.27 21.82 – –
KIT (Cascade) (Pham et al., 2020) – – – – 26.68 24.95 – –
SRPOL (E2E) (Potapczyk and Przybysz, 2020) – – – – 29.44 24.6 – 23.96

A1 Baseline (X) 25.14 35.63 22.63 36.07 21.40 18.18 16.69 17.39
A2 + SeqKD (Y) 26.31 29.29 26.33 29.50 23.34 21.24 21.09 22.25
A3 + 2ref SeqKD (X+Y) 26.50 30.59 26.21 30.92 23.00 22.18 20.38 21.59
A4 + 3ref SeqKD (X+Y+Z) 27.66 30.90 27.44 31.07 24.97 22.66 22.20 23.41

B1 MD + 2ref SeqKD – 30.78 – – – – – 23.78

C1 Conformer ASR→ Base MT (WMT10M) 27.01 29.42 26.13 29.75 25.04 23.17 23.05 23.19

Table 7: BLEU scores of ST systems. X: original, Y: WMT5M, Z: WMT10M. For unsegmented test sets, we used
pyannote.audio with Mdur = 2000 and Mint = 100.

(A1) achieved 35.63 BLEU on the Must-C
tst-COMMON set, and it is the new state-of-the-
art record to the best of our knowledge. Surpris-
ingly, it even outperformed text-based MT sys-
tems in Table 6. On the other hand, unlike our
observations in (Inaguma et al., 2021a,b), SeqKD
(A2-4) degraded the performance on the Must-
C tst-COMMON set. However, the results on
the Must-C dev and tst-HE sets showed com-
pletely different trends, where we observed better
BLEU scores by SeqKD in proportion to the WMT
data used for training the teachers. Therefore, af-
ter tuning audio segmentation, we also evaluated
the models on the unsegmented IWSLT test sets.
Here, we used the pyannote.audio based segmenta-
tion with (Mdur,Mint) = (2000, 100) as described
in §5.1.2. Then, we confirmed large improvements
with SeqKD by 2-6 BLEU, and therefore we de-
cided to determine the best model based on the
IWSLT test sets. Multi-referenced training consis-
tently improved the BLEU scores on the IWSLT
sets. For example, A4 outperformed A1 by 6.02
BLEU on tst2019 although the tst2019 set was
well-segmented (WER: 6.0%). Given these obser-
vations, we recommend evaluating ST models on

ID Ensembled Models tst2019

- B1 21.06
E1 B1, A4 22.51
E2 B1, A4, A1 22.83
E3 B1, A4, A1, A3 23.36
E4 B1, A4, A1, A3, A2 23.61

Table 8: BLEU (↑) scores of ensembled E2E-ST sys-
tems on tst2019, using the provided segmentation with
Mdur = 2000 and Mint = 100

multiple test sets for future research.

Multi-Decoder architecture We combined the
SeqKD and Multi-Decoder techniques in our B1
system. B1, which used a conformer ASR encoder
and 2ref SeqKD, showed an improvement of 2.19
BLEU on tst2019 over A3, the encoder-decoder
which also used 2ref SeqKD. B1 also achieved
a slightly higher result on tst2019 compared to A4
which used 3ref SeqKD. These results suggest
that the Multi-Decoder architecture is indeed com-
patible with SeqKD.

Model ensemble As shown in Table 8, ensem-
bling our various ST systems using the posterior
combination method described in §3.4 showed im-
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VAD Mdur Mint
BLEU (↑)

tst2010 tst2015 tst2018 tst2019 Avg.

Provided† – – – – – 20.1 –

Provided
(E2E)

– – 21.99 19.94 19.29 19.70 20.23
1000 200 22.62 20.54 19.80 20.54 20.88
1500 200 23.00 21.66 20.14 21.50 21.58
2000 200 22.95 21.58 20.03 21.34 21.48

WebRTC
(E2E)

– – 13.13 12.97 11.07 13.32 12.62
1000 200 20.95 20.66 17.09 20.87 19.89
1500 200 21.00 20.99 17.67 21.05 20.18
2000 200 20.25 21.81 17.08 20.71 19.96

pyannote
(E2E)

– – 22.26 16.84 17.78 19.98 19.22
1500 200 25.00 22.22 21.97 22.67 22.97
1500 100 25.92 22.81 22.51 22.88 23.53
2000 200 24.10 21.98 21.00 22.71 22.45
2000 150 24.25 22.26 21.41 22.99 22.73
2000 100 24.97 22.66 22.20 23.41 23.31
2000 50 24.50 20.67 22.14 22.89 22.55

pyannote
(Cascade)

1500 200 25.06 22.65 23.01 22.51 23.31
1500 100 25.56 22.85 23.03 22.82 23.57
2000 200 24.41 22.76 22.15 22.08 22.85
2000 150 24.50 23.03 23.12 23.11 23.44
2000 100 25.04 23.17 23.05 23.19 23.61
2000 50 24.33 20.79 23.12 23.11 22.84

Table 9: Impact of audio segmentation for ST. A4 was
used for the E2E model. † (Potapczyk and Przybysz,
2020)

provements over the best single model, B1. We
found that an ensemble of all of our models, A1-4
and B1, achieved the best result of 23.61 BLEU
on tst2019 and outperformed B1 by 2.55 BLEU.
Although A1 as a single system performs worse
on tst2019 than the other single systems as shown
in Table 7, including it in an ensemble with the
two best single systems, B1 and A4, still yielded a
slight gain of 0.32 BLEU (E2). Therefore, we can
conclude that weak models are still beneficial for
ensembling.

5.3.2 Segmentation
Similar to §5.1.2, we also investigated the im-
pact of audio segmentation for E2E-ST mod-
els. To this end, we used the A4 model. Note
that we used the same decoding hyperparameters
tuned on Must-C. The results are shown in Ta-
ble 9. We confirmed a similar trend to ASR. Al-
though (Mdur,Mint) = (1500, 100) showed the
best performance on average, we decided to use
(Mdur,Mint) = (2000, 100) for submission con-
sidering the best performance on the latest IWSLT
test, tst2019.

5.3.3 Cascade system
We also evaluated the cascade system with the Con-
former ASR and the Transformer-Base MT trained
on the WMT10M data (C1). The MT model was
trained by feeding source sentences without case

information and punctuation marks. The results in
Table 9 showed that the BLEU scores correlated to
the WER in Table ,5 and the performance was com-
parable with that of A4. Although there is some
room for improving the performance of the cascade
system further by using in-domain English LM, it
is difficult to conclude which modeling (cascade
or E2E) is effective because the cascade system
had more model parameters in the ASR decoder
and MT encoder. This means that the E2E model
could also be enhanced by using a similar amount
of parameters.

5.3.4 Final system
Our final system was the best ensemble system E4,
using the pyannote.audio based segmentation with
(Mdur,Mint) = (2000, 200)8. This system, which
was our primary submission, scored 24.14 BLEU
on tst2019 as shown in Table 10. Compared to the
result in Table 8, it improved by 0.53 BLEU thanks
to better audio segmentation. It was also slightly
higher than the IWSLT20 winner’s submission by
SPROL (Potapczyk and Przybysz, 2020).

We also present the results on tst2020 and
tst2021 in Table 10. Our primary submission E4
outperformed the result of last year’s winner sys-
tem on tst2020.

6 Conclusion

In this paper, we have presented the ESPnet-ST
group’s offline systems on the IWSLT 2021 submis-
sion. We significantly improved the baseline Con-
former performance with multi-referenced SeqKD,
Multi-Decoder architecture, segment merging al-
gorithm, and model ensembling. Our future work
includes scaling training data and careful analysis
of the performance gap in different test sets.
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System Segmentation
Segment
merging Mint

BLEU (↑)
tst2019 tst2020 tst2021

ref1 ref2 both

IWSLT’20 winner♣
given – – 20.1 21.5 – – –
own – – 23.96 25.3 – – –

E4 (primary) pyannote 3 200 24.14 25.6 19.3 21.2 31.4

E4+* pyannote 3 200 24.41 25.5 19.7 20.6 30.8
E4+* pyannote 3 100 24.87 26.0 19.5 21.1 31.3
E4+* given 3 100 23.72 25.1 19.4 21.4 31.5
E4+* given 7 – 21.10 22.3 17.4 18.4 27.7
B1 pyannote 3 100 23.78 25.0 18.9 20.9 31.1

Table 10: BLEU scores of submitted systems on tst2020 and tst2021. ♣ (Potapczyk and Przybysz, 2020). Mdur =
2000 was used for the segment merging algorithm. *Late submission (not official). E4+ denotes E4 trained for
more steps.
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Abstract

This paper describes the submission to the
IWSLT 2021 offline speech translation task
by the UPC Machine Translation group. The
task consists of building a system capable of
translating English audio recordings extracted
from TED talks into German text. Submitted
systems can be either cascade or end-to-end
and use a custom or given segmentation. Our
submission is an end-to-end speech transla-
tion system, which combines pre-trained mod-
els (Wav2Vec 2.0 and mBART) with coupling
modules between the encoder and decoder,
and uses an efficient fine-tuning technique,
which trains only 20% of its total parameters.
We show that adding an Adapter to the sys-
tem and pre-training it, can increase the con-
vergence speed and the final result, with which
we achieve a BLEU score of 27.3 on the MuST-
C test set. Our final model is an ensemble
that obtains 28.22 BLEU score on the same
set. Our submission also uses a custom seg-
mentation algorithm that employs pre-trained
Wav2Vec 2.0 for identifying periods of untran-
scribable text and can bring improvements of
2.5 to 3 BLEU score on the IWSLT 2019 test
set, as compared to the result with the given
segmentation.

1 Introduction

Typically, a speech translation (ST) system is com-
posed of an automatic speech recognition (ASR)
and a machine translation (MT) model, which is
known as cascade system. However, in recent
years, end-to-end models have gained popularity
within the research community. These systems
are encoder-decoder architectures capable of di-
rectly translating speech without intermediate sym-
bolic representations. This approach solves classi-
cal shortcomings of cascade ST systems, e.g. the
error propagation or the slow inference time (Weiss
et al., 2017). Nevertheless, while there are plenty

of data available to train ASR and MT systems,
there are not as many datasets for ST, despite some
recent efforts (Di Gangi et al., 2019a; Wang et al.,
2020b). Moreover, this approach is inherently more
difficult because the encoder has to perform both
acoustic modeling and semantic encoding. For
these reasons, end-to-end ST systems still struggle
to achieve the performance of cascade ST mod-
els. Still, last year’s IWSLT was the first time
an end-to-end system had the best performance in
the evaluation campaign (Potapczyk and Przybysz,
2020; Ansari et al., 2020). Hence, given the in-
creasing interest in end-to-end ST systems, and the
potential gains from advancing research on them,
we decided to focus on developing such a system
for this year’s offline task.

When there are not enough data for a task, a com-
mon practice is to use pre-trained components, like
BERT (Devlin et al., 2019) for various NLP tasks.
In the ST field, the idea of pre-training the encoder
for ASR was introduced by Berard et al. (2018)
and has become a standard technique for develop-
ing modern end-to-end systems (Pino et al., 2019;
Di Gangi et al., 2019b). By contrast, pre-training
the decoder for MT does not lead to better per-
formance (Bansal et al., 2019). Recently, Li et al.
(2021) proposed a multilingual ST system that com-
bines a pre-trained Wav2Vec 2.0 (Baevski et al.,
2020) as the encoder and a pre-trained mBART
decoder (Liu et al., 2020a). Furthermore, they
proposed a minimalist fine-tuning strategy that
trains only the 20% of the model parameters, while
achieving similar performance to fine-tuning the
whole model. From our perspective, this approach
might become a turning point in the field, includ-
ing bilingual scenarios like the IWSLT offline task.
Hence, we decided to adopt this architecture1 and
fine-tuning strategy in our system (§2.1). In addi-

1Since the pre-trained modules were trained on external
data, our submission is unconstrained.
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tion, we introduce an Adapter module to extract
better representations from the encoder (§2.2), and
we propose a two-step training strategy (§4.1) that
brings improvements to the translation quality.

During training, we used data augmentation tech-
niques to boost our system’s performance. Specif-
ically, we applied randomized on-the-fly augmen-
tations by adding an echo effect and modifying
tempo and pitch (§3.3). Since our system works
directly on the audio waveform, we could not use
SpecAugment (Park et al., 2019; Bahar et al., 2019).
Instead, we applied masking to the output of the
Wav2Vec 2.0 feature extraction module, thereby
obtaining a similar effect.

The test data are provided with an automatic
segmentation that does not ensure sentence-like
segments. Considering the trend observed in 2019
and 2020 IWSLT offline task, where submission
with own segmentation algorithms are strictly bet-
ter than those with the given segmentation, we also
decided to work with a custom segmentation algo-
rithm. We base it on the approach of Potapczyk
et al. (2019), but we replace the silence detection
tool with an ASR system (§3.4). Our experiments
on the IWSLT 2019 test set, show that our system
works better when the data are segmented with our
own segmentation algorithm (§4.3).

2 System description

We built an end-to-end ST system, mainly com-
posed of pre-trained modules. We couple a
Wav2Vec 2.0 encoder (Baevski et al., 2020) and
an mBART decoder (Liu et al., 2020a), following
the strategy proposed by Li et al. (2021). When
combining these two models, there is a length dis-
crepancy between the target sentence length and the
encoder output. For this reason, it is necessary to
use a module to shorten the encoder output, which
we refer to as the Length Adaptor. Additionally,
we introduce an Adapter module to reduce the gap
between the different modalities of the pre-trained
models (Bapna and Firat, 2019). A method that
Escolano et al. (2020) proved to be beneficial for
ST models.

2.1 Pre-trained modules

Our motivation is to get the most out of pre-
trained components, which were obtained by self-
supervision or supervised tasks. Concretely, we use
a Wav2Vec 2.0 encoder and an mBART decoder,
both trained initially by self-supervision and fine-

Figure 1: System overview. The original architecture
proposed by Li et al. (2021) includes a pre-trained
Wav2Vec 2.0 as the encoder, a pre-trained mBART de-
coder and a Length Adaptor. In this work, we add an
Adapter module after the encoder.

tuned for ASR and multilingual MT, respectively.
Wav2Vec 2.0 is a speech encoder proposed by

Baevski et al. (2020). This model is pre-trained by
self-supervision, i.e. without explicit targets such
as transcriptions. Its main contribution is that it
achieves excellent performance in ASR after fine-
tuning it with just a few minutes of transcribed
speech. Moreover, it can process raw audio wave-
forms directly, unlike other systems which work
with spectrogram-like representations (Di Gangi
et al., 2019d).

This model is composed of two main blocks.
Firstly, a feature extractor made of seven 1-D con-
volutional layers processes the raw audio waveform.
The representation obtained from this step has a
stride of 20ms between samples, and each one has
a receptive field of 25ms. Secondly, a Transformer
(Vaswani et al., 2017) encoder with 24 layers ex-
tracts contextualized representations. For the pur-
pose of our system, we discard the rest of the com-
ponents that are used during the self-supervised
pre-training (e.g. the quantization modules).

The Wav2Vec 2.0 model that we employ is al-
ready fine-tuned on ASR. Specifically, we use the
Large architecture, pre-trained with 53.2k hours of
untranscribed speech from LibriVox (Kahn et al.,
2020), fine-tuned on the 960h of transcribed speech
from Librispeech (Panayotov et al., 2015), and on
pseudo-labels (Xu et al., 2020).

mBART is a sequence-to-sequence denoising
autoencoder, which reconstructs the input text sen-
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Figure 2: Adapter module

tence given a corrupted version of it (Liu et al.,
2020a). It follows the same approach as BART
(Lewis et al., 2020) but, instead of using just En-
glish monolingual data, it is trained with multiple
languages. This strategy does not require any paral-
lel corpora, so it can be used as a pre-training step
and then fine-tuned for MT tasks.

Specifically, we use the 12-layer Transformer
decoder of an mBART model, fine-tuned on mul-
tilingual MT, from English to 49 languages (Tang
et al., 2020).

2.2 Coupling modules
In addition to the two main blocks that constitute
our system, we implement another two other mod-
ules placed after the Wav2Vec 2.0 encoder (Figure
1). The objective of these modules is to overcome
the multimodal gap by adapting the encoder output
to the decoder. With them, we adapt the represen-
tations to the decoder’s modality, and reduce its
length.

The Adapter is a module that was introduced by
Bapna and Firat (2019) to adapt pre-trained models
to multiple tasks. The Adapter projects its input
to a higher-dimensional space before reducing it
to the original size. Moreover, it applies layer nor-
malization at the input (Ba et al., 2016), a ReLU
activation after the first projection and a residual
connection (Figure 2).

In work done by Escolano et al. (2020), they
proposed to use this module to adjust the repre-
sentation from the speech encoder to the language-
specific decoders. Hence, we have used this mod-
ule with a similar purpose, since we also needed
to combine different pre-trained components and
modalities.

The Length Adaptor is a module that reduces
the length discrepancy between the input and out-

put sequences. It achieves an 8x down-sampling of
the encoder representation by applying a stack of 3
convolutional layers with a kernel size of 3 and a
stride of 2.

2.3 LNA Finetuning

We follow the LayerNorm and Attention (LNA)
fine-tuning strategy proposed by Li et al. (2021).
The main idea is that only some of the modules of
Wav2Vec 2.0 and mBART need to be fine-tuned to
build a system capable of ST. More specifically,
these are the layer normalization, encoder self-
attention and encoder-decoder attention, which ac-
count for the 20% of the total parameters. It was
shown that this minimal fine-tuning not only cre-
ates a powerful ST system, but its performance also
approximates what is obtained by fine-tuning all
the parameters. Even more importantly, it allows
fast and memory-efficient training, which enabled
us to work with such a large architecture.

3 Data

Here we introduce the datasets used for our experi-
ments and describe the filtering and data augmenta-
tion methods that were employed during training.

3.1 Datasets

For our experiments, we are using the English-to-
German data from three ST datasets, namely the
MuST-C v2 2 (Di Gangi et al., 2019a), EuroparlST
(Iranzo-Sánchez et al., 2020) and CoVoST 2 (Wang
et al., 2020b) 3. Our training set is a concatenation
of the respective train splits of these datasets, while
we discarded the train-noisy split of EuroparlST
due to low quality. We only consider MuST-C to
be in-domain, since its data come from TED talks,
and thus EuroparlST and CoVoST are considered
out-of-domain due to differences in setting, use of
language and segment duration. Given this, our
development data are comprised only of the de-
velopment split of MuST-C, which allows us to
concatenate the development splits of EuroparlST
and CoVoST to our training data. Furthermore,
we down-sample the CoVoST splits during each
training epoch to shift the importance towards the
MuST-C data. We do not down-sample EuroparlST

2The second version of MuST-C has not been officially
released yet, but the En-De data is available in advance at
https://ict.fbk.eu/must-c/.

3The EuroparlST and CoVoST 2 data are converted to
16khz, which is required for the input of the Wav2Vec 2.0
encoder.
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Split
Available

References
Aligned

Segmentation
MuST-C-dev D D
MuST-C-test D D
IWSLT.tst2019 D
IWSLT.tst2020
IWSLT.tst2021

Table 1: Development and Test splits

due to its already small size compared to MuST-C
(Table 2). We use two different sets for evaluat-
ing the performance of our system, the test split
of MuST-C and the IWSLT 2019 test set (Niehues
et al., 2019). The latter one provides us with an
opportunity to additionally test our segmentation
algorithm, since the given segmentation and the
reference translations are not perfectly aligned nor
sentence-like. Finally we generate our predictions
for the IWSLT test sets of 2020 (Ansari et al., 2020)
and 2021 (Anastasopoulos et al., 2021), for which
the reference translations have not been made avail-
able (Table 1). We do not use the rest of the IWSLT
test sets, since they are already included in the 2nd
version of MuST-C.

3.2 Data filtering
We remove examples where the duration of the
source audio is more than 25 seconds (400,000
samples) to avoid out-of-memory errors during the
training of the ST system. Apart from that, we use
another two filtering stages to ensure that our train-
ing data are of high quality, for which we provide
the details bellow. The size of the training data
after all the filtering stages can be found in Table 2.

Text Filtering. We perform text filtering on the
target German text of MuST-C to remove speaker
names and non-textual events. Speaker names in
MuST-C are used to differentiate between speak-
ers, when multiple of them are interacting in a
talk. They appear in the beginning of a sentence,
as full names or capitalized initials, followed by a
colon. We remove the text in the beginning of each
sentence if it matches the described pattern. Non-
textual events are enclosed in parentheses, with
some common examples being “(Gelächter)” or
“(Applaus)”, which are the German translations of
“laughter” and “applause”. In such cases we keep
the examples but we remove the events. The only
exception are cases where there are actual utter-
ances coming from a secondary speaker. For those

Split Original Filtered S.Ratio
MuST-C-train 450 415 1.0
EuroparlST-train 77 75 1.0
EuroparlST-dev 3 3 1.0
CoVoST-train 430 410 0.3
CoVoST-dev 26 24 0.3
Total 986 927 -

Table 2: Training splits with their original and filtered
sizes measured in hours, and the sampling ratios for
each split in every training epoch.

cases, we strip the parentheses and the speaker
names. For EuroparlST, large numbers use spaces
as the thousands-separator, which we convert to
commas, in order to match the number format of
MuST-C and IWSLT data. No specific text filtering
is done for CoVoST. Finally, we remove the exam-
ples that are empty after applying the text filtering.

ASR Filtering. For the final stage of filtering,
we use an Automatic Speech Recognition (ASR)
model to identify noisy examples. We employ a
pre-trained Wav2Vec 2.0 (Baevski et al., 2020),
from the HuggingFace Transformers library (Wolf
et al., 2020) and perform inference on all our train-
ing examples. The pre-trained Wav2Vec 2.0 is
quite effective in this task and achieves an average
word-error-rate (WER) of 0.135. Consecutively we
remove those examples where the predicted text
has a WER greater than 0.5, as compared to its
English reference text. At this stage of filtering we
remove approximately 4% of our total training data.
For ASR inference, all English target text was nor-
malized, lower-cased, stripped from punctuation
and numbers were converted to spelled-out words.

3.3 Data augmentation

Data augmentation has been shown to provide
increased performance in both ASR (Park et al.,
2019) and ST (Di Gangi et al., 2019c), by enrich-
ing and diversifying the training data. Thus, fol-
lowing Potapczyk et al. (2019), we perform data
augmentation on the English source audio. We
apply the “tempo” and “pitch” effects to force our
system to adapt to speeches of different speeds, and
the “echo” effect to simulate the echoing which is
usually present in large rooms, where TED talks
are taking place. Compared to Potapczyk et al.
(2019), we replace the “speed” effect in favor of
“pitch”, since “speed” also modifies the “tempo”,
which is a separate effect. Data augmentation is
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Parameter Min value Max value
tempo 0.85 1.3
pitch -300 300
echo-delay 20 200
echo-decay 0.05 0.2

Table 3: Data Augmentation parameter ranges. Echo is
controlled by two parameters. Tempo and echo-decay
are coefficients, pitch is measured in semitones and
echo-delay in milliseconds.

applied on-the-fly, during training, using WavAug-
ment (Kharitonov et al., 2020), which is build on
top of the SoX library 4. Each example in the batch
has a probability of paug = 0.8 to be augmented, in
which case we apply all three effects to it. We sam-
ple uniformly the parameters of each effect from
the ranges shown at Table 3.

3.4 Data Segmentation
Similarly to 2019 and 2020 (Niehues et al., 2019;
Ansari et al., 2020), this year’s evaluation data are
segmented using an automatic tool (Meignier and
Merlin, 2010), which does not ensure that segments
are proper sentences nor that they are aligned with
the translated text. This assigns extra importance to
developing methods for proper segmentation of the
audio data, which was confirmed in the previous
year’s evaluation campaign, where all top submis-
sions used their own segmentation algorithm. For
creating our own segmentation of the IWSLT 2020
and 2021 test sets, we modify the technique de-
scribed in Potapczyk et al. (2019), where they use
a silence detection tool 5 to progressively split each
audio file into smaller segments. Their algorithm
terminates when all segments do not exceed a max-
imum segment length (max seg len) threshold,
which they tune to maximize the BLEU score on
IWSLT 2015 test set (Cettolo et al., 2015). In our
approach we replace the silence detection tool with
a pre-trained Wav2Vec 2.0 model (Baevski et al.,
2020) from the Huggingface Transformer library
(Wolf et al., 2020), to identify periods of untran-
scribable English text. Since the IWSLT 2015 test
set is included in MuST-C v2, we tune our algo-
rithm on IWSLT 2019 test set. First, we perform
inference with Wav2Vec 2.0 on the IWSLT 2019
test set, and obtain a token prediction for every
20ms for each audio file. Then we proceed to split
each audio file on the largest untranscribable pe-

4SoX - https://sox.sourceforge.net
5Audacity - https://www.audacityteam.org

Figure 3: BLEU scores for our segmentation al-
gorithm with different values of max seg len on
IWSLT.tst2019. X-axis is in seconds. With red color
is the BLEU score for the given segmentation.

riod, which is identified by the absence of English
characters in it. The algorithm terminates when
the max segment length condition is satisfied or
no further splits are possible due to a minimum
untranscribable period length, which we set to 0.2
seconds. We test max seg len ∈ [5, 25], and for
each value we produce a segmentation, generate
translations using one of our ST systems 6, use
the mwerSegmenter 7 software to align the gen-
erated translations with the reference translations,
and finally obtain a BLEU score using SACRE-
BLEU (Post, 2018). We find that the maximum
BLEU score is obtained using max seg len = 22
seconds (Figure 3), which we use to segment the
IWSLT 2020 and 2021 test sets for our submission.

4 Experiments

Here we describe our experiments, along with their
implementation details and the results on MuST-C
and the IWSLT 2019 test set.

4.1 Experimental Setup
LNA-ED The first experiment is to train our base-
line model, which is an encoder-decoder model
with a length adaptor module (§2.2) in between.
As in Li et al. (2021), we initialize the encoder
with a pre-trained Wav2Vec 2.0, the decoder with
the decoder of a pre-trained mBART50 (§2.1) and
we only train the parameters of the layer normaliza-
tion in both encoder and decoder, the encoder self-
attention in the encoder, the encoder cross-attention
in the decoder, and Length Adaptor (§2.3).

6For the purpose of this experiment we used the best check-
point from the LNA-ED-Adapt experiment (Table 4)

7https://github.com/jniehues-kit/SLT.
KIT
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LNA-ED-Adapt Following we experiment with
adding an Adapter module (§2.2) prior to the
Length Adaptor, while we train the same parame-
ters as in LNA-ED. We expect that this module will
adapt the encoder output to the decoder’s modal-
ity, before down-sampling it with the convolutional
layers of the Length Adaptor.

LNA-ED-Adapt-2step Our next experiment
aims at initializing all the sub-modules from pre-
trained checkpoints. Thus, our first step is to train
only the coupling modules of the LNA-ED-Adapt
system, while everything else is frozen. Then, in
the second step we proceed by training all the active
parameters of LNA-ED-Adapt. We hypothesize
that in the prior experiments the initially random
weights of the coupling modules are slowing down
the learning process and potentially also hurting
the final performance of the system.

In-domain FT We experiment with fine-tuning
our systems for some additional epochs only on the
in-domain data of MuST-C. During this fine-tuning
we also disable data augmentation.

Ckpt AVG We average checkpoints around the
best, indicated by the highest BLEU score in the
development split of MuST-C. This technique has
been shown to provide more generalizable mod-
els, achieving higher scores in the hidden test sets
(Gaido et al., 2020; Lakumarapu et al., 2020).

Ensemble For our final model, we ensemble our
two best single models. To increase the diversity
of the two single models and, consecutively, the
performance of the ensemble, we choose one that
is further fine-tuned on in-domain data and one that
is not. We expect that, although there is a potential
boost in the performance of a system by fine-tuning
to in-domain data, there is the risk of catastrophic
forgetting of the more general data properties of
the combined and augmented corpus. Thus, we
combine a model specialized to the in-domain data
and one which is potentially more general.

4.2 Implementation details

For the encoder and decoder of our models, we are
using the same architecture as the Wav2Vec 2.0
and mBART decoder (§2.1). More specifically the
encoder has a 7-layer convolutional feature extrac-
tor and a 24-layer Transformer encoder, while the
decoder has 12 layers. The feature extractor has
512 channels, while each Transformer layer has a

dimensionality of 1024, feed-forward dimension
of 4096, and 16 heads. For the Adapter, we use
an inner dimensionality of 4096, which was shown
to work better in Escolano et al. (2020) and for
the Length Adaptor we set the kernel size to 3 and
the stride to 2. The decoder uses a vocabulary of
250,000 tokens, and the embedding layer is shared
between source and target.

We train all our models with the LNA method
(§2.3), unless stated otherwise. The training data
for each epoch are coming from the 5 splits show in
Table 2, with their respective sampling ratios. We
limit the length of the source examples to 400,000
samples (i.e. 25 seconds) and to 1024 tokens for the
target. For each example, we apply data augmenta-
tion (§3.3) on the source speech and subsequently,
normalize it to zero mean and unit variance. We
construct mini-batches with a maximum of 440,000
samples, and use data parallelism on 4 GPUs and
gradient accumulation with 16 steps, to increase
the effective batch size by a factor of 64.

For optimization we use Adam (Kingma and Ba,
2017) with parameters β1 = 0.99, β2 = 0.98. We
set the base learning rate to 10−4, which is con-
trolled during training by a tri-stage scheduler with
the ratios for the warm-up, hold and decay phases
being 0.15, 0.15, and 0.7 accordingly, and initial
and final scales of 0.01. We clip gradients to a max-
imum norm of 20, and we apply a dropout of 0.1
before every non-frozen layer or sub-layer in our
models. Following Liu et al. (2020b), the optimizer
is minimizing the standard cross-entropy loss with
a label smoothing of 0.2. All models are trained for
16 epochs (approximately 23,000 updates), apart
from the pre-training step of the LNA-ED-Adapt-
2step and the in-domain fine-tuning, which are car-
ried out for 4 epochs.

We pick the checkpoint with the highest BLEU
score on the development set of MuST-C, for which
then we report the BLEU on the test set of MuST-C
and the IWSLT 2019 test set. We ensemble the 2
best models according to the BLEU score on the
test set of MuST-C. For generation, we are using
a standard beam search with a size of 5. All our
experiments are done in a machine with 4 Nvidia
GeForce RTX 2080 Ti GPUs, using 16 floating-
point precision, and are implemented in fairseq
(Wang et al., 2020a). The training of each model
took approximately 60 hours. The code for our
experiments is available in a public repository8.

8https://github.com/mt-upc/iwslt-2021
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4.3 Results

The results of our experiments (§4.1) on the devel-
opment and test sets of MuST-C can be found in
Table 4. We also provide the BLEU score on the
IWSLT 2019 test set, for both the given and our
own segmentation, using a max segment length of
22 (§3.4). The addition of the Adapter module pro-
vides an increase of 0.76 BLEU in MuST-C test set,
as compared to LNA-ED. We observe that train-
ing our system in two steps can bring further im-
provements to the quality of translations. The first
step of training of the LNA-ED-Adapt-2step exper-
iment, with only the coupling modules being active,
achieves a BLEU score of 15.54 after 4 epochs of
training. Subsequently, the 2nd step is initialized
from a much better checkpoint, as compared to the
previous experiments, and can converge faster, as
we can observe in Figure 4, eventually achieving a
BLEU score of 27.25.

Both the LNA-ED-Adapt and LNA-ED-Adapt-
2step bring improvements to the base model,
without a significant computational burden. The
Adapter module has 8.4 million parameters, which
accounts for an increase of only 5% in the to-
tal trainable parameters of the LNA method. In
the first step of LNA-ED-Adapt-2step we are only
training 9.1 million parameters for 4 epochs, a pro-
cess that is completed rather fast compared to the
training of the second step.

We achieve increased performance by fine-
tuning the best checkpoint of LNA-ED-Adapt on
the in-domain data of MuST-C for another 4 epochs.
What stands out from this further fine-tuning is
the large improvements in the IWSLT 2019 test
set, providing us with our best score on the own
segmentation from a single model. Due to time
constraints, we carried out this fine-tuning only on
LNA-ED-Adapt and not on LNA-ED-Adapt-2step.
Finally, we average the checkpoints around the
best for the in-domain fine-tuned LNA-ED-Adapt
and the LNA-ED-Adapt-2step. Using them in an
ensemble, we obtain a BLEU score of 28.22 on
the test set of MuST-C, which is an improvement
of 0.92 points from our best single model, while
smaller improvements are observed in the IWSLT
2019 test set.

Regarding the translation quality on the IWSLT
2019 test set, we can observe that using our own
segmentation algorithm, we can obtain large im-
provements, from 2.5 to 3 in BLEU score.

Figure 4: BLEU scores on MuST-C-dev during training

Model MuST-C IWSLT.tst2019
dev test given own

LNA-ED 26.76 26.23 17.25 20.06
LNA-ED-Adapt 27.28 26.99 17.34 20.32
↪→ In-domain FT 27.36 27.25 18.79 21.29
↪→ ckpt AVG (a) 27.36 27.29 18.97 21.13
LNA-ED-Adapt-2step 27.49 27.25 17.56 20.37
↪→ ckpt AVG (b) 27.5 27.3 17.51 20.38
Ensemble (a) & (b) 28.5 28.22 19.05 21.43

Table 4: BLEU scores on dev and test sets of MuST-C
and on the IWSLT.tst2019 with given and own segmen-
tation. With bold are the best scores by single models
and with underlined bold are the best scores overall.

4.4 Submission results

Model Segmentation
Reference

2020 2021† 2021‡ 2021?
Ensemble Own 24.6 21.8 18.3 30.6
Ensemble Given 20.5 19.5 16.0 26.7

Single Own 23.0 20.7 17.5 29.0
Single Given 19.0 18.4 15.0 25.0

Table 5: Final results of our submission on the IWSLT
2020 and 2021 test sets, measured in BLEU, against the
IWSLT (†) and TED (‡) references separately and both
at once (?). With bold is our primary submission. The
Single is our best single model from Table 4 (LNA-ED-
Adapt-2step with ckpt AVG) and the Ensemble to the
ensemble of our best single model and the LNA-ED-
Adapt with In-domain FT and ckpt AVG.

There are two references available for this year’s
test set (Anastasopoulos et al., 2021), one corre-
sponding to the official TED talks subtitles and
another generated by the IWSLT organizers. Our
primary submission is the ensemble of the two best
models with our segmentation, which scores 18.3
BLEU against the TED references, 21.8 BLEU
with the IWSLT references, and 30.6 BLEU with
both together (Table 5). Meanwhile, when using

116



the given segmentation, we get a decrease of 2.3
BLEU in both references, which is consistent to the
results obtained in the IWSLT 2019 test set (Table
4). As a contrastive system, we also submitted the
results obtained with our best single model, corre-
sponding to the LNA-ED-Adapt-2step model with
checkpoint averaging. This system scores approxi-
mately 1 BLEU less with respect to the ensemble,
similarly to the results we get in the IWSLT 2019
test set (Table 4).

We also evaluated our systems on the IWSLT
2020 test set, for tracking year-to-year progress.
Our best model obtains a BLEU score of 24.6 (Ta-
ble 5) and, in general, the results follow the same
trend as on the IWSLT 2021 test set. For compar-
ison, our best model would have been place 3rd
in last year’s leaderboard (Ansari et al., 2020), 0.7
BLEU points behind the best system (Potapczyk
and Przybysz, 2020).

5 Conclusions

We described the UPC Machine Translation group
participation in the IWSLT 2021 offline ST task.
We built our system by combining pre-trained com-
ponents, using Wav2Vec 2.0 as an encoder and
an mBART decoder. In order to fine-tune such a
large model with approximately 770 million pa-
rameters, we followed the strategy proposed by
Li et al. (2021), in which just a 20% of the pa-
rameters are trained. Originally, this method was
proposed for multilingual ST, and it had not been
applied to initialize a bilingual system yet. With
this approach, we got a score of 26.23 BLEU in the
MuST-C test set. Then, we introduced an Adapter
module to reduce the gap between the different
modalities of the pre-trained components, which
brought an improvement of 0.76 BLEU. We also
explored a two-step training where we initialized
the coupling modules before fine-tuning the rest of
the model, which resulted in an increase of 1.02
BLEU with respect to the original model. Further-
more, we applied other techniques like fine-tuning
with in-domain data, checkpoint averaging and en-
sembling our two best models. Our final score in
the MuST-C test set was 28.22 BLEU. Apart from
using Wav2Vec 2.0 as the encoder of our ST sys-
tem, we additionally leveraged it in our ASR-based
data filtering and as part of our segmentation al-
gorithm. Applying this custom segmentation we
gained an increase of 2.5 to 3 BLEU score in the
IWSLT 2019 test set, as compared to the result of

with given segmentation.
As was shown in Li et al. (2021), and confirmed

in this work for a bilingual scenario, large pre-
trained models can be very effective in ST. We
believe that future work should focus on exploring
better methods to adapt these pre-trained models
to new languages and tasks, with Adapter modules
being promising candidates.
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Abstract

In this technical report, we describe the
fine-tuned1 ASR-MT pipeline used for the
IWSLT shared task. We remove less useful
speech samples by checking WER with an
ASR model, and further train a wav2vec and
Transformers-based ASR module based on the
filtered data. In addition, we cleanse the er-
rata that can interfere with the machine trans-
lation process and use it for Transformer-based
MT module training. Finally, in the actual
inference phase, we use a sentence boundary
detection model trained with constrained data
to properly merge fragment ASR outputs into
full sentences. The merged sentences are post-
processed using part of speech. The final re-
sult is yielded by the trained MT module. The
performance using the dev set displays BLEU
20.37, and this model records the performance
of BLEU 20.9 with the test set.

1 Introduction

Offline speech translation is a task that infers the
text of a target language by using speech as in-
put. A pipeline system is used as a representa-
tive method, which converts source speech into
the source text via automatic speech recognition
and machine translates it. Recently, many speech
corpora have been disclosed, and studies are be-
ing conducted on an end-to-end method, namely
directly decoding speech input into the text of a
target language (Bérard et al., 2016, 2018).

In this IWSLT shared offline task, we implement
an English-German speech translation system in a
pipeline format. The advantage of pipeline architec-
ture is that it can explain whether the given speech
translation is challenging in view of the acoustic
domain or the translation perspective, considering

1We use ‘fine-tuned’ to describe that our approach is not
fully end-to-end but incorporates a well-organized set of strate-
gies to reach better performance. It does not denote the
wav2vec-transformer ASR module either.

the whole process of converting source speech to
the target text. This makes it easier for us to dis-
cern difficult or erroneous parts in speech and text
processing.

In general, a limitation of a pipeline system com-
pared to an end-to-end system is that the quality
of the final result is largely influenced by the in-
termediate text representation, which is usually
obtained in an explicit format (Liu et al., 2020).
Therefore, we primarily remove training samples
that can lower the ASR performance, following the
method used in Potapczyk and Przybysz (2020).
Thereafter, based on the trained ASR module, the
output of test speech samples is transformed into
the text and fed to the machine translation system
to produce a final output. In this process, we con-
duct post-processing to obtain an accurate sentence-
level output, such as setting the sentence bound-
ary between the fragment texts and re-aggregating
some wrongly merged sentences.

The performance is checked mainly with BLEU
score (Papineni et al., 2002). Through the system
construction, we obtained a BLEU score of 20.9 in
en-de speech translation. In detail, the performance
of the ASR module reaches WER 28.3% based on
2015 test set, and the MT module records a BLEU
score of 32.2 based on the WMT dataset (Barrault
et al., 2020). In addition, we have observed that var-
ious pre- and post-processings lead to meaningful
performance gains.

In this paper, we first skim the related works on
speech translation, automatic speech recognition,
and machine translation, focusing on the publicly
available datasets. Then we describe how we ob-
tained the ASR and MT module used for the cam-
paign. Next, we demonstrate how we finally reach
the translation for the dev and test set, along with
some pre- and post-processing techniques. The
results are provided with the analysis.
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2 Related Work

Various datasets exist for speech translation using
English as the source language, being utilized in the
training and evaluation in a wide range of studies.
The representative one is MuST-C (Di Gangi et al.,
2019), which provides English speech of TED talks,
its transcript, and the translation to other Indo-
European languages, including German, where we
exploit en-de in this study. In addition, CoVoST
enables multilingual speech translation based on
Common Voice (CV) data (Wang et al., 2020), of
which the Wikipedia articles are the source text.
Europarl-ST (Koehn, 2005) also provides various
translations, for the debates in European Parlia-
ment.

Data used for speech translation can also be
used for automatic speech recognition and machine
translation, but there are also corpora built for ASR
and MT only, on a large scale. Librispeech (Panay-
otov et al., 2015), which is used for evaluation of
ASR models, is the most famous example, and
TedLium is also the case2. They consist of the
speech of the source language (English) and Latin
alphabet-based transcription. In contrast, since
only text data is used in MT, the scale is much
larger. Typically used sources are WMT datasets
(Bojar et al., 2016, 2018; Barrault et al., 2020) and
Open subtitles. 3 All of the above datasets can be
usefully used in speech translation, so they have
been actively utilized in the previous IWSLT cam-
paigns (Niehues et al.).

3 Model

We chose the cascading scheme to leverage the
high performance of ASR and MT modules. Thus,
we exploit a large variety of corpora mentioned
above to train each module.

3.1 Automatic Speech Recognition

We train the ASR module using Librispeech and
MuST-C. The pretrained wav2vec 2.0 base model
was used for embedding (Baevski et al., 2020),
and the training was conducted with a Transformer
(Vaswani et al., 2017) decoder part augmented on
the output layer of the wav2vec module, with char-
acter as vocab. In this process, we performed two
preprocessing for the source corpus.

2https://www.openslr.org/7/
3https://www.opensubtitles.org/

• Script normalization: In the sentences con-
taining laughter and applause tag, the expres-
sions that might deter ASR performance were
removed.

• Filtering out erroneous scripts: Following
SRPOL’s approach (Potapczyk and Przybysz,
2020), we performed the filtering of audio
files based on bad WER. In this process, sen-
tences showing WER below 75% were re-
moved, assuming as if there were some flaws
in the acoustic level or some errors in the
script.

Using the cleansed corpus created through the
above process, we conducted the training for
80,000 steps using 8 RTX 3090 devices. The opti-
mization was done with adam, learning rate 1e-5,
and dropout 0.1. As a result of utilizing the evalua-
tion set 2015 test set, we obtained an ASR module
that displays the WER of 28.3%.

3.2 Machine Translation

We trained the MT module using the WMT 20 en-
de news task dataset and Transformer architecture.

For English, the script was normalized, and for
German, the cased text was used. Vocabulary was
constructed in consideration of both English and
German, using subword tokenization (Sennrich
et al., 2016). Some preprocessings were performed
as follows:

• Language identification: We conduct lan-
guage identification to remove the instances
where the source and the target language do
not match the language of interest (en, de).
This refers to Lui and Baldwin (2011, 2012);
Heafield et al. (2015).

• Filter by length: We filter out the sentences
where the length of the source and the target
sentence displays more than 50% of differ-
ence.

• Written-to-spoken text conversion: We
first transform the source text into the for-
mat of speech transcript, namely lowercasing
the text and removing all punctuation marks.
Then we expand common abbreviations, es-
pecially for measurement units, by converting
numbers, dates, and other entities expressed
with digits into their spoken form. The overall
scheme follows Bahar et al. (2020).
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Using the cleansed WMT script, we conducted
the training for 300,000 steps, using 8 RTX 3090
devices. The optimization was done with adam,
with FFN decoder 8,192 and dropout 0.1. With
WMT20 dev set, we obtained an MT module that
shows the BLEU of 32.3.

4 Inference

We infer the final output with the speech instances
of the dev set using the trained ASR and MT mod-
ules. After the inference, we submit the inference
of the test set using the model that yields the best
results with the dev set.

In the inference process of the dev and test set, a
proper sentence split is additionally required. For
the dev and test set, we separated the utterances
from silence using the given segmentation informa-
tion. The segmented audio files were transcribed
with the ASR module.

In the post-processing of the transcribed speech,
we use the following strategies.

• DeepSegment: We merge the output of
the ASR module using publicly available
DeepSegment recipe4 based on bidirectional
long short term memory and conditional
random field (BiLSTM-CRF) (Huang et al.,
2015). At this time, the BiLSTM-CRF model
is trained using 1 RTX TITAN. Here, no infor-
mation other than the training corpus is used
for the training, and the usage of NLTK in
featurization does not violate the constrained
condition.

• Sentence concatenation: We compensate for
probable segmentation errors by using part-of-
speech (POS) information. We selected POS
tags that are rarely placed in sentence-first
and sentence-final from 46 tags of NLTK POS
tagger (Loper and Bird, 2002). In detail, we
set two cases of PROHIBIT AS FIRST and
PROHIBIT AS FINAL as follows:

- PROHIBIT AS FIRST: [’MD’, ’TO’, ’RP’,
’VB’, ’VBN’, ’VBD’]

- PROHIBIT AS FINAL: [’CC’, ’DT’, ’EX’,
’MD’, ’PDT’, ’POS’, ’WDT’, ’WP’, ’WP$’,
’WRB’]

Whenever the segmented sentence regards
either case, it is concatenated with the pre-
vious sentence or the following sentence.

4https://github.com/notAI-tech/
deepsegment

PROHIBIT AS FINAL was primarily ap-
plied.

The list of sentences obtained from the above
process is translated by the trained MT module.

5 Experiment

Overall, our speech translation pipeline has the
following procedure.

1. Voice segmentation

2. Automatic speech recognition

3. Sentence concatenation

4. Machine translation

5. Checking the performance

Voice segmentation was done separately in the
whole pipeline. ASR was performed with 1 RTX
3090. DeepSegment and sentence concatenation
were performed with 1 RTX TITAN. MT was per-
formed with 1 RTX 3090. The performance of each
trial was checked with the BLEU score.

We achieved the performance of BLEU 20.37
with the official dev set. We finally obtained the
performance of BLEU 20.9 with the test set using
given segmentation.

6 Conclusion

In this paper, we report the VUS ASR-MT pipeline
system for en-de speech translation. The featured
engineering schemes are wav2vec-based ASR mod-
ule, Transformer-based MT, speech segmentation
and post-processing, and various cleansing for the
enhancement. We obtained similar performance
with both dev and test set, the BLEU score of 20.37
and 20.9 respectively. Our model is explainable
and partially improvable, given the transparent de-
scription of our pipeline system.
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Abstract

This paper describes KIT’submission to the
IWSLT 2021 Offline Speech Translation Task.
We describe a system in both cascaded con-
dition and end-to-end condition. In the cas-
caded condition, we investigated different end-
to-end architectures for the speech recognition
module. For the text segmentation module,
we trained a small transformer-based model on
high-quality monolingual data. For the trans-
lation module, our last year’s neural machine
translation model was reused. In the end-to-
end condition, we improved our Speech Rela-
tive Transformer architecture to reach or even
surpass the result of the cascade system.

1 Introduction

As in previous years, the cascade system’s pipeline
is constituted by an ASR module, a text segmen-
tation module and a machine translation module.
In this year’s evaluation campaign, we investigated
only sequence-to-sequence ASR models with three
architectures. The segmentation module is basi-
cally a monolingual system which translates a dis-
fluent, broken, uncased text (i.e. ASR outputs) into
a more fluent, written-style text with punctuations
in order to match the data conditions of the trans-
lation system. The machine translation module’s
architecture is the same as the previous year’s. For
the end-to-end system, we improved from our last
year’s Speech Relative Transformer architecture
(Pham et al., 2020a). As a result, the end-to-end
system can produce better results on certain test
sets and approach the performance on some others
compared to the cascade system this year, while
the end-to-end system was the dominant approach
last year.

The rest of the paper is organized as followed.
Section 2 describes the data set used to train and
test the system. It is then followed by Section 3
providing the description and experimental results

of both the cascade and the end-to-end system. In
the end, we conclude the paper with Section 4.

2 Data

Speech Corpora. For training and evaluation
of our ASR models, we used Mozilla Common
Voice v6.1 (Ardila et al., 2019), Europarl (Koehn,
2005), How2 (Sanabria et al., 2018), Librispeech
(Panayotov et al., 2015), MuST-C v1 (Di Gangi
et al., 2019), MuST-C v2 (Cattoni et al., 2021) and
Tedlium v3 (Hernandez et al., 2018) dataset. The
data split is presented in the following table 1.

Table 1: Summary of the English data-sets used for
speech recognition

Corpus Utterances Speech data [h]
A: Training Data
Mozilla Common Voice 1225k 1667
Europarl 33k 85
How2 217k 356
Librispeech 281k 963
MuST-C v1 230k 407
MuST-C v2 251k 482
Tedlium 268k 482
B: Test Data
Tedlium 1155 2.6
Librispeech 2620 5.4

Text Corpora. We collected the text parallel
training data as presented in Table 2.

3 Offline Speech Translation

We address the offline speech translation task by
two main approaches, namely cascade and end-to-
end. In the cascade condition, the ASR module
(Section 3.1) receives audio inputs and generates
raw transcripts, which will then pass through a
Segmentation module (Section 3.2) to formulate
well normalized inputs to our Machine Translation
module (Section 3.3). The MT outputs are the final
outputs of the cascade system. On the other hand,
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Table 2: Text Training Data

Dataset Sentences
TED Talks (TED) 220K
Europarl (EPPS) 2.2MK
CommonCrawl 2.1M
Rapid 1.21M
ParaCrawl 25.1M
OpenSubtitles 12.6M
WikiTitle 423K
Back-translated News 26M

the end-to-end architecture is trained to directly
translate English audio inputs into German text
outputs (Section 3.4).

3.1 Speech Recognition

Data preparation and Segmentation tool Af-
ter collecting all audios from all data sets men-
tioned in Section 2, we calculated 40 features of
Mel-filterbank coefficients for ASR training. To
generate labels for the sequence-to-sequence ASR
models, we used the Sentence-Piece toolkit (Kudo
and Richardson, 2018) to train 4000 different byte-
pair-encoding (BPE). The WerRTCVAD toolkit
(Wiseman, 2016) was used to segment the audio in
the testing phase.

Model As in previous years (Pham et al., 2019a,
2020b), we used only sequence-to-sequence ASR
models, which are based on three different net-
work architectures: The long short-term mem-
ory (LSTM), the Transformer and the Conformer.
LSTM-based models (Nguyen et al., 2020) consist
of 6 bidirectional layers for the encoder and 2 uni-
directional layers for the decoder, both encoder and
decoder layers have 1536 units. The Transformer-
based models presented in (Pham et al., 2019b)
have 24 layers for the encoder and 8 layers for
the decoder. The Conformer-based models (Gulati
et al., 2020) comprise 16 layers for the encoder and
6 layers for the decoder. In both the Transformer-
based and the Conformer-based models, the size of
each layer is 512 and the size of the hidden state in
the feed-forward sublayer is 2048. The speech data
augmentation technique was used to reduce overfit-
ting as described in (Nguyen et al., 2020). In order
to train a deep network effectively, we also applied
Stochastic Layers (Pham et al., 2019b) with a drop-
ping layer rate of 0.5 on both Transformer-based
and Conformer-based models.

3.2 Text Segmentation

The text segmentation in the cascaded pipeline
serves as a normalization on the ASR output, which
usually lacks punctuation marks, proper sentence
boundaries and reliable casing. On the other hand,
the machine translation system is often trained on
well-written, high-quality bilingual data. Follow-
ing the idea from (Sperber et al., 2018a), we build
the segmentation as a monolingual translation sys-
tem, which translates from lower-cased, without-
punctuation texts into texts with case information
and punctuation, prior to the machine translation
module.

The monolingual translation for text segmenta-
tion is implemented using our neural speech transla-
tion framework NMTGMinor1(Pham et al., 2020a).
It is a small transformer architecture, consisting of
a 4-layer encoder and 4-layer decoder, in which
each layer’ size is 512, while the inner size of
feed-forward network inside each layer is 2048.
The encoder and decode are self-attention blocks,
which have 4 parallel attention heads. The training
data for that are the English part extracted from
available multilingual corpora: EPPS, NC, Global
Voices and TED talks. We trained the model for 10
epochs, then we fine-tuned it on the TED corpus for
30 epochs more with stronger drop-out rate. Fur-
thermore, to simulate possible errors in the ASR
outputs, a similar model is trained on artificial noisy
data and the final model is the ensemble of the two
models.

The trained model is then utilized to translate the
ASR outputs in a shifting window manner and the
decisions are drawn by a simple voting mechanism.
For more details, please refer to (Sperber et al.,
2018a).

3.3 Machine Translation

For the machine translation module, we re-use the
English→German machine translation model from
our last year’ submission to IWSLT (Pham et al.,
2020b). More than 40 millions sentence pairs being
extracted from TED, EPPS, NC, CommonCrawl,
ParaCrawl, Rapid and OpenSubtitles corpora were
used for training the model. In addition, 26 mil-
lions sentence pairs are generated from the back-
translation technique by a German→English trans-
lation system. A large transformer architecture was
trained with Relative Attention. We adapted to the
in-domain by fine-tuning on TED talk data with

1https://github.com/quanpn90/NMTGMinor
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stricter regularizations. The same adapted model
was trained on noised data synthesized from the
same TED data. The final model is the ensemble
of the two.

3.4 End-to-End Model
Corpora This year, the training data consists
of the second version of the MUST-C cor-
pus (Di Gangi et al., 2019), the Europarl cor-
pus (Iranzo-Sánchez et al., 2020), the Speech Trans-
lation corpus and the CoVoST-2 (Wang et al., 2020)
corpus provided by the organizer. The speech fea-
tures are generated with the in-house Janus Recog-
nition Toolkit. The ST dataset is handled with an
additional filtering step using an English speech
recognizer (trained with the its transcripts with the
additional Tedlium-3 training data).

Following the success of generating synthetic
audio utterances, the transcripts in the Tedlium-3
corpus are translated into German using the cascade
built in the previous year’s submission (Pham et al.,
2020b). In brief, the translation process required us
to preserve the audio-text alignment from the origi-
nal data collection and segmentation process. As
a results, we used the Transformer-based punctu-
ation inserting system from IWSLT2018 (Sperber
et al., 2018b) to reconstruct the punctuations for
the transcripts followed by the translation process
that preserves the same segmentation information.
Compared to the human translation from the speech
translation datasets, this translation is relative nois-
ier and incomplete (due to the segmentations are
not necessarily aligned with grammatically correct
sentences).

The end result of the filtering and synthetic cre-
ation process is the complete translation set, as
summarised in Table 3

Table 3: Training data for E2E translation models.

Data Utterances Total time
MuST-C 229K 408h
Europarl 32K 60h
Speech Translation 142K 160h
Tedlium-3 268K 415h
CoVoST 288K 424h

During training, the validation data is the Devel-
opment set of the MuST-C corpus. The reason is
that the SLT testsets often do not have the aligned
audio and translation, while training end-to-end
models often rely on perplexity for early stopping.

Modeling The main architecture is the deep
Transformer (Vaswani et al., 2017) with stochas-
tic layers (Pham et al., 2019b). The encoder self
attention layer uses Bidirectional relative atten-
tion (Pham et al., 2020a) which models the relative
distance between one position and other positions
in the sequence. This modeling is bidirectional
because the distance is distinguished for each direc-
tion from the perspective of one particular position.
The main models use a “Big” configuration with 16
encoder layers and 6 decoder layers, and they are
randomly dropped in training according to the lin-
ear schedule presented in the original work, where
the top layer has the highest dropout rate p = 0.5.
The model size of each layer is 1024 and the in-
ner size is 4096. We experimented with different
activation functions including GELU (Hendrycks
and Gimpel, 2016), SiLU (Elfwing et al., 2018)
and the gated variants similar to the gated linear
units (Dauphin et al., 2017). Also, each transformer
block (encoder and decoder) is equipped with an-
other feed-forward neural network in the begin-
ning (Lu et al., 2019). Our preliminary experiments
showed that GeLU and SiLU provided a slightly
better performance than ReLU, and our final model
is the ensemble of the three configurations that are
identical except the activation functions.

First, the encoders are pretrained using the data
portions containing English texts to make training
SLT stable. With the initialized encoder, the net-
works can be trained with an aggressive learning
rate with 4096 warm-up steps. Label-smoothing
and dropout rates are set at 0.1 and 0.3 respectively
for all models. Furthermore, all speech inputs are
augmented with spectral augmentation (Park et al.,
2019; Bahar et al., 2019). All models are trained
for 200000 steps, each consists of accumulated
360000 audio frames. Using the model setup like
above, we managed to fit a batch size of around
16000 frames to 24 GB of GPU memory.

Speech segmentation As reflected from last
year’s experiments, audio segmentation plays an
important role in the performance of the whole
system, and the end-to-end model unfortunately
does not have control of segmentation, as it is a
prerequisite before training one. During evaluation,
we relied on the WerRTCVAD toolkit (Wiseman,
2016) to cut the long audio files into segments of
reasonable length, and the tool is also able to rule
out silence and events that do not belong to human
speech, such as noise and music.

127



Overall, we improved the submission from last
year (Pham et al., 2020b) using stronger models
together with a more accurate segmentation tool.

3.5 Experimental Results
3.5.1 Cascade Offline Speech Translation
Speech Recognition. We tested our ASR sys-
tems on two datasets, Tedlium and Libri test set.
The ensemble of LSTM-based and Conformer-
based sequence-to-sequence model provide the best
results, which are 2.4 and 3.9 WERs respectively
for two test set Table 4.

Table 4: WER on Libri and Tedlium sets

Data Libri Tedlium
Conformer-based 3.0 4.8
Transformer-based 3.2 4.9
LSTM-based 2.6 3.9
Ensemble 2.4 3.9

Machine Translation. We do not train any new
machine translation module but re-use last year’s
model, thus, we do not conduct experiments and
comparisons with different machine translation sys-
tems. We submitted one cascased model with our
audio segmentation.

3.5.2 End-to-end Offline Speech Translation
Our models are tested on two different setups. On
the one hand, we evaluated the model on the tst-
COMMON (2nd version) of the MuST-C corpora.
Due to the incompatibility between the models and
the audio data that requires resegmentation, we
rely on the dev and test sets of MuST-C to evaluate
the ability to translate on “ideal” conditions. As
mentioned above, our ensemble managed to reach
32.4 BLEU points on this test set2.

On the other hand, we used the testsets from
2010 to 2015 to measure the progress from last
year in the condition requiring audio segmentation.
In this particular comparison as shown in Table 5,
we showed that using a stronger model together
with better voice detection not only improves the
SLT results by up to 1.9 BLEU points (in tst2014)
but also outperforms the strong cascade in 2 differ-
ent sets: tst2013 and tst2014, in which the differ-
ence could be even 1 BLEU point. There is still
a performance gap in the last two tests, however,

2Unfortunately the comparison to last year tst-COMMON
(30.6 is not available due to version mismatch.

a strong E2E system can now trade blow with a
strongly tuned cascade. The deciding factor, in our
opinion, is audio segmentation because this is the
sole advantage of the cascade which can recover
from badly cut segments3.

Table 5: ST: Translation performance in BLEU↑ on
IWSLT testsets (re-segmentation required). Progres-
sive results from this year and last year end-to-end
(E2E) and cascades (CD) are provided.

Testset → CD 2020 E2E 2020 E2E 2021

tst2010 26.68 24.27 25.28
tst2013 28.60 28.13 29.62
tst2014 25.64 25.46 27.32
tst2015 24.95 21.82 22.13

4 Conclusion

In this year’s evaluation campaign, the end-to-end
model proves to be a very promising approach
since it can compete or even transcend the best
cascade model in offline speech translation task.
As a note for future work, we would like to investi-
gate two-stage speech translation models (Sperber
et al., 2019) using transformer architectures and
compare them with our recent speech translation
end-to-end models.
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bert Sanchis, Jorge Civera, and Alfons Juan. 2020.
Europarl-st: A multilingual corpus for speech trans-
lation of parliamentary debates. In ICASSP 2020-
2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages
8229–8233. IEEE.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79–86.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71.

Yiping Lu, Zhuohan Li, Di He, Zhiqing Sun, Bin
Dong, Tao Qin, Liwei Wang, and Tie-Yan Liu. 2019.
Understanding and improving transformer from a
multi-particle dynamic system point of view. arXiv
preprint arXiv:1906.02762.

Thai-Son Nguyen, Sebastian Stueker, Jan Niehues,
and Alex Waibel. 2020. Improving sequence-
to-sequence speech recognition training with
on-the-fly data augmentation. arXiv preprint
arXiv:1910.13296.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: an asr cor-
pus based on public domain audio books. In 2015
IEEE international conference on acoustics, speech
and signal processing (ICASSP), pages 5206–5210.
IEEE.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V Le.
2019. Specaugment: A simple data augmentation
method for automatic speech recognition. arXiv
preprint arXiv:1904.08779.

Ngoc-Quan Pham, Thanh-Le Ha, Tuan-Nam Nguyen,
Thai-Son Nguyen, Elizabeth Salesky, Sebastian
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tian Stüker, and Alexander Waibel. 2019a. The iwslt
2019 kit speech translation system. In Proceedings
of the 16th International Workshop on Spoken Lan-
guage Translation (IWSLT 2019).

Ngoc-Quan Pham, Thai-Son Nguyen, Jan Niehues,
Markus Muller, and Alex Waibel. 2019b. Very deep
self-attention networks for end-to-end speech recog-
nition. arXiv preprint arXiv:1904.13377.

Ngoc-Quan Pham, Felix Schneider, Tuan-Nam
Nguyen, Thanh-Le Ha, Thai-Son Nguyen, Maxi-
milian Awiszus, Sebastian Stüker, and Alexander
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Abstract

In this paper, we describe our end-to-end
multilingual speech translation system sub-
mitted to the IWSLT 2021 evaluation cam-
paign on the Multilingual Speech Translation
shared task. Our system is built by leverag-
ing transfer learning across modalities, tasks
and languages. First, we leverage general-
purpose multilingual modules pretrained with
large amounts of unlabelled and labelled data.
We further enable knowledge transfer from
the text task to the speech task by training
two tasks jointly. Finally, our multilingual
model is finetuned on speech translation task-
specific data to achieve the best translation
results. Experimental results show our sys-
tem outperforms the reported systems, includ-
ing both end-to-end and cascaded based ap-
proaches, by a large margin. In some trans-
lation directions, our speech translation results
evaluated on the public Multilingual TEDx test
set are even comparable with the ones from
a strong text-to-text translation system, which
uses the oracle speech transcripts as input.

1 Introduction

Multilingual speech translation (Inaguma et al.,
2019) enables translation from audio to text in
multiple language directions with a single model.
Similar to multilingual text translation, it is sam-
ple efficient as the model supports more languages.
Furthermore, multilingual speech models can facil-
itate positive transfer across languages by learning
a common representation space from speech inputs,
typically either raw audio or filterbank features.

In this paper, we provide a description of our
submission to the first multilingual speech trans-
lation task at IWSLT 2021. The task evaluates

*Yun Tang and Hongyu Gong have equal contribution to
this work.

speech translations from Spanish (es), French (fr),
Portuguese (pt) and Italian (it) into English (en)
and Spanish (es). Among them, three translation
directions (it-en, it-es and pt-es) are considered
zero-shot with respect to the constrained track. In
addition, participants are encouraged to submit
transcriptions for the relevant languages.

Our team, FAIR Speech Translation (FST), par-
ticipated in the unconstrained track, where we sub-
mitted one primary system and four contrastive
systems. We are interested in exploring the effec-
tiveness of building a general-purpose multilingual
multi-modality model. We leverage large amounts
of data, including unlabelled and labelled data from
different modalities, to alleviate the data scarcity
issue. We build the multilingual model to perform
speech translation and speech recognition tasks for
all evaluation directions. Our model leverages self-
supervised pretraining on both the encoder and the
decoder. The model is further improved by knowl-
edge transferring from the text-to-text translation
task to the speech-to-text translation task under the
multitask learning framework. Finally, we finetune
the model on parallel speech translation corpora
as well as weakly aligned speech translation data
through data mining to achieve the best result.

In section 2, we described data sources and our
method for speech translation data mining. Models
and training methods are then described in sec-
tion 3. Finally, we present the results for the pri-
mary and contrastive systems in section 4.

2 Data

Provided by the IWSLT 2021 shared task, the multi-
lingual TEDx dataset collected from TED talks pro-
vides speech translations in 13 directions (Salesky
et al., 2021). We focus on the seven competition
directions in the shared task: es-en, fr-en, pt-en,
it-en, fr-es, pt-es and it-es.
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Table 1: Audio Length in Hours of TEDx, CoVoST, EuroParl and Mined Data

es-en fr-en it-en pt-en fr-es pt-es it-es
TEDx 163.7 119.9 - 134.2 85.5 - -

CoVoST 113.0 264.1 10.3 44.1 - - -
EuroParl 20.7 31.0 35.5 14.6 20.0 9.5 20.6

Common Voice (mined data) 52.7 39.6 12.8 9.6 18.7 4.4 6.6
MLS (mined data) 23.9 64.7 2.3 - 42.7 1.3 3.4

2.1 Public data

Besides TEDx dataset provided by the shared task,
we also include two other public datasets, CoVoST
and EuroParl, which provides parallel audio-text
samples in some of the test directions of TEDx.

• CoVoST (Wang et al., 2020). As a large
scale dataset for multilingual speech transla-
tion, CoVoST contains translations from 11
languages to English. We use its data in 5
language directions 2.

• EuroParl (Iranzo-Sánchez et al., 2020). Col-
lected from debates in European Parliment,
EuroParl provides speech-to-text translations
in 6 European languages. Its data in 11 lan-
guage directions 3 is used in model training.

2.2 Mined data

We also mined additional speech-to-text data from
unlabeled corpora. The audio corpora used in our
experiments include Common Voice and Multilin-
gual LibriSpeech (MLS).

• Common Voice (Ardila et al., 2020). It is a
massive collection of multilingual audios and
their transcriptions in 29 languages.

• MLS (Pratap et al., 2020). It is a speech cor-
pus collected from audiobooks of LibriVox in
8 languages.

The text corpus used for mining is CCNet, which
serves as the source of target translations (Wenzek
et al., 2020). Collected from snapshots of Com-
monCrawl dataset, CCNet provides a large-scale
and high-quality monolingual datasets.

Since the audio corpora provide transcripts for
audios, we could align source audios with target
translations by finding the alignments between

2{es, fr, it, pt, ru}-en
3es-{en, fr, it, pt}, fr-{en, es, pt}, it-{en, es}, pt-{en, es},

ru-en

source transcripts and target texts. LASER align-
ment is applied for the crosslingual text alignment
(Artetxe and Schwenk, 2019). It generates sen-
tence embeddings with a pre-trained multilingual
text encoder (Schwenk and Douze, 2017), and use
them to measure the semantic similarity between
sentences.

Table 1 summarizes the statistics of the data used
in our experiments. It reports the total length of au-
dios in TEDx, CoVost and EuroParl datasets. More-
over, we include the statistics of mined speech from
Common Voice and MLS. The mined data has an
equivalent size to TEDx dataset in training direc-
tions. It also provides a good amount of speech
data in zero-shot directions including it-en, pt-es
and it-es.

2.3 Text Data

We use additional text data to train mBART model,
which later is used to initialize our speech-to-text
model. mBART model is first trained with mono-
lingual text data from five languages4 using self-
supervised training. Then they are finetuned with
parallel text data from seven evaluation directions
as a multilingual text-to-text translation model.
The monolingual text data comes from the CC100
dataset (Conneau et al., 2020b) and the parallel
text data are downloaded from OPUS (Tiedemann,
2012). 5

3 Methods

Our evaluation system is based on an encoder de-
coder model with the state-of-the-art Transformer
architecture. The submitted model is developed

4Five languages include en,es,fr,it and pt.
5The following datasets are used: CommonCrawl, OPUS-

Books v1, CAPES v1, DGT v2019, ECB v1, ELRA-W0138
v1, ELRA-W0201 v1, ELRC 2682 v1, EMEA v3, EUbook-
shop v2, EuroPat v1, Europarl v8, GlobalVoices v2018q4,
JRC-Acquis v3.0, JW300 v1b, Multi ParaCrawl v7.1, Mul-
tiUN v1, News-Commentary v14, QED v2.0a, SciELO v1,
TED2013 v1.1, TED2020 v1, Tanzil v1, Tatoeba v2020-11-
09, TildeMODEL v2018,UNPC v1.0, and UN v20090831,
Wikipedia v1.0.
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→ en → es
es fr pt it fr pt it Ave.

MT (M2M-100) (Salesky et al., 2021) 34.0 40.9 38.7 34.6 42.4 45.8 44.2 40.1
Cascaded System (Salesky et al., 2021) 21.5 25.3 22.3 21.9 26.9 26.3 28.4 24.7
Multilingual E2E (Salesky et al., 2021) 12.3 12.0 12.0 10.7 13.6 13.7 13.1 12.5

ST Baseline 27.8 32.4 26.6 20.6 35.0 28.7 28.3 28.5
XLSR-IPA 32.1 36.8 35.1 30.0 38.3 38.5 37.5 35.5
XLSR-SPM 33.2 37.8 35.0 29.3 39.5 36.7 35.3 35.3
VP100K-IPA 31.6 37.1 35.3 29.3 38.2 37.9 37.1 35.2

Ensemble (3 models) 34.0 38.7 37.2 30.9 39.7 40.4 38.6 37.1

Table 2: Main results on the public test set from the Multilingual TEDx Corpus (Salesky et al., 2021).

with a transfer learning approach (Li et al., 2020),
including three ingredients: single-modality mod-
ules pretrained from self-supervised learning, mul-
titask joint training, and task-specific fine-tuning.
The pretrained modules make use of a large amount
of unlabeled data, joint training focuses on transfer-
ring knowledge from a relatively simple text-to-text
task to a speech-to-text task, and the model is fine-
tuned on speech-to-text translation task to boost
in-task performance.

3.1 Modality Dependent Pretraining
Our model leverages large amounts of unlabelled
data from different modalities through two pre-
trained models: a wav2vec 2.0 (Baevski et al.,
2020) and a multilingual BART (mBART) (Liu
et al., 2020).
wav2vec 2.0 is a simple and powerful framework
to learn high quality speech representation from un-
labelled audio data. Given the raw input audio sam-
ples, the model learns both latent representations
and context representations through a contrastive
task to distinguish true latent from distractors. Two
multilingual wav2vec 2.0 models are explored dur-
ing our development. One (“XLSR-53”) is trained
on 56K-hour speech in 53 languages (Conneau
et al., 2020a), and another (“VP-100K”) is trained
on 100K-hour speech in 23 languages (Wang et al.,
2021). The pretrained wav2vec 2.0 models are
used to initialize the speech encoder in the jointly
trained model of the next stage.

As will be discussed in our experiments, the two
encoders are strong in different language directions.
We ensemble models with XLSR-53 encoder and
VP-100K encoder respectively to achieve the best
performance.
mBART is a sequence-to-sequence generative pre-
training scheme, specifically a denoising autoen-

coder (DAE) to predict the original text from its
noisy version such as random span masking and
order permutation (Liu et al., 2020). The model
is pretrained with monolingual data and finetuned
with parallel data as described in subsection 2.3.
The encoder and decoder in mBART model are
used to initialize the encoder and decoder in the
joint trained model of the second stage.

Previous study (Tang et al., 2021b) shows that it
makes the knowledge transfer from the text-to-text
task to speech-to-text task easier by representing
the input text as its pronunciation form, i.e., the
phoneme sequence. We also investigate represent-
ing the input text as its pronunciation forms rather
than sentencepiece tokens during our development.
We choose International Phonetic Alphabet (IPA)
as input text representation since it can be shared
across different languages. espeak6 is used to con-
vert the text word into IPA phonemes.

3.2 Multitask Joint Training

In the second stage, we choose to optimize the
speech-to-text translation model along with a text-
to-text translation model. Two encoders are used
to process text input and speech input respectively.
The speech encoder is with the large wav2vec 2.0
configuration. The feature extractor and the bottom
12 transformer layers in the context extractor are
initialized with the corresponding parameters from
the pretrained wav2vec 2.0 model in subsection 3.1.
The top 12 transformer layers in the speech encoder
are shared with the text encoder. They are initial-
ized with the pretrained mBART encoder (Tang
et al., 2021a). An adaptor (Li et al., 2020), which
consists of 3 1-D convolution layers with stride 2 to
achieve 8x down-sampling of speech encoder out-

6http://espeak.sourceforge.net/index.html
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BLEU
→ en → es WER

es fr pt it fr pt it es fr it pt
ST Baseline 34.1 28.4 19.8 20.0 29.3 25.3 25.8 18.6 25.7 33.2 44.5
XLSR-IPA 40.4 36.4 29.0 28.4 34.4 34.4 34.6 13.0 21.8 21.8 29.9

Ensemble (3 models) 42.2 38.7 31.0 29.4 36.5 38.2 37.3 11.2 18.7 19.6 27.4

Table 3: Main results on the blind test set from the Multilingual TEDx Corpus.

Data → en → es
Ave.

ASR Public Mined es fr pt it fr pt it
M0 7 7 7 22.3 26.7 21.7 5.9 28.2 23.6 8.4 19.5
M1 3 7 7 24.2 29.1 26.3 18.1 31.7 28.9 27.3 26.5
M2 3 3 7 25.2 30.8 26.9 19.2 32.5 29.4 28.1 27.4

M3 (ST Baseline) 3 3 3 27.8 32.4 26.6 20.6 35.0 28.7 28.3 28.5

Table 4: Ablation studies of training data (Public: CoVoST and EuroParl, Mined: mined data from Common Voice,
MLS and CCMatrix, ASR: ASR data in mTEDx). The results are BLEU scores on TEDx test set. The models
considered here are built upon pretrained XLSR-53 encoder and mbart decoder, and they do not have joint training.
The speeach translation data from mTEDx is used by all models.

puts, is placed between the last non-shared speech
encoder layer and the first shared speech text en-
coder layer. The decoder is shared by two tasks and
initialized with the pretrained mBART decoder.

Two techniques (Tang et al., 2021a): cross atten-
tive regularization (CAR) and online knowledge
distillation (online KD), are employed to enhance
the knowledge transferring. Text input data comes
from the corresponding transcripts in the speech
translation dataset. Due to time limits, we don’t use
extra parallel text data to enhance the performance.

3.3 Speech only Finetuning
In the last stage, the model is fine-tuned in the
speech-to-text translation task with speech input
only. The text encoder is dropped and no text input
data is used.

4 Experiments

4.1 Experimental Setting
Both wav2vec 2.0 model and mBART model are
trained with the large configuration. There are 24
transformer layers in the wav2vec 2.0 model, and
12 transformer layers in both mBART encoder and
decoder. We build the mBART model with a target
vocabulary of 64,000 SentencePiece (Kudo and
Richardson, 2018) tokens, which are shared among
all 6 evaluation languages7. For the mBART model

7In our evaluation, the new mBART model achieves com-
parable results as the public available mBART model, which

with IPA phoneme input, the vocabulary size is 516
which includes phoneme variants with “ ” attached
to denote the word leading phoneme.

A language id symbol “〈LID〉” is used as the
initial token to predict the sentence. Speech recog-
nition task is treated as the same as the speech trans-
lation task but with the source speech language id
symbol.

The primary system results submitted are from
an ensemble system with three models. All three
models are trained with 3-stage optimization dis-
cussed in section 3 with different initialization mod-
els. The first one is initialized with “XLSR-53”
wav2vec model and IPA mBART model (“XLSR-
IPA”). Compared with the first model, the sec-
ond model chooses sentence piece mBART model
(“XLSR-SPM”) while the third one is initialized
with “VP-100K” wav2vec model (“VP100K-IPA”)
8.

We use 8 V100 GPUs for each model during
the jointly training and fine-tuning stages. It takes
approximate five days to jointly train the models
for 15 epochs and another two days for speech only
fine tuning. The last 5 checkpoints are averaged for
inference with beam size 5.

To provide a deep insight into the factors affect-

is with 250k vocabulary, but with much smaller memory foot-
print.

8We will release the training and evaluation recipe under
https://github.com/pytorch/fairseq/tree/master/examples/speech
text joint to text
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Train → en → es
Ave.

JT FT es fr pt it fr pt it
M3 7 7 27.8 32.4 26.6 20.6 35.0 28.7 28.3 28.5
M4 3 7 32.3 36.6 33.8 28.4 38.3 35.9 35.7 34.4
M5 3 3 33.2 37.8 35.0 29.3 39.5 36.7 35.3 35.3

Table 5: Ablation studies of training approaches (JT: joint training of text and speech translation, FT: finetuning a
trained model on TEDx data in speech translation). The results are BLEU scores reported on TEDx test set. The
models considered here are built upon pretrained XLSR-SPM encoder and mbart decoder. They are trained with
the combination of TEDx including the ASR portion, public data as well as mined data.

Encoder
→ en → es

Ave.
es fr pt it fr pt it

M4 XLSR-SPM 32.3 36.6 33.8 28.4 38.3 35.9 35.7 34.4
M6 VP100K-SPM 30.5 35.6 33.7 28.5 36.9 36.9 36.2 34.0

Table 6: Ablation studies of different encoders. BLEU scores are reported on TEDx test set. Models are jointly
trained on all data, but they are not further finetuned on speech translation.

ing translation performance, we conduct ablation
studies on different model configurations.

4.2 Main Results

We summarize our main results at Table 2. The first
row presents results from a large text-to-text trans-
lation system (M2M-100) using oracle speech tran-
scripts (Salesky et al., 2021) as input. The second
two rows list best results from the cascaded sys-
tem and multilingual end to end system from litera-
ture (Salesky et al., 2021). The fourth row to eighth
row are results from our systems. The fourth row
presents our multilingual baseline, which is initial-
ized with pretrained wav2vec 2.0 model (“XLSR-
53”) for encoder and mBART model (“SPM”) for
decoder. The model is fine-tuned with Multilingual
TEDx data, public data and mined data listed in
section 2. No joint training is applied. “XLSR-
IPA”, “XLSR-SPM” and “VP100K-IPA” from row
5 to 8 are results from the 3 best systems we built.
Compared with the baseline in the third row, these
three systems have an extra step to co-train with
the text-to-text translation task.

It is clear that we create a very strong baseline
(row 4) with the help from the large amounts of
speech/text training data. In comparison to the
previous reported cascaded system (row 2) or mul-
tilingual end-to-end system (row 3), the results are
3.8 and 16.0 BLEU scores higher on average.

Row 5 to 8 provide evaluation results from our
3 best single models built with single-modality
based pre-training, multitask joint training and

task-specific fine-tuning. They are built with dif-
ferent pre-training data or input text representa-
tions. Compared with the baseline in row 4, another
6.7 ∼ 7.0 BLEU improvement are observed. IPA
phoneme based text representation gives slight gain
compared with text units separated with Sentence-
Piece model (“XLSR-IPA” v.s. “XLSR-SPM”),
which is smaller than we expected. We hypothesis
that it is due to the imperfect text to phoneme con-
version for different languages. The difference due
to different pre-training data is also small that there
are only 0.3 BLEU in average when the speech pre-
training is changed (“XLSR-IPA” v.s. “VP100K-
IPA”).

The ensemble of three models achieves the best
performance with a 1.6 BLEU improvement over
the best single model. It indicates those three mod-
els are complementary to each other, though they
give similar BLEU scores in our test. The results
are even close to the ones from the strong text-to-
text translation system (M2M-100 in row 1), which
takes speech transcript as translation input. Our
primary system achieves the same BLEU score as
the text-to-text translation system on translation
direction ”es-en” and the average BLEU score gap
from 7 directions is 3.0.

The corresponding blind test results are reported
in Table 3. Similar to our observation in Table 2,
the model trained with the 3-stage approach signifi-
cantly improves the translation accuracy compared
with the baseline. The ensemble system outper-
forms other systems in all speech translation direc-
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tions as well as the speech recognition tasks.

4.3 Analysis

Data. Table 4 compares models trained with dif-
ferent sets of data. Additional data is shown to im-
prove the translation performance. In our multitask
training, we combine the text-to-text and speech-
to-text translation tasks together. We don’t include
ASR task as separated task, instead we treat ASR
task as a special translation direction. It shows ASR
data is helpful for speech translation, especially for
translation directions with small amount of speech
training data (“it-en” and “it-es”). On average, we
observe a significant gain of 7.0 BLEU from the
comparison between M0 and M1 .

When we continue adding public datasets includ-
ing CoVost and EuroParl to the training set, M2
has an average improvement of 0.9 BLEU over M1.
The mined data brings another 1.1 BLEU gain as
we compare M3 and M2.

Training. Different training approaches are
compared in Table 5. We observe significant gains
brought by joint training of text and speech transla-
tion. Compared against M3, M4 with joint training
demonstrates an improvement of 5.9 BLEU over
7 language directions. When the jointly trained
model is further finetuned with speech translation
data, an extra gain of 0.9 is achieved as we compare
M5 against M4.

Encoder. We compare XLSR-53 and VP-100K
encoder in Table 6. XLSR-53 is strong at encoding
audios in Spanish and French, achieving BLEU
gains of 1.8 and 1.0 in es-en and fr-en respectively.
VP100k encoder outperforms XLSR-53 in pt-es
and it-es directions with gains of 1.0 and 0.5 re-
spectively. This can be explained by the fact that
VP100K encoder is trained on more Portuguese
and Italian Speech.

5 Conclusion

In this work, we described our multilingual end-to-
end speech translation system submitted to IWSLT
2021. We leverage the large amount of training data
from different domains and modalities to improve
the speech translation performance. We adopt a
progressive approach to build the model with three
stages. Compared with our strong baseline, the
proposed system achieves 8.6 BLEU score im-
provement, which also outperforms other reported
systems, including both end-to-end and cascaded
based, by a large margin.
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Abstract
This paper describes Maastricht University’s
participation in the IWSLT 2021 multilingual
speech translation track. The task of this track
is to build multilingual speech translation sys-
tems in supervised and zero-shot directions.
Our primary system is an end-to-end model
that performs both speech transcription and
translation. We observe that the joint training
for the two tasks is complementary especially
when the speech translation data is scarce. On
the source and target side, we use data augmen-
tation and pseudo-labels respectively to im-
prove the performance of our systems. We also
introduce an ensembling technique that con-
sistently improves the quality of transcriptions
and translations. The experiments show that
the end-to-end system is competitive with its
cascaded counterpart especially in zero-shot
conditions.

1 Introduction

In this paper, we describe our systems for the mul-
tilingual speech translation track of IWSLT 2021.
Speech translation (Bérard et al., 2016; Weiss et al.,
2017) is the task of converting speech utterances
to their translation in other languages. While “end-
to-end” modeling (Di Gangi et al., 2019; Sperber
et al., 2019) of the speech translation pipeline has
become the dominant approach, an open challenge
remains in terms of data scarcity. As the amount
of speech directly paired with translation is lower
compared to speech transcription or text-to-text
translation, it is especially crucial for models to be
data-efficient. In this context, multilingual speech
translation (Inaguma et al., 2019; Li et al., 2021)
presents itself as a promising direction to alleviate
data scarcity by leveraging commonalities across
languages.

In this multilingual translation track, we submit:
1) an end-to-end system (§5.2) that directly trans-
lates from speech and 2) a cascaded system (§5.1)

that consists of a multilingual speech transcription
module (§3) followed by a multilingual text trans-
lation module (§4).

Our efforts to improve the speech translation sys-
tem can be categorized as follows. When training,
on the source side, we augment the speech data by
speed perturbation. On the target side, we apply
pseudo-labeling1 by translating the ASR transcrip-
tions. Furthermore, we train multilingual systems
for both speech transcription and translation to al-
leviate the scarcity of training data. When testing,
we use different ensembling techniques to increase
the diversity of output distribution and improve
output quality.

The main findings from our experiments are:
• Multilingual training and jointly training

speech transcription and translation are benefi-
cial when data scarcity limits the performance
of mono- or bilingual systems.

• The gain in the overall speech-to-text systems
also propagates to cascaded systems as a result
of stronger ASR performance.

• Pseudo-labeling strongly improves speech
translation quality, especially in directions
that are originally zero-shot.

2 Setup

2.1 Corpus Statistics
Our systems are trained on the multilingual TEDx
(mTEDx) speech recognition and translation cor-
pus (Salesky et al., 2021). We do not use any data
outside this corpus. Table 1 outlines some statistics
about the training set of the mTEDx corpus.

2.2 Preprocessing
For the audio data, we downsample the original
audio files from 48kHz to 16kHz and mix the two
channels into one. We then extract 40-dimensional

1or forward-translation in analogy to back-translation
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Source transcription Target (# utts.)
(hour, # utts.) en es fr pt it

es 178, 102k 36k 4k 21k 6k
fr 176, 116k 30k 20k 13k −
pt 153, 90k 31k − − −
it 101, 50k − − − −

Table 1: Data amount of speech transcription and trans-
lation in the training set of mTEDx.

Mel Frequency Cepstral Coefficients (MFCC) with
3-dimensional pitch using Kaldi (Povey et al.,
2011). We concatenate adjacent 4 audio frames,
resulting in an input dimension of 172.

For the text data, we combine all transcriptions
and translations from the training set and learn a
joint byte pair encoding (BPE) (Sennrich et al.,
2016b) of size 16k using SentencePiece (Kudo and
Richardson, 2018). With this joint BPE, we can
translate from tokenized ASR transcriptions in our
cascaded system.

2.3 Training Details
We use the dev partition of mTEDx as validation
set and average the model weights from last 5 best
checkpoints. When decoding, we use a beam size
of 8. The specific models for different tasks will be
described in the corresponding sections.

3 Automatic Speech Recognition (ASR)

The ASR performance is summarized in Table 2.
We report case-insensitive word error rates (WER)
after removing all punctuation marks.

3.1 Model Description
Multilingual Baseline We start from a Trans-
former (Vaswani et al., 2017) with stochastic layer
dropout (Pham et al., 2019a) rate of 0.5. We use 36
encoder layers and 12 decoders layers, following
the original work (Pham et al., 2019a). The hidden
dimension is 512 and the inner dimension 2048.
We use dropout rate of 0.2 and label smoothing rate
of 0.1.

The model is jointly trained on all four lan-
guages. As the data volume for each individual
language is relatively low, after initially seeing
poor performance of monolingual ASR models,
we proceed with a multilingual system for all four
languages, with the intention of better utilizing
common acoustic features.

Language Embedding While the multilingual
ASR system does not need to explicitly know the

target language, we find it beneficial to provide the
decoder more guidance by feeding in target lan-
guage embeddings. Specifically, we achieve this by
language embeddings concatenated with decoder
input embeddings (Pham et al., 2019b). Meanwhile,
the decoder begin token is replaced by the target
language embedding. With this approach, we re-
duce the WER on average by 0.6% absolute (2.4%
relative; model A2 in Table 2). More importantly,
this approach allows us to easily extend the model
to speech translation, where the number of target
languages can be more than one.

Speed Perturbation We augment the training
data by speed perturbation with factor 0.9 and 1.1
(Ko et al., 2015) using the corresponding Kaldi
script2. After speed perturbation, we further ob-
serve a reduction of 2.4% absolute WER (9.3%
relative; model A3 in Table 2). Here we did not
use SpecAugument (Park et al., 2019), but would
expect further gains from this approach.

Ensembling By ensembling two independently
trained models on the output distributions, we fur-
ther reduce WER by 1% absolute (4.4% relative;
model A4 in Table 2).

Joint Training with Speech Translation We
can directly apply the same ASR model to speech
translation, as we control the output language by
the target language embedding. As described later
in §5.2, we train end-to-end systems using both
ASR and ST data. The strongest system from ASR
and ST training (model E5) achieves a large reduc-
tion of WER from 21.9% to 18.7% (14.7% relative)
on average.

ID Model es fr it pt

A1 Multilingual baseline 24.3 24.5 25.9 28.7
A2 A1 + language emb. 23.8 23.9 25.5 27.7
A3 A2 + speed perturb 21.0 22.1 23.1 25.3
A4 A3 + ensembling 20.4 21.0 22.0 24.1

E5 A3 + ST joint training 17.6 18.4 18.6 20.0

Table 2: ASR performance in WER↓ (%) (lower-
cased, no punctuation) of the multilingual ASR system
on mTEDx test set.

3.2 Main Findings
As summarized in Table 2, we reduce the WER of
our baseline multilingual Transformer from 25.8%

2https://github.com/kaldi-asr/kaldi/
blob/master/egs/wsj/s5/utils/data/
perturb_data_dir_speed_3way.sh
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ID Model es-en fr-en fr-es pt-en pt-es∗ it-en∗∗ it-es∗

M1 Transformer (6-6 encoder-decocder layers) 32.3 38.0 41.3 37.1 42.3 23.0 32.5
M2 M1 + residual drop 32.9 38.1 40.7 37.0 42.5 24.1 32.8
M3 Ensemble M1 and M2 33.4 39.4 41.8 37.9 43.3 24.8 34.0
M4 Ensemble M1×2 and M2×2 33.7 39.3 42.1 38.3 44.0 24.9 34.8

Table 3: Machine translation performance in BLEU↑3of the multilingual MT system on mTEDx test set by directly
translating from ground-truth transcriptions. ∗: zero-shot directions for speech translation. ∗∗: zero-shot direction
for text translation.

en es fr it pt

en - 36 30 0 30
es - 24 6 21
fr - 0 13
it - 0
pt -

Table 4: Overview of MT parallel training data amount
(in 1k sentences) after including all directions with text-
to-text translation data.

to 18.7% by a combination of techniques. Among
these, the largest gain comes from joint training for
speech translation. This highlights the benefit of
multilingual training, especially when data scarcity
limits the performance of monolingual end-to-end
systems.

4 Machine Translation (MT)

When translating from speech, the MT module in-
gests ASR outputs. To assess the quality of the MT
component alone, we first report the performance
of directly translating from the ground truth tran-
scriptions in Table 3. The results of cascading the
ASR and MT systems are reported later in Table 5.

4.1 Data
For the MT component, we train our models on all
translation directions from {en, es, fr, it, pt} with
all text translation data in the training set, includ-
ing both directions of transcription↔ translation.
In doing so, we cover more directions than tested
in the evaluation campaign. A main advantage of
this is additional training data on the target side.
For instance, although the evaluation task does
not involve translating from English, incorporating
en→X directions provides around 30k sentences
with each of {es, fr, pt} on the target side. In-
cluding these data largely expands the data amount
when translating into the three target languages.
The data amount for our MT training is outlined in

3sacreBLEU: BLEU+case.mixed+numrefs.1+smooth
.exp+tok.13a+version.1.4.12

Table 4. Note that while {pt→es, it→en, it→es}
are zero-shot directions for speech translation, only
it→en is zero-shot for MT.

4.2 Model Description

Multilingual Baseline We start with a
Transformer-base with 6 encoder and de-
coder layers respectively (model M1 from Table
3). We use dropout rate of 0.2 and label smoothing
rate of 0.1. The source and target embeddings are
shared. The output language is controlled by the
language embedding described in §3.1. As we
observe no performance gain by increasing the
number of encoder and decoder layers, we keep
the Transformer-base setup.

Residual Drop We additionally use the Trans-
former with residual connections removed from
the middle encoder layer (Liu et al., 2020) that
was shown to improve zero-shot performance un-
der English-centric scenarios. We see that the
model (M2 from Table 3) outperforms the vanilla
Transformer in the zero-shot direction (it-en) by
1.1 BLEU, while being on-par on other directions.

Ensembling We ensemble the two models above
by averaging the output distributions (model M3
in Table 3). This brings a gain of 0.9 BLEU on
average. By further incorporating another two inde-
pendently trained vanilla model and residual-drop
model (hence ensembling four models), we see
a further gain of 0.4 BLEU (model M4 in Table
3). This MT system and will be used in the later
cascaded speech translation system.

4.3 Main Findings

We build a multilingual translation model with re-
sults summarized in Table 3. We first confirm that
the residual drop approach (Liu et al., 2020) im-
proves zero-shot translation performance. Further-
more, ensembling different models brings gains up
to 1.5 BLEU.
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Type ID Model es-en fr-en fr-es pt-en pt-es∗ it-en∗ it-es∗ ASR (avg.)

C
as

ca
de

d C1 A4 + M2 25.6 30.1 32.2 28.1 31.4 19.1 26.0 -
C2 A4 + M4 26.1 30.6 33.3 29.0 32.0 19.5 26.8 -
C3 C2 + ASR multi-view ensemble 26.5 30.6 33.6 28.9 32.2 19.7 27.0 -
C4 E5 + M4 27.3 31.6 34.2 31.0 34.6 20.5 27.8 -

E
nd

-t
o-

en
d E1 Transformer 17.0 20.1 21.2 17.5 11.7 5.8 6.6 -

E2∗∗ E1 + ASR joint training 18.0 20.8 24.7 20.1 19.0 8.2 10.2 25.3
E3 E2 + pseudo labels (zero-shot dir.) 21.9 25.3 29.1 24.9 33.3 19.2 28.2 20.4
E4 E2 + pseudo labels (all dir.) 25.0 30.0 33.3 28.5 34.4 20.4 28.8 19.5
E5 E4 + multi-view ensemble (3 speeds) 25.2 30.1 33.3 28.7 34.5 20.5 29.1 18.7

Table 5: Speech translation performance in BLEU↑ on mTEDx test set. We mark the cascaded systems with “ASR-
ID + MT-ID”. For e2e systems trained to jointly perform ST and ASR, we additionally report average WER↓ over
the 4 source languages {es, fr, it, pt}. ∗: zero-shot directions. ∗∗: Due to computation constraints, we terminated
the training of model E2 early to combine with the other approaches.

5 Speech Translation (ST)

In Table 5, we report the performance of our cas-
caded (§5.1) and end-to-end (§5.2) speech transla-
tion systems.

5.1 Cascaded System
The performance of the cascaded systems is sum-
marized in the upper section of the Table 5. We
combine the stronger ASR system and MT system
and derive cascaded models C1 and C2. Com-
pared to the MT results in Table 3 that utilizes
ground-truth transcriptions, we observe a clear drop
in BLEU. This highlights the importance of high-
quality transcriptions for the cascaded system.

Multi-View Ensemble (Transcription) Since
at test time the ASR transcriptions are likely noisy,
we propose an ensembling approach that incor-
porates multiple variants (or views) of ASR tran-
scriptions. At test time, given an utterance, we
transcribe it with different ASR models. The MT
module then translates from these slightly differ-
ent transcriptions and ensembles by averaging the
output distribution. The results from this technique
are shown in C3 in Table 3. With this ensembling
technique, on average we see an improvement of
0.2 BLEU, with the all other modules unchanged
from the previous model C2.

5.2 End-to-End System
For the end-to-end ST system, we use the provided
ST training data augmented with three-way speed
perturbation (Ko et al., 2015). We initialize the
models with pre-trained encoder weights from our
trained ASR system.

ASR Joint Training Since our decoder utilizes
target language embeddings, we can conveniently

incorporate ASR data for jointly training the ST
system (Model E2 in Table 5). Upon seeing im-
provements over the setup without ASR data, we
terminated the training of E2 and continued by
combining with other approaches described next.
Therefore if trained till convergence, the final per-
formance of E2 would be better than reported here.

Pseudo-Labels Since the provided corpus con-
tains no Italian ST data, the BLEU scores when
translating from Italian are poor (8.2 and 10.2 for
it-en and it-es from model E2 in Table 5). To have
more training signals, we create pseudo-labels by
translating the ASR transcription using our MT sys-
tem. The model trained with the additional pseudo-
labeled data (pt-es, it-en, it-es) is E3 in Table 5.
As expected, incorporating pseudo-labels largely
improves the performance on the three zero-shot
directions (pt-es, it-en, it-es). It is worth noting that
on these zero-shot directions the end-to-end system
already surpassed the strongest cascaded system so
far (C3), achieving 33.3, 19.2, 28.2 compared to
32.2, 19.7, 27.0 BLEU points.

Observing the strength of the pseudo-labeling,
we take a step further and create pseudo-labels
also for the supervised directions (model E4 in
Table 5). This further improves the overall ST
and ASR performance by +2.6 BLEU and −4.4%
WER (relative) on average.

Multi-View Ensemble (Speech Speed) Similar
to the motivation for the ensembling approach in
§5.1, we utilize multiple views of the same input to
create an ensemble. Since the input here is audio,
we take the speed-perturbed variants with factors
0.9, 1.0, 1.1 (Ko et al., 2015) of the test utterances
and ensemble the output distributions (model E5
of Table 5). This simple technique slightly yet
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Type ID es-en fr-en fr-es pt-en pt-es∗ it-en∗ it-es∗ avg.

Cascaded C3 34.5 21.9 24.3 24.3 29.3 21.7 26.8 26.1
End-to-end E5 33.9 25.4 27.6 25.7 33.7 22.8 29.4 28.4

Table 6: Speech translation performance in BLEU↑ on the blind test set. We mark the cascaded systems with
“ASR-ID + MT-ID”. ∗: zero-shot directions for speech translation.

consistently improves ST and ASR quality, gaining
+0.2 BLEU and−4.1% WER (relative) on average.
It is worth noting that the model has already been
trained on speech data perturbed with the same
speed factors. This suggests that we can further
improve our model’s prediction consistency for
perturbed versions of the the same utterance, e.g.
by consistency regularization (Sohn et al., 2020).
Furthermore, although this ensembling approach
leads to improvements in the current offline setting,
we note that it could be difficult to apply under
real-time constraints due to the computation load
of generating 3 variants of speech utterances and
applying ensembling on top of that.

Feeding Back to Cascaded System Till now,
the series of improvements of the speech-to-text
model also lead to better ASR performance. We
therefore use the improved ASR transcriptions
from model E5 as the MT input for the cascaded
system. The resulting model is C4 in Table 5,
which brings a gain of 1.2 BLEU for the cascaded
system.

5.3 Main Findings
The results for cascaded and end-to-end ST systems
are summarized in Table 5. First, using a unified
end-to-end speech-to-text system for both ASR and
ST improves the output quality for both tasks. This
gain further propagates to the cascaded systems as
a result of higher ASR quality. Second, confirming
findings from the literature (Kahn et al., 2020; Pino
et al., 2020), training with pseudo-labels is a strong
method to improve end-to-end systems. Last but
not least, by ensembling from different views of the
same data, we can achieve further gains at inference
time.

6 Results on Blind Test Set

We submitted systems C3 and E5 for evaluation
on the blind test set. The results are summarized
in Table 6. In line with the results on the public
test set in Table 5, the end-to-end system outper-
forms the cascaded system on zero-shot directions.
Different from on the public test set, the end-to-

end system also shows large gains when translating
from French speech. A potential reason is errors
propagated from the French ASR transcriptions
that led to weaker performance of the MT module
in the cascaded system.

7 Conclusion

This paper summarizes our participation in the
IWSLT 2021 multilingual speech translation track.
We improved our end-to-end speech-to-text sys-
tems from different angles. On the source side, we
augmented the input utterance. On the target side,
we created pseudo-labels from ASR transcriptions.
Furthermore, at test time we used different ensem-
bling approaches to improve the performance of
trained models. By experimenting under different
data scenarios, we showed the benefit of multilin-
gual training and the joint training speech transcrip-
tion and translation.

We note a few directions to further improve
our systems: First, we expect that utterances aug-
mented by SpecAugment (Park et al., 2019) could
improve the quality of the ASR and ST systems.
Second, our MT module can be improved by syn-
thetic data from back-translation (Sennrich et al.,
2016a), especially for the zero-shot directions. Re-
garding upcoming work, since the source languages
all belong to the same family, an interesting next
step is to investigate how to better utilize the relat-
edness between these languages.
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Abstract

In this paper, we describe Zhejiang Univer-
sity’s submission to the IWSLT2021 Multi-
lingual Speech Translation Task. This task
focuses on speech translation (ST) research
across many non-English source languages.
Participants can decide whether to work on
constrained systems or unconstrained systems
which can use external data. We create both
cascaded and end-to-end speech translation
constrained systems, using the provided data
only. In the cascaded approach, we combine
Conformer-based automatic speech recogni-
tion (ASR) with the Transformer-based neural
machine translation (NMT). Our end-to-end
direct speech translation systems use ASR pre-
trained encoder and multi-task decoders. The
submitted systems are ensembled by different
cascaded models.

1 Introduction

In this paper, we introduce our submission to the
IWSLT2021 Multilingual Speech Translation Task.
This task focuses on speech translation (ST) re-
search across many non-English source languages.
Multilingual models enable transfer from related
tasks, which is particularly important for low-
resource languages; however, parallel data between
two otherwise high-resource languages can often
be rare, making multilingual translation and zero-
shot translation important for many resource set-
tings. The task provides data for two conditions
(Salesky et al., 2021): supervised, and zero-shot,
including speech and transcripts for four languages
(Spanish, French, Portuguese, Italian) and transla-
tions in a subset of five languages (English, Span-
ish, French, Portuguese, Italian). At evaluation
time, using the provided speech in the four source
languages, participants submit the generated trans-
lations in both English and Spanish.

In the cascaded approach, we use a Conformer

(Gulati et al., 2020) model for ASR for every lan-
guage. For the MT component, we use a unified
Transformer model for all language pairs. As previ-
ous works (Gangi et al., 2019; Bahar et al., 2020),
we use both the clean and noisy speech transcripts,
back translation data, and the mask noisy trick.

For the end-to-end direct speech translation, we
also created a Transformer-based model. To obtain
the best possible translation quality, we apply data
augmentation on audio files, make a multitask de-
coding for incorporating the ASR task (Weiss et al.,
2017).

We tried various experimental parameter settings
and different architectures, and finally submitted
an ensembled cascaded system.

2 Cascaded Speech Translation

As the task provides speech and transcripts for four
languages (Spanish, French, Portuguese, Italian)
and translations in a subset of five languages (En-
glish, Spanish, French, Portuguese, Italian). Zero-
shot language pairs have ASR data released for
training but not translations. Cascades of separately
trained automatic speech recognition and machine
translation (MT) models can leverage all of these
data sources.

2.1 Automatic Speech Recognition

We only focus on sequence-to-sequence ASR mod-
els. We firstly used a Transformer-based (Vaswani
et al., 2017) model on FAIRSEQ1. Our transformer-
based models presented as Synnaeve et al. (2019)
consist of 2 1-D convolutional subsampler lay-
ers and 12 transformer encoder layers, 6 trans-
former decoder layers. The input mel-filterbank
features are 80 dimensions, and the audio files’
sample frequency is 16K. As Transformer models

1This tool can be found via https://github.com/
pytorch/fairseq
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WER layers es fr pt it
Transformer 12 15.68 17.23 21.69 20.66

16 15.91 17.90 19.65 19.74
Conformer 12 15.1 16.7 18.8 18.9

Table 1: The results of the Transformer and Conformer ASR models with different encoder layers.

option range
tempo (0.85, 1.25)
speed (0.95, 1.05)

Table 2: Sox parameters value ranges used in process-
ing of audio data.

are good at capturing content-based global interac-
tions, while CNNs exploit local features effectively.
Then, we used the convolution-augmented trans-
former ASR model, Conformer (Gulati et al., 2020).
The architecture settings are as the Conformer-
base model using ESPnet2 which also uses a joint
CTC/attention decoding (Hori et al., 2017). The
Conformer model consists of 2-D convolutional
subsampler layers and 12 encoder layers, 6 decoder
layers. The input features combine 80-dimension
mel-filterbank features and 3 pitch features.

We remove all text sequences longer than 200 to-
kens and all speech utterances longer than 3000
frames. The two models both use a variant of
SpecAugment(Park et al., 2019) for data augmen-
tation. The Conformer model also used the speed
perturbation technique. The results of the Con-
former automatic speech recognition models are
shown on the Table 1.

2.2 Multilingual Machine Translation

We created text-to-text machine translation base-
lines using FAIRSEQ (Ott et al., 2019a). We fol-
lowed the recommended Transformer hyperparam-
eters as the IWSLT’17 multilingual task. This
model uses a shared BPE vocabulary of 16k learned
jointly across all languages. We appended language
ID tags to the beginning of each sentence for both
the encoder and decoder.

For the provided translation data, some language
pairs are zero shot. For example, language pair
Italian-to-Spanish has no training data, but Spanish-
to-Italian is provided. So we use the Spanish-to-
Italian corpus in reverse and supplement it as the
Italian-to-Spanish training corpus. The corpus of
French to Spanish is also used in reverse, add to
the training set of Spanish to French. This reverse

2This tool can be accessed via https://github.
com/espnet/espnet

use also adds language pairs, such as English-to-
Spanish. At the same time, back translation (BT)
is also used to generate a pseudo-corpus.

There is a gap between the transcription gen-
erated by the ASR model and the ground-truth
transcription. In practice, the ASR-generated tran-
scripts can be seen as noisy data by Gangi et al.
(2019). We add the ASR-generated transcripts
noisy data to train the MT model, to increase the
system’s robustness (Sperber et al., 2017).

At the same time, we also adopted the mask trick
used in BERT (Devlin et al., 2019). We randomly
mask some words in the source language sentence
and use the last layer of encoder output to predict
the masked words. The probability p of the masked
tokens is 0.1.

We have not applied an individual bilingual trans-
lation model for each language pair while using a
unified translation model for all language pairs.
Our experiments show that multilingual text trans-
lation is more conducive to solving the zero-sample
problem.

3 End-to-End Direct Speech Translation

We used FAIRSEQ to train end-to-end Transformer-
based models for ST, using 80-dimensional mel-
filterbank features with global Cepstral Mean and
Variance Normalization (CMVN), SpecAugment
(Park et al., 2019), and 1-D convolutions downsam-
pler with the pretrained Transformer-based ASR
model. We remove all text sequences longer than
200 tokens and all speech utterances longer than
6000 frames.

In order to make full use of the speech transla-
tion data of all language pairs, we adopt a joint
vocabulary of 10K for all language pairs. In the
beginning, we used the ASR model trained with
all 4 languages ASR corpus to pre-train the ST,
but in the end, the ASR model trained with just
1 language was used to pre-train the ST and the
latter result was better. Same as the multilingual
machine translation model, we prepend the source
language ID tag to the frame sequence after the
down-sampling of 1-D CNN layers. At the same
time, we also prepend the target language ID tag to
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target
source en es fr pt it
es 39k(69h) 107k(189h) 7k(11h) 24k(42h) 6k(11h)
fr 33k(50h) 24k(38h) 119k(189h) 16k(25h) -
pt 34k(59h) zero-shot - 93k(164h) -
it zero-shot zero-shot - - 53k(107h)

Table 3: The number of sentences and the segment of audios for the Multilingual TEDx dataset. Same source and
target languages mean the ASR data.

ES-EN FR-EN FR-ES PT-EN PT-ES IT-EN IT-ES
end-to-end 19.20 21.76 22.46 20.45 18.21 4.45 5.47
+multi-task 19.61 22.69 23.45 21.20 20.79 4.31 5.83
cascaded+(BT data) 24.01 28.52 33.67 28.07 36.52 15.21 27.04 MT

20.29 24.51 26.83 22.42 26.71 14.61 22.13 ST
cascaded+(ASR noisy data) 25.11 30.16 34.14 29.13 36.69 15.42 26.62 MT

20.56 24.60 26.81 22.03 26.46 14.58 22.07 ST
ensemble+beam12 21.28 26.21 28.98 23.43 27.99 15.71 23.19 ST

Table 4: The speech translation results of the test sets in BLEU score of different end-to-end and cascaded models.

the target text token sequence.
We augmented the data by processing the audio

files with two Sox’s effects as Potapczyk and Przy-
bysz (2020): tempo, speed. We sampled the param-
eters with uniform distribution within ranges pre-
sented in Table 2: For each audio file, we repeated
the process 2 times. The effect of this operation
is basically similar to speed perturbation. Because
ESPnet already uses speed perturbation by default,
we only apply Sox’s effects on the FAIRSEQ mod-
els.

As in many previous works, we also introduced
a second decoder with ASR task, making it a multi-
task setup similar to Weiss et al. (2017). The ASR
and ST tasks use a joint dictionary of size 10k as
the baseline. The training loss can be calculated as
follows:

Loss = LossST +αLossASR (1)

We tried setting the value of α to 0.7 and 0.5, and
the result was better when it was set to 0.5. Thus,
the ASR and ST decoder are trained jointly, and
convolutional layers and encoder are shared. The
experiments also proved that this kind of multi-task
learning is useful.

All the models consist of 12 encoder layers and
6 decoder layers, including the multi-task model.

For the one encoder-one decoder baseline, we
just pretrain the encoder. For the multi-task model,
we use the pretrained ASR model to initialize the
shared encoder and ASR decoder. We also tried to
pretrain only the shared encoder of the multi-task

model. Our experimental results show that pretrain-
ing the ASR decoder will not improve the final
effect of speech translation, but it can reduce the
loss of the ASR decoder and the convergence time
of training. We also tried to increase the number
of encoder layers from 12 to 16, and the transla-
tion performance almost did not improve, but the
number of convergence epochs decreased.

4 Experiments

In this section, we report the results for cascaded
and end-to-end direct speech translation models on
various data and settings.

For the ASR task, we tried 2 different platforms,
the results as Table 1. For the cascaded speech
translation models, the ASR part is implied on
the ESPnet (Watanabe et al., 2018), while the MT
component is implied on the FAIRSEQ (Ott et al.,
2019b). For the end-to-end direct speech transla-
tion models, including the pretrained ASR models,
all models are built on the FAIRSEQ.

For the cascaded speech translation models, all
MT models have used the mask tokens trick, the
main difference is just the different adding data.
For the end-to-end direct speech translation mod-
els, all the models including the pretrained ASR
models are trained including the Sox’s effects data.
All the parameter settings are almost unchanged.
The ASR model trained with just 1 language (Span-
ish) was used to pretrain the ST. We tried only using
Spanish or French ASR to pretrain the ST model,
compared with all 4 multilingual ASR. Using mul-
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tilingual ASR initialization led to a decrease of
nearly 2.9 BLEU on ES-EN testset with only ES
ASR. Pretraining with one language ASR is better
than with all four languages, which surprised us
a bit. We originally felt that the performance of
the richer corpus model should be better. Perhaps
understanding this problem will help improve the
effectiveness of the multilingual end-to-end model.

Our multilingual translation model and end-to-
end multilingual speech translation model both
adopt a unified model for all language pairs, and do
not apply special processing to individual language
pairs.

4.1 Settings

For the Transformer-based ASR models are trained
using the Adam optimizer, dropout probability
of 0.1, and label smoothing. The learning rate
schedule is inverse sqrt, with a learning rate 0.001,
warmup from 10000. The same architecture is used
to pretrain our direct speech translation models.
The Conformer-based ASR model is also trained
using the Adam optimizer and label smoothing,
while warmup from 25000. For all ASR models,
we apply byte-pair-encoding (BPE) (Sennrich et al.,
2016) with 4k merge operations for every language.

For all the end-to-end direct ST models, the train-
ing settings are the same as the Transformer-based
ASR models. While the multilingual end-to-end
ST models apply BPE with 10k merge operations.
All the models are trained of the 320000 batch size.

4.2 Results

As shown in Table 4, our cascade models represent
better scores than our end-to-end models, particu-
larly for low-resource language pairs. End-to-end
models are closing the performance gap for high-
resource settings. The early models on the exper-
imental phase set the beam search size as 5 for
saving time, while the final submitted ensemble
model has a beam search size of 12. Finally, we
submitted an ensembled cascaded system, which
ensembles all multilingual MT models. The sub-
mitted model’s BLEU scores are 34.5 on ES-EN,
25.2 on FR-EN, 27.4 on FR-ES, 25.7 on PT-EN,
31.6 on PT-ES, 20.8 on IT-EN, 27.3 on IT-ES.
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Abstract

This paper describes the system submitted to
the IWSLT 2021 Multilingual Speech Transla-
tion (MultiST) task from Huawei Noah’s Ark
Lab. We use a unified transformer architec-
ture for our MultiST model, so that the data
from different modalities (i.e., speech and text)
and different tasks (i.e., Speech Recognition,
Machine Translation, and Speech Translation)
can be exploited to enhance the model’s abil-
ity. Specifically, speech and text inputs are
firstly fed to different feature extractors to ex-
tract acoustic and textual features, respectively.
Then, these features are processed by a shared
encoder–decoder architecture. We apply sev-
eral training techniques to improve the perfor-
mance, including multi-task learning, task-level
curriculum learning, data augmentation, etc.
Our final system achieves significantly better
results than bilingual baselines on supervised
language pairs and yields reasonable results on
zero-shot language pairs.

1 Introduction

Multilingual Speech Translation (MultiST) aims
to develop a single system that can directly trans-
late speech in different languages into text in
many other languages. Due to data scarcity of
Speech Translation (ST), multilingual and multi-
modal models are promising as they enable knowl-
edge transferred from other languages and related
tasks like Automatic Speech Recognition (ASR)
or Neural Machine Translation (NMT). They also
allow zero-shot translation in the settings of no di-
rect parallel data. The IWSLT 2021 MultiST task
is held for evaluating the performance under the
circumstances. This paper describes our system for
the task.

We build a unified model for both speech- and
text-related tasks, so that the knowledge from differ-
ent modalities (speech and text) and different tasks

(in this work, the tasks include ST, ASR, and NMT)
can be learned together to enhance ST. Specifi-
cally, our model consists of three parts – feature
extractor, semantic encoder and decoder. For all the
tasks, the semantic encoder and the decoder will be
shared to learn unified representations. It follows
the Transformer (Vaswani et al., 2017) encoder-
decoder framework to learn modality-independent
features and output text representations. We use the
Conv-Transformer (Huang et al., 2020) as feature
extractor for speech input, and the word embed-
ding for text input. The extracted features are then
fed to the semantic encoder regardless of the input
modality.

However, it is difficult for such a unified model
to directly digest knowledge from diverse tasks.
Therefore, we apply task-level curriculum learning
for our model. We presume the ST task is more
difficult than the other two tasks (ASR and NMT),
as it not only requires acoustic modeling to extract
speech representations, but also needs alignment
knowledge between different languages for transla-
tion. To this end, our training is divided into three
steps – ASR and NMT pre-training, joint multi-
task learning, and ST fine-tuning. What’s more,
to alleviate the data scarcity problem, we also ap-
ply CTC multi-task learning (Graves et al., 2006),
data augmentation techniques including SpecAug-
ment (Bahar et al., 2019) and Time Stretch (Nguyen
et al., 2020), and knowledge distillation (Liu et al.,
2019), etc.

We conduct experiments in the constrained set-
ting, i.e., only the Multilingual TEDx (Salesky
et al., 2021) dataset is used for training. It contains
speech and transcripts from four languages (Span-
ish, French, Portuguese, and Italian), and some
of them are translated into English and/or other
languages of the four mentioned above. Several
language pairs for ST are provided without parallel
training corpus and evaluated as zero-shot transla-
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Figure 1: Overall structure of our unified model.

tion. The experimental results show that our unified
model can achieve competitive results on both su-
pervised settings and zero-shot settings.

2 Model Architecture

The architecture of our unified model, which is
based on Transformer (Vaswani et al., 2017), is
shown in Figure 1. The NMT part (both input and
output is text) follows the basic Transformer setting,
i.e. 6 layers for both the encoder and the decoder,
each with 8 attention heads, 512 hidden dimen-
sions, and 2048 hidden units in feed-forward lay-
ers. For the speech input, we replace the word em-
bedding layer with the Conv-Transformer (Huang
et al., 2020) encoder as acoustic modeling to ex-
tract audio features, and the rest are shared. The
Conv-Transformer encoder gradually downsamples
the speech input with interleaved convolution and
Transformer layers. We downsample the speech in-
put 8× times with three Conv-Transformer blocks,
each contains three convolution layers (the stride
number is 2 in the second convolution layer, and 1
in other layers) and two Transformer layers. The
Conv-Transformer is set following Huang et al.
(2020) and also consistent with the shared parts
(in terms of hidden dimensions, etc). Then, the
output is fed into the shared semantic encoder and
decoder to produce text representations.

For language encoding, we apply language pro-
jection (Luo et al., 2021) to learn language-specific
information. It replaces the language embedding
in conventional multilingual models with a projec-

tion matrix before the positional embedding layer.
With language IDs and input modality, our unified
model can recognize the task that needs to be com-
pleted. For example, our model will perform ASR
with speech input and the same language input and
output IDs.

3 Techniques

Our model is trained in an end-to-end manner with
all available data, including the ASR data (speech
and transcript) and the ST data (speech, transcript
and translation). From the ST data, we also extract
the speech-transcript pairs as ASR data, and the
transcript-translation pairs as NMT data. We apply
task-level curriculum learning to train our model.
At the same time, data augmentation, knowledge
distillation, and model ensemble are used to fur-
ther improve the performance. We describe the
techniques in details in the rest of this section.

3.1 Task-Level Curriculum Learning
As a cross-modal and cross-lingual task, ST is more
complicated than ASR or NMT. Therefore, we pre-
sume it is better for our unified model to learn in
a smoother way. We divide the training procedure
into three steps:

1. ASR and NMT pre-training: we use all the
ASR and NMT data together to pre-train our
unified model with a certain number of steps.

2. Joint multi-task learning: all the data includ-
ing the ST data are used to jointly train the
model in a multi-task manner.

3. ST fine-tuning: we fine-tune the model with
only ST data to further improve the perfor-
mance in specific language pairs1.

For all the three steps, we use an additional CTC
loss (Graves et al., 2006) on the output of the last
layer of Conv-Transformer encoder to assist with
the acoustic modeling. What’s more, to make the
model focus on the ST task, we assign less loss
weights to ASR and NMT tasks (both 0.5, while
1.0 for ST) in step 2.

3.2 Data Augmentation
We use SpecAugment (Park et al., 2019; Bahar
et al., 2019) and Time Stretch (Nguyen et al., 2020)
to augment the speech data during training.

1Note that fine-tuning can only be applied in non zero-shot
translation language pairs.
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SpecAugment. SpecAugment is a data augmen-
tation technique originally introduced for ASR, but
proven to be effective in ST as well. It operates
on the input filterbanks and consists of three kinds
of operations, time warping, time masking, and
frequency masking. We follow Bahar et al. (2019)
and only apply time masking and frequency mask-
ing. It means that a number of consecutive portions
of the speech input are masked in the time or the
frequency dimensions. We always apply SpecAug-
ment to both the ASR and ST tasks in the three
training steps. We set the parameter for time mask-
ing T to 40 and that for frequency masking F to 4.
The number of time and frequency masks applied
mT and mF are 2 and 1, repsectively.

Time Stretch. Time stretching is a kind of aug-
mentation method applied in extracted acoustic fea-
tures like filterbanks to simulate conventional speed
perturbation technique (Ko et al., 2015). Specifi-
cally, given a consecutive feature vectors of speech
input, it stretches every window of w feature vec-
tors by a factor of s obtained from an uniform dis-
tribution of range [low, high]. In this way, some
frames are dropped (if s > 1) or repeated (if s < 1)
to simulate audio speeding up or down. We only
apply Time Stretch in the first two training steps,
as we found it does not help much in fine-tuning.
We set w to∞, and low = 0.8, high = 1.25.

3.3 Knowledge Distillation

Teaching the ST model with a pre-trained NMT
model using knowledge distillation has been shown
effective (Liu et al., 2019). Hence we also use word-
level knowledge distillation to help with training.
Specifically, we minimize the KL divergence be-
tween the distribution produced by our model and
that produced by the pre-trained NMT model. The
tradeoff weight for the knowledge distillation part
is set to 0.7 (i.e. 0.3 for cross entropy based on
ground-truth targets). We use knowledge distilla-
tion only in the ST fine-tuning step.

3.4 Model Ensemble

Ensemble decoding is to average the word distribu-
tion output from diverse models at each decoding
step. It is an very effective approach to improve the
quality of NMT models. We select the top 2 or 3
models in terms of BLEU scores on development
set for each language pair to perform ensemble
decoding. The candidate models are trained with
different hyper-parameters.

Source Target Text
En Es Fr Pt It

Es 39k (69h) 107k (189h) 7k (11h) 24k (42h) 6k (11h)
Fr 33k (50h) 24k (38h) 119k (189h) 16k (25h) –
Pt 34k (59h) ? – 93k (164h) –
It ? ? – – 53k (107h)

Table 1: The number of sentences and the duration of
audios for the Multilingual TEDx dataset. Same source
and target languages mean the ASR data. Noted with ?
are the language pairs for zero-shot translation.

4 Experiments and Results

4.1 Experimental Setup

We only participate in the constrained setting task.
Therefore, only the data from the Multilingual
TEDx (Salesky et al., 2021) is available. It contains
speech and transcripts from four languages (Span-
ish, French, Portuguese, and Italian), and some of
them are translated into other languages of the five
(English and the four mentioned above). The data
statistics are shown in Table 1.

We use 80-dimensional log-mel filterbanks as
acoustic features, which are calculated with 25ms
window size and 10ms step size and normalized
by utterance-level Cepstral Mean and Variance
Normalization (CMVN). For transcriptions and
translations, SentencePiece2 (Kudo and Richard-
son, 2018) is used to generate a joint subword vo-
cabulary with the size of 10k. We share the weights
for input and output embeddings, as well as the
output projection in CTC module.

Our model is trained with 8 NVIDIA Tesla
V100 GPUs, each with a batch size of 32. We
use Adam optimizer (Kingma and Ba, 2015) dur-
ing model training with learning rates selected
in {2e−3, 1e−3, 8e−4, 5e−4, 3e−4} and warm-up
steps selected in {2000, 6000, 10000}, followed by
the inverse square root scheduler. Dropout rate is
selected in {0.1, 0.2, 0.3}. We save checkpoints
every epoch and average the last 10 checkpoints
for evaluation with a beam size of 5. Our code is
based on fairseq S2T3 (Wang et al., 2020).

4.2 Results

This section shows the results of our unified model
in Multilingual TEDx dataset. We display the re-
sults of our model for MultiST, as well as ASR and
NMT, to show the efficacy of our unified model.

2https://github.com/google/
sentencepiece

3https://github.com/pytorch/fairseq/
tree/master/examples/speech_to_text
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Model Es-En Es-Fr Es-Pt Es-It Fr-En Fr-Es Fr-Pt Pt-En Pt-Es? It-En? It-Es?

Bilingual 16.60 0.70 16.16 0.50 17.49 13.74 1.26 16.83 – – –
+ASR data 19.17 9.55 29.59 14.19 24.56 25.13 23.38 21.95 – – –

Joint learn 23.97 21.76 33.52 22.04 27.65 30.08 30.62 26.36 24.50 14.99 12.34
Curriculum learn 25.13 22.72 35.54 24.51 29.75 31.88 31.91 28.07 26.14 15.82 14.98

+FT 25.01 22.72 35.04 24.12 29.91 31.87 31.81 27.83 – – –
+FT with KD 25.25 23.06 35.83 24.68 30.66 32.69 32.96 28.61 – – –

Ensemble 26.47 23.94 36.59 25.25 31.60 33.86 34.07 29.02 27.12 16.14 16.82

Table 2: BLEU scores of our unified model for Multilingual TEDx test sets. Those marked with ? are the results for
zero-shot translation. For each setting, we display the results with highest scores among different hyper-parameters.
The ensemble results come from ensembling top 2 or 3 models based on the development sets.

MultiST. Table 2 shows the results of our model
on MultiST. The first two rows display the results
with only bilingual data. As can be seen, it is diffi-
cult for an end-to-end model to produce reasonable
results with extremely low resources (less than 30
hours, including language pairs Es-Fr, Es-It and
Fr-Pt as in Table 1). With sufficient additional ASR
data, all language pairs are improved in a large
scale, especially for those low-resource language-
pairs (e.g. from 1.26 to 23.38 on Fr-Pt).

The rest rows are the results in multilingual set-
tings, where we use all the available data. “Joint
learn” means that we directly train the multilingual
model from scratch. “Curriculum learn” displays
the results after the first two training steps in Sec-
tion 3.1, while “+FT” means adding the third fine-
tuning step. “KD” refers to knowledge distillation.
We can find that ASR and NMT pre-training helps
the model learn better representations to perform
translation. Then, fine-tuning with knowledge dis-
tillation further improve the results. This indicates
the efficacy of our task-level curriculum learning
for MultiST. However, we find that fine-tuning only
with ground-truth targets would not improve the
performance. This might be attributed to the lim-
ited ST training data, as all of them are less than
100 hours, which introduces difficulty to learn effi-
ciently. By incorporating knowledge distillation, it
enables our model to learn extra meaningful knowl-
edge from NMT, so that it can further improve the
results.

It can also be found that our unified model can
perform reasonable zero-shot speech translation, as
all the zero-shot language pairs achieve higher than
10 BLEU scores. Specifically, results for Pt-Es
even achieve similar scores compared with other
supervised language pairs. This is mostly because
Portuguese and Spanish are similar languages so
that it is easier for the model to transfer knowledge
from other data.

Model Es Fr Pt It

Monolingual 19.93 22.49 24.86 22.94
Multilingual-ASR 13.75 16.79 17.67 16.22
Joint learn 15.69 17.46 19.85 19.12
Curriculum learn 14.99 16.97 18.06 18.42

+FT 12.53 14.56 15.75 15.38

Table 3: WER of our unified model for ASR test sets.

Model Es-En Es-Fr Es-Pt Es-It

Multilingual-NMT 30.41 22.35 41.99 25.62
Joint learn 31.11 28.25 44.12 27.88
Curriculum learn 30.82 27.87 43.36 27.46

+FT 31.43 27.81 43.53 27.46

Model Fr-En Fr-Es Fr-Pt Pt-En

Multilingual-NMT 35.44 36.89 37.46 33.83
Joint learn 37.17 39.78 40.66 35.54
Curriculum learn 36.15 38.83 39.38 34.40

+FT 36.42 38.99 39.43 34.78

Table 4: BLEU of our unified model for NMT test sets.

ASR and NMT. We also test our unified model
on the ASR and NMT tasks. Table 3 and Table 4
display the results for ASR and NMT, respectively.
“Multilingual-ASR (NMT)” is the model trained
only with multilingual ASR (NMT) data. From the
results, we can find that ASR also benefits from the
task-level curriculum learning procedure. However,
it only improves slightly compared to the model
only with ASR data, probably because the speech
in ST data is sampled from the ASR data (Salesky
et al., 2021). It surprises us that NMT can also
benefit from extra data from different modality (i.e.
speech), although curriculum learning does not im-
prove the performance (probably because we assign
less loss weight to NMT task in step 2 as introduced
in Section 3.1). This demonstrates the potential of
leveraging data from different modalities to train a
powerful unified model. Due to the time and data
constraint, we leave the exploration into a more
powerful unified model with multiple kinds of data
as future work.

152



Submissions. We submit our results on ST eval-
uation sets with the ensemble model in Table 2,
scoring BLEU scores 35.4 on Es-En, 27.0 on Es-
Fr, 43.2 on Es-Pt, 30.8 on Es-It, 26.7 on Fr-En,
27.0 on Fr-Es, 26.9 on Fr-Pt, 26.7 on Pt-En, 27.0
on Pt-Es, 17.6 on It-En, and 15.4 on It-Es. We also
submit our ASR results on evaluation sets with our
fine-tuned model (i.e. “+FT” model in Table 3),
scoring 11.1 WER on Es ASR, 22.2 on Fr ASR,
16.2 on It ASR, and 23.8 on Pt ASR.

5 Conclusions

We present our system submitted to IWSLT 2021
for multilingual speech translation task. In our sys-
tem, we build a unified transformer-based model to
learn the knowledge from different kinds of data.
We introduce a task-level curriculum learning pro-
cedure to enable our unified model to be trained
efficiently. Our results show the efficacy of our
unified model to perform multilingual speech trans-
lation in both supervised settings and zero-shot
settings. Moreover, the results demonstrate the
potential of incorporating multilingual and even
multi-modal data into one powerful unified model.
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Abstract

This paper contains the description for the sub-
mission of Karlsruhe Institute of Technology
(KIT) for the multilingual TEDx translation
task in the IWSLT 2021 evaluation campaign.
Our main approach is to develop both cascade
and end-to-end systems and eventually com-
bine them together to achieve the best possible
results for this extremely low-resource setting.
The report also confirms certain consistent ar-
chitectural improvement added to the Trans-
former architecture, for all tasks: translation,
transcription and speech translation.

1 Introduction

The neural sequence-to-sequence models have rev-
olutionalised both automatic speech recognition
(ASR) and machine translation in many different
aspects, from performance (Luong et al., 2015;
Pham et al., 2019a) to various forms such as multi-
modal (Barrault et al., 2018) and multilingual (Kan-
nan et al., 2019; Ha et al., 2016; Johnson et al.,
2016). After multilingual text translation has been
established, the recent focus is naturally shifted to
multilingual speech translation especially with a
series of public speech corpora with multiple trans-
lation being released (Iranzo-Sánchez et al., 2020;
Wang et al., 2020; Salesky et al., 2021).

Recent evaluation campaigns in speech transla-
tion have seen a fierce competition between tra-
ditional cascade systems and end-to-end counter-
parts (Jan et al., 2018, 2019; Ansari et al., 2020).
The competition without a doubt would continue
in multilingual speech translation especially in a
low-resource condition. However, the competition
between two modeling schemes suggests that each
of them possesses its own strengths and advantages.
Notably the cascade models can easily benefit from
the separated optimized architectures of each sub-
task and enjoy the larger available datasets, while

the end-to-end models can theoretically avoid error
propagation.

This manuscript describes the translation system
for the multilingual TEDx task with the aim of
combining the strong points of both approaches.
We showed that optimizing the cascade models
is necessary to bootstrap a powerful end-to-end
model, while in the end combining their powers
based on ensembling gives promising results.

2 Dataset overview

The Multilingual TEDx corpus (Salesky et al.,
2021) provided us with the 5 languages Spanish
(es), French (fr), Italian (it), Portuguese (pt) and
English (en). While speech audio is available for
the first 4 languages, text translation is available
for all 20 language pairs, and the speech translation
parallel data is largely more scarce than the other
two. The data statistics is shown in Table 1 and 2.

Source→ Target en es fr it pt

es 36K 102K 3.6K 5.6K 21K
fr 30K 20K 116K - -
it - - - 50K -
pt - 30K - - 90K

Table 1: Data statistics for speech recogni-
tion/translation in the number of utterances.

Source→ Target en es fr it pt

en - 36.2K 30.5K - 30.8K
es 36.2K - 24.4K 5.6K 21.1K
fr 30.1K 24.4K - - 13.2K
it - 5.6K - - -
pt 30.8K 21.1K 13.2K -

Table 2: Data statistics for machine translation in the
number of sentence pairs.

It is noticeable that the training data is severely
lacking for speech translation when the number of
sentences is only a fraction of the ASR or MT re-
sources. As a result, our initial plan was to generate
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synthetic translations from the available transcripts,
that can effectively increase the data size for train-
ing end-to-end SLT models.

3 General enhancement for Transformer
Models

In this section, we describe the overall model de-
scriptions that were applied in all three tasks.

Transformers (Vaswani et al., 2017) are con-
structed with blocks of transformation functions
including self-attention and feed-forward neural
networks.

Self-attention transforms a sequence of states
using themselves as queries, keys and values, build-
ing up hierarchical representational powers since
the output states are the weighted-sum of the in-
put states that can be flexibly learned during train-
ing. Relative attention (Shaw et al., 2018) further
improves the interaction between states by assign-
ing learnable weights for each relative position.
(Pham et al., 2020) incorporated this mechanism
into speech models by extending the partially learn-
able relative positions in (Dai et al., 2019) to attend
to all positions in the sequence bidirectionally.

Furthermore, the Transformer models are
strengthened by using dual feed-forward (FFN) lay-
ers per block instead of one (Lu et al., 2019). As
such, one feed-forward network block precedes
the initial self-attention in either encoder and de-
coder. The outputs of both FFN layers are scaled
by 0.5. Besides, it is possible to help training deep
Transformer better by using RELU-inspired acti-
vation functions that do not suffer from dead neu-
rons. GELU (Hendrycks and Gimpel, 2016) and
SiLU (Elfwing et al., 2018) are combined with
gated linear units (Dauphin et al., 2017), as used in
our activation functions.

In most of our experiments and in the eventual
submission, all of the above enhancements were
incorporated. Ablation studies are unfortunately
not fully possible because of the time constraint,
but will be provided to depict the improvement of
each addition.

4 Speech Recognition

Our speech recognition models are built based
on both the LSTM and the Speech Deep Trans-
former (Pham et al., 2019a) enhanced with bidirec-
tional relative attention (Pham et al., 2020). While
LSTM models have been intensively experimented
for the best results (Nguyen et al., 2019a; Park et al.,

2019), Transformers have been recently adopted
to this task with strong results (Pham et al., 2019a,
2020).

For the four languages in the Multilingual TEDx,
we trained both multilingual Transformers and
LSTM models on the combination of the datasets,
using the factorization scheme. The LSTM has
6 encoder layers and 2 decoder layers with 1024
hidden units in each layer. The sole attention layer
between encoder and decoder is an 8-head dot-
product attention. On the other hand, we experi-
mented the Transformers with the “Large” models
having 16 encoder layers and 6 decoder layers with
1024 units in the hidden layers.

The models are trained with Adam and an in-
verse square-root learning rate schedules with
4096 warm-up steps following the same setting
as (Vaswani et al., 2017) for up-to 120K steps or
early-stopping on the development set. In order
to facilitate training, layers are randomly dropped
with the highest rate of 0.5 and linearly reducing
from top to bottom (Pham et al., 2019a). Due to the
relatively small size of the dataset, regularization
is added with dropout probability 0.35 in all lay-
ers, and spec augmentation with dropped frequency
range is F = 16 and the maximum dropped time
T = 64 which is relatively aggressive.

Language LSTM bTF eTF Ensemble

es 16.9 16.4 15.25 14.37
fr 16.5 16.8 15.39 14.44
pt 18.3 19.5 17.1 16.79
it 19.5 16.4 17.24 15.47

Table 3: Comparison on Multilingual TEDx dataset
(WER↓). Our baseline models include the baseline (b)
and enhanced (e) Transformers (TF) and the LSTM.

Table 3 shows the experimental result of speech
recognition, in which we can see that the Trans-
former with only Relative attention is as good as
the LSTM, while using all enhancements allowed
us to improve the result further. It is notable that
those results are obtained using our own word er-
ror rate measuring method that does not remove
punctuations, which are retained in ASR to be com-
patible with the subsequent MT models.

Removing the punctuations and using the evalu-
ation scripts in the same repo with (Salesky et al.,
2021) gave us 11.0, 13.88, 13.38 and 14.14 error
rates for Spanish, Italian, French and Portuguese
respectively, which are significantly lower than the
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Hybrid LF-MMI provided.

5 Machine Translation

Our multilingual machine translation is built based
on the universal multilingual framework (Ha et al.,
2016; Johnson et al., 2016; Pham et al., 2019b), in
which the vocabulary is shared between languages
using a BPE size of 16000 merging units.

Thanks to the relatively small data size, the trans-
lation task was used to measure the incremental
improvement of various features, including the rel-
ative attention and the Macaron feed-forward lay-
ers. Therefore, experiments were carried out us-
ing the base-setting of Transformer as the starting
point. Dropout was increased to 0.35 together with
word dropout (Gal and Ghahramani, 2016) at both
encoder and decoder to help the models counter
overfitting. The output language is controlled by
the language embedding vectors added directly to
the word embedding at every timestep (Ha et al.,
2017; Pham et al., 2019b). The language pairs are
randomly sampled based on the training size of
each pair (no temperature was used). Training is
done using the adaptive learning rate for Adam,
with maximum learning rate at 0.7 achieved after
4096 warming-up steps, and is often early-stopped
after 60000 training steps, each is approximately
48000 words.

Regularization is further improved via data diver-
sification (Nguyen et al., 2019b). Carrying a similar
idea of back-translation (Sennrich et al., 2016) that
generates synthetic labels for untranslated mono-
lingual data, the main idea of data diversification
is to popularize the available training data with
synthetic translation of both source sentences and
target sentences.

According to the algorithm presented in (Nguyen
et al., 2019b), the training process is divided into
rounds in which the training data is incrementally
added with synthetic data coming from the refin-
ing models themselves. Starting from the original
training data in round 0, we use the best settings in
round n to translate the source and target sentences
in the training to the counterpart language and add
the synthetic translation pairs to the current training
data, proceeding to round n + 1. Each synthetic
pair consists of one original sentence and one syn-
thetic sentence. The idea is the combination of
backtranslation, model distillation (Kim and Rush,
2016) and data augmentation (Wang et al., 2018)
without any additional data.

Interestingly, thanks to the multilingual property,
it is also possible to translate one sentence to a
range of languages after each round, leading to dif-
ferent options and a massive amount of sentences
to be added. However, it was empirically found
out that the method did not scale after 1 round, and
massively translating to all languages did not im-
prove the training data. Therefore, after round 0,
the best configuration which is an ensemble is used
to generate synthetic parallel data for round 1 by
just translating each sentence to the same language
in the original dataset.

The translation result is seen in Table 4. We
showed the progressive results as a result of adding
each empirical feature, and measured the change in
average over 14 language pairs. Even though the
training data also contains language pairs that are
not included for the SLT task, we found that adding
those “reverse” language pairs is beneficial for the
others.

In terms of improvement, it can be seen that even
though in this extreme low-resource scenario, us-
ing more complicated architecture obtained better
translations. A combination of relative attention,
macaron FFN and 16 layers of depth allowed us
to improve the baseline by 0.95 BLEU points, in
which the relative attention seems to be the most
useful. Ensembling multiple models is, as expected
but costly to improve the results further.

Data diversification was very effective after the
first round, by improving the average score by
nearly 1 BLEU point. Italian-related language pairs
enjoyed up to 2 BLEU points, due to the lowest
amount of original sentences. This result somewhat
went against the initial expectation, because by not
changing the sampling method, the data ratio for
those languages was even lower than in round 0.

We obtained the best configuration for text trans-
lation with ensembles on round 1. Proceeding to
round 2 unfortunately did not produce any further
improvement, which might be reasoned by the dom-
inance of synthetic sentences in terms of quantity.

6 End-to-end Speech Translation

Naturally, end-to-end speech translation is devel-
oped at the last stage to benefit from the previous
stages. The ASR models serve as providing the
SLT with the pretrained encoder, while we used the
MT model to fill the gaps, i.e translate all available
ASR data. This allows us to increase the amount
of training data for SLT significantly, especially for
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Pair/Model TF +Rel +MCR +16L +ESB +DSF +ESB +DSF2

es-en 33.48 33.98 34.94 34.93 35.16 35.88 36.14 35.83
en-es 30.87 31.34 31.88 31.72 32.76 33.42 33.97 33.56
es-fr 40.65 41.40 41.19 41.26 42.06 42.87 43.57 43.12
fr-es 38.48 38.59 38.98 38.85 39.87 40.82 41.09 40.88
es-it 28.82 29.07 30.24 31.29 31.27 32.50 33.80 32.93
it-es 34.74 35.27 35.25 35.31 36.58 38.41 39.01 38.50
es-pt 43.04 43.40 43.65 43.53 44.30 44.96 45.40 45.03
pt-es 46.95 47.01 46.63 46.59 47.70 48.74 48.95 48.41
fr-en 38.29 38.62 39.64 39.53 40.32 41.09 41.65 40.93
en-fr 39.88 40.47 40.85 41.18 41.51 42.40 43.17 42.14
fr-pt 40.61 41.31 41.71 42.52 42.50 43.94 44.25 43.52
pt-fr 46.14 46.42 46.57 47.02 47.76 48.90 49.66 48.76
fr-pt 37.67 38.49 38.73 39.81 39.57 40.23 40.55 39.52
pt-fr 34.60 34.53 35.07 35.43 35.58 36.59 37.05 36.51
avg 38.16 38.56 38.95 39.21 39.78 40.76 41.3 40.68

+0.4 +0.29 +0.26 +0.57 +0.98 +0.54 -0.62

Table 4: IWSLT 2021 machine translation progressive results. The features including Relative Attention (REL),
Macaron FFN (MCR), 16 layer-deep (16L), ensembling (ESB) and diversification (DSF) are additive from left to
right, starting from the base model. The last row shows the improvement compared to the previous increment.

languages such as Italian and French.

Architecture wise, we only used Transformers
for SLT, that followed the same training procedure
with ASR due to the fact that the encoders are
transferred from the Transformer ASR models.

The results are shown in Table 5. Unfortunately
the results without ASR pre-training are not avail-
able because training was unstable and likely to
diverge in such harsh data condition. It is not un-
expected that the end-to-end model (E2E) trained
with only the initially limited amount of data falls
behind the performance of the cascade models.
With distillation from machine translation, the per-
formance is largely boosted to be on par with the
cascade. The 0.2 differential in average mostly
comes from Portuguese-Spanish, Italian-English
and Italian-Spanish.

Compared with pre-distillation, a lot of language-
pairs enjoyed a significant improvement of up to
26 BLEU points, such as the sample Italian audio
inputs, thanks to the distillation models changing
zero-shot to supervised settings. The supervised
language pair that was mostly improved is Spanish-
French (12 BLEU points).

Finally, in this particular SLT setup, we found
that it is useful to ensemble cascade and SLT mod-
els in a multi-modal manner. In the literature, it
has been observed that each approach has its own

strength. While the components of the cascade
can be easily tuned individually because ASR and
MT have lower mapping complexity than SLT, the
end-to-end models can avoid error-propagation that
plagues cascade systems. An ensemble suggests
that we can combine the strengths of two approach,
yet only available in certain experimental settings
that leaves audio segmentation out of the scope.
Here the ensemble is done by simply using the
same bpe vocabulary for the MT and SLT models,
and average the output probabilities of the MT and
SLT models for every timestep. The result showed
that this intuition can help improve the results fur-
ther.

7 Final submission

Our final submissions include an ensemble of E2E
and Cascade as primary, with the E2E model served
as the contrastive. The official results are shown in
Table 6.

In the final results, we can see that the ensemble
quality depends on the ASR performance, which
can be seen in test sets with Spanish audio and
French audio. At the relatively low error rate, com-
bining two approaches provides a significant boost
to the translation quality. However, for French
samples the deterioration of the cascade makes the
combination worse than the sole end-to-end solu-
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Model Cascade E2E +Syn +ESB
Pair

es-en 30.44 25.58 30.27 31.02
es-fr 31.64 18.81 31.32 32.25
es-it 26.07 22.94 26.22 26.21
es-pt 39.33 34.73 39.53 40.04
fr-en 35.41 29.73 35.19 36.06
fr-es 37.71 30.13 38.48 38.96
fr-pt 38.21 30.98 37.97 38.44
pt-en 33.63 28.16 33.25 34.15
pt-es 37.53 25.55 38.41 38.43
it-en 24.28 5.37 24.92 25.29
it-es 32.29 7.20 33.67 33.90
avg 33.32 23.56 33.56 34.06

Table 5: End-to-end speech translation results on pro-
gressive testsets.

SLT Ensemble E2E
Pair

es-en 39.3 38.9
es-fr 32.4 31.4
es-it 32.3 31.4
es-pt 46.6 46.7
fr-en 27.1 28.5
fr-es 29.2 29.7
fr-pt 28.8 28.7
pt-en 30.7 30.2
pt-es 37.3 37.1
it-en 26.5 25.8
it-es 32.4 33.0
ASR

es 10.0 -
fr 26.5 -
it 15.5 -
pt 22.1 -

Table 6: Official IWSLT 2021 Speech recognition and
translation results.

tion.
This experiment shows that error propagation is

a serious problem and end-to-end SLT systems can
be more robust than cascades with sufficient data
and training efficiency improvement.

The evaluation also suggests us to investigate
into zero-shot translation for multilingual SLT,
which is extremely difficult because of the modality
difference between the source and target sequences.
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Abstract

This paper describes Edinburgh’s submissions
to the IWSLT2021 multilingual speech trans-
lation (ST) task. We aim at improving multi-
lingual translation and zero-shot performance
in the constrained setting (without using any
extra training data) through methods that en-
courage transfer learning and larger capac-
ity modeling with advanced neural compo-
nents. We build our end-to-end multilingual
ST model based on Transformer, integrating
techniques including adaptive speech feature
selection, language-specific modeling, multi-
task learning, deep and big Transformer, spar-
sified linear attention and root mean square
layer normalization. We adopt data augmenta-
tion using machine translation models for ST
which converts the zero-shot problem into a
zero-resource one. Experimental results show
that these methods deliver substantial improve-
ments, surpassing the official baseline by> 15
average BLEU and outperforming our cascad-
ing system by > 2 average BLEU. Our final
submission achieves competitive performance
(runner up).1

1 Introduction

Although end-to-end (E2E) speech translation (ST)
has achieved great success in recent years, out-
performing its cascading counterpart and deliver-
ing state-of-the-art performance on several bench-
marks (Ansari et al., 2020; Zhang et al., 2020a;
Zhao et al., 2020), it still suffers from the relatively
low amounts of dedicated speech-to-translation par-
allel training data (Salesky et al., 2021). In text-
based machine translation (MT), one solution to
lack of training data is to jointly perform multi-
lingual translation with the benefit of transferring
knowledge across similar languages and to low-
resource directions, and even enabling zero-shot

1Source code and pretrained models are available at
https://github.com/bzhangGo/zero.

translation, i.e. direct translation between language
pairs unseen in training (Firat et al., 2016; Johnson
et al., 2017). However, whether and how to obtain
similar success in very low-resource (and practi-
cal) scenario for multilingual ST with E2E models
remains an open question.

To address this question, we participated in the
IWSLT2021 multilingual speech translation task,
which focuses on low-resource ST language pairs
in a multilingual setup. Apart from supervised
evaluation, the task also offers zero-shot condition
with a particular emphasis where only automatic
speech recognition (ASR) training data is provided
for some languages (without any direct ST parallel
data). The task is organized in two settings: con-
strained setting and unconstrained setting. The
former restricts participants to use the given multi-
lingual TEDx data (Salesky et al., 2021) alone for
experiment; while the latter allows for additional
ASR/ST/MT/others training data. In this paper, we
address the constrained one.

Our E2E multilingual ST model takes Trans-
former (Vaswani et al., 2017) as the backbone, and
follows the adaptive feature selection (AFS) frame-
work (Zhang et al., 2020a,b) as shown in Figure
1. AFS is capable of filtering out uninformative
speech features contributing little to ASR, effec-
tively reducing speech redundancy and improving
ST performance (Zhang et al., 2020a). We adapt
AFS to multilingual ST, and further incorporate
several techniques that encourage transfer learn-
ing and larger capacity modeling, ranging from
language-specific modeling, multi-task learning,
deep and big Transformer, sparsified linear atten-
tion (ReLA) (Zhang et al., 2021b) to root mean
square layer normalization (RMSNorm) (Zhang
and Sennrich, 2019b). Inspired by Zhang et al.
(2020c), we convert the zero-shot translation prob-
lem into a zero-resource one via data augmentation
with multilingual MT models.
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ASR Encoder
Pre-norm Transformer

ST Encoder
Post-norm Transformer

w/ RMSNorm

ST Decoder
Post-norm transformer 

decoder
w/ ReLA + RMSNorm

ASR Decoder
Post-norm transformer 

decoder
Src LS Layer

Tgt LS Layer

Thank you. Gracias.

[en] embedding

AFS

[en] mapping

[es] embedding

[es] mapping

a) ASR Pretraining w/ Adaptive Feature 
Selection

b) ST Training with AFS-Filtered Features

Figure 1: Overview of our multilingual ST model for an English-Spanish example. We first pretrain the ASR encoder
paired with adaptive feature selection (AFS) to induce informative speech features (a), which are then carried over to the ST
encoder-decoder model for translation (b). We adopt language embedding and language-specific (LS) linear mapping before and
after ASR/ST encoder, respectively, to strengthen source/target (Src/Tgt) language modeling. The ASR decoder is discarded and
the other ASR modules are frozen after the pretraining. Solid arrows illustrate the E2E translation procedure.

We integrate all these methods into one model
for our submission. Our results reveal that:

• These methods are complementary in improv-
ing translation performance, where data aug-
mentation and larger-capacity modeling con-
tribute a lot.

• Low-resource E2E ST benefits greatly from
multilingual modeling; our E2E multilingual
ST performs very well in this task, outper-
forming its cascading counterpart by 2 aver-
age BLEU.

2 Methods

In this section, we elaborate crucial ingredients
in our E2E multilingual ST, which individually
have already been proven successful for ST or
(multilingual) MT. We put them together to im-
prove multilingual ST as shown in Figure 1. Note
all encoder/decoder modules are based on Trans-
former (Vaswani et al., 2017).

2.1 Adaptive Feature Selection
Speech is lengthy and noisy compared to its text
transcription. Also, information in an audio often
distributes unevenly. All these increase the dif-
ficulty of extracting informative speech features.
To solve this issue, researchers resort to methods
compressing and grouping speech features (Salesky
et al., 2019; Gaido et al., 2021). Particularly, Zhang
et al. (2020a) propose adaptive feature selection
(AFS) to sparsify speech encodings by pruning

out those uninformative ones contributing little to
ASR based on L0DROP (Zhang et al., 2020b). Us-
ing AFS, Zhang et al. (2020a) observe significant
performance improvements (> 1 BLEU) with the
removal of ∼84% speech features on bilingual ST.

Our model follows the AFS framework, which
includes three steps: 1) pretraining the ASR
encoder-decoder model; then 2) finetuning the ASR
model with AFS; and 3) training ST model with
the ASR encoder and the AFS module frozen.

2.2 Deep Transformer Modeling

Neural models often benefit from increased mod-
eling capacity, and one way to achieve this is
to deepen the models (He et al., 2015; Zhang
et al., 2020d). However, simply increasing model
depth for Transformer results in optimization fail-
ure, caused by gradient vanishing (Zhang et al.,
2019a). To enable deep Transformer, Zhang et al.
(2019a) propose depth-scaled initialization (DS-
Init) that only requires changing parameter initial-
ization without any architectural modification. DS-
Init successfully helps to train up to 30-layer Trans-
former, substantially improving bilingual and also
massively multilingual translation (Zhang et al.,
2019a, 2020c). We adopt this strategy for all deep
Transformer experiments.

Apart from DS-Init, researchers also find that
changing the post-norm structure to its pre-norm
alternative improves Transformer’s robustness to
deep modeling, albeit slightly reducing qual-
ity (Wang et al., 2019; Zhang et al., 2019a). We
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keep using post-norm Transformer for most mod-
ules but apply the pre-norm structure to the ASR
encoder to stabilize the encoding of speeches from
different languages.

2.3 Language-Specific Modeling
Analogous to multi-task learning, multilingual
translation benefits from inter-task transfer learn-
ing but suffers from task interference. How to
balance between shared modeling and language-
specific (LS) modeling so as to maximize the trans-
fer effect and avoid the interference remains chal-
lenging. A recent study suggests that scheduling
language-specific modeling to top and/or bottom
encoder/decoder sub-layers benefits translation the
most (Zhang et al., 2021a), resonating with the
findings of Zhang et al. (2020c). In particular,
Zhang et al. (2020c) propose language-aware lin-
ear transformation, a language-specific linear map-
ping inserted in-between the encoder and the de-
coder which greatly improves massively multilin-
gual translation.

We adopt such language-specific linear mapping
and apply it to both ASR and ST encoders. We
ground such modeling in the ASR and ST encoder
to the source and target language, respectively.
Following multilingual translation (Johnson et al.,
2017; Gangi et al., 2019; Inaguma et al., 2019), we
adopt language embedding (such as “[en], [es]”)
but add it to the inputs rather than appending an
extra token.

2.4 Sparsified Linear Attention
Attention, as the key component in Transformer,
takes the main responsibility to capture token-wise
dependencies. However, not all tokens are seman-
tically correlated, inspiring follow-up studies on
sparsified attention that could explicitly zero-out
some attention probabilities (Peters et al., 2019;
Zhang et al., 2021b). Recently, Zhang et al. (2021b)
propose rectified linear attention (ReLA) which
directly induces sparse structures by enforcing
ReLU activation on the attention logits. ReLA has
achieved comparable performance on several MT
tasks with the advantage of high computational ef-
ficiency against the sparsified softmax models (Pe-
ters et al., 2019).

Results on MT show that ReLA delivers bet-
ter performance when applied to Transformer de-
coder (Zhang et al., 2021b). We follow this prac-
tice and apply it to the ST decoder. Our study also
demonstrates that ReLA generalizes well to ST.

2.5 Root Mean Square Layer Normalization

Layer normalization (LayerNorm) stabilizes net-
work activations and improves model perfor-
mance (Ba et al., 2016), but raises non-negligible
computational overheads reducing net efficiency,
particularly to recurrent models (Zhang and Sen-
nrich, 2019a). To overcome such overhead, Zhang
and Sennrich (2019b) propose root mean square
layer normalization (RMSNorm) which relies on
root mean square statistic alone to regularize ac-
tivations and is a drop-in replacement to Layer-
Norm. RMSNorm yields comparable performance
to LayerNorm in a series of experiments (Zhang
and Sennrich, 2019b) and show great scalability in
large-scale pretraining (Narang et al., 2021).

We apply RMSNorm to the ST encoder and de-
coder, which benefits the training of deep and big
Transformers.

2.6 Data Augmentation

Data augmentation (DA) is an effective strategy for
low-resource tasks by increasing the training cor-
pus with pseudo-labelled samples (Sennrich et al.,
2016a; Zhang and Zong, 2016). Methods for gen-
erating such samples vary greatly, and we adopt
the one following knowledge distillation (Kim and
Rush, 2016). Note, prior to our study, knowledge
distillation has already been successfully applied to
ST tasks (Liu et al., 2019; Gaido et al., 2020). We
regard the multilingual MT as the teacher since text-
based translation is much easier than and almost
upper-bounds the speech-based counterpart (Zhang
et al., 2020a), and transfer its knowledge into our
multilingual ST (student).

Concretely, we first train a multilingual MT
model and then use it to translate each source
transcript into all possible ST directions, includ-
ing the zero-shot ones, based on beam search
algorithm. We directly concatenate the gener-
ated pseudo speech-translation pairs with the orig-
inal training corpus for multilingual ST training.
This will convert the zero-shot translation problem
into a zero-resource one for ST, which has been
demonstrated effective in massively multilingual
MT (Zhang et al., 2020c).

2.7 Multi-Task Learning

Multi-task learning aims at improving task perfor-
mance by jointly modeling different tasks within
one framework. Particularly, when tasks are of high
correlation, they tend to benefit each other and de-
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Speech
Target Languages

En Es Fr Pt It

Es 36K/102K 102K/- 3.6K/102K 21K/102K 5.6K/102K
Fr 30K/116K 21K/116K 116K/- 13K/116K -/116K
Pt 31K/90K -/90K -/90K 90K/- -/90K
It -/50K -/50K -/50K -/50K 50K/-

Table 1: Statistics for ST training data used for the
IWSLT2021 multilingual ST task. “-”: denotes no data avail-
able. “a/b”: “a” denotes genuine data while “b” is for aug-
mented data.

liver positive knowledge transfer. With datasets of
different tasks combined, this also partially allevi-
ates data scarcity.

We adopt multi-task learning by augmenting
translation tasks with transcription tasks. We in-
corporate the ASR tasks for multilingual ST, and
auto-encoding tasks (transcript-to-transcript in the
same language) for multilingual MT.

3 Experimental Settings

In this section, we explain the used datasets, model
architectures, optimization details and evaluation
metrics in our experiments. All implementations
are based on the zero2 toolkit (Zhang et al., 2018).

Data We participate in the constrained setting,
where only the provided data, i.e. Multilingual
TEDx (Salesky et al., 2021), is permitted. Mul-
tilingual TEDx collects audios from TEDx talks
in 8 source languages (Spanish/Es, French/Fr, Por-
tuguese/Pt, Italian/It, Russian/Ru, Greek/El, Ara-
bic/Ar, German/De) paired with their manual tran-
scriptions, covering translations into 5 target lan-
guages (English/En, Es, Fr, Pt, It). It contains
supervised training data for 13 ST directions, three
of which (Pt-Es, It-En, It-Es) are masked-out for
zero-shot evaluation. ASR training data is given
for all 8 source languages. Overall, Multilingual
TEDx is a small-scale dataset, whose ST training
data size ranges from 5K utterances (It-Es) to at
most 39K utterances (Es-En). Thus, studying and
improving transfer across different languages is of
great significance. The IWSLT2021 task requires
participants to model translations from 4 source
languages (Es, Fr, Pt, It), where the final evaluation
only targets translations into En and Es. The statis-
tics of ST (genuine and augmented) training data
are shown in Table 1.

Regarding audio preprocessing, we use the given
audio segmentation (train/dev/test) for experiments.
We extract 40-dimensional log-Mel filterbanks with

2https://github.com/bzhangGo/zero

a step size of 10ms and window size of 25ms as the
acoustic features, followed by feature expansion
via second-order derivatives and mean-variance
normalization. The final acoustic input is 360-
dimensional, a concatenation of the features corre-
sponding to three consecutive and non-overlapping
frames. We tokenize and truecase all text data us-
ing Moses scripts (Koehn et al., 2007). We adopt
subword processing (Sennrich et al., 2016b) with
8K merging operations (Sennrich and Zhang, 2019)
on these texts to handle rare words. Note we use
different subword models (but with the same vo-
cabulary size) for ST, ASR and MT.

Architecture The architecture for ASR and ST
is illustrated in Figure 1, while our MT model fol-
lows Zhang et al. (2020c). We apply AFS to ASR
encoder outputs (after language-specific mapping)
along both temporal and feature dimensions. By de-
fault, we adopt Transformer-base setting (Vaswani
et al., 2017): we use 6 encoder/decoder layers
and 8 attention heads with a model dimension of
512/2048. For deep Transformer, we equally in-
crease the encoder and decoder depth, and adopt
DS-Init for training. We also use Transformer-big
for ST, where the number of attention heads and
model dimension are doubled, increased to 16 and
1024/4096, respectively.

Optimization We train MT models with the max-
imum likelihood objective (LMLE). Apart from
LMLE, we also incorporate the CTC loss (Graves
et al., 2006) for ASR pretraining with a weight
value of 0.3 following Zhang et al. (2020a). During
AFS finetuning, the CTC loss is discarded and re-
placed with the L0DROP sparsification loss (Zhang
et al., 2020b) weighted by 0.5. We employ label
smoothing of value 0.1 for LMLE.

We adopt Adam (β1=0.9, β2=0.98) for parameter
tuning with a warmup step of 4K. We train all
models (ASR, ST and MT) for 100K steps, and
finetune AFS for 10K steps. We group instances of
around 25K target subwords into one mini-batch.
We apply dropout to attention weights and residual
connections with a rate of 0.1 and 0.2, respectively.
Dropout rate on residual connections is increased
to 0.3 for ST big models to avoid overfitting, and
to 0.5 for MT models inspired by low-resource
MT (Sennrich and Zhang, 2019). Except dropout,
we use no other regularization techniques. We use
beam search for decoding, and set the beam size
and length penalty to 4 and 0.6, separately. The
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Model Es-En Es-Pt Es-Fr Fr-En Fr-Es Fr-Pt Pt-En Pt-Es It-En It-Es Avg

Bilingual Models? 25.5 39.3 2.0 28.3 30.5 19.0 27.9 29.9 18.9 1.0 22.23
Multilingual Models? 24.6 37.3 18.1 28.2 32.1 30.6 28.8 38.4 20.9 25.1 28.41

Our Multilingual MT
+ 6 layers 28.7 42.1 29.3 33.6 38.3 36.7 33.2 42.9 20.3 32.7 33.78
+ 12 layers 31.8 44.7 31.7 36.4 40.9 39.9 35.6 44.0 23.0 34.9 36.29
+ 24 layers 32.8 44.9 32.4 37.3 41.8 40.7 36.8 43.2 23.2 35.3 36.84

Ablation Study
+ 6 layers w/o LS layer 28.6 41.8 29.0 33.7 38.2 36.3 33.2 42.5 20.7 32.6 33.66
+ 6 layer + RoBT 28.1 40.3 28.6 34.1 38.3 33.6 33.6 42.7 21.1 32.9 33.33

Table 2: SacreBLEU↑ for MT on Multilingual TEDx testsets. ?: results reported by Salesky et al. (2021). Note the results for
Pt-Es, It-En and It-Es translation in our model are based on zero-shot evaluation. In spite of this unfairness, our model still
substantially outperforms the supervised baseline (Salesky et al., 2021) by a large margin, +8.43 BLEU. RoBT: random online
back-translation (Zhang et al., 2020c). Best average BLEU is highlighted in bold. Columns in red denote zero-shot evaluation.

Model Es Fr Pt It Ru El Ar De Avg

Hybrid LF-MMI? 16.2 19.4 20.2 16.4 28.4 25.0 80.8 42.3 31.09
Transformer? 46.4 45.6 54.8 48.0 74.7 109.5 104.4 111.1 74.31

Our Multilingual ASR
+ 6 layers 17.6 19.5 23.1 20.8 39.8 33.0 104.3 57.8 39.49

Ablation Study
+ 6 layers w/o LS layer 18.0 19.5 23.2 21.6 40.8 35.2 97.8 62.6 39.84

Table 3: WER↓ for ASR on Multilingual TEDx testsets. ?: results reported by Salesky et al. (2021). Best results are highlighted
in bold.

model used for evaluation is averaged over the last
5 checkpoints.

Note, while the training data size varies across
languages, we follow the original data distribution
and adopt no specific sampling strategies for all
multilingual experiments.

Evaluation We evaluate translation quality us-
ing tokenized case-sensitive (Sacre)BLEU (Pap-
ineni et al., 2002; Post, 2018), and report WER for
ASR performance without punctuation on lower-
cased text. In ST experiments, we observe some
repeated translations decreasing BLEU. We auto-
matically post-process translations by removing
repeated chunks of up to 10 words.

4 Results

4.1 Multilingual MT

Table 2 shows the results for text-based translation.
Our best model, achieved with 24 layers, largely
surpasses the official baseline (Salesky et al., 2021)
by > 8 average BLEU. With 6 layers, our model
still largely surpasses this baseline by 5.37 average
BLEU, suggesting the superiority of our model.

Increasing model depth greatly benefits multilin-
gual MT (+2.51 average BLEU, 6 layers→ 12 lay-

ers), even though the dataset is small. Note the ben-
efit from increased depth diminishes as the depth
goes larger (+0.55 average BLEU, 12 layers→ 24
layers). We find that language-specific modeling
slightly improves translation performance (+0.12
average BLEU). Such improvement seems unin-
teresting particularly compared to the significant
gains on massively multilingual MT (Zhang et al.,
2020c), but we ascribe this to the high language
similarity in Multilingual TEDx and the relative
small number of languages. We also confirm the
effectiveness of random online back-translation
(RoBT), which improves zero-shot translation via
pseudo sentence pair augmentation (Zhang et al.,
2020c). Table 2 shows that RoBT indeed benefits
zero-shot translation, but sacrifices overall quality
(-0.45 average BLEU).

Overall, our results reveal very positive transfer
between these languages, and also great zero-shot
translation performance. This is an encouraging
finding for multilingual ST. We use our 24-layer
model for data augmentation distillation in the fol-
lowing ST experiments.
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Model Es-En Es-Pt Es-Fr Fr-En Fr-Es Fr-Pt Pt-En Pt-Es It-En It-Es Avg

Multilingual Models? 12.3 17.4 6.1 12.0 13.6 13.2 12.0 13.7 10.7 13.1 12.41
Cascades with Multilingual MT? 21.5 26.5 23.4 25.3 26.9 23.3 22.3 26.3 21.9 28.4 24.58

Our Multilingual MT, w/ AFS, LS layer, DA, ReLA (decoder self-attention) and RMSNorm
+ 6 layers 24.9 34.8 26.6 30.0 33.8 33.2 27.4 33.9 20.7 30.8 29.61
+ 12 layers 24.6 35.6 26.7 29.9 33.7 33.5 28.5 34.4 21.1 30.6 29.86
+ 6 layers + big model 26.1 36.2 27.5 31.0 34.9 34.3 28.7 35.1 21.6 31.5 30.69

Ablation Study
+ 6 layers w/o AFS 25.2 35.1 26.4 29.9 33.2 32.7 28.4 33.7 20.3 29.6 29.45
+ 6 layers w/o AFS & DA 20.8 30.9 18.5 24.7 27.6 27.0 23.8 27.2 13.8 20.0 23.43
+ 6 layers w/o ReLA & RMSNorm 24.2 34.8 26.4 29.5 34.1 33.4 27.5 33.7 20.7 30.3 29.46
+ 6 layers + ReLA on cross-att. 24.8 35.3 27.1 30.2 34.3 33.8 27.6 34.1 20.5 30.5 29.82

Our Cascade Model w/ Multilingual ASR + 24-layer Multilingual MT
24.8 33.7 25.3 29.2 32.7 32.2 26.9 31.7 18.5 27.1 28.21

Final Submission: Ensemble of 4 base model, 1 12-layer model and 1 big model w/ length penalty of 0.9
26.6 36.6 27.9 31.8 35.6 35.4 29.7 35.8 22.0 32.0 31.34

Table 4: SacreBLEU↑ for ST on Multilingual TEDx testsets. ?: results reported by Salesky et al. (2021). Note the results for
Pt-Es, It-En and It-Es translation in our model are based on zero-shot evaluation. Our model substantially outperforms the official
baseline (Salesky et al., 2021) by > 10 average BLEU. DA: data augmentation. Best average BLEU is highlighted in bold.

4.2 Multilingual ASR

Table 3 shows the ASR performance. Following
previous studies (Salesky et al., 2021; Zhang et al.,
2020a), we experiment with the Transformer base
setting. Our multilingual ASR model yields an
average WER of 39.49, substantially outperform-
ing the official baseline (Salesky et al., 2021) by
34.82 and narrowing the performance gap against
the hybrid model to∼ 8 WER. Note lower WER in-
dicates better quality. We ascribe this large quality
gain to the dedicated multilingual ASR model ar-
chitecture, the better optimization, and particularly
the incorporation of the CTC objective.

Removing the language-specific layer slightly
hurts recognition performance (+0.35 average
WER). It largely benefits ASR for Ar (-6.5 WER),
but hurts that for De (+4.8 WER), showing the diffi-
culty of multilingual modeling: it’s hard to balance
between different tasks (translation directions). We
adopt the model with language-specific projection
for AFS and ST.

Notice that we still include Ru, El, Ar and De for
the ASR training, although they are not a part of
the evaluation campaign. We regard this inclusion
as some sort of model regularization: the extra
training data could reduce overfitting and might
enable potential cross-lingual transfer.

4.3 Multilingual ST

Table 4 summarizes the ST results. Our base
model using 6 layers delivers an average BLEU
of 29.61, largely outperforming the official base-

line (Salesky et al., 2021) by ∼ 17 BLEU and also
beating their cascading baseline. In a fair compar-
ison where knowledge data augmentation is not
used, our model still obtain an average BLEU of
23.43.

Increasing the ST model depth slightly improves
quality (+0.25 average BLEU), while enlarging ST
model yields a larger improvement, reaching 1.08.
Although it’s widely known that large neural model
often suffers from overfitting in low-resource tasks,
our results suggest that such model still gains qual-
ity with proper regularization (AFS, larger dropout,
etc).

Our ablation study demonstrates the effective-
ness of AFS, ReLA and RMSNorm, although the
corresponding quality gains are marginal. In par-
ticular, we observe that applying ReLA to both
self-attention and cross-attention in the ST decoder
helps (Zhang et al., 2021b). AFS improves training
efficiency, allowing larger batch size thus fewer
gradient accumulation steps (Zhang et al., 2020a).
Besides, data augmentation benefits multilingual
ST very much, resulting in ∼ 6 average BLEU im-
provement, and the gain on zero-shot directions is
even higher, + 7.54 BLEU. Thus, we mainly as-
cribe our success on zero-shot translation to the
inclusion of pseudo parallel corpora – data mat-
ter! – which converts the zero-shot problem into a
zero-resource one.

Our E2E model also largely outperforms the
cascading system (+ 2.48 average BLEU). Notice
that our cascading system is sub-optimal, since we
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Model Es-En Es-Fr Es-It Es-Pt Fr-En Fr-Es Fr-Pt Pt-En Pt-Es It-En It-Es Avg

Ensemble of 6 E2E models: 4 base model, 1 12-layer model and 1 big model w/ length penalty of 0.9
36.2 30.3 32.9 44.5 26.4 29.5 30.1 27.0 34.5 23.0 31.1 31.41

Cascading model: base ASR model + 24-layer MT model
33.3 26.8 28.6 39.9 23.7 26.9 26.8 23.6 30.0 19.7 26.7 27.82

Single E2E Model: multilingual ST model + 6 layers, big Transformer
35.0 29.9 31.9 44.1 25.5 28.8 29.0 26.2 33.3 22.4 30.1 30.56

Table 5: SacreBLEU↑ for our submissions to the IWSLT2021 multilingual ST task.

didn’t bias our MT model towards ASR outputs,
and the mismatch between gold transcripts and
ASR outputs often hurts cascading performance.
Recent advances on avoiding such error propaga-
tion might deliver better cascading results (Cheng
et al., 2018; Zhang et al., 2019b; Cheng et al., 2019;
Sperber et al., 2019).

Our final submission is an ensemble of 6 E2E
multilingual ST models, which reaches an average
BLEU of 31.34. Apart from the ensemble, we also
increase the decoding length penalty from 0.6 to
0.9, which performs slightly better.

5 Submission Results

The IWSLT2021 task prepares a held-out test set
for the final evaluation. We submitted three sys-
tems: one cascading system, one E2E single model
(w/ big ST Transformer) and one ensemble model.
Results are shown in Table 5: our E2E multilingual
ST model outperforms its cascading counterpart,
and the ensemble model reaches the best perfor-
mance. Our submission achieves runner-up results
among all participants.

6 Conclusion and Future Work

We describe Edinburgh’s end-to-end multilingual
speech translation system for the IWSLT2021 mul-
tilingual speech translation task. We observe sub-
stantial performance improvement using larger-
capacity modeling (deep or big modeling) and data
augmentation. In spite of the scarcity of the train-
ing data, we show that E2E models benefit greatly
from multilingual modeling and deliver promis-
ing results on zero-shot translation directions (even
without data augmentation). Our E2E multilingual
ST greatly surpasses its cascading counterpart.

Regarding future study, we argue that exploring
the multilingual transfer behavior should be very
practical and promising to ST. This work mainly
studies transfer across similar languages. How the

current model generalizes to distant languages is
still an open question. Besides, a general trend for
deep learning is to increase the model capacity via
deep and/or big modeling. However, deep models
for ST seem to be ineffective. Identifying the rea-
son for this and proposing simple solutions would
be of high interest.
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Ondřej Bojar, Roldano Cattoni, Fahim Dalvi, Nadir
Durrani, Marcello Federico, Christian Federmann,
Jiatao Gu, Fei Huang, Kevin Knight, Xutai Ma, Ajay
Nagesh, Matteo Negri, Jan Niehues, Juan Pino, Eliz-
abeth Salesky, Xing Shi, Sebastian Stüker, Marco
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Abstract

This paper describes the ON-TRAC Con-
sortium translation systems developed for
two challenge tracks featured in the Evalua-
tion Campaign of IWSLT 2021, low-resource
speech translation and multilingual speech
translation. The ON-TRAC Consortium is
composed of researchers from three French
academic laboratories and an industrial part-
ner: LIA (Avignon Université), LIG (Univer-
sité Grenoble Alpes), LIUM (Le Mans Uni-
versité), and researchers from Airbus. A
pipeline approach was explored for the low-
resource speech translation task, using a hy-
brid HMM/TDNN automatic speech recogni-
tion system fed by wav2vec features, cou-
pled to an NMT system. For the multilingual
speech translation task, we investigated the use
of a dual-decoder Transformer that jointly tran-
scribes and translates an input speech signal.
This model was trained in order to translate
from multiple source languages to multiple tar-
get ones.

1 Introduction

In the two last editions of the IWSLT evaluation
campaigns, the ON-TRAC consortium focused on
end-to-end offline speech translation and simul-
taneous speech translation (Nguyen et al., 2019;
Elbayad et al., 2020). In 2021, we chose to focus
on low-resource speech translation and multilin-
gual speech translation by using two different kinds
of approaches: a cascaded speech-to-text transla-
tion (combining source language automatic speech
recognition (ASR) and source-to-target text trans-
lation) to process the low resource speech transla-
tion tasks, and a neural end-to-end model for the
multilingual speech translation task. For the low
resource task, we investigated the use of speech fea-
tures extracted by a neural model pretrained by self
supervision the wav2vec XLSR-53 model (Con-
neau et al., 2020) in order to process Swahili lan-

guages by a classical hybrid Markovian/neuronal
ASR system. The ASR outputs were processed
by neural machine text-to-text translation systems
dedicated to the two targeted language pairs. For
the multilingual speech translation task, we inves-
tigated the use of a dual-decoder Transformer that
jointly transcribes and translates an input speech.
This model was trained in order to translate from
multiple source languages to multiple target ones.

The ON-TRAC Consortium is composed of re-
searchers from three French academic laboratories
and an industrial partner: LIA (Avignon Univer-
sité), LIG (Université Grenoble Alpes), LIUM (Le
Mans Université), and researchers from Airbus.

2 Low resource speech translation

The task of the low resource speech transla-
tion track was to build the speech transcrip-
tion/translation system for transcribing and/or trans-
lating between the two language pairs:

• Coastal Swahili (swa) to English (eng)

• Congolese Swahili (swc) to French (fra)

2.1 ASR system

The same ASR models were used for both test
datasets: Coastal Swahili (swa) and Congolese
Swahili (swc).

2.1.1 Data
The training corpus for the ASR acoustic model
(AM) comprises of several datasets:

• 5k instances for Congolese Swahili speech
provided by the IWSLT-2021 organizers1;

• a training subset of the ALFFA corpus (Gelas
et al., 2012) (read speech and broadcast news);

1https://iwslt.org/2021/low-resource
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• a subset of the IARPA Babel Swahili Lan-
guage Pack2 (conversational and scripted tele-
phone speech that spoken in the Nairobi di-
alect region of Kenya).

The total size of the training corpus is about 74
hours. In our preliminary experiments, we also
tried to include a swa dataset (5k instances of
Coastal Swahili), provided by the IWSLT-2021 or-
ganizers, into the training corpus, but this does not
improve the ASR performance. Hence, for the sub-
mitted system and for the results reported in the
paper, this corpus was not used.

2.1.2 Architecture
In this work, we investigated the impact of using
self-supervised learning (Baevski et al., 2020) on
the hybrid ASR HMM/DNN acoustic models, as
well as on the pipeline ASR+MT system perfor-
mance. Self-supervised learning (SSL) has shown
to be effective for various speech-related tasks
including ASR and MT (Schneider et al., 2019;
Baevski et al., 2020; Evain et al., 2021; Nguyen
et al., 2020) and could be especially beneficial for
a low-resource scenario.

We trained several acoustic models (AM) with
two different types of input features for comparison:
(1) 40-dimensional high-resolution (hires) MFCC
features; and (2) wav2vec 2.0 features (Baevski
et al., 2020) extracted by the multilingual large
model pretrained pretrained in 53 languages,
XLSR-53-large (Conneau et al., 2020).

The phoneme set and transcriptions were the
same as in the work (Gelas et al., 2012).

The AMs are state-of-the-art factorized time de-
lay neural networks (TDNN-F) (Povey et al., 2018;
Peddinti et al., 2015) and were trained using the
Kaldi toolkit (Povey et al., 2011). The models have
similar topology (except for the input features): 12
TDNN-F layers (1,024-dimensional, with projec-
tion dimension of 128) and a 2232-dimensional out-
put layer. The AMs were trained using lattice-free
maximum mutual information (LF-MMI) (Povey
et al., 2016) and cross-entropy criteria. Speed and
volume perturbations have been applied for data
augmentation. 100-dimensional speaker i-vectors
were appended to the input features.

We used a 3-gram LM with a 466K vocabulary
provided in the ALLFA recipe (Gelas et al., 2012)3.

2IARPA-babel202b-v1.0d, https://catalog.ldc.
upenn.edu/LDC2017S05

3https://github.com/getalp/ALFFA_
PUBLIC

2.2 Neural machine translation system
In order to translate the ASR outputs from source
languages to target languages, two neural machine
translation systems were built.

2.2.1 Data
For the swa-eng sentence pairs, training dataset for
machine translation system includes:

• OPUS4 english-swahili parallel data :
CCAligned and MultiCCAligned (El-Kishky
et al., 2020), WikiMatrix, Wikimedia, XLEnt
and ParaCrawl.

• 5k parallel swa-eng dataset provided by
IWSLT-2021.

The total size of the training dataset for swa-eng is
about 3.2M sentence pairs. We applied language
identification filtering LangID (Lui and Baldwin,
2012) keeping only swa-eng sentence pairs with
correct English. Sentence pairs where the English
side is detected as noisy are removed from the
swa-eng training dataset. In total, we filter out
about 30% of the original training set and obtains
a dataset of 2.2M sentence pairs. As for swc-fra
NMT system, training data includes parallel cor-
pora made available by the organizers in addition
to the available corpora for this language pair on
OPUS website. Overall we used a training set of
1.1 M sentence pairs.

2.2.2 Architecture
We propose an NMT model using long short-
term memory neural networks (LSTMs) (Hochre-
iter and Schmidhuber, 1997). NMT systems for
swa-eng and for swc-fra were trained using the
lstm luong wmt en de model template, a standard
LSTM Encoder-Decoder architecture with Luong-
style attention (Luong et al., 2015). Swa-eng sys-
tem was built at the subword level using a joint
BPE vocabulary of 32768 BPE unit, trained using
source and target language. Swc-fra NMT model,
on its side, was trained at the word level.

2.3 Results
The ASR results in terms of word error rate (WER)
are reported in Table 1 on the development datasets
for different types of acoustic features. We can
see that using wav2vec features significantly de-
creases the WER and provides about 8% of relative
WER reduction for both datasets. Table 2 shows

4https://opus.nlpl.eu
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the official ASR results on the test datatests. For
our submissions, we used wav2vec features only.
These ASR results are the best ones among the
ASR results submitted by the participants to this
task.

Features Dev swa Dev swc

MFCC hires 19.90 29.57
wav2vec 2.0 18.34 27.29

Table 1: ASR performance (WER,%) for the develop-
ment datasets of the low-resource task.

Features Test swa Test swc

wav2vec 2.0 31.25 36.75

Table 2: Official ASR performance (WER,%) for the
test datasets of the low-resource task.

The MT results in terms of BLEU (Papineni
et al., 2002) score are reported in Table 3. Notice
that while the WER of the outputs of the ASR fed
by wav2vec features is lower than the one fed by
MFCC features, for the swc-fra language pair, the
BLEU score of the translation from the MFCC-
based ASR system is higher than the one got on the
wav2vec-based ASR. By lack of time, we did not
yet investigate the reason of this, but we will do as
soon as possible.

Features Dev swa-eng Dev swc-fra

MFCC hires 13.39 9.60
wav2vec 2.0 14.19 9.45
reference text 18.36 14.07

Table 3: MT performance (BLEU) for the development
datasets of the low-resource task.

3 Multilingual speech translation

Speech-to-text translation (ST) consists in translat-
ing a speech utterance in a source language to a
text in another target language (e.g., English audio
to French text). In this section, we describe a multi-
lingual ST system that can translate from multiple
source languages to multiple target ones.

3.1 Data
The data provided for the multilingual ST task is a
subset of the Multilingual TEDx corpus (Salesky

Features Test swa-eng Test swc-fra

wav2vec 2.0 12.9 9.1

Table 4: Official MT performance (BLEU) on the test
datasets of the low-resource task for the submitted sys-
tem.

et al., 2021), in which there are four source lan-
guages (Spanish (es), French (fr), Portuguese (pt),
and Italian (it)) and five target languages (the afore-
mentioned source languages plus English (en)).
The sizes of the ASR talks range from 107 hours
(it) to 189 hours (es). Translation data is part of the
ASR talks for a given source language. Our exper-
iments were performed in the constrained setting
where only the provided data for the task is used.

3.2 Model architecture
Our system is based on the Dual-decoder Trans-
former (Le et al., 2020) which consists of an en-
coder and two decoders. This architecture jointly
transcribes and translates an input speech. Each of
the decoders is responsible for one task (ASR or
ST) while interacting with each other. We refer the
reader to the paper for further details.

We initially followed Le et al. (2020) and used
12 encoder layers, 6 decoder layers, and a hidden
dimension of d = 256. However, this model pro-
duced poor results. We hypothesize that with this
configuration, the model capacity is too large for
the dataset described in the previous section. In
the end, we ended up using only 6 encoder lay-
ers and 3 decoder layers (with the same d = 256).
In addition, we also trained a Transformer model
having the same encoder of 6 layers but with only
one decoder as the baseline (hereafter called single-
decoder model).

3.3 Implementation details
For text pre-processing, we normalize the punctua-
tion and build the vocabulary on the concatenation
of the transcript and translation text using Senten-
cePiece (Kudo and Richardson, 2018) without pre-
tokenization. We used 10k unigram vocabulary
as it performed slightly better than a vocabulary
of 8k tokens in our preliminary experiments. The
speech features are 80-dimensional log Mel filter-
bank. Utterances having more than 3000 frames are
removed for GPU efficiency. We used SpecAug-
ment (Park et al., 2019) with Librispeech double
(LD) policy for data augmentation.
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es-en es-fr es-pt es-it fr-en fr-es fr-pt pt-en pt-es it-en it-es

Training data (hours) 69 11 42 11 50 38 25 59 - - -

Results on the dev sets

Single decoder 11.56 4.95 19.14 17.98 13.27 12.99 12.21 13.54 8.31 3.88 4.54
Single decoder? 12.75 5.32 21.95 16.82 11.27 12.15 11.01 12.37 10.25 2.24 2.50
Dual-decoder? 18.59 8.02 25.38 19.22 17.81 17.79 15.20 17.63 3.00 4.09 4.81

Official results on the hidden test sets

Dual-decoder? 20.20 8.20 25.60 11.10 14.40 15.00 14.90 13.20 3.00 4.20 4.60

Table 5: BLEU on the dev and hidden test sets. ? denotes the use of the transcripts in training.

For the target-forcing mechanism, we prepended
a language-specific token to the target sequence
(Inaguma et al., 2019; Le et al., 2020). In order
to provide good initialization for our multilingual
ST system, we separately trained a multilingual
ASR system and a multilingual MT one on the al-
lowed data. We then used the weights from the
pre-trained ASR encoder, ASR decoder and MT
decoder to initialize our ST encoder, ASR decoder,
and ST decoder, respectively. We also used the
obtained multilingual MT model to augment the
training data by translating the transcripts to the tar-
get languages as well as translating the translations
back to the source languages.

Our model was trained for 150 epochs using the
Adam optimizer (Kingma and Ba, 2015) with the
inverse square root scheduler. We averaged the
last 10 checkpoints and used beam search with a
beam size of 5 for decoding. The results reported
are detokenized case-sensitive BLEU (Papineni
et al., 2002). Our implementation is based on the
FAIRSEQ S2T toolkit (Wang et al., 2020).

3.4 Results

Table 5 displays the results on the dev and hidden
test sets. One can observe that the Dual-decoder
Transformer outperforms the baselines of single de-
coder on all language pairs except for the pt-es di-
rection where it is surpassed by the single-decoder
models. The use of transcripts as additional lan-
guages (Gangi et al., 2019) in the single-decoder
model improves the results for 4 out of 11 language
pairs. Since we aim to obtain a single end-to-end
multilingual ST system that can perform many-to-
many translation, we selected the Dual-decoder
Transformer for our final submission.

4 Conclusion

This paper described the ON-TRAC consortium
submissions to the low-resource translation task
and to the multilingual speech translation task. Our
unique ASR system for both Swahili and Con-
golese Swahili languages uses XLSR-53 wav2vec
features as speech representation input. It got the
best results on both Swahili languages (respectively
31.25% and 36.75% of WER). The NMT systems
used to translated these transcription into respec-
tively to English and to French got BLEU scores
of 12.9 (swa→eng) and 9.1 (swc→fr). The Dual-
decoder Transformer we used in the multilingual
speech translation got promising results. We did
not try a specific strategy to handle language pairs
without training data. The low results we got on
such language pairs confirm that a specific treat-
ment must be applied in these conditions.
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Abstract

This paper describes the submission to the
IWSLT 2021 Low-Resource Speech Transla-
tion Shared Task by IMS team. We utilize state-
of-the-art models combined with several data
augmentation, multi-task and transfer learning
approaches for the automatic speech recogni-
tion (ASR) and machine translation (MT) steps
of our cascaded system. Moreover, we also ex-
plore the feasibility of a full end-to-end speech
translation (ST) model in the case of very con-
strained amount of ground truth labeled data.
Our best system achieves the best performance
among all submitted systems for Congolese
Swahili to English and French with BLEU
scores 7.7 and 13.7 respectively, and the second
best result for Coastal Swahili to English with
BLEU score 14.9.

1 Introduction

We participate in the low-resource speech transla-
tion task of IWSLT 2021. This task is organized
for the first time, and it focuses on three speech
translation directions this year: Coastal Swahili
to English (swa→eng), Congolese Swahili to
French (swc→fra) and Congolese Swahili to En-
glish (swc→eng). Working on under-represented
and low-resource languages is of special relevance
for the inclusion into technologies of big parts of
the world population. The Masakhane initiative
(Nekoto et al., 2020) has opened the doors for large
scale participatory research on languages of the
African continent, to which Swahili belongs to.
Our Speech-to-Text translation systems aim to con-
tribute to this global effort.

A common problem for these languages is the
small amount of data. This is also true for the lan-
guage pairs of the shared task: the provided data
contains a small amount of translated speech sam-
ples for each pair, but the participants are allowed
to use additional data and pre-trained models for

the sub-tasks of ASR and MT. We utilize most of
the suggested additional data resources to train and
tune sequence-to-sequence ASR and MT compo-
nents. Our primary submission is the cascaded
system built of Conformer end-to-end ASR model
and Transformer MT model. Our contrastive sys-
tem is end-to-end ST system utilizing parameters
transfer from the Encoder part of ASR model and
the full MT model.

Both ASR and MT components of the cascaded
system initially yield good results on their own, but
the discrepancy between language formats (spoken
vs. written) in ASR and MT corpora causes degra-
dation by 47% in resulting scores. To adapt the
MT system to the output of the ASR, we transform
the Swahili source data to output similar to one
of an ASR system. To further increase the perfor-
mance of our MT system, we leverage both source
formats (original Swahili text and simulated ASR
output Swahili) into a multi-task framework. This
approach improves our results by 17%, mostly for
the English target language. Our system outper-
forms the next best system on swc→fra by 4.4
BLEU points, but got outperformed by 10.4 BLEU
for swa→eng, being the second-best team. Our
team was the only participating for swc→eng lan-
guage pair with a score of 7.7 BLEU. The results of
end-to-end system consistently appear to be about
twice worse compared to the pipeline approach.

2 ASR

2.1 Data

Table 1 summarizes the datasets used to develop
our ASR system. The training data comprises of the
shared task training data, Gamayun Swahili speech
samples1 and the training subsets of ALFFA dataset
(Gelas et al., 2012) and IARPA Babel Swahili Lan-

1https://gamayun.translatorswb.org/
data/
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guage Pack (Andresen et al., 2017). The valida-
tion data comprises of 869 randomly sampled ut-
terances from the shared task training data and the
testing subset of ALFFA dataset. The testing data
is the shared task’s validation data. All audio is con-
verted to 16 kHz sampling rate. Applied data aug-
mentation methods are speed perturbation with the
factors of 0.9, 1.0 and 1.1, as well as SpecAugment
(Park et al., 2019). Transcriptions of the shared task
data and Gamayun Swahili speech samples dataset
are converted from written to spoken language sim-
ilarly to Bahar et al. (2020), namely all numbers
are converted to words2, punctuation is removed
and letters are converted to lower case. External
LM is trained on the combination of transcriptions
of the ASR training data and LM training data from
ALFFA dataset. The validation data for the exter-
nal LM contains only transcriptions of the ASR
validation data.

Dataset Training Validation Testing
Utt. Hours Utt. Hours Utt. Hours

IWSLT’21 swa 4,162 5.3 434 0.5 868 3.7
IWSLT’21 swc 4,565 11.1 435 1.0 868 4.2
Gamayun 4,256 5.4 - - - -
IARPA Babel 21,891 28.8 - - - -
ALFFA 9,854 9.5 1,991 1.8 - -
Total 44,728 60.3 2,860 3.4 1,736 7.9

Table 1: Datasets used for the ASR system.

2.2 Model

The ASR system is based on end-to-end Conformer
ASR (Gulati et al., 2020) and its ESPnet imple-
mentation (Guo et al., 2020). Following the lat-
est LibriSpeech recipe (Kamo, 2021), our model
has 12 Conformer blocks in Encoder and 6 Trans-
former blocks in Decoder with 8 heads and atten-
tion dimension of 512. The input features are 80
dimensional log Mel filterbanks. The output units
are 100 byte-pair-encoding (BPE) tokens (Sennrich
et al., 2016). The warm-up learning rate strategy
(Vaswani et al., 2017) is used, while the learning
rate coefficient is set to 0.005 and the number of
warm-up steps is set to 10000. The model is opti-
mized to jointly minimize cross-entropy and con-
nectionist temporal classification (CTC) (Graves
et al., 2006) loss functions, both with the coefficient
of 0.5. The training is performed for 35 epochs on
2 GPUs with the total batch size of 20M bins and
gradient accumulation over each 2 steps. After that,

2Using http://www.bantu-languages.com/
en/tools/swahili_numbers.html

10 checkpoints with the best validation accuracy
are averaged for the decoding. The decoding is
performed using beam search with the beam size
of 8 on the combination of Decoder attention and
CTC prefix scores (Kim et al., 2017) also with the
coefficients of 0.5 for both. In addition to that,
external BPE token-level language model (LM) is
used during the decoding in the final ASR system.
The external LM has 16 Transformer blocks with 8
heads and attention dimension of 512. It is trained
for 30 epochs on 4 GPUs with the total batch size
of 5M bins, the learning rate coefficient 0.001 and
25000 warm-up steps. Single checkpoint having
the best validation perplexity is used for the decod-
ing.

2.3 Pre-trained models

In addition to training from scratch, we attempt
to fine-tune several pre-trained speech models.
These models include ESPnet2 Conformer ASR
models from the LibriSpeech (Panayotov et al.,
2015), SPGISpeech (O’Neill et al., 2021) and Rus-
sian Open STT3 recipes, as well as wav2vec 2.0
(Baevski et al., 2020) based models XLSR-53 (Con-
neau et al., 2020) and VoxPopuli (Wang et al.,
2021).

2.4 Results

Table 2 summarizes the explored ASR settings and
the results on the shared task validation data. CTC
weight 0.5 is selected in order to minimize the gap
between ASR accuracy on the two Swahili lan-
guages. Evaluation of pre-trained English ASR
models expectedly shows that SPGISpeech model
results in better WER, likely because of the larger
amount of training data or more diverse accent rep-
resentation in this corpus compared to LibriSpeech.
Surprisingly, pre-trained Russian Open STT model
yields even better results than SPGISpeech model,
even if the amount of the training data for them
is quite similar (about 5000 hours). Since Swahili
language is not closely related to English or Rus-
sian, we attribute better results of Russian Open
STT model either to the larger amount of acoustic
conditions and speaking styles in Russian Open
STT corpus, or to more similar output vocabulary
in the model: both Russian and Swahili models
use 100 subword units, while English models use
5000 units. Validation accuracy of wav2vec 2.0
models does not look promising in our experiments

3https://github.com/snakers4/open_stt
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and we do not include their decoding results to the
table. Freezing the first Encoder layer of Russian
Open STT model during training on Swahili data
gives us consistent improvement on both testing
datasets, but freezing more layers does not appear
to be beneficial. Interestingly enough, external
LM also improves results on both Coastal and Con-
golese Swahili, however the best LM weights differ
between languages, and we conclude to keep them
separate in the final system.

# System swa swc Avg.
1. CTC weight 0.3 25.9 26.5 26.2
2. CTC weight 0.4 25.8 24.4 25.1
3. CTC weight 0.5 25.2 25.0 25.1
4. CTC weight 0.6 25.4 25.0 25.2
5. CTC weight 0.7 26.4 24.9 25.7
6. #3, pre-trained LibriSpeech 22.4 25.4 23.9
7. #3, pre-trained SPGISpeech 20.8 22.9 21.9
8. #3, pre-trained Russian Open STT 21.4 20.8 21.1
9. #8, freeze Encoder layers #1–4 20.3 21.1 20.7
10. #8, freeze Encoder layers #1–2 21.9 21.4 21.7
11. #8, freeze Encoder layer #1 17.8 19.7 18.8
12. #11, average 9 checkpoints 17.7 19.7 18.7
13. #11, average 8 checkpoints 17.7 19.5 18.6
14. #11, average 7 checkpoints 17.8 19.6 18.7
15. #11, average 6 checkpoints 17.7 19.5 18.6
16. #11, average 5 checkpoints 17.9 19.6 18.8
17. #13, external LM weight 0.2 15.1 18.4 16.8
18. #13, external LM weight 0.3 14.5 18.3 16.4
19. #13, external LM weight 0.4 14.0 18.5 16.3
20. #13, external LM weight 0.5 13.6 18.7 16.2
21. #13, external LM weight 0.6 13.5 19.1 16.3
22. #13, external LM weight 0.7 13.8 19.9 16.9

Table 2: ASR results (WER, %) on the shared task
validation data. Bold numbers correspond to the se-
lected configuration for the final system (the external
LM weights are language-specific).

3 MT

3.1 Data
Table 3 summarizes the datasets used to train our
MT systems. The training data comprises of the
shared task training data, Gamayun kit4 (English
– Swahili and Congolese Swahili – French paral-
lel text corpora) as well as multiple corpora from
the OPUS collection (Tiedemann, 2012), namely:
ELRC 2922 (Tiedemann, 2012), GNOME (Tiede-
mann, 2012), CCAligned and MultiCCAligned
(El-Kishky et al., 2020), EUbookshop (Tiede-
mann, 2012), GlobalVoices (Tiedemann, 2012),
JW300 for sw and swc source languages (Agić
and Vulić, 2019), ParaCrawl and MultiParaCrawl5,

4https://gamayun.translatorswb.org/
data/

5https://www.paracrawl.eu/

Tanzil (Tiedemann, 2012), TED2020 (Reimers
and Gurevych, 2020), Ubuntu (Tiedemann, 2012),
WikiMatrix (Schwenk et al., 2019) and wikimedia
(Tiedemann, 2012). The validation data for each
target language comprises of 434 randomly sam-
pled utterances from the shared task training data.
The testing data is the shared task validation data,
that also has 434 sentences per target language.

Dataset Words Sentences
→eng →fra →eng →fra

IWSLT’21 31,594 51,111 4,157 4,562
Gamayun 39,608 216,408 5,000 25,223
ELRC 2922 12,691 - 607 -
GNOME 170 170 40 40
CCAligned 18,038,994 - 2,044,993 -
MultiCCAligned 18,039,148 10,713,654 2,044,991 1,071,168
EUbookshop 228 223 17 16
GlobalVoices 576,222 347,671 32,307 19,455
JW300 sw 15,811,865 15,763,811 964,549 931,112
JW300 swc 9,108,342 9,094,008 575,154 558,602
ParaCrawl 3,207,700 - 132,517 -
MultiParaCrawl - 996,664 - 50,954
Tanzil 1,734,247 117,975 138,253 10,258
TED2020 136,162 134,601 9,745 9,606
Ubuntu 2,655 189 986 53
WikiMatrix 923,898 271,673 51,387 19,909
wikimedia 66,704 1,431 771 13
Total 41,910,113 30,003,158 3,406,772 2,159,007

Table 3: Datasets used to train the MT systems and
their sizes in numbers of words (source language) and
sentences. Total numbers are lower due to the dedupli-
cation.

3.2 Model
For the text-to-text neural machine translation
(NMT) system we use a Transformer big model
(Vaswani et al., 2017) using the fairseq implemen-
tation (Ott et al., 2019). We train three versions of
the translation model.

First we train a vanilla NMT (vanillaNMT)
system using only the data from the parallel train-
ing dataset. For preprocessing we use the Sen-
tencePiece implementation (Kudo and Richard-
son, 2018) of BPEs (Sennrich et al., 2016). For
our second experiment for the NMT system
(preprocNMT), we apply the same written to spo-
ken language conversion as used for the ASR tran-
scriptions (section §2.1) to the source text S and
obtain ASR-like text St. St is then segmented us-
ing a BPE model and used as input for our NMT
model. The last approach was using a multi-task
framework to train the system (multiNMT), where
all parameters of the translation model were shared.
The main task of this model is to translate ASR out-
put St to the target language T (task asrS), while
our auxiliary task is to translate regular source
Swahili S to the target language T (task textS).
We base or multi-task approach on the idea of mul-
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Model Input swa→eng swc→fra swc→eng
BLEU chrF BLEU chrF BLEU chrF

vanillaNMT textS 25.72 53.47 17.70 44.80 10.55 38.07
asrS 14.26 47.74 10.57 40.99 4.71 34.70
ASR #20 13.21 46.11 10.67 40.53 4.67 33.94
ASR #1 11.50 43.34 9.52 38.32 4.24 32.45

preprocNMT textS 11.01 41.33 13.54 41.00 4.49 31.91
asrS 16.00 45.86 14.09 42.05 7.10 34.35
ASR #20 14.54 44.17 13.23 41.00 6.62 33.63
ASR #1 12.45 40.95 11.21 38.08 5.47 31.63

multiNMT textS 25.69 53.27 18.20 44.66 10.56 38.29
asrS 20.07 50.31 14.69 43.07 8.73 36.72
ASR #20 17.91 48.39 13.29 41.58 7.94 35.47
ASR #1 15.81 45.31 11.97 39.09 7.03 33.78

Table 4: MT results on the shared task validation data. WER values on swa/swc validation data are 13.6/18.7%
for ASR #20 and 25.9/26.5% for ASR #1.

tilingual NMT introduced by Johnson et al. (2017),
using a special token at the beginning of each sen-
tence belonging to a certain task, as we can see in
the next example:

<asrS> sara je haujui tena thamani ya kikombe
hiki→ Tu ne connais donc pas, Sarah, la valeur de
cette coupe ?
<textS> Sara, je! Haujui tena, thamani ya
kikombe hiki? → Tu ne connais donc pas, Sarah,
la valeur de cette coupe ?

Then, our multi-task training objective is to max-
imize the joint log-likelihood of the auxiliary task
textS and the primary task asrS.

Hyperparameters For word segmentation we
use BPEs (Sennrich et al., 2016) with separate
dictionaries for the encoder and the encoder, us-
ing the SentencePiece implementation (Kudo and
Richardson, 2018). Both vocabularies have a size
of 8000 tokens. Our model has 6 layers, 4 attention
heads and embedding size of 512 for the encoder
and the decoder. To optimize our model we use
Adam (Kingma and Ba, 2014) with a learning rate
of 0.001. Training was performed on 40 epochs
with early stopping and a warm-up phase of 4000
updates. We also use a dropout (Srivastava et al.,
2014) of 0.4, and an attention dropout of 0.2. For
decoding we use Beam Search, with a size of 5.

3.3 Results

Table 4 shows the results of our MT system in
combination with different inputs. We trained
three models using the techniques described in sec-
tion §3.2 (vanillaNMT, preprocNMT, and
multiNMT). Then we used the official valida-
tion set as input (textS), and also applied asrS
preprocessing. We used both inputs to test the

performance of all models with different inputs.
As expected, the vanillaNMT systems performs
well with textS input (i.e 25.72 BLEU for
swa→eng), but drops when using asrS. This
pattern was later confirmed when using real ASR
output (ASR #20 and ASR #1). We noticed, that
training our model with asrS, instead of using
textS improves slightly the results (i.e 16.00
BLEU with preprocNMT compared with 14.26
on vanillaNMT for swa→eng). But when we
use multiNMT the performance strongly increase
to 20.07 for swa→eng. This pattern also can be
seen when using real ASR output (ASR #20 and
ASR #1), and across all language pairs. We hypoth-
esize that the multi-task framework helps the model
to be more robust to different input formats, and
allows it to generalize more the language internals.

4 End-to-End ST

4.1 Data
End-to-end ST is fine-tuned on the same speech
recordings, as ASR data, but with transcriptions in
English or in French. English and French transcrip-
tions are obtained either from the datasets released
with the shared task, or by running our MT sys-
tem on Swahili transcriptions. External LMs for
English and French outputs are trained on 10M
sentences of the corresponding language from the
OSCAR corpus (Ortiz Suárez et al., 2020).

4.2 Model
The end-to-end ST system comprises of the En-
coder part of our ASR system and the whole MT
system with removed input token embedding layer.
All layers are frozen during the fine-tuning except
of the top four layers of ASR Encoder and bot-
tom three layers of MT Encoder. SpecAugment
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and gradient accumulation are disabled during the
fine-tuning. Compared to the ASR system, end-to-
end ST system has larger dictionary, what leads to
shorter output sequences and allows us to increase
the batch size to 60M bins. The rest of hyperpa-
rameters are the same as in the ASR system. We
evaluate ST model separately and also with external
LM that is set up as described in the ASR section.

4.3 Results
It can be seen from Table 5 that the end-to-end ST
systems do not yet match the cascaded systems in
translation quality in low resource settings. Exter-
nal LMs, however, slightly improve the results for
both target languages.

Setting swa→eng swc→fra swc→eng
BLEU chrF BLEU chrF BLEU chrF

No LM 7.81 30.83 2.94 22.98 3.59 23.50
LM weight 0.4 8.82 31.26 3.73 22.07 4.06 23.89
LM weight 0.6 9.11 31.45 3.58 20.57 4.17 23.62

Table 5: End-to-end ST results on the shared task vali-
dation data.

5 Final systems

Table 6 shows validation scores of our final sys-
tems, as well as their evaluation scores provided by
the organizers of the shared task. Our primary (cas-
caded) system here uses increased beam sizes: 30
for the ASR, 10 for the English MT and 25 for the
French MT. swc/swa WERs of the final ASR sys-
tems are 12.5/17.6% on the validation sets. We did
not observe improvement from the increased beam
size on the contrastive systems and leave it at 2. It
should be noted that the contrastive system is eval-
uated on incomplete output6 for the swc→fra
pair because of the technical issue on our side. We
observe a large gap between the validation and eval-
uation scores for Coastal Swahili source language,
what might indicate some sort of bias towards the
validation set in our ASR or MT, or both. It is un-
clear why it does not happen for Congolese Swahili
source language, because we optimized all our sys-
tems for the best performance on the validation sets
for both source languages.

6 Conclusion

This paper described the IMS submission to
the IWSLT 2021 Low-Resource Shared Task on
Coastal and Congolese Swahili to English and

6406 of 2124 hypothesis are empty.

System Set swa→eng swc→fra swc→eng
Primary Val. 18.3 13.7 7.9
(cascaded) Eval. 14.9 13.5 7.7
Contrastive Val. 9.1 3.7 4.0
(end-to-end) Eval. 6.7 2.7 3.9

Table 6: Results (BLEU) of the primary and contrastive
systems on the validation and evaluation data of the
shared task.

French, explaining our intermediate ideas and re-
sults. Our system is ranked as the best for Con-
golese Swahili to French and English, and the sec-
ond for Coastal Swahili to English. In spite of the
simplicity of our cascade system, we show that the
improving of ASR system with pre-trained models
and afterward the tuning of MT system to optimize
its fit to the ASR output achieves good results, even
in challenging low resource settings. Additionally,
we tried an end-to-end ST system with a lower per-
formance. However, we learned that there is still
room for improvement, and in future work we plan
to investigate this research direction.
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faderin, and Abdallah Bashir. 2020. Participatory re-
search for low-resourced machine translation: A case
study in African languages. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 2144–2160, Online. Association for Computa-
tional Linguistics.

Patrick K O’Neill, Vitaly Lavrukhin, Somshubra Ma-
jumdar, Vahid Noroozi, Yuekai Zhang, Oleksii
Kuchaiev, Jagadeesh Balam, Yuliya Dovzhenko,
Keenan Freyberg, Michael D Shulman, et al. 2021.
SPGISpeech: 5,000 hours of transcribed financial au-
dio for fully formatted end-to-end speech recognition.
arXiv preprint arXiv:2104.02014.
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Abstract

This paper describes the University of Syd-
ney & JD’s joint submission of the IWSLT
2021 low resource speech translation task.
We participated in the Swahili→English direc-
tion and got the best scareBLEU (25.3) score
among all the participants. Our constrained
system is based on a pipeline framework, i.e.
ASR and NMT. We trained our models with
the officially provided ASR and MT datasets.
The ASR system is based on the open-sourced
tool Kaldi and this work mainly explores how
to make the most of the NMT models. To re-
duce the punctuation errors generated by ASR
model, we employ our previous work SlotRe-
fine to train a punctuation correction model.
To achieve better translation performance, we
explored the most recent effective strategies,
including back translation, knowledge distilla-
tion, multi-feature reranking and transductive
finetuning. For model structure, we tried auto-
regressive and non-autoregressive models, re-
spectively. In addition, we proposed two novel
pre-train approaches, i.e. de-noising training
and bidirectional training to fully exploit the
data. Extensive experiments show that adding
the above techniques consistently improves
the BLEU scores, and the final submission sys-
tem outperforms the baseline (Transformer en-
semble model trained with the original paral-
lel data) by approximately 10.8 BLEU score,
achieving the SOTA performance.

1 Introduction

Recent years have seen a surge of interest in speech
translation (ST, Ney 1999) task, that translates the
source-side speech to the target-side text directly.
The ST task contains two major components, Au-
tomatic Speech Recognition (ASR, Jelinek 1997)
and Machine Translation (MT, Koehn 2009). In
this year’s IWSLT low-resource speech translation

∗Work was done when Di Wu was visiting at JD.

task, our USYD-JD translation team participated in
the Swahili to English track. We break the speech
translation task into “ASR→NMT” pipeline, and
mainly focus on the NMT component.

For model frameworks, we tried autoregressive
neural machine translation, including Transformer-
BASE and -BIG (Vaswani et al., 2017), and non-
autoregressive translation models (Gu et al., 2018).
Also, we employ our previous work SlotRefine (Wu
et al., 2020a) to tackle the case and punctuation
problems after ASR. To make the most of the par-
allel and monolingual data, we proposed two pre-
train strategies, i.e. BIDIRECTIONAL PRETRAIN-
ING §2.2 and DENOISING PRETRAINING §2.3,
and employed two data augmentation strategies,
i.e. BIDIRECTIONAL SELF-TRAINING §2.5 and
TAGGED BACK TRANSLATION §2.7. Where the
data used for tagged back translation are care-
fully selected with our proposed multi-feature
in-domain selection approach in §2.6. For post
finetune/ process, we employed TRANSDUCTIVE

FINE-TUNE §2.8 and a simple postprocessing ap-
proach §2.10.

This paper is structured as follows: Section 2 de-
scribes the major approaches we used. We present
the data descriptions in Section 3. The experiments
settings and main results are shown in Section 4.
Finnaly, we conclude our work in Section 5.

2 Approaches

2.1 Autoregressive Translation

Given a source sentence x, an NMT model gener-
ates each target word yt conditioned on previously
generated ones y<t. Accordingly, the probability
of generating y is computed as:

p(y|x) =

T∏

t=1

p(yt|x,y<t; θ) (1)
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where T is the length of the target sequence and
the parameters θ are trained to maximize the likeli-
hood of a set of training examples according to
L(θ) = arg maxθ log p(y|x; θ). Typically, we
choose Transformer (Vaswani et al., 2017) as its
SOTA performance. The training examples can be
formally defined as follows:

−→
B = {(xi,yi)}Ni=1 (2)

where N is the total number of sentence pairs in
the training data. Note that in standard MT training,
the x is feed to the encoder and y<t to the decoder
to finish the conditional estimation for yt, thus the
utilization of

−→
B is directional, i.e. xi→yi. In the

preliminary experiments, we utilized autoregres-
sive translation (AT) model for translation, case
correction and punctuation generation tasks as its
powerful modelling ability and generation accu-
racy.

2.2 Bidirectional Pretraining

Motivation The motivation is when human learn
foreign languages with translation examples, e.g.
xi and yi. Both directions of this example, i.e.
xi→yi and yi→xi, may help human easily master
the bilingual knowledge. Motivated by this, Levin-
boim et al. (2015); Liang et al. (2007) propose to
modelling the invertibility between bilingual lan-
guages. Cohn et al. (2016) introduce extra bidi-
rectional prior regularization to achieve symmetric
training from the point view of training objective.
He et al. (2018); Zheng et al. (2019) enhance the
coordination of bidirectional corpus with model
level modifications. Different from the above meth-
ods, we model both directions of a given training
example by a simple data manipulation strategy.

Our Implementation Many studies have shown
that pretraining could transfer the knowledge and
data distribution, hence improving the generaliza-
tion (Hendrycks et al., 2019; Mathis et al., 2021).
Here we want to transfer the bidirectional knowl-
edge among the corpus. Specifically, we propose
to first pretrain MT models on bidirectional corpus,
which can be defined as follows:

←→
B = {(xi,yi) ∪ (yi,xi)}Ni=1 (3)

such that the θ in Equation 1 can be updated by
both directions, then the bidirectional pretraining

(BiPT) objective can be formulated as:

LBiPT(θ) =

Forward:
−→Lθ︷ ︸︸ ︷

arg max
θ

log p(y|x; θ) (4)

+ arg max
θ

log p(x|y; θ)

︸ ︷︷ ︸
Backward:

←−Lθ

(5)

where the forward
−→Lθ and backward

←−Lθ are op-
timized iteratively. From data perspective, we
achieve the bidirectional updating as follows: 1)
swapping the source and target sentences of a par-
allel corpus, and 2) appending the swapped version
to the original. Then the training data was doubled
to make better and full use of the costly bilingual
corpus. The pretraining can acquire general knowl-
edge from bidirectional data, which may help better
and faster learning further tasks. Thus, we early
stop bidirectional training at 1/3 of the total steps.
To ensure the proper training direction, we further
train the pretrained model on required direction

−→
B

with the rest of 2/3 training steps. Considering the
effectiveness of pretraining (Mathis et al., 2021)
and clean finetuning (Wu et al., 2019), we intro-
duce a combined pipeline:

←→
B → −→B as out best

training strategy.

2.3 Denoising Pretraining
Motivation The motivation is when human learn
one language, one of the best practices for lan-
guage acquisition is to correct the sentence errors,
e.g. noised(xi)→xi and noised(yi)→yi. Moti-
vated by this, Lewis et al. (2020) propose several
noise adding approaches and denoise them with
end-to-end pretraining. Liu et al. (2020b) introduce
this idea to the multilingual scenarios. Different
from above monolinugal denoising pretraining ap-
proaches, we proposed a simpler noise function
and apply them to each side of the parallel data.

Our Implementation Here we want the model
to understand the source- and target-side languages
well. For noise function noised(·), we apply the
common noise-injection practice, i.e. removing,
replacing, or nearby swapping one time for a ran-
dom word with a uniform distribution in a sen-
tence (Edunov et al., 2018; Ding et al., 2020a).
Then the size of the original parallel data doubled
as follows:

Ssrc = {noised(xi),xi}Ni=1 (6)

Stgt = {noised(yi),yi}Ni=1 (7)
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where Ssrc and Stgt can be combined to update the
end-to-end model to achieve denoising pretraining.
such that the θ in Equation 1 can be updated by
denoising both the source and target data, then
the denoisig pretraining (DPT) objective can be
formulated as:

LDPT(θ) =

Source Denoising:LSθ︷ ︸︸ ︷
arg max

θ
log p(x|noised(x); θ) (8)

+ arg max
θ

log p(y|noised(y); θ)

︸ ︷︷ ︸
Target Denoising:LTθ

(9)

where the Source Denoising : LSθ and
Target Denoising : LTθ are optimized itera-
tively. The pretraining can store knowledge of the
source and target languages into the shared model
parameters, which may help better and faster
learning further tasks. Similar to bidirectional
pretraining in §2.2, we early stop denoising
training at 1/3 of the total steps, and tune the model
normally with the rest of 2/3 training steps. This
process can be formally denoted as such pipeline:
Ssrc + Stgt →

−→
B .

Note that Bidirectional Pretraining (BiPT) and
Denoising Pretraining (DPT) can be combined and
further enhance the model performance (The effect
of their complementary can be found in Table 7).
In particular, the combination order of BiPT and
DPT are empirically inspired by human learning
behavior, where a good interpreter will first master
at least one language (usually the mother tongue),
and then learn other languages and achieve bilin-
gual translation. Thus, the combined pretraining
process follows DPT → BiPT. In combined pre-
training setting, we will train longer until the model
converges completely.

2.4 Nonautoregressive Translation
Different from autoregressive translation (Bah-
danau et al., 2015; Vaswani et al., 2017, AT) models
that generate each target word conditioned on pre-
viously generated ones, non-autoregressive trans-
lation (Gu et al., 2018, NAT) models break the
autoregressive factorization and produce the target
words in parallel. Given a source sentence x, the
probability of generating its target sentence y with
length T is defined by NAT as:

p(y|x) = pL(T |x; θ)

T∏

t=1

p(yt|x; θ) (10)

where pL(·) is a separate conditional distribution
to predict the length of target sequence. Typicallly,
most NAT models are implemented upon the frame-
wok of Transformer (Vaswani et al., 2017). In the
preliminary experiments, we utilized NAT for trans-
lation, case correction and punctuation generation
tasks as NAT can well avoid the error accumula-
tion and exposure bias problems during generation.
Also, we employ several advanced structure (Gu
et al., 2019; Ding et al., 2020b) (Levenshtein with
source local context modelling) and our proposed
training strategies (Ding et al., 2021a,b,c) as default
settings.

2.5 Bidirectional Self-Training

Besides improving NMT at model level, many re-
searchers turn to data perspective, including ex-
ploiting the parallel and monolingual data. The
most representative approaches include: a) Back
Translation (BT, Sennrich et al. 2016) combines
the synthetic data generated with target-side mono-
lingual data and parallel data; b) Knowledge Distil-
lation (KD, Kim and Rush 2016) trains the model
with sequence-level distilled parallel data; c) data
diversification (DD, Nguyen et al. 2020) diversi-
fies the data by applying KD and BT on parallel
data. Clearly, self-training is at the core of above
approaches, that is, they generate the synthetic data
either from source to target or reversely, with either
monolingual or bilingual data.

To this end, we propose a bidirectional self-
training approach for both parallel and monolingual
data (including source and target, respectively).
Specifically, the base teacher models are trained
with original parallel data in the first iteration
(Round 1 in Table 6), and based on these forward-
and backward-teachers, all available Swahili & En-
glish sentences can be used to generate the corre-
sponding synthetic English & Swahili sentences.
After balanced-sampling between synthetic and au-
thentic data, the concatenated data can be used to
train the second iteration teachers (Round 2 in Ta-
ble 6).

To reveal why our approach works, we show the
results in Table 8 from the point view of data com-
plexity (Zhou et al., 2020). Self-training reduces
the data complexity, thus increasing the model de-
terministic and in turn enhancing the model perfor-
mance.
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Features

LM Features

BERT LM (Devlin et al., 2019)

Transformer LM (Bei et al.)

N-gram LM (Stolcke, 2002)

In-domain features Moore-Lewis (Moore and Lewis, 2010)

Rule-based features Illegal characters (Bei et al.)

Count Features Word count

Table 1: Features for back translation data selection.

2.6 Data Selection Features for Back
Translation

Inspired by Ding and Tao (2019), where their
cycle-translation strategy (generating high qual-
ity in-domain data) for back translation obtain
substantial gains, we carefully design criteria for
choosing monolingual in-domain corpus. First, we
employ rule-based features, language model fea-
tures. The feature types are described in Table 1.
Our BERT language model used here is trained
from scratch by the open-source tool1 with target
side data. The Moore-Lewis in-domain scoring
strategy (Moore and Lewis, 2010) is used where
the language model scores are trained with Trans-
former (Vaswani et al., 2017). We score all sen-
tences in non-autoregressive fashion2 to utilize con-
textualized information.

According to our observations, by using above
multiple data selection filters, issues like illegal
characters, unfluent and domain unmatched sen-
tences could be significantly reduced. The data
statistics for back translation monolingual data can
be found in Table 5.

2.7 Tagged Back Translation

Back-translation (Sennrich et al., 2016; Bojar et al.,
2018), translating the large scale monolingual cor-
pus to generate synthetic parallel data by Target-
to-Source pretrained model, has been widely uti-
lized to improve the translation quality. However,
recent studies find that back translation increase
the target-original test set performance rather than
source-original ones from the perspective of trans-
lationese3 (Zhang and Toral, 2019; Graham et al.,
2020). To eliminate such concerns, we leverage
tagged back translation (Caswell et al., 2019) to im-

1https://github.com/huggingface/
pytorch-pretrained-BERT

2https://github.com/alphadl/EasyScore
3Source-Original denotes the testing data originating in

the source language, while target-original denotes the data
translating from the target language.

src Msimu uliopita wa Siltala kwenye ligi
ilikuwa 2006-07

pred Siltala’s previous season in the league
was 2006 at 07

+post Siltala’s previous season in the league
was 2006-07

Table 2: Example of the effectiveness of post-
processing in handling inconsistent number translation.

prove the source-original testing performance. The
implementation is straightforward, that is, adding
a simple tag on the beginning of each source-side
synthetic sentence. The detailed reason why this
trick works can be found in Marie et al., 2020.

To ensure tagged back translation works well
for our task, we carefully selected the target side
in-domain monolingual data (§2.6). Final results
in Table 7 show the effectiveness of tagged back
translation #9 against competitive model #8 (+1.9
BLEU scores).

2.8 Transductive Fine-Tuning

The key idea of transductive finetune is that source
input sentences from the validation and test sets
are firstly translated to the target language space
with the best well-performed NMT model, which
results in a pretranslated synthetic dataset. Then
models are finetuned on the generated synthetic
dataset. We borrow this concept from previous
systems (Wu et al., 2020b; Wang et al.). We empir-
ically show that transductive finetune (#10− 11 in
Table 7) indeed improves the official validation per-
formance but harms the performance of our sam-
pled valid& test set that co-distributed with the
training set. Note that we randomly sampled 5K/
5K sentences from the training set as valid and test
sets, respectively, to avoid the sub-optimal prob-
lem caused by the distribution gap. Experimental
details can be found in §3 and 4.

2.9 Reranking N-best Hypotheses

As the NMT decoding being generally from left
to right, this leads to label bias problem (Laf-
ferty et al., 2001). To alleviate this problem, be-
sides using NAT (§2.4), we rerank the n-best hy-
potheses through training a k-best batch MIRA
ranker (Cherry and Foster, 2012) with multiple
features on validation set. The feature pool we
integrated include R2L (right-to-left) translation
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model, T2S (target-to-source) translation model,
language model and IBM model 2 alignment score.
After multi-feature reranking, the best hypothesis
was retained.

Right-to-Left NMT Model The R2L NMT
model using the same training data but with in-
verted target sentences (i.e., reverse target side char-
acters “a b c d”→“d c b a”). Then, inverting the
hypothesis in the n-best list can obtain perplexity
score by R2L model.

Target-to-Source NMT Model The T2S model
was initially trained for back-translation, we can
employ this model to assess the translation ade-
quacy as well by adding the T2S feature to rerank-
ing feature pool.

Language Model Besides above features, we
employ language models as an auxiliary feature
to give the fluent sentences better scores such that
the results are easier to understand by human.

2.10 Post Processing
Besides general post-processing (i.e., de-BPE, de-
tokenization and de-truecase 4), we also used a
post-processing algorithm (Wang et al., 2018) for
inconsistent number, date translation, for example,
“2006-07” might be segmented as “2006 -@@ 07”
by BPE, resulting in the wrong translation “2006 at
07”. Our post-processing algorithm will search for
the best matching number string from the source
sentence to replace these types of errors, see Ta-
ble 2.

3 Data Preparation

For ASR task, we downloaded all available Swahili
speech-to-text data5, such as openslr6 and IARPA
Babel7 etc., as training corpus and employ all de-
fault settings in Kaldi8 to preprocess and train
them. To simplify the ASR task, we lowercased
all Swahili sentences and removed punctuation. To
rejuvenate these case and punctuation information,
we design two pipeline tasks after ASR: case cor-
rection task and punctuation generation. Also, it
is worth noting that we design some rules to per-
form the “voice activity detection” process for the

4https://github.com/moses-smt/
mosesdecoder/tree/master/scripts

5https://iwslt.org/2021/low-resource
6https://www.openslr.org/25/
7https://catalog.ldc.upenn.edu/

LDC2017S05
8https://github.com/kaldi-asr/kaldi

Available Parallel Corpus #Sent.
CCAligned 2,044,993
Tanzil 138,253
ParaCrawl 132,517
WikiMatrix 51,387
GlobalVoices 32,307
TED2020 9,754
Gamayun 5,000
WikiMedia 771
Total 2,414,982

Table 3: Statistics of parallel data.

Sampled Mono. Corpus #Sent.
commoncrawl English 4,366,344
commoncrawl Swahili 38,928

+ upsampling (14×) 544,992

Table 4: Statistics of monolingual data.

official speech testset. Take a piece of speech in
Figure 1 for example, partial of speech in the red
box will be keep as the valid input.

For NMT task, the parallel datasets we
utilized are described at Table 3, including
CCAligned (El-Kishky et al., 2020), Tanzil (Tiede-
mann, 2012), ParaCrawl 9, WikiMatrix (Schwenk
et al., 2019), GlobalVoices (Tiedemann, 2012),
TED2020 (Reimers and Gurevych, 2020), Wiki-
Media (Tiedemann, 2012) and Gamayun 10. The
monolingual data we utilized are described in Ta-
ble 4 and Table 5, where the monolingual data in
Table 4 are used to train the system #1 − 8 in
Table 7, and data in Table 5 are used to train the
system #9 − 11 in Table 7, respectively. Table 6
denotes how the data used and generated by itera-
tive bidirectional self-training (§2.5). The total data
size after two round of bidirectional self-training is
50.4M, and after tagged back translation, the final
data volume is 60.4M.

To avoid the sub-optimal problem caused by
the distribution gap between official validation and
training data, we randomly sampled 5K/ 5K sen-
tences from the training set as valid and test sets, re-
spectively. The randomly sampled valid sentences
are used to optimize the hype-parameters.

9https://www.paracrawl.eu/index.php
10https://gamayun.translatorswb.org/

data/

186



Figure 1: An example of how our rule-based voice activity detection model works on the waveform. Note that only
the part in the red box will be retained as a valid fragment.

Mono. Corpus for Tagged BT #Sent.
Totally collected corpus

commoncrawl English 30,513,498
Cleaned corpus with criteria in §2.6

in domain English 10,000,000

Table 5: Statistics of monolingual data for Tagged
Back-Translation.

4 Experiments

Settings For case correction and punctuation
generation tasks mentioned in §3, we tried Au-
toregressive Transformer-BASE (AT, §2.1), Non-
Autoregressive model (NAT, §2.4) and our previ-
ously designed SLOTREFINE (Wu et al., 2020a). In
our preliminary experiments, NAT and SlotRefine
work better on case correction and punctuation
generation tasks, respectively, thus leaving as the
default components in our final speech translation
pipeline.

For NMT task, we tried Autoregres-
sive Transformer-BIG (AT, §2.1) and Non-
Autoregressive model (NAT, §2.4) in preliminary
experiments, and found that AT performs robust
on all settings. Thus we employ Transformer-BIG

for all MT systems. Inspired by He et al. (2019),
we empirically adopt large batch strategy (Edunov
et al., 2018) (i.e. 458K tokens/batch) to optimize
the performance. The learning rate warms up to
1× 10−7 for 10K steps, and then decays for 30K
(data volumes range from 2M to 10M) / 50K (data
volumes large than 10M) steps with the cosine
schedule. For regularization, we tune the dropout
rate from [0.1, 0.2, 0.3] based on validation
performance, and apply weight decay with 0.01
and label smoothing with ε = 0.1. We use Adam
optimizer (Kingma and Ba, 2015) to train models.
We evaluate the performance on an ensemble of
last 10 checkpoints to avoid stochasticity.

For fair comparison, the metric we employed is
sacreBLEU (Post, 2018). Training set, validation
set and test set are processed consistently. Both
Swahili and English sentences are performed tok-

# Data Statistics #Sent.
Preparing for Self-Training

1 parallel English 2.4M
2 parallel Swahili 2.4M
3 monolingual English 4.4M
4 monolingual Swahili 0.4M

Self-Training Round 1
5 synthetic parallel 9.6M
6 authentic parallel 2.4M
7 + upsampling (4×) 9.6M
8 concat #5 and #7 19.2M

Self-Training Round 2
9 refined parallel #8 19.2M
10 concat #8 and #9 38.4M
11 upsampled authentic parallel #6 (5×) 12.0M
12 concat #10 and #11 50.4M

Table 6: Data statistics for bidirectional self-training.
Note that #5 “synthetic parall” comes from monolin-
gual English (#3 ), monolingual Swahili (#4), parallel
English (#1), and parallel Swahili (#2). In our prelim-
inary experiments, 4× (#7) and 5× (#11) upsampling
strategies perform best in their corresponding settings,
thus leaving as the default settings.

enization and truecasing with Moses scripts (Koehn
et al., 2007). In order to limit the size of vocab-
ulary of NMT models, we adopted byte pair en-
coding (BPE) (Sennrich et al., 2016) with 32k op-
erations. Larger beam size may worsen transla-
tion quality (Koehn and Knowles, 2017), thus we
set beam size=10 when performing n-best rerank-
ing (§2.9). All models were trained on 4 16GB
NVIDIA V100 GPUs.

Main results Our main experiment is shown in
Table 7, our baseline system is developed with the
original parallel corpus and last-10 ensemble strat-
egy. Unsurprisingly, the baseline system relatively
performs the worst.

The proposed Bidirectional Pretrain in §2.2
and Denoising Pretrain in §2.3 could consistently
and significanly improve the model performance,
showing their effectiveness in low resource sce-
narios (Zhang and Tao, 2020). Clearly, combin-
ing Bidirectional Pretrain and Denoising Pretrain
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# Models Valid Test ∆ave Off. Valid ∆

1 Baseline (w/ Para. Data) 47.1 48.5 − 31.8 −
2 +Bidrectional Pretrain 48.5 49.9
3 +Denoising Pretrain 48.6 49.6
4 +Combination of #2 and #3 48.9 50.1 +1.7

5 Bi. Self-Training (w/ Mono. & Para. Data) 49.4 50.8 +2.3
6 +Combination of #2 and #3 50.1 51.6 +3.1

7 Iterative Bi. Self-Training 49.7 50.9 +2.5
8 +Combination of #2 and #3 50.5 51.8 +3.4 38.2 +6.4

9 #8 + Tagged Back Translation 52.4 53.1 +5.0 40.1 +8.3

10 #9 + Transductive Finetune 51.8 53.0 +4.6 41.5 +9.7
11 +Iterative +#10 51.6 52.8 +4.4 41.9 +10.1

12 #11 + Reranking 52.1 53.5 +5.0 42.3 +10.5
13 #12 + Post Processing 52.5 54.0 +5.5 42.6 +10.8

SacreBLEU of Final Submission (#13) on official test set 25.3

Table 7: Sacrebleu of Sw→En on our randomly sampled “Valid/ Test” sets and official validation set “Off. Valid”,
where “∆” represents the performance gains compared with baseline #1. The submitted system is #13.

Data Compl. BLEU
Baseline 7.87 47.1
Bi. Self-Training 5.34 49.4
Iterative Bi. Self-Training 4.89 49.7

Table 8: Explanation of why Bidirectional Self-
Training works. The data complexity “Compl.” is mea-
sured on their corresponding training sets and align-
ment information is trained with fast-align (Dyer et al.,
2013). The BLEU scores are reported on our sampled
validation set.

could achieve better results (averaged +1.7 BLEU
scores), indicating their complementary.

As shown in #5 and #7, the proposed Bidirec-
tional Self-Training and its refined iterative ver-
sion, could consistently enhance the model. To
explore why self-training improves model perfor-
mance, we discuss it from the point view of data
complexity. As shown in Table 8, with the Bidirec-
tional Self-Training iteratively progresses, the data
complexity becomes lower, leading to the better
BLEU scores. Notably, the combination of our pro-
posed two pretraining approaches push the SOTA
performance up to higher points. We believe that
the effect of our proposed two pretrain strategies
are still under-investigated, which will leave as fu-
ture works. Overall, with strategies #2 − 8, the
model performance in terms of official validation
test achieves surprisingly +6.4 BLEU scores.

The Tagged Back Translation (§2.7) with in-

domain monolingual data significantly improves
the performance of both our sampled test set and
official valid set by +5.0 and +8.3 against baseline,
respectively.

We empirically show that Transductive FineTune
(§2.8) indeed improves the official validation per-
formance but harms the performance of our sam-
pled valid& test set that co-distributed with the
training set. This indicates that tranductive learn-
ing is a effective practice to transfer a well-trained
model across domains.

And the last two strategies Reranking (§2.9) and
Post Processing (§2.10) could further improve the
official validataion BLEU score from 41.9 to 42.6,
which substantially outperforms the baseline by
+10.8 BLEU score.

5 Conclusion and Future Work

This paper presents the University of Sydney
& JD’s speech machine translation system for
IWSLT2021 Swahili→English task. The whole
system is pipelined, containing ASR, case correc-
tion, punctuation generation and NMT tasks, and
we main focused on NMT task.

We leveraged multi-dimensional strategies and
frameworks to improve the translation qualities,
which achieves surprisingly +10.8 BLEU scores
improvement against baseline and ranks the 1st
among all the participants. We find that our pro-
posed BIDIRECTIONAL PRETRAINING (§2.2) and
DENOISING PRETRAINING (§2.3) can consistently
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improves the competitive baselines. Also, we em-
ploy BIDIRECTIONAL SELF-TRAINING in §2.5
and TAGGED BT in §2.7 make the most of the
existing parallel and monolingual data.

In the future, we would like to polish other com-
ponents in the pipeline to achieve better perfor-
mance. Also, it is worthy to try an end-to-end
approach with cross-modal structures to incorpo-
rate audio and vision knowledge (Xu et al., 2021).
For robust model training and data utilization, we
would explore better strategies, e.g. adversarial
training (Wu et al., 2021) and curriculum learn-
ing (Liu et al., 2020a; Zhou et al., 2021).
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Abstract
Data augmentation, which refers to manipu-
lating the inputs (e.g., adding random noise,
masking specific parts) to enlarge the dataset,
has been widely adopted in machine learn-
ing. Most data augmentation techniques op-
erate on a single input, which limits the di-
versity of the training corpus. In this paper,
we propose a simple yet effective data aug-
mentation technique for neural machine trans-
lation, mixSeq, which operates on multiple in-
puts and their corresponding targets. Specifi-
cally, we randomly select two input sequences,
concatenate them together as a longer input as
well as their corresponding target sequences
as an enlarged target, and train models on the
augmented dataset. Experiments on nine ma-
chine translation tasks demonstrate that such a
simple method boosts the baselines by a non-
trivial margin. Our method can be further com-
bined with single-input based data augmenta-
tion methods to obtain further improvements.

1 Introduction

Data augmentation, which enlarges the training cor-
pus by manipulating the inputs through given rules,
has been widely used in machine learning tasks.
For image classification, there are various data
augmentation methods, including cropping, flip-
ping, rotating,cut-out (DeVries and Taylor, 2017),
etc. For natural language processing (briefly, NLP),
similar data augmentation methods also exist, like
randomly swapping words (Lample et al., 2018a),
dropping words (Iyyer et al., 2015), and masking
specific words (Xie et al., 2017). With data aug-
mentation, the main content of the input is not af-
fected but the noise is introduced so as to increase
the diversity of the training set. The effectiveness
of above data augmentation methods has been ver-
ified by their strong performance improvements
in both image processing and NLP tasks. For ex-
ample, with the combination of data augmentation

and meta-learning, state-of-the-art result of image
classification is achieved (Cubuk et al., 2019).

Most existing data augmentation methods take
one sample from the training set as input, which
might limit the scope and diversity of the train-
ing corpus. Mixup (Zhang et al., 2018) is a re-
cently proposed data augmentation method, where
two samples from the training corpus are lever-
aged to build a synthetic sample. Specifically, let
x1, x2 denote two images from the training set, and
y1, y2 denote their corresponding labels. The syn-
thetic data (λx1 + (1 − λ)x2, λy1 + (1 − λ)y2)
is introduced to the augmented dataset, where λ
is randomly generated. Such a strategy is further
enhanced in follow-up works (Zhang et al., 2019;
Berthelot et al., 2019). Pair sampling (Inoue, 2018)
is another data augmentation method where the
synthetic sample is built as (0.5x1 + 0.5x2, y1).
In comparison, according to our knowledge, such
ideas are not leveraged in NLP tasks (e.g., machine
translation). Therefore, in this work, we explore
along this direction to see whether augmenting data
through mixing multiple sentences is helpful.

In sequence learning tasks, two inputs x1 and
x2 might contain different numbers of units (e.g.,
words or subwords). Besides, for sequence gener-
ation tasks, their labels y1 and y2 are of different
lengths. Therefore, it is not practical to sum them
up directly. Instead, we choose to concatenate two
inputs and the two labels to get the synthetic data.
We find that it is important to use a special token to
separate the two sentences in a synthetic data. We
name our proposed method as mixSeq.

mixSeq is a simple yet very efficient and effec-
tive data augmentation method. We conduct exper-
iments on 9 machine translation tasks and find that
mixSeq can boost the baseline by 0.66 BLEU on av-
erage. Specifically, on FLORES Sinhala↔English,
our method can improve the baseline by 1.03 points.
mixSeq can be further combined with data augmen-
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tation methods working on a single input, e.g., ran-
domly dropping, swapping or masking words, to
further improve the performance (see Table 3).

Normally, mixSeq randomly samples the two
concatenated sequences. However, if the two con-
catenated sequences are contextually related, we
can enhance our mixSeq to a context-aware version:
ctxMixSeq, which will result in better performance
(see Table 4).

2 Our Method

Notations: Let X and Y denote two language
spaces, which are collections of sentences in the
corresponding languages. The target of neural
machine translation (briefly, NMT) is to learn a
mapping from X to Y . Let D = {(xi, yi)}Ni=1

denote the bilingual NMT training corpus, where
xi ∈ X , yi ∈ Y , and N is the number of training
samples. Let concat(· · ·) denote the concate-
nation operation, where the input sequences are
merged into a longer one, and each input is seg-
mented by a space.
Training Algorithm: We propose mixSeq, a sim-
ple yet effective data augmentation method, which
generates new samples by operating on two existing
samples. The algorithm is shown in Algorithm 1.

Algorithm 1: mixSeq

1 Input: D = {(xi, yi)}Ni=1, augmented size
N̂ ; sentence border label <sep>;

2 Initialize D̂ = {};
3 for k ← 1 to N̂ do
4 Sample two indices i and j from

SamplingFunc(N);
5 x̃k = concat(xi,<sep>, xj);

ỹk = concat(yi,<sep>, yj);
6 D̂ = D̂ ∪ {(x̃k, ỹk)};
7 end
8 Upsample or downsample D to size N̂ and

get a new dataset D̃; train an NMT model
on D̃ ∪ D̂, which is of size 2N̂ .

In mixSeq, the most important step is to build
an augmented dataset D̂. As shown from line 3 to
line 7 in Algorithm 1, we first sample two aligned
sequence pairs (xi, yi) and (xj , yj) (the design of
sampling rule SamplingFunc is left to the next
part). Then we concatenate their source sentences
and the target sentences respectively with a special
label <sep> separating two samples, and get two

longer sequences, x̃k and ỹk (line 5 in Algorithm 1).
We eventually obtain the augmented dataset D̂ with
size N̂ . After that, we upsample or downsample
D to the same size as N̂ and obtain D̃. Finally, we
train our translation models on D̃ ∪ D̂.
Design of SamplingFunc: We have two forms
of SamplingFunc, which corresponds to two
variants of our algorithm:
(1) In general cases, SamplingFunc randomly
samples i and j from {1, 2, · · · , N}. For ease of
reference, we still use mixSeq to denote this variant.
(2) When contextual information is available, i.e.,
the parallel data is extracted from a pair of aligned
document, SamplingFunc only samples consec-
utive sequences in a given document. Assume
xi/yi represent the i-th sentence in the document,
then SamplingFunc only samples (i, i + 1) in-
dex pairs.We use ctxMixSeq to denote this vari-
ant. ctxMixSeq is related to context-aware machine
translation (Tiedemann and Scherrer, 2017). The
difference is that, during inference, ctxMixSeq uses
a single sequence as the input, while Tiedemann
and Scherrer (2017) uses multiple sequences in-
cluding the contextual information.
Discussions: mixSeq operates on two sequences,
while previous data augmentation methods like ran-
domly dropping, swapping or masking words usu-
ally operate on a single sequence. These methods
can be combined with mixSeq to bring further im-
provements (see Table 3).

3 Experiments

We conduct experiments on the following
machine translation tasks to evaluate our
method: IWSLT’14 German↔English and
Spanish↔English; FLORES English↔Nepali
and English↔Sinhala; and WMT’14
English→German. We abbreviate English,
German, Spanish, Nepali and Sinhala as En, De,
Es, Ne and Si.

3.1 Setup
Datasets: For IWSLT’14 De↔En, follow-
ing Edunov et al. (2018), we lowercase all words,
tokenize them, and apply BPE with 10k merge op-
erations (Sennrich et al., 2016) to obtain of the
subword representations1. The validation set is
split from the training set and the test set is the con-
catenation of tst2010, tst2011, tst2012, dev2010

1Preprocessing script: https://github.com/
pytorch/fairseq/blob/master/examples/
translation/prepare-iwslt14.sh.
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and dev2012. For IWSLT’14 Es↔En, the prepro-
cessing is the same as that for De↔En without low-
ercasing the words. We use tst2013 and tst2014 as
the validation and test sets respectively. For FLO-
RES En↔Ne and En↔Si datasets, we used the
BPE version of dataset provided by Guzmán et al.
(2019). For WMT’14 En→De, we concatenate
newstest2012 and newstest2013 as the validation
set and use newstest2014 as the test set. The statis-
tics of the datasets are shown in Table 1. On all
tasks, the vocabulary is shared between the source
language and the target language.

Task Training Validation Test

De↔En 160k 7.3k 6.8k
Es↔En 184k 1.2k 1.3k
En↔Ne 563k 2.6k 2.8k
En↔Si 405k 2.9k 2.8k
WMT 4.5M 3k 3k

Table 1: The number of sentences in the training, vali-
dation and test sets of IWSLT De↔En, Es↔En, FLO-
RES En↔Ne, En↔Si, and WMT datasets.

Models and Training Strategy: For mixSeq, we
set N̂ as 5N ; for ctxMixSeq, we set N̂ as N . We
choose Transformer (Vaswani et al., 2017) as our
translation model. For IWSLT tasks, the dimen-
sions of the embedding, feed-forward network and
number of layers of the Transformer models are
256, 1024 and 6 respectively. The dropout rate is
0.3. The batch size is 6000 tokens, and we train
the models for 300k steps. For FLORES tasks,
we use exact the same architecture and training
strategy as those in (Guzmán et al., 2019) for fair
comparison. The model is a 5-layer Transformer
with embedding dimension and feed-forward net-
work dimension 512 and 2048. The batch size is
16k. The baseline model is trained for 100 epochs,
while mixSeq is trained for 10 epochs considering
our enlarged dataset is 10 times larger than the orig-
inal dataset. For WMT task, the dimensions of the
embedding, feed-forward network and number of
layers of the Transformer models are 1024, 4096
and 6 respectively. The batch size is 4096 tokens
per GPU. We train on eight V100 GPUs and accu-
mulate the gradients for 16 times before updating.
For all models, we use Adam with learning rate
5 × 10−4 and the inverse sqrt learning rate
scheduler to optimize the models. All models are
trained until convergence.
Evaluation: We use beam search with beam width

of 5 and length penalty of 1.0 to generate sequences.
The generation quality is evaluated by BLEU score.

3.2 Results
The results of standard Transformer and mixSeq
on small-scale datasets are shown in the first sec-
tion of Table 2. We adopt another baseline, pair
sampling (Inoue, 2018) into NMT for compari-
son, which can produce a synthetic dataset D̃ps

made up of pairs (concat(x1,<sep>, x2), y1),
(x1, y1) ∈ D, (x2, y2) ∈ D. The results of pair
sampling (briefly, PS) are in the third column of
Table 2. mixSeq generally brings good improve-
ments and significantly outperforms the baseline
on all tasks except for two (En→De and En→Si).
The pair sampling baseline performs poorly on all
tasks. This is because pair sampling requires the
translation model to translate the first part of the
input (i.e., x1) while ignoring the second part (i.e.,
x2), which is against the goal of NMT. It is also
worth noting that the time and number of steps re-
quired to converge on the augmented dataset and
the original dataset are similar.

Task Transformer mixSeq PS

En→De 29.18 29.46 29.09
De→En 34.96 35.78‡ 35.22
En→Es 39.61 40.30† 38.95
Es→En 40.94 41.39† 40.80
En→Ne 4.28 5.26‡ 4.20
Ne→En 7.68 8.38‡ 7.51
En→Si 1.21 1.49 0.88
Si→En 6.68 7.71‡ 6.02

WMT 29.15 29.61 -

Table 2: BLEU scores of IWSLT De↔En, Es↔En,
FLORES En↔Ne, En↔Si, and WMT En→De. ‡ and
† indicate that mixSeq outperforms Transformer in the
significance test with p < 0.01 and p < 0.05, respec-
tively.

We also evaluate mixSeq on a large-scale dataset,
WMT’14 En→De, and the results are shown in the
second section of Table 2. Due to resource limita-
tion, we do not try pair sampling. Our method im-
proves the BLEU score by 0.46, which shows that
mixSeq is a generally effective method for NMT.

We further compare and combine our method
with data augmentation methods on one sequence,
including randomly dropping, masking and swap-
ping words. We conduct experiments on IWSLT’14
De↔En. As shown in Table 3, our method brings
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further improvement when combined with existing
data augmentation method on a single sequence.
The baseline is improved by up to 0.82 BLEU.

Method De→En En→ De

Transformer 34.96 29.18
mixSeq 35.78 29.46
Drop 35.30 29.03
Drop + mixSeq 36.01 29.22
Swap 34.52 28.73
Swap + mixSeq 34.73 28.98
Mask 35.78 29.49
Mask + mixSeq 36.63 30.00

Table 3: Comparison and combination with data aug-
mentation on single sequences.

To verify the effectiveness of ctxMixSeq, we con-
duct experiments on IWSLT’14 En↔De, where
contextual information is available. As discussed
in Section 2, Tiedemann and Scherrer (2017) is
similar with ctxMixSeq, except that it takes two
sequences concat(xt−1,<sep>, xt) as the in-
put during inference. We denote this inference
method as 2in (two inputs). Another baseline pro-
posed in Tiedemann and Scherrer (2017) is that the
NMT model is trained on dataset D ∪ D̃a, where
D̃a = {concat(xt−1,<sep>, xt), yt}Nt=2. This
can be seen as a context-aware version of pair sam-
pling and we briefly denote it as ctxPS. The re-
sults are in Table 4. ctxMixSeq outperforms all
baselines proposed by Tiedemann and Scherrer
(2017). Compared to mixSeq, ctxMixSeq brings
consistent improvements, especially when com-
bined with mixSeq.

Method En→De De→En

mixSeq 29.46 35.78
ctxMixSeq 29.65 35.96
ctxMixSeq + 2in 29.50 35.79
ctxPS 29.26 35.48
ctxPS + 2in 29.29 35.78
ctxMixSeq + mixSeq 29.74 36.09

Table 4: Results of context-aware versions of
mixSeq on IWSLT’14 En↔De.

With mixSeq, we find that the alignment is
enhanced. We visualize the source-target at-
tention maps obtained by our method. Given
(xi,<sep>, xj) and the corresponding translation
(yi,<sep>, yj), we find that most attention weight

En→Es Es→En En→Ne Ne→En

mixSeq 40.3 41.4 5.26 8.28
No <sep> 38.9 41.1 4.83 8.10

Table 5: Result of mixSeq with/without <sep>.

of yi is assigned to xi, with little assigned to xj .
Similar phenomena is observed for yj . In this way,
the attention mechanism is enhanced, which might
explain the performance improvements.

3.3 Analysis

In this section, we conduct ablation study on the
usage of <sep> and the effect of concatenating
more than two sequences.

Ablation Study of the Usage of <sep>
To evaluate the effect of <sep> token, we re-

move the <sep> from sequences as another base-
line. We conduct the experiments on IWSLT
En↔Es and FLORES En↔Ne datasets, and re-
port the results in Table 5. We find that our method
performs poorly without <sep>, sometimes even
worse than the Transformer. Our conjecture is that
<sep> helps the model learn to align each part of
the input to the corresponding part of the output,
which can improve the representation learning.

Concatenating More Sequences
We wonder whether the BLEU scores can be

further boosted by concatenating more sequences.
We move a step forward by randomly concatenating
three sequences, and build a synthetic dataset D̂3

with N̂3 examples. Experiments are conducted on
FLORES En↔{Ne, Si} datasets, and results are
shown in Table 6. In the third and fourth rows,
N̂ = N̂3 = 5N . In the last row, we set N̂ =
N̂3 = 2.5N to ensure the number of synthetic data
remains the same.

Dataset En→Ne Ne→En En→Si Si→En

D 4.28 7.68 1.21 6.68

D ∪ D̂ 5.26 8.38 1.49 7.71

D ∪ D̂3 5.39 8.88 2.08 7.50

D ∪ D̂ ∪ D̂3 5.43 8.25 2.21 7.47

Table 6: Results of concatenating various numbers of
sequences.

The results show that, although bothD∪D̂3 and
D∪D̂∪D̂3 settings can bring some improvements,
the improvements are not consistent among differ-
ent datasets. Further work is needed on how to use
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more samples for data augmentation.

4 Related Work

Most existing data augmentation methods in NMT
operate on one single input. Fadaee et al. (2017)
replaced common words with rare words under
the guidance of language models to improve the
translation of rare words. In unsupervised learning,
Lample et al. (2018b) proposed to randomly drop,
swap, or mask words. Gao et al. (2019) verifies the
effectiveness of such methods in supervised NMT.
RAML (Norouzi et al., 2016) randomly inserted,
deleted or substituted words in the target sequence
with probability exponentially decreasing with the
edit distance. SwitchOut (Wang et al., 2018) ex-
tended RAML by both manipulating on the source
side and the target side. Gao et al. (2019) proposed
to “softly replace” words by replacing the one-hot
representation of words with a distribution on the
vocabulary. A concurrent work similar to ours is
(Kondo et al., 2021), where <sep> is not lever-
aged. In other fields, data augmentation methods
operating on multiple samples have been proposed.
Mixup (Zhang et al., 2018) generated a synthetic
sample by averaging two inputs and the two labels.
It is further applied to semi-supervised learning to
enlarge the dataset (Berthelot et al., 2019). Pair
sampling (Inoue, 2018) only averaged the two in-
puts but not the labels.

5 Conclusion and Future Work

In this work, we proposed a simple yet effective
data augmentation method for NMT, which ran-
domly concatenates two training samples to enlarge
the datasets. Experiments on nine machine trans-
lation tasks demonstrate the effectiveness of our
method. For future work, there are a few directions
to explore. First, we will apply our method to more
NLP tasks. Second, we will theoretically analyze
when and why it works. Third, we will study and
design more effective data augmentation methods.
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Abstract

Recent studies argue that knowledge distilla-
tion is promising for speech translation (ST)
using end-to-end models. In this work, we in-
vestigate the effect of knowledge distillation
with a cascade ST using automatic speech
recognition (ASR) and machine translation
(MT) models. We distill knowledge from a
teacher model based on human transcripts to
a student model based on erroneous transcrip-
tions. Our experimental results demonstrated
that knowledge distillation is beneficial for a
cascade ST. Further investigation that com-
bined knowledge distillation and fine-tuning
revealed that the combination consistently im-
proved two language pairs: English-Italian
and Spanish-English.

1 Introduction

Speech translation (ST) converts utterances in a
source language into text in another language. Con-
ventional ST systems called cascade or pipeline
ST consist of two components: automatic speech
recognition (ASR) and machine translation (MT).
In the cascade ST, the error propagation from ASR
to MT seriously degrades the ST performance. On
the other hand, a new ST system called end-to-end
or direct ST uses a single model to directly trans-
late the source language speech into target language
text (Bérard et al., 2016). Such an end-to-end ap-
proach is a new paradigm in ST and is attracting
much research attention. However, a naive end-to-
end ST without additional training, such as ASR
tasks, remains inferior to a cascade ST (Liu et al.,
2018; Salesky and Black, 2020). Additionally, it
requires parallel data of the source language speech
and the target language text, which cannot be ob-
tained easily in practice.

Recent ST studies have incorporated the tech-
niques of cascade ST to end-to-end STs. Multi-
task training with an ASR subtask has been used

successfully in end-to-end ST (Weiss et al., 2017;
Anastasopoulos and Chiang, 2018; Sperber et al.,
2019). Initializing an end-to-end ST with a pre-
trained ASR or MT has also become a common
approach (Bérard et al., 2018; Bansal et al., 2019;
Inaguma et al., 2020; Wang et al., 2020; Bahar
et al., 2021).

In this work, we focus on the cascade approach
due to its performance advantage against end-to-
end STs. Another reason is that cascade ST models
can be incorporated into end-to-end STs, as shown
in previous studies.

During the training of an MT model for a cas-
cade ST, we can use clean human transcripts for the
source language speech as input. However, since
the MT in a cascade ST always receives ASR out-
put during inferences, ASR errors should be propa-
gated to the MT model to cause translation errors.
What if we use erroneous speech transcriptions by
ASR for training? That approach means the MT
model is trained to translate erroneous transcrip-
tions into correct text, which would not generally
be appropriate. One possible solution is to use both
types of input (clean and erroneous transcriptions)
for training, not just one. The question is how to
use them. What is the proper training strategy for
cascade STs? This is what we want to learn.

In this work, we address such problems by ap-
plying knowledge distillation to cascade STs. We
distill the knowledge of a teacher model based on
clean transcriptions to a student model based on
erroneous transcriptions. We also investigate the
joint use of knowledge distillation and fine-tuning.
Experimental results revealed that the knowledge
distillation improved the robustness against ASR
errors and that the knowledge distillation after
the fine-tuning provided more significant improve-
ment.
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2 Related work

Some ST studies have tackled the problem of
ASR error propagation. N-best hypotheses (Zhang
et al., 2004; Quan et al., 2005), confusion networks
(Bertoldi and Federico, 2005; Bertoldi et al., 2007),
and lattices (Matusov and Ney, 2010; Sperber et al.,
2017a) were used to include ASR ambiguity in the
ST process.

Osamura et al. (2018) used the weighted sum
of embedding vectors for ASR word hypotheses
based on their posterior probabilities. Sperber et al.
(2017b) and Xue et al. (2020) showed that transla-
tion accuracy against erroneous speech transcrip-
tions can be improved by introducing pseudo ASR
errors in the training data of MT.

Knowledge distillation (KD) (Buciluǎ et al.,
2006; Hinton et al., 2015) is a method of transfer-
ring knowledge from a teacher to a student model.
Typically, the student model is trained by mini-
mizing the KL-divergence (Kullback and Leibler,
1951) loss between the output probability distri-
butions of the teacher and student models (word-
level KD). Sequence-level knowledge distillation
(sequence-level KD) (Kim and Rush, 2016a) tar-
gets the token-sequence generated by the teacher
model using beam search. In our experiments,
sequence-level KD outperformed word-level one,
and Kim and Rush (2016b) showed similar trends.
Therefore, in our experiments, we call it KD.

The KD technique is prevalent in many ap-
plications of machine learning, including MT
(non-autoregressive machine translation (Gu et al.,
2017), simultaneous translation (Ren et al., 2020),
etc.). Typically, it is used to distill knowledge from
a larger teacher model to a smaller or faster student
model. Recent works (Furlanello et al., 2018; Yang
et al., 2018) have shown that the student model’s
accuracy exceeds that of the teacher model, even if
its size is identical as the student model. KD has
also been applied to ST. Gaido et al. (2020) applied
KD to an end-to-end ST using an MT model based
on clean transcriptions as the teacher of the end-to-
end ST model. Our work focuses on the application
of KD to a cascade ST using a teacher model based
on clean transcripts for the student model that takes
erroneous inputs.

Dakwale and Monz (2019) proposed distillation
as a remedy for the effective use of noisy parallel
data for machine translation. They first trained
the teacher model only on high-quality, clean data.
Then they fed the source-side of the noisy parallel
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Figure 1: Overview of key concepts of methods

data into the teacher model and trained the student
model to translate from the noisy source to the
teacher’s output. The main difference between their
work and ours is that we have loosely equivalent
source sentences (clean or erroneous transcription),
which can be paired with the same target sentence.
Therefore, the student model can be trained with
more reliable objectives obtained by feeding clean
transcriptions to the teacher model.

3 Cascade ST

Suppose triplet W = (w1, ..., wJ), X =
(x1, ..., xK), and Y = (y1, ..., yL), where W (1 ≤
j ≤ J),X(1 ≤ k ≤ K), and Y (1 ≤ l ≤ L) are se-
quences of the speech features in a source language,
the corresponding transcribed source language to-
kens, and translated target language tokens.

In a cascade ST, first the ASR model is trained by
the W and X pair. Then the MT model is trained
to translate from X to Y . The loss function of MT
model LMT is defined using cross entropy:

LMT = −
L∑

l=1

|V |∑

v∈V
logP (yl = v), (1)

where P (yl = v) is the posterior probability of
candidate v in target language vocabulary V at
time l in Y :

P (yl = v) = p(v|X, y<l; θ). (2)

4 Proposed method

When training an MT model, we can also use X̂
instead of X , which is the output of the ASR
model. We call the model trained with clean in-
put X MTclean (Fig. 1(a)) and the one trained with
ASR-based input X̂ MTasr (Fig. 1(b)).
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4.1 Joint use of KD and FT

To most effectively exploit both clean input X and
ASR-based input X̂ , we introduce two training
techniques: KD and fine-tuning. In KD, the student
model is trained using X̂ by minimizing loss LKD.
As shown in Fig. 1, LKD is the loss between Y ′ =
(y

′
1, ..., y

′
M ) and Ŷ = (ŷ1, ..., ŷN ), where Y ′(1 ≤

m ≤ M) and Ŷ (1 ≤ n ≤ N) are the outputs
of the teacher and student models. We use the
sequence-level KD so that LKD is calculated by
replacing L with M and l with m in Eq. 1.

On the other hand, fine-tuning (FT) has been
widely used for domain adaptation in MT (Sennrich
et al., 2016a). Di Gangi et al. (2019c) showed that
a model fine-tuned with ASR-based input becomes
robust to erroneous ASR input while maintaining
high performance for clean input. Following this
finding, we employ FT for MT training. In FT, the
student model with X̂ , which inherits the param-
eters of the teacher model with X , is trained by
minimizing LMT (Fig. 1).

In addition to the independent use of KD and FT,
we examined their possible combinations:

• FT+KD. Apply these techniques at the same
time. Unlike regular FT, we use loss LKD

instead of LMT .
Specifically, (1) the teacher model is trained
with clean input X and loss LMT . Then (2)
the student model is trained with ASR-based
input X̂ and loss LKD, inheriting the parame-
ters of the teacher model.

• KD→FT. Perform additional training with
LMT to the model trained by KD.
Specifically, (1) the student model is trained
with X̂ and LKD. Then (2) fine-tune the
model with X̂ and LMT .

• FT→KD. Perform additional training with
LKD to the model trained by FT.
Specifically, (1) the student model is trained
with X̂ and LMT , inheriting the parameters
of the teacher model. Then (2) fine-tune the
model with X̂ and LKD.

5 Experiments

5.1 Dataset

We conducted experiments for English to Italian
and Spanish to English NMT. For English-Italian,

we used MuST-C (Di Gangi et al., 2019a), a mul-
tilingual ST corpus built from TED talks. It con-
tains triplets of about 250K segments of English
speeches, transcripts, and Italian translations. We
used audio and transcript pairs to train the ASR. To
train the MT model, we used transcripts as clean
input and ASR outputs as noisy input.

For Spanish-English, we used LDC Fisher Span-
ish speech with new English translations (Post et al.,
2013; Salesky et al., 2018). It has the following
roughly 140K segments of multi-way parallel data:

1. Spanish disfluent speech

2. Spanish clean transcriptions

3. Spanish erroneous transcriptions
(ASR output)

4. English disfluent translations

5. English fluent translations

When we train the MT model, we used (5) as output.
For the sake of reproducibility we used (2) or (3)
as clean or noisy input included in the dataset.

We preprocessed the text data with Byte Pair
Encoding (BPE) (Sennrich et al., 2016b) to split the
sentences into subwords. The vocabulary size was
set to 8,000 in all the languages. For the English
audio, we extracted 80-channel log mel filterbank
features (25-ms window size and 10-ms shift) and
applied an utterance-level CMVN.

To evaluate the performance, we calculated the
case-sensitive BLEU with sacreBLEU.1 We mea-
sured BLEU for both the ASR-based and clean
input to evaluate the ASR error robustness and the
topline performance in an ideal situation without
ASR errors.

5.2 Model
We used the Transformer (Vaswani et al., 2017)
implementation of Fairseq2 to construct both the
ASR and the MT. The hyper-parameters of the
model generally follow the Transformer Base set-
tings (Vaswani et al., 2017). Each encoder and
decoder has 6 sub-layers. We set the word em-
bedding dimensions, the hidden state dimensions,
and the feed-forward dimensions to 512, 512, and
2,048. We performed the sub-layer’s dropout with
a probability of 0.1 and employed 8 attention heads
for both the encoder and the decoder. The model
is trained using Adam with an initial learning rate

1https://github.com/mjpost/sacreBLEU
2https://github.com/pytorch/fairseq
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ST Type System ASR-based input Clean input

End-to-end

ST + ASR-PT (Di Gangi et al., 2019b)1 16.8
ST + ASR-PT (ESPnet)2 21.5
ST 17.0
ST + ASR-PT 21.4

Cascade

MTclean (Di Gangi et al., 2019b)1 18.9 -
MTclean 22.4 29.7
MTasr 22.1 27.2
MTasr + FT 23.2 29.8
MTasr +KD 22.5 28.2
MTasr + FT+KD 23.4 29.9
MTasr +KD→ FT 23.1 29.3
MTasr + FT→ KD 23.5 30.2

Table 1: ST systems on MuST-C English-Italian. Test BLEU reported. 1End-to-end (above)
or cascade ST (below) systems using Fairseq’s Transformer Base model, which resembles our con-
ditions. 2End-to-end ST system using ESPnet resembles our conditions chosen from a report
(https://github.com/espnet/espnet/blob/master/egs/must c/st1/RESULTS.md).

of 0.0007, β1 = 0.9, and β2 = 0.98, following
Vaswani et al. (2017). We used 4,096 tokens per
mini-batch and eight iterations of forward-passes,
accumulated gradients, and back-propagated them.
Validation was performed every 1,000 updates, and
the test checkpoint with the best loss was stored.

For English-Italian, we also built several end-to-
end ST variants using Fairseq for comparison with
the cascade models. All the settings are identical
as in MT: using Transformer described above and
trained with label-smoothed cross entropy loss.

6 Results

6.1 English-Italian

Table 1 shows the BLEU results for the English
to Italian NMT. In the end-to-end systems, a naive
model (ST) without any additional technique, such
as an ASR subtask, was significantly lower than
the others and was significantly improved by pre-
training the ASR encoder (ST + ASR-PT).

The cascade methods worked better than the
end-to-end methods. In the cascade ST, the per-
formance of a system trained using only ASR input
(MTasr) was worse (0.3-BLEU drop for the ASR-
based test data and 2.5-BLEU drop for the clean
test data) than the clean input (MTclean). The ASR-
based training data contained erroneous transcrip-
tions of WER 14.49, leading to degradation. On the
other hand, some systems trained using both ASR
input and clean input were better than MTclean

when translating clean input. This indicates that
the training with ASR errors may contribute to reg-

ularize the model, which yields improvements.
The FT for the ASR-based input (MTasr + FT)

showed improvements for the ASR-based input
(+1.1 BLEU). Compared to FT, KD (MTasr+KD)
produced a small improvement with the ASR-based
input (+0.4 BLEU). In the KD, a teacher model got
a BLEU score of 41.6 on the reference for training
data.

With respect to the joint use of FT and KD, si-
multaneously applying these techniques (MTasr +
FT+KD) shows only slight improvements (+0.2
BLEU for ASR-based test data and +0.1 BLEU
for clean test data), compared to FT only (MTasr +
FT). Applying FT after KD (MTasr+KD→ FT)
was inferior to the other combinations, especially
for clean data, probably because the MT was not
trained with clean input. Distilling knowledge after
FT (MTasr + FT → KD) gave the best score for
both the ASR-based and the clean test data. FT
enables the student model to learn good parameter
values, and KD provides the student model with its
upper bounds from the teacher model.

6.2 Spanish-English
Table 2 shows the overall results for the Spanish
to English cascade ST. They are similar to those
in English-to-Italian; FT and KD improved BLEU,
and combining them yielded more significant im-
provements. However, the gap was larger for the
clean test data between systems only trained on the
ASR-based input (MTasr) and only on the clean
input (MTclean). The ASR-based training data con-
tained many erroneous transcriptions of WER 36.5,
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System Fisher/Test 0 Fisher/Test 1
ASR-based input Clean input ASR-based input Clean input

MTclean 17.5 26.8 17.0 26.1
MTasr 17.5 17.6 16.9 17.2
MTasr + FT 18.3 24.9 17.5 24.5
MTasr +KD 18.5 16.5 17.9 16.2
MTasr + FT+KD 18.8 25.2 18.0 24.9
MTasr +KD→ FT 17.8 15.7 17.1 15.3
MTasr + FT→ KD 19.0 25.2 18.4 25.2

Table 2: ST systems on Fisher Spanish-English. Test BLEU for two fluent references reported.

causing more serious degradation. It also differs
from the English-to-Italian experiments in that KD
(MTasr +KD) was superior to FT (MTasr + FT)
for the ASR-based test data when it was used alone.
In KD, BLEU using the teacher model as train-
ing data was 48.0, which is higher than 41.6 for
English-Italian. One possible reason is that there
was a higher upper bound that can be trained by
KD. Another difference was a gap between the
clean and ASR-based inputs, which have many er-
roneous transcriptions of WER 36.5. In such a
case, parameter initialization by FT may not be
very helpful.

In spite of the differences between the two ex-
periments, we achieved consistent improvement by
combining FT and KD.

7 Discussion

We analyzed the results with the Spanish to English
models to discuss how erroneous transcriptions af-
fect translation results and how KD and FT work.

Erroneous transcription The example below
shows the problem of error propagation:

• (Clean input) uno super, super nuevo que salio

• (ASR output) en un sur super nuevo que salio

• (Reference) One super new that came out

• (MTasr with ASR-based input) In the South,
it came out

• (MTasr + KD with ASR-based input) In a
super new one that came out.

Here the Spanish word super was misrecognized
as sur by the ASR. This error was propagated to
MT, and MTasr translated it as South. Although
the word’s translation itself from sur to South was
not wrong, but it is not what we wanted. The model

trained by KD ignored this error and generated a
more proper sentence.

We found such ASR error correction phenomena
in the results, although KD and FT did not directly
address this issue.

Effect of Knowledge Distillation Spoken lan-
guage parallel data have translations of colloquial
spoken utterances. They increase the difficulty of
training MT. For instance:

• (Clean input) le ayuda si si, no es, no es intere-
sante pero entonces, a ba- entonces ya des-
pues cuando eso termino, tiene que escribir
varios asi, ensayos, hacer un analisis

• (Reference) You have to write some essays
like that, to make an analysis

• (KD teacher) It helps her yes, it’s not interest-
ing but then, when I finish, you have to write
several, you have to make an analysis

A human translator ignored many disfluent utter-
ances from the original text, resulting in low fidelity.
Here are some other examples:

• Inconsistent translations: “De Venezuela” was
translated into “From Venezuela” at one time
and “Venezuela?” at another time.

• All-caps: “donde hay problemas” was capital-
ized and translated into “WHEN TROUBLE
ARISES.”

• Omission of a part of speech: “Porque, tengo
el, el bodysuit, pero” was translated into “I
have the bodysuit..” The conjunction “pero
(but)” was removed for fluency.

The MT model can be confused by such transla-
tions. KD forces the student model to mimic literal
teacher translations that may include some errors
instead of reproducing translations of colloquial
spoken utterances.
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Effect of Fine-tuning Sometimes the fine-tuned
MT model corrected the ASR errors:

• (Clean input) Eh, para mi pues, eh, tengo
como diez mil canciones en, en el, en la Ipod

• (ASR output) eh para mi pues eh tengo como
diez mil canciones en en la epod

• (Reference) I have ten thousand songs in the
Ipod.

• (MTclean with ASR-based input) To me, I
have about ten thousand songs in the ethics

• (MTasr + FT with ASR-based input) I have
about ten thousand songs in the Ipod

The ASR misrecognized “Ipod” as “epod,” and
the model before FT, which was only trained with
clean inputs, incorrectly translated it as “ethics.”
As a result of the FT with ASR-based inputs, the
model successfully translated it as “Ipod.” The FT
for the erroneous ASR outputs may have provided
robustness against common errors.

8 Conclusion

We presented and discussed the benefits of using
two machine learning techniques in cascade ST:
knowledge distillation and fine-tuning. Our ex-
perimental results showed the advantages of the
proposed method in two different conditions. Our
results also suggest that combining knowledge dis-
tillation and fine-tuning is more beneficial than
using either one because they have different roles.

In future work, we will incorporate our findings
into an end-to-end ST to grow speech translation.
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Abstract

In supervised learning, a well-trained model
should be able to recover ground truth ac-
curately, i.e. the predicted labels are ex-
pected to resemble the ground truth labels as
much as possible. Inspired by this, we for-
mulate a difficulty criterion based on the re-
covery degrees of training examples. Mo-
tivated by the intuition that after skimming
through the training corpus, the neural ma-
chine translation (NMT) model “knows” how
to schedule a suitable curriculum according to
learning difficulty, we propose a self-guided
curriculum learning strategy that encourages
the NMT model to learn from easy to hard
on the basis of recovery degrees. Specifi-
cally, we adopt sentence-level BLEU score
as the proxy of recovery degree. Experimen-
tal results on translation benchmarks includ-
ing WMT14 English⇒German and WMT17
Chinese⇒English demonstrate that our pro-
posed method considerably improves the re-
covery degree, thus consistently improving the
translation performance.

1 Introduction

Inspired by the learning behavior of humans, Cur-
riculum Learning (CL) for neural network training
starts from a basic idea of “starting small”, namely
better to start from easier aspects of a task and
then progress towards aspects with increasing level
of difficulty (Elman, 1993). Bengio et al. (2009)
achieves significant performance boost on several
tasks by forcing models to learn training examples
following an order from “easy” to “difficult”. They
further explain CL method with two important con-
stituents: how to rank training examples by learn-
ing difficulty and how to schedule the presentation
of training examples based on that rank.

∗Part of this work was done when the first author visited
CLSP, JHU.
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Figure 1: The NMT model is well-trained on parallel
corpus D, {(x1, y1), (x2, y2)} ∈ D. ŷi is translated
from xi. The distance between the ground truth yi
and the NMT generated hypothesis ŷi represents the
recovery degree (dashed arrows), which is computed
by sentence-level BLEU in our case. Blue- and green-
colored examples represent the NMT learned distribu-
tion and the empirical distribution, respectively. Taking
x1 and x2 as the input, the training example (x1, y1)
shows a better recovery degree, which means it’s easier
to be mastered than (x2, y2).

In the field of neural machine translation (NMT),
empirical studies have shown that CL strategies
contribute to both convergence speed and model
performance (Zhang et al., 2018; Platanios et al.,
2019; Zhang et al., 2019; Liu et al., 2020; Zhan
et al., 2021; Ruiter et al., 2020). These CL strate-
gies vary by difficulty criteria and curriculum
schedules. Early difficulty criterion depends on
manually crafted features and prior knowledge such
as sentence length and word rarity (Kocmi and
Bojar, 2017). The drawback lies in the fact that
humans understand learning difficulty differently
from NMT models. Recent works choose to de-
rive difficulty criteria based on the probability dis-
tribution of training examples to approximate the
perspective of NMT models. For instance, Platan-
ios et al. (2019) turn discrete numerical difficulty
scores into relative probabilities and then construct
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the difficulty criterion, while others derive diffi-
culty criterion from independently trained language
model (Zhang et al., 2019; Dou et al., 2020; Liu
et al., 2020) and word embedding model (Zhou
et al., 2020b). Xu et al. (2020) derive difficulty
criterion from the NMT model in the training pro-
cess. And these difficulty criteria are applied to
either fixed curriculum schedule (Cirik et al., 2016)
or dynamic one (Platanios et al., 2019; Liu et al.,
2020; Xu et al., 2020; Zhou et al., 2020b).

A well-trained NMT model estimates the op-
timal probability distribution mapping from the
source language to the target language, which is
assumed to be able to recover the ground truth trans-
lations accurately (Liu et al., 2021). However, if
we perform inference on the training set, many of
the predictions are inconsistent with the references.
It reflects the distribution shift between the NMT
model leaned distribution and the empirical distri-
bution of training corpus, as Figure 1 illustrated.
For a training example, a high recovery degree be-
tween prediction and ground-truth target sentence
means it’s easier to be mastered by the NMT model
while a lower recovery degree means it’s more dif-
ficult (Ding and Tao, 2019; Wu et al., 2020b). To
this end, we employ this recovery degree as the
difficulty criterion, where the recovery degree is
computed by the sentence-level BLEU. We put for-
ward an analogy of this method that humans can
schedule a personal and effective curriculum af-
ter skimming over a textbook, namely self-guided
curriculum.

In this work, we cast the recovery degree of each
training example as its learning difficulty, enforcing
the NMT model to learn from examples with higher
recovery degrees to those with lower degrees. Also,
we implement our proposed recovery-based dif-
ficulty criterion with fixed and dynamic curricu-
lum schedules. Experimental results on two ma-
chine translation benchmarks, i.e., WMT14 En-De
and WMT17 Zh-En, demonstrate that our proposed
self-guided CL can alleviate the distribution shift
problem in vanilla NMT models, thus consistently
boosting the performance.

2 Problem Definition

For a better interpretation of curriculum learning
for neural machine translation, we put the discus-
sion of various CL strategies into a probabilistic
perspective. Such perspective also motivates us to
derive this recovery-based difficulty criterion.

2.1 Neural Machine Translation
Let S and T represent the probability distributions
over all possible sequences of tokens in source and
target languages, respectively. We denote the dis-
tribution of a random source sentence x and y as
PS(x) and PT (y). NMT model is to learn a condi-
tional distribution PS,T (y|x) with a probabilistic
model P (y|x; θ) parameterized by θ, where θ is
estimated by minimizing the objective:

J(θ) = −Ex,y∼PS,T (x,y) logP (y|x; θ) (1)

2.2 Curriculum Learning for Neural
Machine Translation

CL methods decompose the NMT model training
into K phases, enforcing the optimization trajec-
tory in parameter space to visit a series of points
θ1, . . . , θK . Each training phase can be viewed as
a sub-optimal process, optimized on a subset Dk of
the training corpus D:

J(θk) = −Ex,y∼P̂Dk
logP (y|x; θk) (2)

where P̂Dk
is the empirical distribution of Dk. Ac-

cording to the definition of curriculum learning,
the optimization difficulty increases from J(θ1)
to J(θK) (Bengio et al., 2009). In practice, it’s
achieved by grouping training examples into sub-
sets in ascending order of learning difficulty. The
process splitting D into K subsets can be formu-
lated as follows:

• score← d(zn), zn ∈ D, where d(·) is a diffi-
culty criterion

• For k = 1, . . . ,K do; Dk ←
{zn|Constraint(d(zn), k)}

z represents examples in D, D = {zn}Nn=1, zn =
(xn, yn). Training corpus D is split into K subsets
{D1, . . . ,DK}, that

⋃
k∈K

Dk = D.

With these notations, we review the DIFFICULTY

CRITERIA in existing CL methods from a prob-
abilistic perspective as these methods generally
derive difficulty criteria from a probabilistic dis-
tribution. For example:

Explicit Feature d(xn) = PD(Feature(xn)),
where Feature(·) is handcrafted features and lin-
guistic prior knowledge such as sentence length
and word rarity. With the cumulative density func-
tion (CDF), numerical scores are mapped into a
relative probability distribution over all training
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examples (Platanios et al., 2019). Only features
of source sentences are taken into consideration in
their practice.

Language Model d(xn) =
−1
I logPLM(wn1 , . . . , w

n
I ), where a language

model is adopted to estimate the perplexity of
each sentence x = w1, . . . , wI . Language models
trained on source and target side can be used
jointly, e.g., d(xn) + d(yn) (Zhou et al., 2020b).
In other works (Zhang et al., 2019; Dou et al.,
2020), language models in different domains are
adopted to compute the cross-entropy difference of
each sentence, indicating its difficulty for domain
adaptation.

Word Embedding d(xn) =
∑I

i=1 ‖wn
i ‖,

where w1, . . . ,wI is a distributed representation of
source sentence x mapped through a independent
word embedding model. In the case of Liu et al.
(2020), the norm of word vector on the source side
is used as the difficulty criterion. They also use
the CDF function to assure the difficulty scores are
within [0, 1].

NMT Model d(zn; θk) = l(zn;θk)−l(zn;θk−1)
l(zn;θk−1)

,

l(zn; θk) = − logP (yn|xn; θk), where θk repre-
sents the NMT model parameters at the kth train-
ing phase. The decline of loss is defined as the
difficulty criterion in Xu et al. (2020). Besides,
the score of cross-lingual patterns may also be a
proper difficulty criterion for NMT (Ding et al.,
2020a; Zhou et al., 2020a; Wu et al., 2021), which
we leave as the future work.

We now turn to CURRICULUM SCHEDULING.
There are two controlling factors, extraction of
training set and training phase duration. In other
words, how to split training corpus into subsets
and when to load them. Given K mutual exclusive
subsets {D1, . . . ,DK} ⊆ D, there are two general
regimens loading them as training progresses: one
pass and baby steps. In one pass regimen, k sub-
sets Dk are loaded as training set one by one, while
in baby steps regimen, these subsets are merged
into the current training set one by one (Cirik et al.,
2016). According to Cirik et al. (2016), baby steps
outperforms one pass. Later approaches generally
take the idea of baby steps in that easy examples
are not cast aside while the probability increases
for difficulty examples to be batched.

On top of baby steps, we can summarize exist-
ing works into two schedule settings: fixed sched-
ule and dynamic schedule. In fixed schedule, both

training set extraction and training phase duration
are fixed (Cirik et al., 2016; Zhang et al., 2019).
The size of the training set scales up by a certain
proportion of the total training examples, usually
|Dk| = N/K at the beginning of a new training
phase. And each training phase spends a fixed num-
ber of training steps. In dynamic schedule, either
training set extraction or training phase duration is
dynamic. Depending on which controlling factor
is dynamic, we group existing dynamic schedules
into two types: the competence type and the self-
paced type. Competence-based CL method is pro-
posed by (Platanios et al., 2019). In competence
type of dynamic schedule, training set extraction
is dynamic while the training phase duration is
fixed. At the beginning of a training phase, the
CL algorithm compute the model competence c
at the moment, then extract examples with diffi-
culty scores lower than c as the training set for the
current phase, {zn|d(zn) ≤ c, zn ∈ D}. For K
training phases, the competence-based schedule is
to determine (K − 1) upper limits with a scale fac-
tor within range of d(zn), which is [0, 1]. Platanios
et al. (2019) take training steps 1, . . . , t, . . . , T as
the scale factor, thus the general form of compe-

tence function is : c(t) = min

(
1,

p

√
t
1−cp0
T + cp0

)
.

Recent works develop model competence by in-
troducing different scale factors, such as the norm
of the source embedding of the NMT model (Liu
et al., 2020) and BLEU score on validation set (Xu
et al., 2020). Another type of dynamic schedule is
the self-paced one (Jiang et al., 2015; Zhou et al.,
2020b), in which training set extraction is fixed
while the training phase duration is dynamic. Af-
ter a training phase begins, it goes on until con-
vergence or until meeting certain conditions. For
example in Zhou et al. (2020b), model training will
progress to the next phase if the model uncertainty
stops decline.

3 Methodology

As mentioned above, due to the distribution shift
problem, predictions made by a well-trained vanilla
NMT model can be inconsistent with the refer-
ences when performing inference on the training
set. Training examples with higher recovery de-
grees are easier to be masted by the NMT model
while those with lower recovery degrees are likely
to be more difficult. Table 1 shows a comparison
of two training examples with distant recovery de-
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High Recovery Degree (BLEU 77.01)

Source 该动议如被通过,提案或修正案中后被核准的各部分应合成整体再付表决。
Reference If the motion for division is carried, those parts of the proposal or of the amendment

which are subsequently approved shall be put to the vote as a whole.
Prediction If the motion for division is carried , those parts of fm draft resolution or of the

amendment that are subsequently approved shall be put to the vote as a whole.

Low Recovery Degree (BLEU 5.19)

Source 并且慢慢地,非常缓慢地把头抬到它的眼睛正好可以直视哈利的位置便停
了下来。它朝哈利使了一下眼色。

Reference Slowly, very slowly, it raised its head until its eyes were on a level with Harry’s.
It winked.

Prediction Slowly and very slowly – thinking his head up, still adding to poster him gladly stare to
stopped Harry’s face alone, and then blurted it out to Harry like a stop.

Table 1: Examples from WMT17 Chinese⇒English with distant recovery degrees measured by sentence-level
BLEU score. We mark prediction errors with red underline.

Vanilla 
NMT 

TargetSource

Curriculum 
NMT 

Vanilla 
NMT 

Prediction

27.3 
18.7 
10.1 
9.2 
0.2 
…

Target

BLEU TargetSource

10.1 
18.7 
9.2 
0.2 
27.3 
…

BLEU

1
2

3
4

Guidance

Source

Curriculum

(1)

(2)

(3)

Figure 2: Workflow of self-guided CL strategy

grees.
In this section, we first introduce our recovery-

based difficulty criterion and then propose to im-
plement this criterion with fixed and dynamic cur-
riculum schedules. The workflow of our proposed
self-guided curriculum learning strategy is illus-
trated in Figure 2.

3.1 Difficulty Criterion
The objective function of the vanilla model can be
written as an average distribution over the training
corpus D:

J(ϕ) = Ex,y∼p̂DL(f(xn;ϕ), yn) (3)

where f(xn;ϕ) represents model’s prediction and
L is the loss function. As noted in Section 2, cur-
riculum learning minimizes the objective J(θ) with

a set of sub-optimal processes from easy to difficult.
Examples that better fit into the average distribu-
tion learned by the vanilla model with parameter ϕ
get higher recovery degrees. Starting curriculum
learning on a set of examples with higher recovery
degrees is to start optimizing J(θ) from a smaller
parameter space in the neighborhood of parameter
ϕ. In the machine translation scenario, we care
more about model performance in terms of trans-
lation quality. So we choose BLEU score, the de
facto automatic metric for MT, to measure the re-
covery degree. The difficulty criterion based on
sentence-level BLEU score is as follows:

d(zn) = −BLEU(f(xn;ϕ), yn) (4)

Other reference-based automatic metrics for MT
are applicable in this difficulty criterion as well.

3.2 Curriculum Scheduling
Following basic operations of the baby steps regi-
men, we first split training corpus D into K mutual
exclusive subsets {D1, . . . ,DK}, corresponding to
K training phases. With difficulty criterion d(·),
we define the corpus splitting function g:

g(d(·)) : D −→ {D1, . . . ,DK},
| ∀a ∈ Dk,∀b ∈ Dk+1, d(a) ≤ d(b)

(5)

Then we explore both fixed and dynamic schedules:

Fixed In fixed schedule, the training duration of
each training phase is predefined. At the beginning
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Algorithm 1: Fixed Scheduling

Input: Parallel corpus D = {zn}Nn=1,
zn = (xn, yn)

1 Train vanilla model ϕ on D
2 Compute difficulty score d(zn), zn ∈ D

with ϕ by Eq. 4
3 Split D into subsets {D1, . . . ,DK} by Eq. 5
4 Dtrain = ∅
5 for k = 1, . . . ,K do
6 Dtrain = Dtrain ∪ Dk
7 for training steps t = 1, . . . , T do
8 Train CL model θk on Dtrain

Output: Trained CL model θ

of the kth training phase, subset Dk is merged into
the current training set. After finished with T steps,
the training progresses to the next phase k + 1, see
Algorithm 1:

Dynamic We follow the self-paced type of dy-
namic schedule as described in Section 2, in which
training duration is dynamic while training set ex-
traction is done before training starts. We define
the condition of training phase progressing by the
model recovery degree. In training phase k, if the
CL model constantly demonstrates recovery de-
grees higher than the vanilla model on the newly
merged subset Dk, the CL model training will ad-
vance to the training phase k + 1. For easier op-
eration, we randomly sub-sample D′k from Dk for
model recovery validation. Based on the perfor-
mance on {xn, yn} ∈ D′k, which is measured by
corpus-level BLEU score, we compute model re-
covery degree of the CL model at current training
phase k by:

oc(k) = BLEU(f(xn; θk), yn) (6)

Similarly, with the same additional validation set
D′k, we compute model recovery degree of the
vanilla model by:

ov(k) = BLEU(f(xn;ϕ), yn) (7)

If oc > ov, training phase will progress to the next
one. Otherwise, the current training phase will go
on until it reaches the predefined maximum time
steps T , and then moves to the next phase. The
training process is as described in Algorithm 2.

Algorithm 2: Dynamic Scheduling

Input: Parallel corpus D = {zn}Nn=1,
zn = (xn, yn)

1 Train vanilla model ϕ on D
2 Compute difficulty score d(zn), zn ∈ D

with ϕ Eq. 4
3 Split D into subsets {D1, . . . ,DK} by Eq. 5
4 Dtrain = ∅
5 for k = 1, . . . ,K do
6 Dtrain = Dtrain ∪ Dk
7 for training steps t = 1, . . . , T do
8 Train CL model θk on Dtrain

9 Compute model recovery degree oc
and ov, Eq.6,7

10 if oc > ov then
11 Stop and move to the next phase

Output: Trained CL model θ

4 Experiments

4.1 Datasets

We conduct experiments on two machine trans-
lation benchmarks: WMT’14 English⇒German
(En-De) and WMT’17 Chinese⇒English (Zh-En).
For En-De, the training set consists of 4.5 million
sentence pairs. We use newstest2012 as the valida-
tion set and report test results on both newstest2014
and newtest2016 for fair comparison with existing
approaches. For Zh-En, we follow (Hassan et al.,
2018) to extract 20 million sentence pairs as the
training set. We use newsdev2017 as the valida-
tion set and newstest2017 as the test set. Chinese
sentences are segmented with a word segmenta-
tion toolkit Jieba1. Sentences in other languages
are tokenized with Moses2. We learn Byte-Pair
Encoding(BPE) (Sennrich et al., 2016) with 32k
merge operations. And we learn BPE with a shared
vocabulary for En-De. We use BLEU (Papineni
et al., 2002) as the automatic metrics for com-
puting recovery degree and evaluating model per-
formance with statistical significance test (Collins
et al., 2005).

4.2 Model Settings

We perform proposed CL method with the
FAIRSEQ3 (Ott et al., 2019) implementation of the

1https://github.com/fxshy/jieba
2https://github.com/mosesdecoder
3https://github.com/pytorch/fairseq
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# Systems WMT14 EnDe WMT16 EnDe WMT17 ZhEn
BLEU ∆ BLEU ∆ BLEU ∆

1 Transformer BASE 27.30 - 32.76‡ - 23.69† -
2 w/ Competence-based CL 28.19† - 32.84‡ - 24.30† -
3 w/ Norm-based CL 28.81† - - - 25.25† -
4 w/ Uncertainty-aware CL - - 33.93‡ - 25.02‡ -

This work
5 Transformer BASE 27.63 - 33.03 - 23.78 -
6 w/ SGCL Fixed 28.16↑ 0.53 33.55↑ 0.52 24.65↑ 0.87
7 w/ SGCL Dynamic 28.62⇑ 0.99 34.07⇑ 1.04 25.34⇑ 1.56

Table 2: Experiment results on WMT14 En⇒De with newstest2014 and newstest2016, and WMT17 Zh⇒En. For
baseline and existing CL methods, Row 1-4, “†” marks the results from Liu et al. (2020), and “‡” marks the results
from Zhou et al. (2020b). Since Platanios et al. (2019) only report their results on En⇒De newstest2016, up to
30.16, which is lower than later implementations, we show the implemented results of the Competence-based CL
method from Liu et al. (2020) and Zhou et al. (2020b) instead. For the results of our proposed methods, “⇑/↑”
indicates significant difference (p < 0.01/0.05) from Transformer BASE.

Transformer BASE (Vaswani et al., 2017). For regu-
larization, we use the dropout of 0.3 and 0.1 for En-
De and Zh-En respectively, with label smoothing ε
= 0.1. We train the model with a batch size of ap-
proximately 128K tokens. We use Adam (Kingma
and Ba, 2015) optimizer. The learning rate warms
up to 5×10−4 in the first 16K steps and then decays
with the inverse square-root schedule. We evaluate
the translation performance on an ensemble of the
top 5 checkpoints to avoid stochasticity. We use
shared embeddings for En-De experiments. All our
experiments are conducted with 4 NVIDIA Quadro
GV100 GPUs.

4.3 Curriculum Learning Settings
The vanilla model and the CL model share the same
Transformer BASE setting. For the recovery degree,
we let the trained vanilla model make predictions of
source sentences in the training corpus with beam
size set to 1 for we only need to reveal the recovery
feature at the moment. Then we evaluate the predic-
tions with sentence-level BLEU score. Specifically,
we use fairseq-score to get sentence-level
BLEU score, which implements smoothing method
3, i.e., NIST smoothing method (Chen and Cherry,
2014) by default. According to Zhou et al. (2020b),
4 baby steps is superior to those with larger baby
steps, so we choose to decompose the CL training
into 4 training phases. Implementing the proposed
difficulty criterion, we investigate the performance
of two curriculum schedules:

• SGCL Fixed represents self-guided curricu-
lum learning with fixed schedule.

• SGCL Dynamic represents self-guided cur-
riculum learning with dynamic schedule.

5 Results

Table 2 summarises our experimental results to-
gether with existing CL methods. Row 1 shows the
results of the standard Transformer BASE on these
benchmarks. Row 2-4 demonstrate results from
existing curriculum learning approaches. Row 5
shows the results of our Transformer BASE im-
plementation, and row 6-7 are the results of our
proposed CL models. For En-De, if existing works
report results on one of newstest2014 and new-
stest2017, then only the reported one is shown. We
report results on them both for fair comparison.

We train our implemented baseline of Trans-
former BASE and proposed CL models for 300k
steps. For both SGCL Fixed and SGCL Dynamic
methods, we observe superior performances over
the strong baseline on all three test sets of two
benchmarks, which agree with existing approaches
that curriculum learning can facilitate the NMT
model. And if we compare the two schedul-
ing methods, SGCL Dynamic outperforms SGCL
Fixed. A possible reason is that the dynamic sched-
ule encourages the CL model to spend more steps
on the more difficult subset. Encouragingly, we
observe considerable gains over other curriculum
learning counterparts.
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Figure 3: Recovery degree (sentence-level BLEU) dis-
tribution of the training set.

Subset Range Average
D1 17.72 - 100.00 35.62
D2 9.18 - 17.72 12.77
D3 5.16 - 9.18 6.97
D4 0.00 - 5.16 3.35

Table 3: Range and average of recovery degree
(sentence-level BLEU) in subsets {D1,D2,D3,D4}

6 Analysis

6.1 Recovery Degree

We conduct experiments on En-De for further anal-
ysis of the proposed CL methods.

As described in Section 3, we adopt sentence-
level BLEU score to measure the recovery degrees
of all examples in the training corpus with a vanilla
NMT model. When making predictions with the
vanilla model, we set the beam size to 1 for sim-
plicity. So the recovery degrees could be lower
than test results of a strong baseline. If we look
at the distribution in terms of BLEU score on all
training examples, as Figure 3 illustrated, the distri-
bution is very dense in the region with lower scores.
Specifically, more than 53.9% training examples
get a recovery degree lower than 10. It reflects the
distribution shift problem of well-trained vanilla
NMT mode, that the model learned distribution
and empirical distribution on training corpus are
inconsistent.

In our case, the training corpus is split into 4
subsets with about equal size, {D1,D2,D3,D4}.
Table 3 is the range and average of recovery de-
grees of each subset, revealing the learning diffi-
culty of each subset merges into training set as
training phase progress. We also look at the aver-
age lengths of source sentences in these 4 subsets,
which are 22.40, 23.84, 25.33, 29.35, reflecting a
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(b) Baseline vs. SGCL Dynamic

Figure 4: Learning curves w.r.t BLEU scores.

gentle increase. As a comparison, if we sort the
training examples by lengths of source sentences
and split them into 4 subsets, the average lengths
become 10.96, 18.66, 27.00, 44.30. So we can infer
that the recovery degree is related to but not fully
depend on sentence length, indicating that shorter
sentences are not always easier to be masted by the
NMT model.

6.2 Learning Curves

Figure 4 demonstrates the learning curves of base-
line vs. SGCL Fixed and baseline vs. SGCL Dy-
namic. As illustrated, the baseline converges faster
at the beginning but stays at a lower level as train-
ing progresses, while proposed CL methods show
constant improvements and outperform the base-
line in the later training process. A possible reason
that the CL models don’t outperform the baseline
at the beginning might be, they boost their perfor-
mance after all training examples are merged into
the training set. After all training examples are
included, CL models are able to maintain better
growth momentum than the baseline.

We also observe that the SGCL Dynamic gains
more significant improvements over the baseline
than the SGCL Fixed. Given 300k training steps,
different curriculum schedules suggest different
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Source 然而,就在大部分互联网医疗企业挣扎在A轮或B轮的融资路上的时候,
有几家细分领域领先企业仍能获得资本热捧。

Reference However, just as the majority of internet medical companies struggle on the way of
a round or b round of financing, several segment-leading enterprises can still be
favored by investors.

Vanilla However, even as most internet healthcare companies struggle to raise money in a or
(8.61) b rounds, a few of the leading segments still enjoy the capital boom.
SGCL However, even as most internet health companies struggle with a round or b round of
(27.45) financing, several segments leading business still enjoy the capital boom.

Table 4: Predictions made by the Vanilla model and the SGCL Dynamic model with a same input sentence. We
mark the errors with red underline. The number in parentheses, e.g. (8.61) are sentence-level BLEU scores.

ways of splitting the training steps. For the SGCL
Fixed, we empirically define the training steps
spent on phase 1 to phase 4 as 30k, 30k, 30k, 210k.
That is to say, after 90k steps, the model is train-
ing with all examples in the training corpus. For
SGCL Dynamic, as mentioned in Section 3, if the
CL model outperforms the vanilla model on the
newly merged subset, training progresses to the
next phase. In practice, after new examples merge
into the training set, we first train for 20k steps and
then check the performance of the CL model every
10k steps. As a result, the model starts to train with
all training examples after 120k steps and tends
to spend more time steps in later training phases,
consistent with other existing dynamic scheduling
methods.

6.3 Case Study

Figure 4 presents a case study in Zh-En. It indi-
cates that our approach achieves a performance
boost because of better lexical choice. To better
understand how our approach alleviates the low-
recovery problem, we conduct statistic analysis
on the sentence-level BLEU scores of predictions
made by the vanilla model and the CL model on
the test set. It shows that the proportion of predic-
tions with a BLEU score under 10 is 10.0% with
the vanilla model and is down to 8.1% with the CL
one.

7 Conclusion

In this work, we propose a self-guided CL strategy
for neural machine translation. The intuition be-
hind it is that after skimming through all training
examples, the NMT model naturally learns how to
schedule a curriculum for itself. We discuss exist-

ing difficulty criteria for curriculum learning from
a probabilistic perspective, which also explains
our motivation for deriving a difficulty criterion
based on recovery degree. Moreover, we corporate
this recovery-based difficulty criterion with both
fixed and dynamic curriculum schedules. Empir-
ical results show that with a self-guided CL strat-
egy, the NMT model achieves better performance
over the strong baseline on translation benchmarks.
In the future, we will corporate recovery-based
difficulty criterion with other dynamic scheduling
methods. Also, it will be interesting to apply our
proposed CL strategy to different scenarios, e.g.,
non-autoregressive generation (Gu et al., 2018; Wu
et al., 2020a; Ding et al., 2020b).
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Abstract

Speech translation (ST) has lately received
growing interest for the generation of subtitles
without the need for an intermediate source
language transcription and timing (i.e. cap-
tions). However, the joint generation of source
captions and target subtitles does not only
bring potential output quality advantages when
the two decoding processes inform each other,
but it is also often required in multilingual sce-
narios. In this work, we focus on ST models
which generate consistent captions-subtitles in
terms of structure and lexical content. We
further introduce new metrics for evaluating
subtitling consistency. Our findings show that
joint decoding leads to increased performance
and consistency between the generated cap-
tions and subtitles while still allowing for suf-
ficient flexibility to produce subtitles conform-
ing to language-specific needs and norms.

1 Introduction

New trends in media localisation call for the rapid
generation of subtitles for vast amounts of au-
diovisual content. Speech translation, and espe-
cially direct approaches (Bérard et al., 2016; Bahar
et al., 2019), have recently shown promising results
with high efficiency because they do not require a
transcription (manual or automatic) of the source
speech but generate the target language subtitles
directly from the audio. However, obtaining the
intralingual subtitles (hereafter “captions”) is nec-
essary for a range of applications, while in some
settings captions need to be displayed along with
the target language subtitles. Such “bilingual sub-
titles” are useful in multilingual online meetings,
in countries with multiple official languages, or
for language learners and audiences with different
accessibility needs. In those cases, captions and
subtitles should not only be consistent with the
visual and acoustic dimension of the audiovisual

material but also between each other, for example
in the number of blocks (pieces of time-aligned
text) they occupy, their length and segmentation.
Consistency is vital for user experience, for ex-
ample in order to elicit the same reaction among
multilingual audiences, or to facilitate the quality
assurance process in the localisation industry.

Previous work in ST for subtitling has focused
on generating interlingual subtitles (Matusov et al.,
2019; Karakanta et al., 2020a), a) without consid-
ering the necessity of obtaining captions consistent
with the target subtitles, and b) without examining
whether the joint generation leads to improvements
in quality. We hypothesise that knowledge shar-
ing between the tasks of transcription and transla-
tion could lead to such improvements. Moreover,
joint generation with a single system can avoid
the maintenance of two different models, increase
efficiency, and in turn speed up the localisation
process. Lastly, if joint generation improves con-
sistency, joint models could increase automation
in subtitling applications where consistency is a
desideratum.

In this work, we address these issues for the first
time, by jointly generating both captions and subti-
tles for the same audio source. We experiment with
the following models: 1) Shared Direct (Weiss
et al., 2017), where the speech encoder is shared
between the transcription and the translation de-
coder, 2) Two-Stage (Kano et al., 2017), where
the transcript decoder states are passed to the trans-
lation decoder, and 3) Triangle (Anastasopoulos
and Chiang, 2018), which extends the two-stage by
adding a second attention mechanism to the trans-
lation decoder which attends to encoded speech
inputs. We compare these models with the estab-
lished approaches in ST for subtitling: an indepen-
dent direct ST model and a cascade (ASR+MT)
model. Moreover, we extend the evaluation beyond
the usual metrics used to assess transcription and
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translation quality (respectively WER and BLEU),
by also evaluating the form and consistency of the
generated subtitles.

Sperber et al. (2020) introduced several lexical
and surface metrics to measure consistency of ST
outputs, but they were only applied to standard,
non-subtitle, texts. Subtitles, however, are a partic-
ular type of text structured in blocks which accom-
pany the action on screen. Therefore, we propose
to measure their consistency by taking advantage of
this structure and introduce metrics able to reward
subtitles that share similar structure and content.

Our contributions can be summarised as follows:

• We employ ST to directly generate both cap-
tions and subtitles without the need for human
pre-processing (transcription, segmentation).

• We propose new, task-specific metrics to eval-
uate subtitling consistency, a challenging and
understudied problem in subtitling evaluation.

• We show increased performance and consis-
tency between the generated captions and
subtitles compared to independent decoding,
while preserving adequate conformity to sub-
titling constraints.

2 Background

2.1 Bilingual subtitles

New life conditions maximised the time spent in
front of screens, transforming today’s mediascape
in a complex puzzle of new actors, voices and
workflows. Face-to-face meetings and conferences
moved online, opening up participation for global
audiences. In these new settings multilinguality
and versatility are dominant, and manifested in
business meetings with international partners, con-
ferences with world-wide coverage, multilingual
classrooms and audiences with mixed accessibility
needs. Given these growing needs for providing
inclusive and equal access to audiovisual material
for a multifaceted audience spectrum, efficiently
obtaining high-quality captions and subtitles is be-
coming increasingly relevant.

Traditionally, displaying subtitles in two lan-
guages in parallel (bilingual or dual subtitles) has
been common in countries with more than one offi-
cial languages, such as Belgium and Finland (Got-
tlieb, 2004). Recently, however, captions along
with subtitles have been employed in other coun-
tries to attract wider audiences, e.g. in Mainland

China English captions are displayed along with
Mandarin subtitles. Interestingly, despite doubling
the amount of text that appears on the screen and
the high redundancy, it has been shown that bilin-
gual subtitles do not significantly increase users’
cognitive load (Liao et al., 2020).

One group which undoubtedly benefits from the
parallel presence of captions and subtitles are lan-
guage learners. Captions have been found to in-
crease learners’ L2 vocabulary (Sydorenko, 2010)
and improve listening comprehension (Guichon
and McLornan, 2008). Subtitles in the learners’
native language (L1) are an indispensable tool for
comprehension and access to information, espe-
cially for beginners. In bilingual subtitles, the cap-
tions support learners in understanding the speech
and acquiring terminology, while subtitles serve as
a dictionary, facilitating bilingual mapping (Garcı́a,
2017). Consistency is particularly important for
bilingual subtitles. Terms should fall in the same
block and in similar positions. Moreover, similar
length and equal number of lines can prevent long
distance saccades, assisting in spotting the nec-
essary information in the two language versions.
Several subtitling tools have recently allowed for
combining captions and subtitles on the same video
(e.g. Dualsub1) and bilingual subtitles can be ob-
tained for Youtube videos2 and TED Talks.3

Another aspect where consistency between cap-
tions and subtitles is present is in subtitling tem-
plates. A subtitling template is a source lan-
guage/English version of a subtitle file already seg-
mented and containing timestamps, which is used
to directly translate the text in target languages
while preserving the same structure (Cintas and Re-
mael, 2007; Georgakopoulou, 2019; Netflix, 2021).
This process reduces the cost, turn-around times
and effort needed to create a separate timed version
for each language, and facilitates quality assurance
since errors can be spotted across the same blocks
(Nikolić, 2015). These benefits motivated our work
towards simultaneously generating two language
versions with the maximum consistency, where
the caption file can further serve as a template for
multilingual localisation. This paper is a first step
towards maximising automation for the generation
of high-quality multiple language/accessibility sub-
title versions.

1https://www.dualsub.xyz/
2https://www.watch-listen-read.com/
3https://amara.org/en/teams/ted/
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2.2 MT and ST for subtitling

Subtitling has long sparked the interest of the Ma-
chine Translation (MT) community as a challeng-
ing type of translation. Most works employing MT
for subtitling stem from the statistical era (Volk
et al., 2010; Etchegoyhen et al., 2014) or even
before, with example-based approaches (Melero
et al., 2006; Armstrong et al., 2006; Nyberg and
Mitamura, 1997; Popowich et al., 2000; Piperidis
et al., 2005). With the neural era, the interest in
automatic approaches to subtitling revived. Neural
Machine Translation (NMT) led to higher perfor-
mance and efficiency and opened new paths and
opportunities. Matusov et al. (2019) customised
a cascade of ASR and NMT for subtitling, using
domain adaptation with fine-tuning and improv-
ing subtitle segmentation with a specific segmenta-
tion module. Similarly, using cascades, Koponen
et al. (2020) explored sentence- and document-level
NMT for subtitling and showed productivity gains
for some language pairs. However, bypassing the
need to train and maintain separate components for
transcription, translation and segmentation, direct
end-to-end ST systems are now being considered as
a valid and potentially more promising alternative
(Karakanta et al., 2020a). Indeed, besides the archi-
tectural advantages, they come with the promise to
avoid error propagation (a well known issue of cas-
cade solutions), reduce latency, and better exploit
speech information (e.g. prosody) without loss of
information thanks to a less mediated access to the
source utterance. To our knowledge, no previous
work has yet explored the effectiveness of joint
automatic generation of captions and subtitles.

2.3 Joint generation of transcription and
translation

The idea of generating transcript and translation has
been previously addressed in (Weiss et al., 2017;
Anastasopoulos and Chiang, 2018). These papers
presented different solutions (e.g. shared decoder
and triangle) with the goal of improving translation
performance by leveraging both ASR and ST data
in direct ST. Later, Sperber et al. (2020) evaluated
these methods with the focus of jointly producing
consistent source and target language texts. Their
underlying intuition is that, since in cascade solu-
tions the translation is derived from the transcript,
cascades should achieve higher consistency than
direct solutions. Their results, however, showed
that triangle models achieve the highest consistency

among the architectures tested (considerably better
than that of cascade systems) and have competitive
performance in terms of translation quality. Direct
independent and shared models, instead, do not
achieve the translation quality and consistency of
cascades. However, all these previous efforts fall
outside the domain of automatic subtitling and ig-
nore the inner structure of the subtitles and their
relevance when considering consistency.

3 Methodology

3.1 Models

To study the effectiveness of the different exist-
ing ST approaches in the subtitling scenario, we
experiment with the following models:

The Multitask Direct Model (DirMu) model
consists of a single audio encoder and two separate
decoders (Weiss et al., 2017): one for generating
the source language captions, and the other for the
target language subtitles. The weights of the en-
coder are shared. The model can exploit knowledge
sharing between the two tasks, but allows for some
degree of flexibility since inference for one task is
not directly influenced by the other task.

The Two-Stage (2ST) model (Kano et al., 2017)
also has two decoders, but the transcription decoder
states are passed to the translation decoder. This is
the only source of information for the translation
decoder as it does not attend to the encoder output.

The Triangle (Tri) model (Anastasopoulos and
Chiang, 2018) is similar to the two-stage model,
but with the addition of an attention mechanism to
the translation decoder, which attends to the output
embeddings of the encoder. Both 2ST and Tri
support coupled inference and joint training.

We compare these models with common solu-
tions for ST. The Cascade (Cas) model is a com-
bination of an ASR + NMT components; the ASR
transcribes the audio into text in the source lan-
guage, which is then passed to an NMT system for
translation into the target language. The two com-
ponents are trained separately and can therefore
take advantage of richer data for the two tasks. The
cascade features full dependence between transcrip-
tion and translation, which will potentially lead to
high consistency.

The Direct Independent (DirInd) system con-
sists of two independent direct ST models, one
for the transcription (as in the ASR component of
the cascade) and one for the translation. It hence
lies on the flexibility edge of flexibility-consistency
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spectrum compared to the models above.

3.2 Evaluation of subtitling consistency

While some metrics for evaluating transcription-
translation consistency have been proposed in
(Sperber et al., 2020), these do not capture the pe-
culiarities of subtitling. The goal for consistent cap-
tions/subtitles is having the same structure (same
number of subtitle blocks) and same content (each
pair of caption-subtitle blocks has the same lexical
content). Consider the following example:

0:00:50,820, 00:00:53,820
To put the assumptions very clearly:
Enonçons clairement nos hypothèses : le capitalisme,

00:00:53,820, 00:00:57,820
capitalism, after 150 years, has become acceptable,
après 150 ans, est devenu acceptable, au même titre

00:00:58,820, 00:01:00,820
and so has democracy.
que la démocratie.

In the example above, three blocks appear se-
quentially on the screen based on timestamp infor-
mation, and each of them contains one line of text
in English (caption) and French (subtitle). Since
the source utterance is split across the same number
of blocks (3), the captions and subtitles have the
same structure. However, the captions and subti-
tles do not have the same lexical content. The first
block contains the French words le capitalisme,
which appear in the second block for the English
captions. Similarly, au même titre corresponds to
the third block in relation to the captions. This
is problematic because terms do not appear in the
same blocks (e.g. capitalism), and also leads to sub-
optimal segmentation, since the French subtitles
are not complete semantic units (logical completion
occurs after hypothèses and acceptable).

We hence define the consistency between cap-
tions and subtitles based on two aspects: the struc-
tural and the lexical consistency. Structural consis-
tency refers to the way subtitles are distributed on
a video. In order to be structurally consistent, cap-
tions and subtitles for each source utterance should
be split across the same number of blocks. This
is a prerequisite for bilingual subtitles, since each
caption-subtitle pair has the same timestamps. In
other words, the captions and subtitles should ap-
pear and disappear simultaneously. Therefore, we
define structural consistency as the percentage
of utterances having the same number of blocks
between captions and subtitles.

The second aspect of subtitling consistency is
lexical consistency. Lexical consistency means
that each caption-subtitle pair has the same lexi-
cal content. It is particularly important for ensuring
synchrony between the content displayed in the
captions and subtitles. This facilitates language
learning, when terms appear in similar positions,
and quality assurance, as it is easier to spot errors in
parallel text. We define lexical consistency as the
percentage of words in each caption-subtitle pair
that are aligned to words belonging in the same
block. In our example, there are six tokens of the
subtitles which are not aligned to captions of the
same block: le capitalisme , au même titre. For
obtaining this score, we compute the number of
words in each caption aligned to the corresponding
subtitle and vice versa. For each caption-subtitle
pair, this process results in two lexical consistency
scores: Lexcaption→subtitle and Lexsubtitle→caption,
where, in the former, the number of aligned words
is normalised by the number of words in the cap-
tion, while, in the latter, by the number of words
in the subtitle. These two quantities are then av-
eraged into a single value (Lexpair). The corpus-
level lexical consistency is obtained by averaging
the Lexpair of all caption-subtitle pairs in the test
set.

4 Experimental setting

4.1 Data

For our experiments we use MuST-Cinema
(Karakanta et al., 2020b), an ST corpus compiled
from subtitles of TED talks. For a sound compari-
son with Karakanta et al. (2020a), we conduct the
experiments on 2 language pairs, English→French
and English→German. The breaks between subti-
tles are marked with special symbols, <eob> for
breaks between blocks of subtitles and <eol> for
new lines inside the same block. The training data
contain 408 and 492 hours of pre-segmented audio
(229K and 275K sentences) for German and French
respectively. For tuning and evaluation we use the
official development and test sets. We expect the
captions and subtitles of TED Talks to have high
consistency, since the captions serve as the basis
for translating the speech in target subtitles.

The text data is segmented into sub-words with
Sentencepiece (Kudo and Richardson, 2018) with
the unigram setting. In line with recent works in
ST, we found that a small vocabulary size is benefi-
cial for the performance of ST models. Therefore,
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we set a shared vocabulary of 1024 for all models
except the MT component of the cascade, where
vocabulary size is set to 24k. The special symbols
<eob> and <eol> are kept as a single token.

For the audio input, we use 40-dimensional
log Mel filterbank speech features. The ASR en-
coder was pretrained on the IWSLT 2020 data, i.e.
Europarl-ST (Iranzo-Sánchez et al., 2020), Lib-
rispeech (Panayotov et al., 2015), How2 (Sanabria
et al., 2018), Mozilla Common-Voice,4 MuST-C
(Cattoni et al., 2020), and the ST TED corpus.5

4.2 Model training

The ASR and ST models are trained using the same
settings. The architecture used is S-Transformer,
(Di Gangi et al., 2019), an ST adaptation of
Transformer, which has been shown to achieve
high performance on different speech transla-
tion benchmarks. Following state-of-the-art sys-
tems (Potapczyk and Przybysz, 2020; Gaido et al.,
2020), we do not add 2D self-attentions. The size
of the encoder is set to 11 layers, and to 4 layers for
the decoder. The ASR model used to pretrain the
encoder, instead, has 8 encoder and 6 decoder lay-
ers. The additional 3 encoder layers are initialised
randomly, similarly to the adaptation layer pro-
posed by Bahar et al. (2019). As distance penalty,
we choose the logarithmic distance penalty. We op-
timise using Adam (Kingma and Ba, 2015) (betas
0.9, 0.98), 4000 warm-up steps with initial learning
rate of 0.0003, and learning rate decay with the
inverse square root of the iteration. We apply label
smoothing of 0.1, and dropout (Srivastava et al.,
2014) is set to 0.2. We further use SpecAugment
(Park et al., 2019), a technique for online data aug-
mentation, with augment rate of 0.5. Training is
completed when the validation perplexity does not
improve for 3 consecutive epochs.

The MT component is based on the Trans-
former architecture (big) (Vaswani et al., 2017)
with similar settings to the original paper. Since
the ASR component outputs punctuation, no other
pre-processing (except for BPE) is applied to the
training data. In order to ensure a fair comparison
with the direct and joint models, the MT compo-
nent is trained only on MuST-Cinema data.

All experiments are run with the fairseq toolkit
(Ott et al., 2019). Training is performed on

4https://voice.mozilla.org/
5http://iwslt.org/doku.php?id=offline_

speech_translation

two K80 GPUs with 11 GB memory and mod-
els converged in about five days. Our imple-
mentation of the DirMu, Tri and 2ST models
is publicly available at: https://github.com/

mgaido91/FBK-fairseq-ST/tree/acl_2021

4.3 Evaluation

We evaluate three aspects of the automatically gen-
erated captions and subtitles: 1) quality, 2) form,
and 3) consistency. For quality of transcription we
compute WER on unpunctuated, lowercased out-
put, while for quality of translation we use Sacre-
BLEU (Post, 2018).6 We report scores computed at
the level of utterances, where the output sentences
contain subtitle breaks. A break symbol is consid-
ered as another token contributing to the score.

For evaluating the form of the subtitles, we fo-
cus on the conformity to the subtitling constraints
of length and reading speed, as well as proper seg-
mentation, as proposed in (Karakanta et al., 2019).
We compute the percentage of subtitles conforming
to a maximum length of 42 characters/line and a
maximum reading speed of 21 characters/second.7

The plausibility of segmentation is evaluated based
on syntactic properties. Subtitle breaks should be
placed in such a way that keeps syntactic and se-
mantic units together. For example, an adjective
should not be separated from the noun it describes.
We consider as plausible only those breaks follow-
ing punctuation marks or those between a content
word (chunk) and a function word (chink). We ob-
tain Universal Dependencies8 PoS-tags using the
Stanza toolkit (Qi et al., 2020) and calculate the
percentage of break symbols falling either in the
punctuation or the content-function groups as plau-
sible segmentation.

Lastly, we evaluate structural and lexical con-
sistency between the generated captions and cor-
responding subtitles, as described in Section 3.2.
Word alignments are obtained using fast align
(Dyer et al., 2013) on the concatenation of MuST-
Cinema training data and the system outputs. Text
is tokenised using Moses tokeniser and the consis-
tency percentage is computed on tokenised text.
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En→Fr WER SacreBLEU Length Read speed Segment. Struc. Lex.

Cas 19.69 26.9 .94 / .93 .85 / .70 .86 / .82 .98 .99
DirInd 19.69 24.0 .94 / .94 .85 / .73 .86 / .84 .75 .86
DirMu 17.73 25.2 .95 / .93 .85 / .73 .87 / .80 .77 .87
2ST 19.05 25.6 .95 / .94 .85 / .71 .87 / .82 .83 .84
Tri 18.93 25.3 .93 / .91 .85 / .72 .87 / .82 .82 .92
En→De

Cas 18.52 19.9 .94 / .90 .62 / .58 .86 / .76 .95 .96
DirInd 18.52 18.1 .94 / .92 .62 / .59 .86 / .78 .73 .86
DirMu 16.95 18.7 .95 / .92 .62 / .59 .87 / .73 .75 .82
2ST 18.93 19.6 .94 / .92 .62 / .60 .86 / .76 .82 .81
Tri 19.10 19.8 .93 / .92 .62 / .60 .87 / .76 .78 .91

Table 1: Results for quality (WER and BLEU), subtitling conformity (Length, Reading speed and Segmentation),
and subtitling consistency (Structural and Lexical) for model outputs for French and German. Conformity scores
are reported for captions / subtitles. Bold denotes the best score. Results that are not statistically significant –
according to pairwise bootstrap resampling (Koehn, 2004), p<0.05 – than the best score are reported in italics.

5 Results

5.1 Transcription/Translation quality

We first examine the quality of the systems’ outputs.
The first two columns of Table 1 show the WER
and SacreBLEU score for the examined models.

In terms of transcription quality, DirMu (Mul-
titask Direct – see Section 3.1) obtains the low-
est WER for both languages (17.73 for French
and 16.95 for German). As far as the rest of
the models are concerned, there is a different ten-
dency for French and German. Tri (Triangle) and
2ST (Two-Stage) perform equally better than the
Cas/DirInd for French, while the Cas/DirInd
have higher transcription quality than Tri and 2ST
for German. An explanation for this incongruity
is that these two models perform coupled infer-
ence, therefore the benefit of the joint decoding
for the transcription can be related to similarities
in terms of vocabulary between the two languages.
Since French has a higher vocabulary similarity
to English, with many words in TED Talks being
cognates (e.g. specialised terminology), it is possi-
ble that joint decoding favours the transcription for
French but not for German.

When it comes to translation quality, Cas out-
performs all other models for French with 26.9
BLEU points, while the differences are not sta-
tistically significant among DirMu, 2ST and Tri.
For German, however, Cas, 2ST and Tri perform
on par. The model obtaining the lowest scores is
DirInd. This finding confirms our hypothesis that

6BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.3
7In line with the TED Talk guidelines: https://www.

ted.com/participate/translate/guidelines
8https://universaldependencies.org/

joint decoding, despite being more complex, im-
proves translation quality thanks to the knowledge
shared between the two tasks at decoding time.

In comparison to previous works, our transcrip-
tion results are contrary to Sperber et al. (2020),
who obtained the lowest WER with the cascade
and direct independent models. However, for trans-
lation quality our best models are Cas, 2ST and
Tri, as in previous work. Moreover, in line with
Anastasopoulos and Chiang (2018), the gains for
Tri are higher for translation than for transcrip-
tion. Comparing the BLEU score of our DirInd
models to the models in (Karakanta et al., 2020a),
we found that our models achieve higher perfor-
mance with 20.07 BLEU compared to 18.76 for
French and 13.55 compared to 11.92 for German.

All in all, we found that coupled-inference, sup-
ported by Cas, 2ST and Tri, improves translation
but not transcription quality. On the contrary, multi-
tasking as in DirMu is beneficial for transcription,
possibly because of a reinforcement of the speech
encoder. However, could this improvement come
at the expense of conformity to the subtitling con-
straints?

5.2 Subtitling conformity

Columns 3-5 of Table 1 show the percentage of
captions/subtitles conforming to the length, read-
ing speed and segmentation constraints discussed
in Section 4.3. We observe that joint decoding does
not lead to significant losses in conformity. Specif-
ically, the captions generated by DirMu have the
highest conformity in terms of length (95%), read-
ing speed (85% and 62%) and segmentation quality
(87%). Moreover, the high conformity score for
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DirMu correlates with the low WER, showing that
quality goes hand-in-hand with conformity.

For the conformity of the target language subti-
tles, instead, the picture is different. Even though
the differences are not large, Cas has lower confor-
mity to length (93% and 90%) and reading speed
(70% and 58%). The segmentation scores show
that, despite their high translation quality, the sys-
tems featuring coupled inference (Cas, Tri and
2ST) are constrained by the structure of the cap-
tions and segment subtitles in positions which are
not optimal for the target language norms (82% and
76%). DirInd, on the contrary, has higher confor-
mity compared to the other models (94% and 92%
for length, 73% and 59% for reading speed), as well
as segmentation quality (84% and 78%). DirInd
is left to determine the most plausible segmenta-
tion for the target language without being bound
by consistency constraints from the source. The
lowest segmentation quality of subtitles is achieved
by DirMu (80% and 73%).

We can conclude that the quality improvements
of coupled inference and multi-tasking come with
a slight compromise of subtitling conformity, as a
result of loss of flexibility in decoding.

5.3 Subtitling consistency

The last two columns of Table 1 present the results
for the subtitling consistency.

In terms of Structural consistency (Struc.), the
model achieving the highest scores is Cas, with
98% and 95% of the utterances being distributed
along the same number of blocks. As expected,
the lowest structural consistency is achieved by
DirInd (75% and 73%), which determines in-
dependently the positions of the block symbols.
Among the joint models, Tri outputs captions and
subtitles with higher consistency than DirMu, but
both are outperformed by 2ST (83% and 82%).
Our hypothesis is that by attending only the caption
decoder, 2ST behaves similarly to the cascade, and
the translation decoder better replicates the block
structure. We noted that the reference captions
and subtitles have lower consistency (92% both for
French and German) than the cascade. This shows
that the cascade copies the same <eob> tokens and
achieves extreme structural consistency, which is a
desideratum for our study case but may be harmful
in other scenarios, since it leads to lower confor-
mity (see Section 5.2). Indeed, in scenarios where
consistency is not a key, subtitlers should have the

flexibility to adjust subtitling segmentation to suit
the needs of their target languages (Oziemblewska
and Szarkowska, 2020).

The Lexical consistency (Lex.) results show
that Cas is the model with the highest content
overlap in parallel caption-subtitle blocks with 99%
and 96% of the words being aligned to the same
block. As with the structural consistency, the lex-
ical consistency of the cascade is higher than the
references (95% for French, 86% for German). The
direct model with the highest lexical consistency is
Tri (92% and 91%). Interestingly, despite its high
structural consistency, 2ST does not distribute the
content consistently in the parallel blocks, achiev-
ing the lowest conformity (81%). The DirMu also
achieves lower consistency than DirInd for Ger-
man (82% compared to 86%) but not for French
(87% compared to 86%). It is worth noting that lex-
ical consistency is generally lower for German than
for French. Indeed, a 100% lexical consistency
between subtitles in languages with different word
order is not always feasible or even appropriate.
For example, the main verb in an English subor-
dinate clause appears in the second position while
in German at the end of the sentence. In order to
adhere to grammatical rules, words in subtitles of
different languages often have inter-block reorder-
ing. Therefore, the balance between flexibility and
consistency is manifested here as a compromise
between grammaticallity and preservation of the
same lexical content on each pair of subtitles.

To sum up, the results of structural consistency
show that the models are able to preserve the block
structure between captions and subtitles in more
than 75% of the utterances. In addition, the high
lexical consistency shows that the block symbols
are not inserted randomly, but placed in a way that
preserves the same lexical content in the parallel
blocks.

All in all, our results show that the evaluation of
captions and subtitles is a multifaceted process that
needs to be addressed from multiple aspects: qual-
ity, conformity and consistency. Missing one of the
three can lead to wrong conclusions. For instance,
only considering quality and consistency could lead
to disregard the importance of conformity and con-
sider independent solutions an obsolete technol-
ogy. Secondly, among the Direct architectures, the
use of techniques that allow linking the generation
process of captions and subtitles helps to achieve
overall better quality and consistency than inde-

221



pendent decoding, with a slight discount in confor-
mity, especially for the target subtitles. Between
the DirMu, 2ST and Tri, there is not a model
that outperforms all the others in all the metrics,
so the choice mainly depends on the application
scenario. Lastly, comparing the Cascade and the
Direct, the Cascade seems to be the best choice, but
recent advancements in Direct approaches result in
competitive solutions with increased efficiency of
maintaining one model for both tasks.

6 Analysis

6.1 Evaluation of Lexical Consistency

In this section, we test the reliability of the lexi-
cal consistency metric. The metric depends on the
successful word alignment, which, especially for
low quality text, might be sub-optimal. We there-
fore manually count the number of words in the
subtitles which do not appear in the corresponding
captions. The task is performed on the first 347
sentences of the output of DirMu for French and
German. We then estimate the mean absolute error
between the consistency metric computed using the
manual and the automatic alignments. As an addi-
tional step, we compute how often the automatic
and the manual annotations agree in their judge-
ment of consistent/non-consistent content in each
block.

The mean absolute error between the manually
and the automatically computed score is .08 for
French and .11 for German. The metric may not
be able to account for very small score differences
between systems, however, when inspecting the
differences between manual and automatic anno-
tation we noticed that most errors appear in very
low quality outputs or where lexical content was
missing, and lead to a misalignment of only a few
words. These cases were in fact challenging even
for the human annotator. Instead, the agreement
in the consistent/not-consistent judgement is high,
with .85 for French and .75 for German. Consider-
ing the difficulty of aligning sentences belonging
to languages with different word ordering, and the
lower quality of German outputs, it is not surpris-
ing that the word aligner from English to German
affects more our metric. However, these results
show that the real impact is moderate and the met-
ric is consistent with the human judgements in the
majority of cases.

6.2 Does structural consistency extend to line
breaks?

But what happens with the line breaks? Does a one-
line caption correspond to a one-line subtitle in the
output of our models? Having the same number of
lines between caption and subtitle blocks is a more
challenging scenario, since the subtitles tend to
expand because of different length ratios between
languages and translation strategies such as explici-
tation. For instance, for the target languages consid-
ered in this work (French and German) the length
of the target subtitles when subtitling from English
has been reported to be 5%-35% higher.9 If struc-
tural consistency is enforced to line breaks, it may
compromise either the quality of the translation
or the conformity to the subtitling constraints. In
case of a one-liner caption, important information
may be not rendered in the corresponding subtitle
in order to match a shorter length of the caption,
or the length constraint will be violated since the
longer subtitle will not be adequately segmented in
two lines. In order to ensure that our models do not
push the structural consistency to an extreme, we
compute the percentage of caption-subtitle blocks
having the same number of lines.

Cas DirInd DirMu 2ST Tri Ref

Fr 67% 49% 54% 59% 57% 67%
De 66% 47% 55% 53% 51% 66%

Table 2: Percentage of subtitle blocks containing the
same number of lines for French and German outputs.

Table 2 confirms that caption and subtitle blocks
do not always have the same number of lines, since
only 67% and 66% of blocks in the caption/subtitle
references have the same number of lines. When it
comes to the models, the cascade exactly matches
the percentages of the references, while the direct
models have even lower percentage of equal num-
ber of lines. Among the direct models, again the
DirInd shows the lowest similarity. We observed
that more line breaks were present in the target
subtitles, which ensures length conformity, since
the target subtitles expand (source-target charac-
ter ratio of 0.91 for French and 0.93 for German).

9https://www.andiamo.co.uk/resources/
expansion-and-contraction-factors/
http://www.aranchodoc.com/
wp-content/uploads/2017/07/
Text-Expansion-Contraction-Chart3.png
https://www.kwintessential.co.uk/
resources/expansion-retraction
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Therefore, the fact that structural consistency al-
lows for flexibility in relation to the number and
position of line breaks is key to achieving high
quality and conformity.

7 Conclusions

In this work we explored joint generation of cap-
tions and subtitles as a way to increase efficiency
and consistency in scenarios where this property
is a desideratum. To this aim, we proposed met-
rics for evaluating subtitling consistency, tailored
to the structural peculiarities of this type of trans-
lation. We found that coupled inference, either by
models supporting end-to-end training (2ST, Tri)
or not (Cas), leads to quality and consistency im-
provements, but with a slight degradation of the
conformity to target subtitle constraints. The fi-
nal architectural choice depends on the flexibility
versus conformity requirements of the application
scenario.

The findings of this work have provided initial
insights related to the joint generation of captions
and subtitles. One future research direction is to-
wards improving the quality of generation by us-
ing more recent, higher-performing ST architec-
tures. For example, Liu et al. (2020) extended
the notion of the dual decoder by adding an in-
teractive attention mechanism which allows the
two decoders to exchange information and learn
from each other, while synchronously generating
transcription and translation. Le et al. (2020) pro-
posed two variants of the dual decoder of Liu et al.
(2020), the cross and parallel dual decoder, and
experimented with multilingual ST. While neither
of these works reported results on consistency, we
expect that they are relevant to our scenario and
have the potential of jointly generating multiple lan-
guage/accessibility versions with high consistency.
Moving beyond generic architectures, in the future
we are planning to experiment with tailored archi-
tectures for improving consistency between auto-
matically generated captions and subtitles. One
important insight emerging from this work is that
different degrees of conformity are required, or
even appropriate, depending on the application sce-
nario and languages involved. Given these chal-
lenges, we are aiming at developing approaches
which allow for tuning the output to the desired
degree of conformity, whether lexical, structural
or both. We hope that this work will contribute
to the line of research efforts towards improving

efficiency and quality of automatically generated
captions and subtitles.
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Javier Jorge, Nahuel Roselló, Giménez. Adrià, Al-
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Abstract

This paper describes the construction of a new
large-scale English-Japanese Simultaneous In-
terpretation (SI) corpus and presents the re-
sults of its analysis. A portion of the cor-
pus contains SI data from three interpreters
with different amounts of experience. Some
of the SI data were manually aligned with the
source speeches at the sentence level. Their
latency, quality, and word order aspects were
compared among the SI data themselves as
well as against offline translations. The results
showed that (1) interpreters with more experi-
ence controlled the latency and quality better,
and (2) large latency hurt the SI quality.

1 Introduction

Simultaneous interpretation (SI) is a task of trans-
lating speech from a source language into a target
language in real-time. Unlike consecutive transla-
tion, where the translation is done after the speaker
pauses, in SI the translation process starts while
the speaker is still talking. With recent develop-
ments in machine translation and speech process-
ing, various studies have been conducted aiming
at automatic speech translation (Pino et al., 2020;
Wu et al., 2020; Inaguma et al., 2021; Bahar et al.,
2021), including SI (Oda et al., 2014; Zheng et al.,
2019; Arivazhagan et al., 2019; Zhang et al., 2020;
Nguyen et al., 2021), based on speech corpora.

Existing speech corpora can be classified into
Speech Translation corpora or Simultaneous In-
terpretation corpora, as defined by Zhang et al.
(2021). Table 1 lists publicly-available SI corpora.
Although a large number of Speech Translation
corpora have been published, the number of SI cor-
pora remains very limited. Both types of corpora
are comprised of audio data and their correspond-
ing translations, although how the translations are
generated is different. For Speech Translation cor-
pora, a translation is based on complete audio data

Corpora Language Hours
Toyama et al. (2004) En↔Jp 182
Paulik and Waibel (2009) En↔Es 217
Shimizu et al. (2014) En↔Jp 22
Zhang et al. (2021) Zh→En 68
Ours En↔Jp 304.5

Table 1: Existing SI corpora and ours

or transcripts; for SI corpora, human interpreters
actually do SI. SI corpora are useful not only for
the construction of automatic SI systems but also
for translation studies.

To facilitate research in the field of SI, we are
constructing a new large-scale English↔Japanese
SI corpus1. We recorded the SIs of lectures and
press conferences and amassed over 300 hours of
such data. Some lectures have SI data generated by
three interpreters with different amounts of expe-
rience, as in Shimizu et al. (2014), which enables
comparisons of SI differences based on experience.

In this paper, we describe the construction of a
new corpus and present the results of its analysis.
Its design follows the framework of Shimizu et al.
(2014). The analysis was conducted on a subset of
lectures that have SI data from three interpreters.
In some parts of the data, the source speech and
the SI data were manually aligned at the sentence
level to compare the following properties: latency,
quality, and word order, all of which are typically
investigated in translation studies. We compared
those SI data among them as well as against trans-
lations that are generated offline. Importantly, we
adopt an automatic metric and a manual analysis to
evaluate the SI quality.

1A part of the corpus is available at https://dsc-nlp.
naist.jp/data/NAIST-SIC/
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2 Related Work

2.1 Existing SI Corpora

Despite their usefulness, the number of SI corpora
is very limited (Table 1). The Simultaneous Inter-
pretation Database (SIDB) is an English↔Japanese
SI corpus, which consists of over 180 hours of
recordings, including both monologues (lectures)
and dialogues (travel conversations).

Shimizu et al. (2014) also constructed an
English↔Japanese SI corpus. It is a relatively
small corpus (22 hours), and has the following two
notable features: (1) all the speeches have SI data
from three interpreters with different amounts of
experience; and (2) offline translations are avail-
able for some of the speeches. The features allow
comparisons among the SI data themselves as well
as with the translation data.

In language pairs other than English↔Japanese,
Paulik and Waibel (2009) developed an SI system
using SI data collected from European Parliament
Plenary Sessions (EPPS), which are broadcast live
by satellite in the various official languages of the
European Union. Zhang et al. (2021) proposed the
first large-scale Chinese→English Speech Transla-
tion and SI corpus.

2.2 Translation Studies

In translation studies, SI characteristics have typi-
cally been investigated from the aspects of latency,
quality, and word order. For evaluating latency
by human interpreters, Ear-Voice Span (EVS) is
commonly used as a metric. EVS denotes the lag
between the original utterances and the correspond-
ing SIs.

The analysis of quality often relies on a man-
ual evaluation of the corpus data (Fantinuoli and
Prandi, 2021). Ino and Kawahara (2008), for exam-
ple, investigated SI faithfulness based on manual
annotation of the data. SI aims to translate a source
speech with low latency and high quality, where
the two factors are in a trade-off relationship. How-
ever, previous studies (e.g., Lee, 2002) argued that
a longer latency negatively affects SI quality.

Word order has also been intensively studied
in the field. Recent research by Cai et al. (2020)
demonstrated a statistical study based on SIDB and
compared word order between translation and SI.

3 Corpus Construction

3.1 Material

Our corpus consists of the SIs of four kinds of
materials. For the English→Japanese direction, the
interpreters interpreted TED talks2.

TED: TED offers short talks on various topics
from science to culture. The videos of the talks are
available on its website. More importantly, TED
talks have been manually transcribed and translated
by volunteers, and Japanese translations (i.e., subti-
tles) are available for many talks.

For the Japanese→English direction, the inter-
preters interpret speech from the following materi-
als.

TEDx: TEDx is an event where local speakers
present topics to local audiences. The events are
held under a license granted by TED, and the talks
follow the format of TED talks. The videos are
available on YouTube as well as on the TED web-
site.

CSJ: The Corpus of Spontaneous Japanese
(Maekawa, 2003) consists of academic lectures and
speeches on everyday topics. It contains audio data
and their transcripts with linguistic annotations.

JNPC: The Japan National Press Club (JNPC)
annually organizes about 200 press conferences in-
volving Japanese and foreign guest speakers from
politicians to business representatives. The press
conferences are video-recorded and available on-
line3. For some of them, transcripts are provided
on its website.

3.2 Recording

Professional simultaneous interpreters with dif-
ferent amounts of experience participated in the
recordings. Each interpreter was assigned a rank
based on length of experience, as in Shimizu et al.
(2014) (Table 2). The recordings were made from
2018 to 2020.

Interpreters wore a headset and interpreted
speech while watching video on a computer. They
only listened to the audio when interpreting the
CSJ speech because no videos were available. The
interpreters were provided in advance documents
related to the speech to improve the SI quality. In

2https://www.ted.com/
3https://www.jnpc.or.jp/
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Amount of experience Rank
15 years S-rank
4 years A-rank
1 years B-rank

Table 2: Ranks of simultaneous interpreters

Direction Source 2018 2019 2020
En→JA TED 67+12* 50 50
Jp→EN TEDx 12* 40 0

CSJ 33 0 0
JNPC 4 36.5 0

Total 128 126.5 50
Cum. 128 254.5 304.5

Table 3: Recorded hours of our SI corpus. Figures
with asterisk (*) indicate parts with SI data generated
by three interpreters with different amounts of experi-
ence (i.e., 4 hours × 3 interpreters).

fact, related information or materials (e.g., presen-
tation slides) are usually provided to them in their
actual work. The following are the details of the
documents given in our recording procedures:

• TED, TEDx (2018): Summary of talk; refer-
enceable during SI.

• TED (2019-): English transcripts from TED
website; not referenceable during SI.

• TEDx (2019-): Japanese subtitles generated
by YouTube; not referenceable during SI.

• CSJ: 10% summary of Japanese transcripts;
referenceable during SI.

• JNPC: No documents provided.

Table 3 shows the details of the recorded hours
of our corpus. In spontaneous speech, sentence
boundaries are ambiguous, and it is difficult to
provide the number of sentences included in our
corpus. A total of four hours of TED and TEDx
recorded in 2018 were interpreted by interpreters
from all three ranks (4 hours × 3 interpreters = 12
hours; marked with asterisk). The other talks were
interpreted by either an S-rank or an A-rank inter-
preter. About half of the recorded SIs have been
manually transcribed. The whole corpus consists
of SIs of more than 1200 talks. The average talk
length by materials is the following: TED 11.20
minutes, TEDx 15.85 minutes, CSJ 13.55 minutes,
and JNPC 84.33 minutes.

EN_0001 13363 17427 Oliver was an extremely dashing,
EN_0002 17427 22248 handsome, charming and largely unstable male
EN_0003 22248 25433 that I completely lost my heart to.
JA_0001 14860 16416 (F えー)オリバーは<H>
JA_0002 17500 21555 (F えー)(F このー)凄くハンサムで魅力的な
JA_0003 22125 24347 (F えー)そして私が
JA_0004 24945 28556 (F えー)(?)大好きな<H>(F えー)男性です。

Figure 1: Example of an SI transcript: Preceding each
utterance, IDs and start/end times are annotated. Some
discourse tags are used: F: fillers, (?): unintelligible,
〈H〉: prolongations.

4 Corpus Analyses

4.1 Data

The English→Japanese SI data from 14 TED talks
were analyzed based on three properties: latency,
quality, and word order. The talks were a subset of
12 hours of recordings of SI data from interpreters
of each rank (see Table 3).

The SI data were aligned to the source speech
based on segments. A transcript example is shown
in Fig. 1. Each segment is annotated with an ID,
start/end times, and discourse tags (e.g., fillers,
slips of the tongue, pauses). A segment does not
necessarily correspond to a sentence.

In addition to the SI data, offline translation data
(i.e., Japanese subtitles) were used to examine the
SI quality and word order. Disfluencies in the SI
data were removed with the help of discourse tags.
Then the SI and translation data were automati-
cally divided into bunsetsus4 using the Juman++
Japanese morphological analyzer5 (Morita et al.,
2015) and the KNP parser (Kawahara and Kuro-
hashi, 2006).

4.2 Sentence Alignment

For subsequent corpus analyses, the SI data of 14
talks were manually aligned at the sentence level
with the source speeches by the first author to fairly
compare the data of the interpreters of each rank.
Since the segments in the SI transcripts were based
on the interpreters’ utterances, they did not neces-
sarily match among the interpreters. Thus, we gave
sentence alignments based on the sentences of the
English transcripts segmented using the following
rules:

4A bunsetsu is a basic unit of dependency in Japanese that
consists of one or more content words and the following zero
or more function words (Kawahara and Kurohashi, 2006).

5We used Juman++ ver.1.02 rather than the development
version of Juman++ V2 (Tolmachev et al., 2018).
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EN_0177 469789 471829 I've got two questions for you.
JA_0116 XXXXXX 473315 二つの質問がありますよ。

EN_0178 471829 473469 (Laughter)
JA_0000 XXXXXX XXXXXX __null__

EN_0179 473469 476069 You know what's coming now, right?
JA_0117 474778 476197 質問分かってるんですね。

Figure 2: Example of sentence-level alignment

• segments ending with a period (.) or a period
+ a double quotation mark (.”)

• segments ending with a question mark (?) or a
question mark + a double quotation mark (?”)

• segments ending with a closed parenthesis

Japanese segments were aligned to English sen-
tences by the following rules6:

• Words/phrases that are not interpreted: ig-
nored.

• Sentences that are not interpreted: marked as
drop in Japanese segments.

• Sentences that are not interpreted intention-
ally: marked as skip in Japanese segments.
(e.g., Thank you.)

• Sentences that do not need to be interpreted:
marked as null in Japanese segments.
(e.g., (Laughter))

• No corresponding English sentence: add
null to English segments.

• Japanese segments that correspond to multi-
ple English sentences: divide where it corre-
sponds to the boundary of English sentences.
Mark XXXXX for end/start times of Japanese
segments.

• English segments that consist of multiple sen-
tences: divide at sentence boundary. Mark
XXXXX for end/start times of segments.

An example of the data aligned at the sentence
level is shown in Fig. 2. Each sentence is delimited
by one blank line.

4.3 Metrics

Latency: As a latency metric, EVS was calcu-
lated for each sentence. Since the start/end times
of the transcribed speech segments are available

6Subjectively judged by the authors, except for the bound-
aries of the English sentences.

in our data, we separately calculated EVS at the
beginning and the end of a sentence7:

EV Sstart = start timeJP − start timeEN

EV Send = end timeJP − end timeEN .

However, we failed to calculate EVS in some
sentences because some segments were divided
into multiple segments during the sentence-level
alignment, and the start/end times were unavail-
able. Furthermore, EVS at the end of sentences
can become negative if the interpreter quit inter-
preting in the middle of a sentence. These cases
were excluded from our analyses.

Quality: To evaluate the SI quality, we calcu-
lated two metrics8.

The first one was BERTScore (Zhang et al.,
2019), which is also used to evaluate machine
translations (e.g., Edunov et al., 2020). It is based
on contextualized subword embeddings and is ex-
pected to capture meanings rather than surface
forms like BLEU (Papineni et al., 2002). It would
be appropriate for evaluating the aspects of SIs used
by interpreters, including anticipation, summariza-
tion, and generalization. BERTScores were calcu-
lated between SIs (candidates) and offline transla-
tions (references) for each sentence.

The other quality metric was the bunsetsu-level
semantic preservation score (BSPS), which eval-
uated the faithfulness of the SIs against the trans-
lations. An example is shown in Fig. 3. Similar
to Ino and Kawahara (2008), each bunsetsu that
appeared in the translation was considered a unit of
ideas. Then we counted the number of bunsetsus in
the SI that conveyed the ideas. If a bunsetsu in the
SI successfully conveyed its idea in the translation,
it got one point. If the bunsetsu in the SI partially
conveyed an idea, it got half a point. The BSPS
for a given sentence was calculated by adding the
points and dividing by the number of ideas in the
translation.

To calculate BSPS, we manually created bun-
setsu level alignments for three talks, which were
selected based on the following procedures:

• Assign a score of 1-3 to the SI data (14 talks
× 3 interpreters) based on the overall quality.

7Due to the limitations of our data, we calculated a simpli-
fied EVS, which was different from that in previous studies.

8We focused on faithfulness in this paper, although other
factors may affect SI quality (e.g., grammaticality, delivery).
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En: So there are two very, very different visions here.

Tr.: ２つの / 実に / 異なる / ビジョンが / あります。
two    very different   visions     there are

SI: 二つの / 異なった / 物が / ありました。
two    different  things   there were

# of bunsetsu = 5
BSPS = (1+1+0.5+1)/ 5 = 0.7

1 1 0.5 1

Figure 3: Example of calculating BSPS

• Calculate the average for each talk and assign
a label of high, mid, or low.

• Choose one talk from each label.

The talks labeled high are those that are easy to
interpret, and the talks labeled low are difficult.
We chose three talks: AlexanderWagner 2016X
(Ale), NickBostrom 2015 (Nic), and LaurelBrait-
man 2014S (Lau), for easy, medium, and difficult
levels.

Word Order: To examine the differences in
word order between SI and offline translation, we
computed Kendall’s K distance (Kendall, 1938),
ranging [0, 1], and equaling 0 if the two lists are
identical and 1 if one list is the reverse of the other.
The metric, which captures pairwise disagreements
between two lists, can measure the degree of re-
ordering. K was calculated based on the bunsetsu
level alignment shown in Fig. 3.

4.4 Results

4.4.1 Overall Trend
Table 4 provides basic statistics for the SI data of
the 14 TED talks. B-rank interpreters produced
the longest SIs (# Bunsetsu), but they frequently
added something that the original speaker did not
say (en null). The ratio of en null decreased
as the amount of experience became longer. In
addition, the ratio of drop for S-rank interpreters
(9.22) was lower than that for the others (A-rank:
21.67, and B-rank: 15.69). These results suggest
that the SI generated by higher ranked interpreters
tends to have higher overall quality.

At the sentence level, S-rank interpreters
produced the most bunsetsus (Bunsetsu. per

sent.). A one-way ANOVA detected signifi-
cant differences among groups (F (2, 5818) =
21.881, p < 0.001), and the following Tukey’s

test showed that S- and B-rank interpreters pro-
duced significantly more bunsetsus than A-rank
interpreters (p < 0.001). Although the difference
between S- and B-ranks is not significant, the re-
sults suggest that interpreters with more experience
also did better at the sentence level. This point is
discussed below in Section 4.4.3.

In Table 4, we can also see that higher ranked in-
terpreters tended to have higher skip ratios. How-
ever, the differences among the groups were not sta-
tistically significant based on a one-way ANOVA
(F (2, 39) = 0.5172, p = 0.6002).

4.4.2 Latency
Table 5 compares the latency measured by EVS. A-
rank interpreters had the largest latency both at the
beginning and at the end of sentences, followed by
B- and S-rank interpreters. The amount of latency
ranged from 2 to 4 seconds, which was consistent
with the majority of previous studies (see Robbe,
2019).

However, a relatively great number of EVS took
large values (> 5 seconds). The relationship be-
tween EVS and sentence length in the source lan-
guage is shown in Fig. 4. As Pearson’s correlation
coefficient indicates (r = 0.2584, 0.1206, respec-
tively), sentence length in the target language did
not seem to affect EVS, which did not match the
results reported in Lee (2002).

EV Sstart became large because interpreters
sometimes did not interpret the earlier part of the
sentence, as in this example:

(En) A week later, Ping was discovered
in the apartment alongside the body of
her owner, and the vacuum had been run-
ning the entire time.
(A-rank) そしてずっと掃除機がオンに
なったまま残されていたんですけれども、

[And the vacuum had been running the
entire time.]

The EV Send results suggest that S- and B-rank
interpreters might wrap up the sentence to a certain
extent when the next sentence started, but A-rank
interpreters might cling to the sentence, resulting
in larger EV Send. A large EV Send seemed to nega-
tively impact the SI of the subsequent sentence, as
reported in Lee (2002). Focusing on the top 10%
of sentences whose EV Send was large (N = 187),
56.68% of their subsequent sentences were not in-
terpreted at all (i.e., drop) by A-rank interpreters.
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Interpreter # Seg. # Sent. # Bunsetsu Bunsetsu.
per sent. Skip (%) Drop (%) En null (%)

S-rank 2750 1902 12292 6.47 2.00 9.36 0.68
A-rank 2609 1948 10414 5.41 1.58 22.54 2.50
B-rank 3077 1998 12523 6.27 1.13 16.13 6.05

avg. 2812 1949.33 11743.00 6.05 1.57 16.01 3.08

Table 4: Comparison of SI data among interpreters with different amounts of experience

Interpreter Start End
S-rank 2.95 2.48
A-rank 3.57 3.89
B-rank 3.46 2.79

Table 5: Comparison of EVS (seconds) among inter-
preters with different amounts of experience. Figures
are averages of each sentence.
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Figure 4: Relationship between EVS and sentence
length of original speech

4.4.3 Quality
BERTScore: The quality of the SI data mea-
sured by BERTScore is shown in Table 6. Preci-
sion was higher than Recall in all three interpreter
ranks. The results match our intuition because si-
multaneous interpreters sometimes summarize or
generalize the content of the original speech to han-
dle latency, and not all the content is interpreted.
BERTScore captured the quality of SI well in the
following example:

(En) We did this experiment for real.
(Ref) 実際にこの実験を行ってみました。
(A-rank) これを実際にしました。 [Did
this for real.]

The F1 score of the example was 0.8325. Although
the wording that corresponds with “did” is different
between the translation (Ref) and the interpretation,
BERTScore captured the similarity of the meaning.
On the other hand, as shown in the next exam-

Interpreter Pre. Rec. F1
S-rank 0.6544 0.6396 0.6465
A-rank 0.5374 0.5221 0.5292
B-rank 0.6238 0.6115 0.6171

Table 6: Comparison of BERTScores among inter-
preters with different amounts of experience. Scores
are averages of each sentence, where 0 is assigned to
drop and skip.

ple, BERTScore did not always do well, especially
when interpreters used a strategy:

(En) We can all think of some examples,
right?
(Ref) 例を挙げる事ができると思います。
(S-rank) 例えば、 [For example.]

The F1 score of the example was 0.5519. The
interpreter adopted a strategy (summarization) and
conveyed the core ideas of the original utterance,
although BERTScore struggled to capture them.

Comparing the three interpreter ranks, S-rank in-
terpreters achieved the highest scores in Precision,
Recall, and F1. A one-way ANOVA detected sig-
nificant differences among groups (F (2, 5045) =
65.802, 70.095, 68.386 for Precision, Recall, and
F1, p < 0.001), and the following Tukey’s test
showed that the differences among all the groups
were significant (p < 0.05). The scores of the A-
rank interpreters were probably lower than those of
B-rank interpreters because of the high drop ratio.

Bunsetsu-level Semantic Preservation Score:
BSPS was calculated for the three talks, Ale (easy),
Nic (medium), and Lau (difficult). The results in
Table 7 indicate that the higher ranked interpreters
achieved higher BSPS, except for Ale. In fact,
the low ratio of drop and en null (8.33 and 0.00)
suggest that the B-rank interpreter did well on Ale,
which matched the human evaluation results. One
of the human evaluators remarked that key words
such as proper nouns were well translated or ap-
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Talk Interpreter BSPS
Ale S-rank 0.5671

(easy) A-rank 0.4316
B-rank 0.5871

Nic S-rank 0.4471
(medium) A-rank 0.3715

B-rank 0.3411
Lau S-rank 0.4130

(difficult) A-rank 0.3618
B-rank 0.3207

Table 7: Comparison of BSPS among three talks and
interpreter’s rank

propriately rephrased to corresponding Japanese
words.

The BSPS results imply that higher ranked inter-
preters generated better SIs at the sentence level.
The metric captured how many ideas, which were
presented in the original speech, were actually cov-
ered in each sentence of the SIs. S-rank inter-
preters produced the most bunsetsus per sentence
(Table 4), probably because they reproduced more
of the ideas presented in the original speech.

Relationship between latency and quality:
Since previous studies have shown that higher la-
tency damages quality (e.g., Lee, 2002), we in-
vestigated the relationship between them based on
EV Sstart. In Section 4.4.2, the negative effect of
a large EV Send on the following sentence was dis-
cussed; in this section, we examine whether a large
EV Sstart hurts the quality of the sentence being
processed.

Fig. 5 shows the relationship between EV Sstart

and the number of bunsetsus in SIs. When the
latency increased (> 5 seconds), few SIs had large
numbers of (> 15) bunsetsu. The large EV Sstart

indicated that the original sentence was long, which
expected a longer SI. A similar tendency was found
for BERTScore and BSPS. From Figs. 6 and 7, SIs
with a large EV Sstart tended to get low scores.

The relationship between EV Sstart and the qual-
ity metrics of Ale, Nic, and Lau is shown in Figs. 6
and 7. When the talk was easy to interpret (Ale),
the standard deviation was smaller than the other
talks (Ale= 1.33, Nic= 2.25, Lau= 2.16). Fur-
thermore, the S-rank interpreters’ standard devi-
ation was smaller than that of the others (e.g.,
S= 1.06, A= 1.68, B= 1.27 for Ale).

The above results suggest that a large EV Sstart

negatively affected the quality of the sentence being
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Figure 5: Relationship between EV Sstart and the num-
ber of bunsetsus in SIs
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Figure 6: Relationship between EV Sstart and
BERTScore (F1)

processed.

4.5 Human Evaluation

The quality of the SI data was further examined
through human evaluations. Three professional
translators (i.e., not interpreters) subjectively evalu-
ated the faithfulness of each sentence on a scale of 1
(incomprehensible), 2 (poor), 3 (minor errors), and
4 (acceptable). Table 8 shows that higher ranked
interpreters received higher scores, which matched
the BERTScore and BSPS results. The B-rank inter-
preter interpreted Ale well, which was mentioned
in the overall comments by the translators. Indi-
vidual differences of interpreters (e.g., background
knowledge) could affect the SI quality because not
necessarily the same interpreters interpreted the
three talks.
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Figure 7: Relationship between EV Sstart and BSPS

From Table 8, human evaluation scores were
low, most often less than 2. One possible reason is
that the translators were strict about the sentence
structure in the source language, as in this example:

(En) People are motivated by different
values perhaps.
(A-rank) 人のモチベーションは／違う物に
よって／起こってきます。 [People’s mo-
tivation / by different things / is raised.]
(Human evaluation scores) 1, 3, 2

The verb phrase (are motivated) was interpreted
with a noun (motivation) to maintain the word or-
der of the English sentence, while the rater A in-
dicated the disagreement in his overall comment
and assigned one point. Future work will involve
human evaluation with simultaneous interpreters.

Pearson’s correlation coefficient was calculated
between the human evaluation scores and the two
metrics. BSPS achieved relatively higher corre-
lations with human judgments than BERTScore
(Table 9). However, if the correlations were ex-
amined talk by talk, BSPS correlated poorly with
the human evaluations in Nic S (ranging around
r = 0.3), and the correlation between BERTScore
(F1) and human evaluation was relatively high
(ranging around r = 0.45). Further research is
needed on the behavior of the metrics.

4.5.1 Word Order
The differences in word order between the SI data
and the offline translations measured by Kendall’s
K distance are shown in Table 10. Because of the

Talk Rank Rater A Rater B Rater C
Ale S 1.46 1.83 2.52
Ale A 1.32 1.46 1.94
Ale B 2.39 1.76 3.08
Lau S 1.23 1.61 2.03
Lau A 1.17 1.43 2.47
Lau B 0.82 0.84 1.48
Nic S 1.53 1.45 1.98
Nic A 1.38 1.40 2.40
Nic B 1.05 1.14 1.43

Table 8: Comparison of subjective evaluations by three
professional translators

Metric Rater A Rater B Rater C
BSPS 0.4724 0.4640 0.4372

BERTScore (P) 0.2696 0.2281 0.2658
BERTScore (R) 0.3326 0.2966 0.3380
BERTScore (F1) 0.3125 0.2728 0.3131

Table 9: Correlation between human evaluations and
quality metrics

difference between English (SVO and head-initial)
and Japanese (SOV and head-final), the difference
between SI and translation (i.e., large K) suggests
that the interpreters adopted a strategy of maintain-
ing the word order of the source language. How-
ever, differences due to interpreter ranks were not
clear, and we observed sentences with relatively
large K (> 0.7).

An example is shown in Table 11, whose K
was 0.75. In the translation (Ref), the word or-
der was almost reversed from the English sentence,
although the simultaneous interpreter successfully
interpreted in the first-in-first-out manner. The ex-
ample matched the word order patterns reported
in Cai et al. (2020), who found that simultaneous
interpreters often preferred maintaining the word
order in the original speech when interpreting nom-
inal modifiers and dependent clauses.

Interpreter Ale Nic Lau
S-rank 0.1118 0.0987 0.0832
A-rank 0.1467 0.1023 0.0767
B-rank 0.1347 0.0796 0.0985

Table 10: Comparison of Kendall’s K distance among
three talks and interpreter ranks
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Source Example
En That’s a huge problem if you think about, especially, an economy like Switzerland,

which relies so much on the trust put into its financial industry.
Ref 金融業界の/信用に/大きく依存する/スイスのような/経済を/考えると、/これは巨大な問題です。

[put into financial industry / the trust / which relies so much on / like Switzerland /
an economy / if you think about / that’s a huge problem]

B-rank これは、大きな問題です。/特に、/スイスの様な/経済を/考えてみると/そうでしょう。/

金融業界に対する/信頼/によって成り立っている/国だからです。

[that’s a huge problem / especially / like Switzerland / an economy / if you think about /
it’s true / on its financial industry / the trust / based on / it’s a country]

Table 11: Example of interpretations with large K

5 Conclusion

We described the construction of a new large-scale
English↔Japanese SI corpus that contains SI data
generated by simultaneous interpreters with differ-
ent amounts of experience (S-, A-, and B-ranks)
from identical lectures. Focusing on latency, qual-
ity, and word order, we compared the SI data
among interpreter ranks and against offline trans-
lations. The S-rank interpreters controlled latency
and quality better than the other two ranks. We
strongly believe that our new corpus will be a useful
resource for further research in translation studies
and for the construction of automatic SI systems.
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Abstract

Traditional translation systems trained on writ-
ten documents perform well for text-based
translation but not as well for speech-based ap-
plications. We aim to adapt translation models
to speech by introducing actual lexical errors
from ASR and segmentation errors from au-
tomatic punctuation into our translation train-
ing data. We introduce an inverted projec-
tion approach that projects automatically de-
tected system segments onto human transcripts
and then re-segments the gold translations to
align with the projected human transcripts. We
demonstrate that this overcomes the train-test
mismatch present in other training approaches.
The new projection approach achieves gains
of over 1 BLEU point over a baseline that is
exposed to the human transcripts and segmen-
tations, and these gains hold for both IWSLT
data and YouTube data.

1 Introduction

Speech translation is an important field that be-
comes more relevant with every improvement to
its component technologies of automatic speech
recognition (ASR) and machine translation (MT).
It enables exciting applications like live machine
interpretation (Cho and Esipova, 2016; Ma et al.,
2019) and automatic foreign-language subtitling
for video content (Karakanta et al., 2020).

However, translation of speech presents unique
challenges compared to text translation. Traditional
text translation systems are often trained with clean,
well-structured text consisting of (source language,
target language) sentence pairs gathered from text
documents. This works well for translating written
text, but for cascaded systems composed of speech
→ automatic transcription → automatic transla-
tion, errors from ASR and automatic punctuation
are amplified as they pass through the translation

∗equal contribution

system. Such systems suffer from three issues: 1)
spoken language structure is different from written
language structure and can include aspects like dis-
fluencies and partial sentences, 2) ASR systems are
not perfect and introduce errors in the stage from
speech to source transcript, and 3) mistakes from
automatic punctuation systems can lead to unnat-
ural sentence segments and boundaries (Makhija
et al., 2019; Nguyen et al., 2019; Wang et al., 2019).
These problems can lead to poor translations and
pose unique challenges for MT that are not readily
addressed by current methods. In this work, we
set out to make MT robust to the second and third
issues in particular.

We have developed an approach to train transla-
tion models that are robust to transcription errors
and punctuation errors, by introducing errors from
actual ASR and automatic punctuation systems into
the source side of our MT training data. This is sim-
ilar in spirit to the method of Li et al. (2021), which
introduces artificial sentence boundary errors into
the training bitext. However, instead of artificial
boundaries, our segmentation approach uses actual
boundaries generated by the automatic punctuation
system, which required the development of our in-
verted projection technique, and we also include
errors from ASR. For a small subset of our training
set, we assume access to long-form source audio
documents, their corresponding human transcrip-
tions, and translations of those transcriptions. This
makes it possible to compare the performance of a
baseline model trained on the human transcription
with a model trained on source sentences derived
from applying ASR transcription and automatic
punctuation to the same audio.

Our primary contributions are first to show
how to produce training data that captures the er-
rors from automatic transcription and punctuation,
which requires a non-trivial re-segmentation of the
reference translation that we call inverted projec-
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tion; and second to show experimentally that it is
actually more important to expose the MT system
to segmentation errors than lexical transcription
errors when aiming for speech-robust MT.

2 Background

Compounding errors from ASR are known to cause
problems when cascaded into MT (Ruiz et al.,
2017). These issues are one of the main moti-
vators for end-to-end modeling of speech trans-
lation (Weiss et al., 2017; Bansal et al., 2018; Sper-
ber et al., 2019). However, we consider end-to-end
modeling out of scope for this study since we aim
to benefit from the modularity that comes with a
cascaded speech translation strategy. To improve a
cascade’s robustness to speech input, one can train
the MT system with some combination of artificial
errors, actual ASR output, or long-form segmenta-
tion errors. We discuss each in turn.

Introducing artificial errors into the training set
has the advantage of being efficient, and not neces-
sarily tied to a specific ASR system. One can add
Gaussian noise to the source embeddings (Cheng
et al., 2018) or induce lexical substitutions that may
be informed by phonetics (Li et al., 2018; Liu et al.,
2019). Sperber et al. (2017) experiment with a
noise model that can perform insertions, deletions
and substitutions, but find little value in refining
the substitutions to account for word frequency or
orthographic similarity.

More related to our efforts are those that use
actual ASR output. Early experiments used ASR
output to replace the source side of parallel text dur-
ing training (Post et al., 2013; Sperber et al., 2017).
These did not perform well, likely because ASR
word error rates (WER) on the Fisher Corpus were
more than 40%, resulting in an unreliable train-
ing signal. Recently, Cheng et al. (2019) showed
that, given ASR training corpora (coupled audio-
transcription pairs), one can build a robust MT sys-
tem by training with the normal MT objective on
MT corpora, plus a mixture of: (1) an adversarial
objective that tries to bring encoder representations
for ASR output close to those of human transcrip-
tions; and (2) a normal MT objective that has ASR
output as source and machine translations of human
transcripts as target. In an IWSLT TED translation
scenario, they showed large improvements (+2.5
BLEU) using the second idea alone, which we take
as a strong signal that there is much to be gained
by training with ASR output on the source side.

Segment
Token

Human System

Human Baseline
Token

Robustness

System
Segment

Robustness
System

Robustness

Table 1: Combinations of segments and tokens.

We consider a long-form scenario where sen-
tence boundaries for the input audio are not given
at test time. As such, the method of Li et al. (2021)
to make MT robust to segment boundary errors is
very relevant. They introduce artificial sentence
boundary errors in their training bitext. They first
fragment adjacent source sentences, and then pro-
duce analogous fragments in the target according
to proportional token lengths. We draw inspiration
from their approach when building the target sides
of our inverted projections.

3 Methods

Our approach to producing MT systems that are
robust to automatic transcription errors is to in-
troduce errors from our ASR system into our MT
training data. Throughout the discussion of our
methods, we make use of both human (manual) and
system (automated) transcriptions of the source au-
dio. When discussing the target-side of our training
data, we use instead the term “gold” to indicate a
trusted reference translation. Throughout our ex-
periments, the gold standard is a human translation
of the human transcript (Post et al., 2013; Sperber
et al., 2017), though it could just as easily, and
much less expensively, be a machine translation of
the human transcript (Cheng et al., 2019).

We divide transcription errors into two cate-
gories: token and segment errors. A token error is
any word that is transcribed incorrectly by ASR,
such as a homophone substitution or the omission
of a mumbled word. Meanwhile, segment errors
are introduced by failing to correctly break the rec-
ognized text into sentence-like segments. A human
transcription is expected to have error-free tokens
and segments.

Table 1 presents a baseline and three ways
to turn long-form Audio-Transcript-Translation
triples into robust training data suitable for fine-
tuning an NMT model. Training models with hu-
man tokens and segments is the common transla-
tion mode, so we mark it here as Baseline. Training
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Human I checked the weather – this evening . It will rain tomorrow .
System I checked the whether . This evening – it will rein tomorrow .

Table 2: Our running example of human and system transcriptions, with the system having both lexical and seg-
mentation errors. The Levenshtein alignment is given by column alignment, with – indicating insertion or deletion.

with system tokens and human segments is the ap-
proach taken by others such as (Cheng et al., 2019),
resulting in Token Robustness. In the case of long-
form ASR, the human segments can be projected
onto the ASR output. This is an effective approach
for exposing the training model to token errors
from ASR, but it has an important disadvantage,
as it results in a train-test mismatch because the
human segments seen during training will not be
available at inference time. We describe this ap-
proach in Section 3.2 to provide a comparison to
our approaches using system segments and to intro-
duce some of the concepts and tools used in those
approaches.

The two approaches using system segments are
the main innovations in this paper. Introducing seg-
ment errors alone results in Segment Robustness
(Section 3.3), while segment and token errors to-
gether result in System Robustness (Section 3.4);
that is, MT that is robust to the complete long-form
transcription pipeline. We will show in the follow-
ing sections how we can project system segments
onto the source and target text; we call this an in-
verted projection.

3.1 Levenshtein Projection

A key component to all of the approaches in Ta-
ble 1 is an alignment between the system (ASR)
transcription and a human transcription of the same
long-form audio. Inspired by common practice in
evaluation for long-form speech translation (Ma-
tusov et al., 2005), we employ a token-level, case-
insensitive Levenshtein alignment of the two tran-
scripts. The Levenshtein alignment is monotonic,
parameter-free, and its dynamic programming al-
gorithm is fast enough to be easily applied to very
long sequences. We show an example alignment
in Table 2. By tracking the alignment of tokens
immediately before segment boundaries (always
end-of-sentence periods in our example), we can
project segment boundaries from one transcription
to another, which allows us to produce the various
entries in Table 1, as we describe in more detail in
the following subsections.

3.2 Token Robustness Training

The first approach to training on ASR sentences
is straightforward and is a variant of a published
result by Cheng et al. (2019). We Levenshtein-
align the human transcript to the system transcript,
and project the human sentence boundaries onto
ASR. Since each human transcript is already paired
with a gold standard translation, this projection
makes it easy to align each projected ASR segment
with a gold translation. We then train the model
with (projected-ASR-source, gold translation) pairs.
The Token Robustness training pair derived from
our running example from Table 2 is shown in
Table 3. The resulting source sentence, marked
with ∗, has ASR token errors but human segment
boundaries.

The main advantage of this approach is that it
uses the gold translations as written; the model
trains on well-formed translations. However, it suf-
fers from a serious disadvantage: the model will
only train on human segment boundaries, although
at test time we will translate according to system
segment boundaries, resulting in a train-test mis-
match. Our experiments in Section 5 demonstrate
that this is a serious drawback. In fact, when the
WER is low, the token errors present in Token Ro-
bustness training are ignored by the model since
they are overwhelmed by segment errors. In Sec-
tion 3.3, we introduce an approach to overcome
this limitation.

3.3 Segment Robustness Training

To address the segment-boundary train-test mis-
match present in Token Robustness training, we
can invert the projection and use system segments.
That is, we project the system segment boundaries
onto the human transcription.

System segments are derived from automatic
punctuation and sentence splitting of the system
transcription. As with Token Robustness, we
Levenshtein-align the human transcript to the sys-
tem transcript, but this time project the system seg-
mentation onto the human transcript. Unlike the
Token Robustness scenario, it is non-trivial to get

238



Gold De Ich habe heute Abend das Wetter überprüft . Morgen wird es regnen .
Human En i checked the weather this evening . it will rain tomorrow .

∗ System En i checked the whether . this evening it will rein tomorrow .

Table 3: Token Robustness (∗). A Levenshtein alignment projects system tokens onto human segments. We have
greyed out punctuation and lowercased to show the actual English text used in training.

Gold De
Ich habe heute Abend das Wetter überprüft . Morgen wird es regnen .
(I have this evening) (the weather checked . It will rain tomorrow .)

+ Human En i checked the weather this evening . it will rain tomorrow .
∗∗ System En i checked the whether . this evening it will rein tomorrow .

Table 4: Segment Robustness (+) and System Robustness (∗∗). A Levenshtein alignment projects human tokens
onto system segments, and then human-transcript-to-translation length ratios are used to align the German tokens
to both. We have greyed out punctuation and lowercased to show the actual English text used in training.

corresponding segment boundaries for the gold-
standard translations when training for Segment
Robustness. We could perform a statistical word
alignment between the human transcription and its
translation to determine word-level interlingual se-
mantic correspondence, but in similar situations
such as prefix training for simultaneous transla-
tion (Niehues et al., 2018; Arivazhagan et al., 2020),
this has not resulted in improvements over a sim-
ple proportional length-based heuristic. Therefore,
we use human-transcript-to-translation length ra-
tios (in tokens) to segment the gold translations
so that their new segment lengths match the pro-
jected human source segment lengths. Finally, we
train on (projected-human-source, projected-gold-
translation) pairs. This is similar to how artifi-
cial target sentences were constructed by Li et al.
(2021), but in our case, the boundaries are deter-
mined by automatic punctuation on ASR output,
rather than from introducing boundary errors at
random.

Table 4 shows the resulting human English and
gold German segments for our running example;
the source row marked with + is used in Segment
Robustness training. To illustrate the length-ratio
token alignment, we can see that the total token
length of the human English is 12, and the gold Ger-
man is 13. The English is segmented into lengths 4
and 8, meaning the German is segmented to lengths
4/12 · 13 = 4.33 ≈ 4 and 8/12 · 13 = 8.66 ≈ 9.
The resulting references will not always semanti-
cally match the content in the new source segments.
In this example, they do not: an English gloss of
the German shows that the semantics have diverged.
But they are often close enough, and our hypothe-
sis is that the benefit of exposure to realistic source

fragments will outweigh the cost of occasional se-
mantic misalignment. Furthermore, we use this
robustness data only to fine-tune a system that has
seen many semantically valid pairs.

3.4 System Robustness Training
In Section 3.3, the inverted projection approach
was applied to the human transcripts. While this
may seem unnatural, it provides a measure of the
improvement that can be achieved by just adjusting
the training set’s source segment boundaries so
that they match what the model will see during
inference. Next, we build upon this approach by
injecting the ASR token errors into the training
data as well.

Training a model that sees both system token er-
rors and segment boundary errors involves a slight
variation on the setup in Section 3.3. We use the
same alignment approach, but here we use it only
to get projected gold translations since the system
transcripts already have system segment bound-
aries. We then train the model with (system source,
projected-gold-translation) pairs.

The main advantage of this approach is that
the source side exactly matches the pipeline, com-
pletely bridging the train-test mismatch. The dis-
advantage, as in Section 3.3, is that the system
segments may lead to fragmented or semantically
misaligned reference sentences. Table 4 marks the
source row used for System Robustness training
with a ∗∗.

4 Experimental Setup

4.1 Data
We experiment on the IWSLT English to German
(EnDe) speech translation scenario. We use the
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IWSLT 2018 EnDe training data, including both
the official training set and the leftover TED talks
not included in any other test set, for a total of about
2400 talks and 0.25M sentence pairs. We found it
beneficial to also include the 4.6M sentence pairs
of the WMT 2018 EnDe corpus (Bojar et al., 2018)
during training to increase our feasible MT model
size and MT accuracy. For the IWSLT data, we
scrape the ground truth transcripts and translations
from www.ted.com directly because we found that
the official IWSLT datasets omit transcriptions for
many sentences. Since we are interested in long-
form scenarios, we want to be sure to retain all
sentences.

We evaluate our models on past IWSLT spo-
ken language translation test sets. We use IWSLT
tst2014 (Cettolo et al., 2014) as a dev set, which
consists of 14 TED talks and about 1,200 sentences.
We test on IWSLT tst2015 (Cettolo et al., 2015),
which consists of 12 TED talks totalling about
1,200 sentences. Punctuated ASR transcriptions
are obtained from the publicly available Speech-
to-Text Google API1; using a separate ASR sys-
tem in this way disconnects the ASR and NMT
models, improving modularity. This achieves a
WER of 5.5% on tst2015 ignoring case and punctu-
ation. We run a sentence breaker on the punctuated
source to determine the segments to be translated
by NMT. Since these segments need not match
the reference sentence boundaries, especially when
punctuation is derived automatically on ASR out-
put, we use our Levenshtein alignment as described
in Section 3 to align our translation output with the
gold-standard translation’s segments before evalu-
ating quality with case-sensitive BLEU (Matusov
et al., 2005). All models are trained and tested
on lowercased and unpunctuated versions of the
source, as doing so is known to improve robustness
to ASR output (Li et al., 2021).

4.2 Baseline

For all our experiments, we use a Transformer
model (Vaswani et al., 2017) with a model dimen-
sion of 1024, hidden size of 8192, 16 heads for
multihead attention, and 6 layers in the encoder
and decoder. The models are regularized using a
dropout of 0.3 and label smoothing of 0.1 (Szegedy
et al., 2015). We use a shared SentencePiece to-
kenizer (Kudo and Richardson, 2018) with a 32k
vocabulary. We decided on these settings through

1http://cloud.google.com/speech-to-text

hyper-parameter tuning on the IWSLT dev set.
As a baseline, we train a model that includes a

mix of WMT and human-transcribed IWSLT data,
but with no ASR-transcribed IWSLT data. During
training, for each batch, we sample 90% of data
from WMT and 10% from IWSLT. This mixture
was chosen based on the best performance of a grid-
search of weightings between these two datasets
evaluated on the IWSLT dev set. Because this
baseline has already seen the human transcripts
and translations of the IWSLT data, it has already
adapted its domain to both news and TED data.
By ensuring that this baseline has already adapted,
we are able to isolate the effects of ASR errors
and segmentation errors on the fine-tuned models.
We train the model using pairs of (source, target)
sentences, where target German translations are
untouched, retaining case and punctuation.

4.3 Model fine-tuning
Starting from the baseline, we fine-tune the model
on data from each scenario, each time starting from
the same checkpoint of the baseline. The best-
performing checkpoint of each fine-tuning exper-
iment is chosen based on the BLEU score on the
dev set, and this checkpoint is used to evaluate on
the test set. Fine-tuning is about 35x faster than
training from scratch in our configuration and con-
verges after running through less than 5 epochs of
the IWSLT data (≈0.25M sentence pairs). We re-
peat each experiment multiple times to account for
any variations in the runs.

4.4 Filtering
All of the processing steps described so far have in-
cluded all of the ASR sentences, regardless of their
quality. However, some ASR sentences have high
WER compared with the human transcripts. This
happens when, for example, the ASR transcribes
a video playing in the background that was not in-
cluded in the gold transcript. These examples can
be so egregious that they can confuse the model. To
filter the dataset, we remove only from our train-
ing set all ASR sentences with WER ≥ 50% as
compared with the human transcripts; this removes
approximately 4% of the training data. The sen-
tences with WER between 0% and 50% are useful
because they demonstrate ASR errors relative to
human transcripts but not egregious errors. We in-
clude results on this filtered set as an additional row
in our results tables. Note that the filtering is only
applied to the training data and is not applied on
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the test set since we wouldn’t have access to WER
during inference time. This should not be confused
with the average WER measured on each test set,
which is 5.5% for IWSLT (see Table 5) and 9.0%
for YouTube (see Table 6), which is an indicator
of the quality of the NMT model’s input source
sentences generated by the ASR system.

5 Results

5.1 IWSLT results

Table 5 compares the results of the different combi-
nations of segments and tokens from Table 1. For
the test set, automatic punctuation is first applied
and used to split the ASR output into sentences,
and then it is stripped of case and punctuation. Sen-
tences are translated one at a time with whatever
system is under test. The checkpoint is chosen ac-
cording to the dev set for each scenario, and the
resulting BLEU scores on the test set are presented
in the “ASR” column. For completeness, we also
compute the BLEU score on the IWSLT human
transcripts using the same model and checkpoint
and report it in the “HT” column. As expected, this
“HT” score decreases with increasing adaptation
to the system tokens and segments, but this does
not affect our results because, during inference, our
system will only be applied to ASR sentences with
automatic punctuation.

The baseline, trained from scratch using the hu-
man tokens and human segments (WMT + IWSLT),
achieves a score of 26.5 BLEU points on the ASR
set. As described in Section 4.2, this baseline train-
ing uses only 10% IWSLT data. Since the fine-
tuning experiments use 100% IWSLT data, those
models are arguably more adapted to the TED do-
main, which could contribute to any improvements
over the baseline. To control for this, we fine-tuned
an additional model on 100% human token, human
segment IWSLT data, but this yielded no improve-
ment over the baseline, likely because the baseline
has already seen this IWSLT data during training.
Thus, we didn’t include this experiment in Table 5.

All of the fine-tuning experiments in Table 5
start with the baseline from the first row, which
was trained without knowledge of the ASR tran-
scripts. The Token Robustness experiment starts
from the baseline and fine-tunes on ASR; it shows
no improvement compared to the baseline, which
indicates that the ASR errors are sufficiently subtle
compared to the segment errors so that the model
cannot adapt to them. On the other hand, the last 3

Training condition HT ASR
Baseline (human tokens and
segments)

33.6 26.5

Token Robustness (ASR
source, human segments)

32.7 26.0

Segment Robustness (human
source, system segments)

32.1 27.1

System Robustness (ASR
source, system segments)

32.1 27.4

System Robustness (ASR
source with WER ≤ 50%,
system segments)

32.3 27.6

Table 5: Results on IWSLT tst2015 data. HT stands for
“human transcript”. All numbers represent the transla-
tion BLEU, and each score is the average across 3 runs.
The ASR WER on the test sentences is 5.5%.

rows demonstrate significant gains when the text is
projected using the system segments. In particular,
the System Robustness experiment shows an im-
provement over the Segment Robustness, and the
best results are achieved with System Robustness
when removing ASR transcripts with high WER.
This yields a gain of more than 1 BLEU point over
the baseline. This indicates that, once the train-
test segment mismatch has been corrected for, the
model is able to adapt to and correct the subtle ASR
errors. These improvements indicate the value of
making the segmentation errors visible to NMT
training using the two steps of projecting source
and re-aligning translation.

The fact that our Token Robustness model does
not improve over the baseline is likely because
there are very few lexical errors since our ASR
model for English is very good, with a mean WER
of 5.5%. This is true even when we use the ap-
proach from Section 4.4 to remove high WER ASR
sentences during training (results not included in
Table 5). This is in contrast to the results of Cheng
et al. (2019), which demonstrated improvements
using ASR with human segments. Those results,
however, were achieved with the ASR model pro-
vided by IWSLT 2018, which has a much worse
WER than the ASR used in our work.2 We likely
could have replicated their result had we used a
weaker ASR model.

Our Segment Robustness approach and dataset
are similar to the synthetic segment breaks ap-

2Zenkel et al. (2018) report that the IWSLT 2018 ASR has
a WER of 22.8% on IWSLT tst2014, while the ASR used in
our experiments achieves a WER of 8.0% on the same set.
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Training condition HT ASR
Baseline (human tokens and
segments)

30.3 25.4

Token Robustness (ASR
source, human segments)

29.8 25.1

Segment Robustness (human
source, system segments)

29.3 26.6

System Robustness (ASR
source, system segments)

29.3 26.4

System Robustness (ASR
source with WER ≤ 50%,
system segments)

29.4 26.6

Table 6: Results on 88 English videos from YouTube
translated into German. No new models were trained in
these experiments: the models trained in Table 5 were
directly evaluated on these videos. The ASR WER on
the test sentences is 9.0%.

proach in (Li et al., 2021). According to Table
5, our results yielded a BLEU score of 27.1, which
is similar to the score of 27.0 reported in Table 4 of
that paper, which represents their best result from
training with synthetic segment breaks.

5.2 YouTube results
To test the generalization of our approach, we ap-
plied the models trained on the IWSLT data in Sec-
tion 5.1 to another dataset consisting of 88 English
videos selected from YouTube. The videos are se-
lected to have a single speaker, and are truncated to
a length of roughly 1 minute, perhaps interrupting
a sentence. Each of the 920 sentences in the human
transcription of these videos was professionally
translated into German.

No new models were trained in this section; ev-
ery line in Table 6 is a corresponding system from
Table 5. For each of the experiments, we take the
corresponding model trained on IWSLT and test it
on this new YouTube EnDe test set. This enables
us to determine the generalization ability of the
approach.

According to Table 6, the model performs re-
markably similar on this YouTube dataset. In par-
ticular, the improvement over the baseline of the
System Robustness in the last row is about 1.2
BLEU points, comparable to the 1.1 BLEU point
improvement in Table 5.

Note that, because the models were fine-tuned
on the IWSLT ASR dataset starting from a mix
of WMT and IWSLT, there is a domain mismatch
between this training data and the YouTube test-

ing data. Nevertheless, the System Robustness
approach shows a clear improvement. Thus, we ex-
pect that if we trained a model directly on YouTube
data, we would see even higher BLEU scores. This
is a task for future work.

6 Conclusions

To aid text-based translation models to adapt to
speech data, we introduced an inverted projection
approach that projects automatically detected sys-
tem segments onto human transcripts and then re-
segments the gold translations to align with the pro-
jected human transcripts. This approach overcomes
the train-test mismatch present in previous attempts
to train on long-form ASR output by exposing MT
training to both token and segment errors, exactly
matching the source transcription pipeline used at
test time. The results demonstrate a gain of over
1 BLEU point on both IWSLT data and YouTube
data.

For future work, we aim to train models on lan-
guages with higher ASR WER since our English
WER is very low (5.5%). We also plan to experi-
ment with MT targets during training to address the
data bottleneck. And we also plan to investigate
whether we can eliminate segmentation altogether
with document-level speech translation.
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Abstract

In recent years, automatic speech-to-speech
and speech-to-text translation has gained mo-
mentum thanks to advances in artificial intel-
ligence, especially in the domains of speech
recognition and machine translation. The qual-
ity of such applications is commonly tested
with automatic metrics, such as BLEU, primar-
ily with the goal of assessing improvements of
releases or in the context of evaluation cam-
paigns. However, little is known about how
the output of such systems is perceived by end
users or how they compare to human perfor-
mances in similar communicative tasks.

In this paper, we present the results of an ex-
periment aimed at evaluating the quality of a
real-time speech translation engine by compar-
ing it to the performance of professional si-
multaneous interpreters. To do so, we adopt
a framework developed for the assessment of
human interpreters and use it to perform a man-
ual evaluation on both human and machine
performances. In our sample, we found bet-
ter performance for the human interpreters in
terms of intelligibility, while the machine per-
forms slightly better in terms of informative-
ness. The limitations of the study and the pos-
sible enhancements of the chosen framework
are discussed. Despite its intrinsic limitations,
the use of this framework represents a first step
towards a user-centric and communication-
oriented methodology for evaluating real-time
automatic speech translation.

1 Introduction

Real-time or simultaneous speech translation (ST)
aims at translating a continuous speech input from
one language to another with the lowest latency1

and highest quality possible. In recent years, auto-
matic speech translation systems have been devel-

1In this context, we broadly define latency as the time
delay from when an utterance is pronounced in the source
language to when it gets translated in the target language.

oped at scale, and their quality has improved sig-
nificantly (Sperber and Paulik, 2020). At present,
research is increasingly focusing on end-to-end
trainable encoder-decoder models, i.e. speech-to-
speech (STS) or speech-to-text (STT) translation
systems that directly match source and target lan-
guage (Di Gangi et al., 2018; Jia et al., 2019; Ansari
et al., 2020). Nonetheless, the cascading approach
is de facto still the mainstream solution for speech
translation (ST). The main reason is that this ap-
proach benefits from the remarkable improvements
in automatic speech recognition (ASR) (Chiu et al.,
2018) and machine translation (MT) (Barrault et al.,
2020) obtained thanks to the wealth of task-specific
data available. In cascading systems, the process
of translating from speech to text or from speech
to speech is performed by a series of concatenated
modules. In most cases, these systems apply ASR
to the speech input, and then pass the results on to
an MT engine. Since a short latency is an important
characteristic of such systems, the translation is ren-
dered while the source is unfolding, on the basis of
different approaches ranging from simple time de-
lay to complex agents that establish when the con-
text is sufficient to perform the translation. Several
additional components can be integrated into this
pipeline, such as text normalization (Fügen, 2008),
suppression of speech disfluencies (Fitzgerald et al.,
2009), prosody transfer (Kano et al., 2018), and so
forth.

Real-time ST systems have the potential to be
used in communicative settings, such as institu-
tional events, lectures, conferences, etc. in order
to make multilingual content accessible in real-
time, thus increasing inclusion and participation
when human services for language accessibility are
not available, such as live interlingual subtitling
(Romero-Fresco and Pöchhacker, 2017) or confer-
ence interpreting (Pöchhacker, 2016). So far, the
evaluation of ST in general, and real-time ST in par-
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ticular, has been framed in the domain of computer
science (CS). In CS, automatic metrics are applied
in order to compare systems and monitor progress
over time2. However, little is known about how
such systems, that for the sake of this paper we will
define as machine interpreting (MI) systems3, per-
form in real communication settings and whether
they are able to meet the needs of end users. To
the best of our knowledge, no evaluation frame-
work has been developed and deployed in the past
to assess the performance of such systems from a
communicative perspective.

To address this shortcoming, in the present con-
tribution we apply a user-centric evaluation frame-
work derived from Interpreting Studies (IS) to the
task of assessing an automatic system for ST. Mov-
ing towards an evaluation framework that takes into
consideration the authentic communicative setting,
we compare the performances of the automated sys-
tem with the performances of professional simulta-
neous interpreters. We do so in order to assess the
level of usability of such framework and to bench-
mark the performances of the machine, inferring
the suitability of the ST system for the proposed
communication task from its comparison with the
human performance.

The rest of the paper is organised as follows. In
Section 2, we present an overview of research ar-
eas in the field of automatic speech translation and
human interpreting evaluation. In Section 3, we
illustrate our research methodology and the exper-
imental design. Section 3.1 describes the dataset
created for this task, while Section 3.2 introduces
the framework used to evaluate the performance of
the machine and of the human interpreters. Section
4 presents the results of the evaluation and Section
5 discusses and puts the results into perspective.
Section 6 concludes the paper with final remarks.

2 Related work

The evaluation of simultaneous speech translation,
independently of whether the process is performed
by a human or a machine, is a topic central both to
the domain of Computer Science and of Interpret-
ing Studies.

2See for example the methodology used for the shared task
of the International Conference on Spoken Language Trans-
lation 2021 available at https://iwslt.org/2021/
simultaneous

3We tentatively define as Machine Interpreting all auto-
matic methods of real-time speech translation, i.e. cascading,
end-to-end, into text, into speech, etc. that are used in the
context of real-life communication.

In CS, ST is typically evaluated in terms of qual-
ity and latency. Similar to MT, the approach used
consists in the application of automatic metrics in
order to allow for a fast and objective evaluation
of the systems (Ma et al., 2020). However, due to
its novelty, the ST research community currently
lacks a universally adopted evaluation methodol-
ogy. Quality is generally measured by BLEU (Pap-
ineni et al., 2002; Post, 2018), TER (Snover et al.,
2006) and METEOR (Banerjee and Lavie, 2005).
The approach to compare system outputs against
source texts, gold standard translations, and other
system outputs represents, despite the limitations
of such metrics (Babych, 2014), a widely accepted
evaluation methodology. The measurement of la-
tency, which broadly corresponds to the ear-voice
span of human interpreting (e.g. Gile, 2009), repre-
sents a more challenging task that still lacks suffi-
cient clarity and consistency. In this context, sev-
eral metrics have been introduced, such as Average
Proportion (AP) (Cho and Esipova, 2016), Contin-
ues Wait Length (CW) (Gu et al., 2017), Average
Lagging (AL) (Ma et al., 2020), Differentiable Av-
erage Lagging (DAL) (Cherry and Foster, 2019).
Generally speaking, the evaluation approach used
in CS is product-oriented. The concept of quality
is limited to measuring proximity in the linguistic
surface between translation and ground truth. It
does not take into consideration the user percep-
tion, the pragmatic aspect of communication, and,
intrinsically, cannot consider the translation pro-
cess as embedded in a communicative event (e.g.
Angelelli, 2002).

This is different to IS. Since human interpre-
tation always occurs in a specific communicative
setting, the need to evaluate it accordingly has al-
ways been in focus. Here, the pursuit of conceptual
and methodological tools for the empirical study
and assessment of quality has a long tradition, par-
ticularly in the conference domain and simultane-
ous modality (e.g. Pöchhacker, 2002; Kalina, 2005;
Collados Aı́s and Garcı́a Becerra, 2015). Despite
the different perspectives that have been adopted
to define and evaluate quality, there is considerable
agreement among scholars on a number of criteria
which are considered fundamental when evaluat-
ing human interpretation. Most criteria of quality
are associated with the product-oriented perspec-
tive and can be subsumed in two main areas, the
first one focusing primarily on the interpretation
or target-text as “a ‘faithful’ image” (Gile, 2009)
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or “exact and faithful reproduction” (Jones, 2002)
of the original speech, the second one on the no-
tion of intelligibility, also called clarity, target-text
comprehensibility, linguistic acceptability, stylistic
correctness, etc. Such evaluation is centred on the
view of interpreting as a language processing task.
At an even higher level, quality can also be seen
under the paradigm of a holistic idea of successful
communication. From this perspective, interpreting
is assessed on the basis of whether it successfully
allows the parties involved in a particular context
of interaction to achieve their communicative goal,
as judged from the various perspectives in and on
the communicative event (Gile, 2009). The focus
of this perspective is no longer on the product (the
rendition), but rather on the communicative action
performed to achieve a certain purpose and effect,
and therefore on the holistic function of facilitating
communicative interaction (Pöchhacker, 2002).

From a methodological perspective, quality in
interpretation has been evaluated through surveys
(Feldweg, 1996), measures of performance through
experimentation (Shlesinger, 1995), or corpus-
based analysis (Bendazzoli, 2018). Different to
the CS approach, which is based on automatic met-
rics, the analysis of data in IS is performed on the
basis of a manual evaluation of the corpus data.

While such evaluation frameworks have been de-
signed and used regularly in the domain of machine
translation, very few attempts have been made
so far to evaluate the performance of automatic
speech translation system both in the context of the
product-based and of the holistic/communicative
approach. A few pilot studies on the usability of ST
systems have only been performed in the context
of dialogue interpreting (Cürten, 2016; Wonisch,
2017), while only one has been attempted in the
area of real-time ST (Müller et al., 2016). We be-
lieve that such approaches, if appropriately adapted
to the research desideratum at hand, could con-
tribute to a better understanding and evaluation of
machine speech translation systems.

3 Data and methodology

As discussed in the previous section, ST systems
are typically evaluated by means of automatic met-
rics using reference datasets. Although such evalu-
ations are useful to compare systems among each
other, one of their main limitations is that they do
not take into consideration the communicative set-
ting nor the perception of their usefulness by final

users. To overcome this limitation, we select and
apply to the assessment of ST a user-centric frame-
work commonly used for the evaluation of human
interpretation.

In order to understand the potential usefulness
of the automatically generated translation, we com-
pare the machine performance with a gold standard:
the interpretation delivered by professional human
interpreters in the real context of the event. Si-
multaneous interpretation (SI) is the modality most
commonly used to provide multilingual access in
real-time4. Since we assume that the service pro-
vided by professional interpreters allows communi-
cation among the parties in the event, we consider it
to be our “communicative” ground truth. This gold
standard is not an ideal rendition of the original,
but it comes with all the benefits and limitations of
the real simultaneous translation used at a specific
event to overcome language barriers. By means
of this comparison we can infer, at least to some
extent, the communicative performance of the ma-
chine in the context of a real communicative event.
The overall question driving our research is there-
fore “How does the performance of a speech-to-text
translation system compare with human SI?”.

To answer this question we compile a corpus of
speeches in English delivered in real-life contexts
and align them with their human interpreted ver-
sions into Italian as well as with the output of a
simultaneous STT translation system chosen for
this task. The dataset is described in Section 3.1.
We manually assess the quality of the human and
automatic renditions (transcriptions) on the basis
of the evaluation framework described in Section
3.2. This evaluation represents an attempt to apply
a more user-centric approach to the assessment of
the automatic service provided by STT translation
systems.

3.1 Dataset

There are several speech translation corpora cur-
rently available, such as MuST-C (Di Gangi et al.,
2019) and Europarl-ST (Iranzo-Sánchez et al.,
2020). They generally contain source speeches
in one language and the corresponding written or,
in a few cases, spoken translations in the target
language(s). While they are useful to explore end-
to-end ST, for example to train the language mod-
els, they have not been designed with the goal of

4The other would be interlingual respeaking for the cre-
ation of live subtitling which is, however, still in its infancy.
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assessing such systems from a communicative per-
spective. As a matter of fact, the target language
component of the corpus is in most cases an edited
translation, therefore a product of mediated, offline,
and decontextualized work.

To overcome this limitation, we create a new
pilot corpus of speeches (lectures) and of their live
translations which would allow us to conduct a bet-
ter evaluation of the machine output by comparing
it with the gold standard produced by humans in a
real communicative event (see Section 3).

The main rationale behind the creation of our
corpus is the selection of naturally occurring data
on which to conduct our observation, both for the
original speech and, most importantly, for the gold
standard (the basis of the comparison).

The five speeches selected for the corpus are ran-
domly extracted from two series of talks (“Festival
dell’economia” and “Meeting di Rimini”) that had
been originally interpreted simultaneously from
English into Italian by five different interpreters.
Both the original speeches and their interpretations
are publicly available on the web5. After choosing
the events, 2-minute extracts are randomly selected
from each speech. The small size of the corpus
does not allow for generalizations, but should pro-
vide indications on the suitability of the chosen
evaluation framework. With this approach, the eco-
logical validity is maximal, as the research data
are drawn from real interpreted events, while the
level of control is minimal, making data harder
to interpret, especially when it comes to causality
(Baekelandt and Defrancq, 2020).

The speeches included in the corpus6 are sum-
marised in Table 1. While all the speakers had
presented in English, three were native speakers
(texts 1, 3 and 5) and two were not (texts 2 and 4).
As for the source text delivery mode, four speakers
presented “impromptu” speeches (texts 1, 2 , 4 and
5) and one a “read-aloud” speech (text 3). The
topics included: economy (text 1), bit coin (text 2),
artificial intelligence (text 3), green growth (text
4) and medicine (text 5), with different degrees of
technicality. The audio quality was good for all
speeches. The speed of delivery ranges from 142
to 160 words per minute (wpm) and is in line with
typical speech rates at conferences (e.g. Seeber,
2015).

5https://www.festivaleconomia.it/ and
https://www.meetingrimini.org

6The corpus is available at https://cai.
uni-mainz.de/steval.

Similar to Batista et al. (2008), the corpus for
evaluation is presented in written form. Since the
output of the STT is already produced by the en-
gine as written text, only the source speeches and
the human interpretations are transcribed by means
of an ASR engine and manually corrected. The ST
output is included in the corpus without modifica-
tions. The five texts are segmented in utterances
and aligned with the interpretations. The number
of segments for each text ranges from 16 to 20.

Text Duration Words Speed (wpm)

1 2’ 10” 347 160
2 2’ 02” 288 142
3 2’ 00” 320 160
4 2’ 01” 304 157
5 2’ 07” 320 151

Table 1: Corpus features

For this experiment, we choose the real-time
ST service offered by Azure Speech Translation 7.
The main reason for this choice is that the service
is available as a commercial API and represents
the state-of-the art of cascading systems. Different
to human interpreters, who deliver the translation
orally, this API translates speech into written text
without any form of speech synthesis. In princi-
ple, this generates an asymmetry in the evaluation.
However, since the selected framework requires the
evaluation to be performed on the written transcrip-
tions, this lack of symmetry has been deemed as
non central for the purpose of this experiment.

To collect the data of the ST engine, a simple
Web application was created by the authors around
the API. The application sends the original speech
to the API and records the real-time translation re-
turned by the service. Because the evaluation is
performed on written transcriptions, in this experi-
ment the latency of the system was not taken into
account, and only the final translation hypothesis
generated was considered for the evaluation. This
is a major limitation of this study that needs to be
addressed in future experiments.

3.2 Evaluation framework and procedure
For the investigation and the comparison of the
human and the machine output, an evaluation
framework derived from the Interpreting Studies

7https://azure.microsoft.com/
en-en/services/cognitive-services/
speech-translation/
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(Tiselius, 2009) is chosen and slightly adapted. The
framework is “assumed to account for central as-
pects of the interpreted event but not for its entirety
as a communicative event” (Tiselius, 2009, p. 99).
As discussed in Section 1, at this stage we follow
a product-based approach to quality assessment
in IS, leaving the situated evaluation of the inter-
preted event for later explorations, for which an
extended framework comprising additional com-
municative perspectives and criteria should be de-
fined. Notwithstanding the limitations of this ap-
proach, one of the advantages of Tiselius’s frame-
work against automatic metrics lies in its being
user-centric and in line with the corpus-based eval-
uation already established in Interpreting Studies
to assess the quality of human interpretation.

Tiselius defines the framework as “an easy-to-
use tool that can be implemented by laypeople in
order to assess a transcribed version of a simulta-
neous interpreting performance” (Tiselius, 2009, p.
99). This aspect is particularly important for possi-
ble future use of the framework. In order to further
streamline it, we slightly simplified the evaluation
scale, and adapted its wording in order to make it
suitable to express a judgement on both human and
automatic speech translation.

The framework aims at assessing the target pro-
duction on the basis of two dimensions:

• Intelligibility, defined as the evaluation of the
target text in terms of fluency, clarity, ade-
quacy etc., performed without a comparison
with the source text

• Informativeness, defined as the evaluation of
the target text in terms of semantic informa-
tion content, performed with a comparison
with the source text

The two dimensions reflect the main criteria at
the core of the product-oriented approach to quality
evaluation in IS (Section 2). 6 raters with a back-
ground in interpreting and translation are asked to
conduct the evaluation of the human interpretation
(HI) and the machine output (MI). For each speech,
the raters are asked to assess on a six-point Likert
scale first the intelligibility of the HI and of the
MI output (without a comparison with the source
speech nor a comparison between the two outputs),
then to evaluate the informativeness of the two ren-
ditions (HI and MI) by comparing each one to the
source speech.

While this methodology represents a first step
towards a more holistic approach to the evaluation
of ST, it also presents a series of shortcomings:

• The product-based evaluation of the gold stan-
dard, the HI, is conducted on transcriptions
and not on the audio output. Not only do
prosody, modulation of voice, hesitations, etc.
constitute distinctive aspects of spoken (hu-
man) language, but they are also actively used
by human interpreters to reach several commu-
nicative goals. They contribute, for example,
to disambiguate oral speech, explicate refer-
ences, etc. The evaluation on the basis of tran-
scriptions deprives the evaluator of these key
features, with obvious negative implications
for the quality scores. A viable option could
be to perform the evaluation on the basis of an
audio corpus, thus retaining all the features of
spoken language during the evaluation of the
human interpreters. Another promising way
to address this shortcoming would be to resort
to interlingual respeaking as a gold standard
instead of HI. Since the output of respeakers is
a written rendition of the original in the target
language, it would make the output of human
and automatic ST more comparable.

• Notwithstanding the efforts made to keep the
framework as simple as possible, the evalua-
tion procedure proves quite time-consuming.
Conducting evaluation campaigns on a bigger
scale with this framework may be hampered
by this aspect.

• The item definitions in the six-point scale are
not sufficiently straightforward to guide the
rater in taking a decision. Further simplifica-
tion and rewording are required.

• The assessment does not take into considera-
tion latency, which is important to judge the
real-time translation at a communicative level,
especially as far as the user experience is con-
cerned. The ST system used in the experi-
ment, for example, performed real-time adap-
tations on the target language, i.e. modifying
the translation hypothesis while receiving in-
creasing context from the source speech. The
impact on comprehension and user friendli-
ness of both this aspect and disfluencies in
the human rendition should be studied more
attentively in future.
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Figure 1: Intelligibility and informativeness scores for
the human and the machine output.

• As will become clear in Section 4, resorting to
human interpretation instead of written trans-
lation as a gold standard calls for new strate-
gies in the evaluation. Because human inter-
preters and ST systems perform the task using
a different approach (linear for machines, in-
terpretive for humans), the comparison using
classical methodologies may be inadequate.

The shortcomings of the evaluation framework
should be addressed in a follow-up study.

4 Results

The scores for each of the two parameters (intelli-
gibility and informativeness) are summed for each
speech, output and rater and then averaged. The
relative percentage score is calculated on the max-
imum amount of points obtainable for each text.
The figures below illustrate the results of data anal-
ysis.

As shown by Figure 1, human interpreters obtain
better scores for intelligibility (84.84 % to 73.49
%), while the machine output is rated slightly better
than the human interpretations in terms of informa-
tiveness (74.63 % to 72.82 %).

When combining the scores for the two rating
criteria (Figure 2), the human output surpasses ma-
chine output by 4.77 percentage points. It can be
argued that the two parameters do not have the
same weight in terms of their impact on the success
of the communicative event. At this stage of evalu-
ation, however, we decide to combine them without
any weight and to leave this more in-depth analysis
to a later phase of development of our evaluation
framework.

Figure 3 illustrates the standard deviation (SD)
for the two evaluation parameters for all 5 speeches.

Figure 2: Scores combined for the human and the ma-
chine output.

Figure 3: Standard deviation of the intelligibility and
informativeness scores (human and machine output).

Both for the criterion intelligibility and for the crite-
rion informativeness, the SD for the human output
is larger than for the machine output, for which the
scores are very close to each other in our sample.

This result suggests that variables such as topic,
density, speed of the original speech, accents, etc.
affect less the machine than the human interpreter.
On the one hand, this is quite surprising if one
considers that aspects such as performance of ASR
with foreign accents, to name but one example,
are considered detrimental in automatic language
processing (Kitashov et al., 2018; Shi et al., 2021).
On the other hand, the larger SD for the human
output may point to the fact that humans tend to
have a high degree of variance in performances
due to different background knowledge, skills, etc.
Because of the small size of the corpus, the trends
observed in the present study cannot be generalized
and the analysis should be conducted on a larger
sample.

In order to verify the adequacy of the evalua-
tion methodology, and in particular of the rating
scales used to assess intelligibility and informa-
tiveness achieved by the human and the machine
interpretation, Krippendorff’s α is calculated for
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the two evaluation criteria and the two types of
output. This measure is chosen as it allows to over-
come the problems presented by Fleiss’s κ (Hayes
and Krippendorff, 2007), another common measure
of intercoder reliability used when multiple raters
are involved (see Mellinger and Hanson, 2016).
The statistic is interpreted like other measures of
reliability, with higher scores indicating higher in-
tercoder reliability. Overall, α values are below the
lowest value (.667) defined as acceptable by Krip-
pendorff (2013) for tentative conclusions, and well
below the recommended value of .800 (ibid.). The
α is considerably lower than these values for both
intelligibility and informativeness in human inter-
preting (α = .442 and .607 respectively). The α for
MI intelligibility is .658, while the value of inter-
rater reliability for the category of informativeness
in MI is barely acceptable (α = .676). Overall,
these results suggest that applying the evaluation
scale derived from IS as is for the comparison of
HI and MI output presents limitations that need to
be addressed in future work, for instance in terms
of the optimisation of the scoring rubric and the
inclusion of further dimensions in the evaluation
scale.

5 Discussion

The differences in the raters’ evaluation of the hu-
man and machine output can be better understood
by analysing several phenomena retrieved from the
corpus. The complexity of the evaluation and, in-
herently, of the comparison between human and
machine interpretation is strictly linked with the
pragmatic nature of HI, which often calls for in-
terventions on the part of the interpreter. Such
interventions, emerging on the linguistic surface
of the interpreted text, may be evidence of under-
lying strategic behaviour exercised, for instance,
to favour comprehension, or may be the result of
emergency coping tactics aimed at preventing a
disruption of the rendition in adverse conditions,
for instance in the case of particularly information-
dense or fast speeches. Phenomena such as general-
isation, addition and (intentional) omission (see for
instance Gile, 2009; Kohn and Kalina, 2002) seem
to occur more often in human SI than in written
translation, and are entirely absent in the automatic
translation of speech. The MT engine lacks any
linguistic phenomena that may index intentional
interventions, not only because it lacks deliberate-
ness, but also because it has been trained on written

(and not interpreted) texts. This fundamental dif-
ference may limit the ability of a classic evaluation
framework (both manual and automatic) to provide
an assessment of quality which reflects the com-
municative success of an event mediated by human
or by machine interpretation. In order to illustrate
our argument, we report several example passages
from the corpus complete of their rendition by the
human interpreters and by the ST engine.

In the following example (Table 2), the human
interpreter added a reference to the financial crisis
(“momento della crisi finanziaria”) implicit in the
temporal reference provided by the speaker (2009).
At the same time, one unit of information (“where
a lot of people were looking for this phrase”) was
left out by the human interpreter, while it is present
in the machine output.

Table 2: Addition

S So you have this spike around 2009 where
a lot of people were looking for this phrase

HI perché nel 2009 abbiamo un picco, mo-
mento della crisi finanziaria

MI quindi avete questo picco intorno al 2009
o molte persone stavano cercando questa
frase

In the following example (Table 3), the inter-
preter opted for a generalisation: “we’ve not spent
enough energy, time, and money” was summed up
in “we really have to do more”, which conveys the
same key message while making explicit what is
meant by the original speaker, but is less precise
than the automatic rendition, more adherent to the
source text.

Table 3: Generalisation

S It’s clear that we’ve not spent enough en-
ergy, time, and money in protecting our
healtcare workers

HI Quindi ecco. Dobbiamo veramente fare di
più per proteggere i nostri operatori sani-
tari

MI È chiaro che non abbiamo speso abbas-
tanza energia, tempo e denaro per pro-
teggere i nostri operatori sanitari

The two examples discussed above illustrate an
inherent conundrum in the evaluation, i.e. how to
evaluate pragmatic interventions by the interpreter.
Whether such interventions should be considered
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as justifiable or not and which rendition, the human
or the machine, is more appreciated by the end-user
and more conducive to the same communicative
goal pursued by the speaker cannot be reflected
in an evaluation framework such as the one cho-
sen for this initial exploration. Furthermore, these
phenomena substantiate our argument that a frame-
work for the evaluation of ST in comparison with
HI requires a broader perspective.

Another key point of comparison between HI
and ST lies in the presence and evaluation of errors.
It may be argued that blatant errors are more appar-
ent in ST than in professional HI, as exemplified
by the following passage:

Table 4: Blatant error in MI

S So 9 billion of dollars have been raised
through ICOs

HI per cui ci sono adesso 9 miliardi di dollari
che sono stati raccolti attraverso queste
operazioni di ICO

MI Quindi 9 miliardi di dollari sono stati rac-
colti attraverso i devoti ghiacciati

The erroneous translation in the automatic out-
put (“devoti ghiacciati”, i.e. iced pious), clearly
due to a speech recognition issue (Example 4), is
immediately recognisable as such by the (human)
end-user. This type of blatant mistake seems to
be a distinctive characteristic of MI and is more
frequent than in neural machine translation because
of the key features of oral speech. It would be in-
teresting to explore the effects of this error type in
a real-life communicative event. However, human
interpreters may also commit severe mistakes. Let
us consider the following case:

Table 5: Blatant error in HI

S we have lots of historical examples of over-
estimating how fast it will kick in

HI Ci sono esempi storici in questo senso di
sottovalutazione della velocità in cui le
cose sono cambiate

MI abbiamo molti esempi storici di sopravval-
utazione della velocità con cui prenderà il
via

At first sight, the HI may appear more elegant
and fluent than the automatic output (the median
intelligibility score for this segment is 5). Thus, the
wrong rendition of “overestimating” with “sottova-

lutazione” (EN: underestimating), due to erroneous
anticipation or to having misheard the speaker’s
words, may go unnoticed without a comparison
with the source text.

The examples discussed above emphasise on the
one hand that the type of mistakes end-users are
confronted with may be of very different nature.
The effects of the various types of mistakes on com-
munication and their evaluation by human raters
may also vary, and should be explored within a
framework that takes into account the communica-
tive perspective. On the other hand, this compari-
son also stresses the need to compare ST not with
the ideal of HI but with the variability of human
performances.

6 Conclusion and Future Work

This paper reports on an experiment that compares
the output of a real-time speech-to-text translation
system with the performance of human interpreters.
The main goal was to expand the methodology that
is used nowadays to evaluate such systems from the
purely computational approach based on automatic
metrics to a more user-centric and communication-
oriented one. To do so, we apply an evaluation
framework derived from Interpreting Studies and
let six evaluators assess the performance of humans
and machines according to the criteria of intelli-
gibility and informativeness. The results show a
better performance by humans in terms of intelli-
gibility and a slightly better performance by the
machine in terms of accuracy.

Despite several drawbacks of the framework
adopted, the path initiated with this study may bear
fruits in terms of better understanding and evalu-
ating the output of speech-to-text and speech-to-
speech translation systems in the context of situated
multilingual communication and its pragmatic con-
text. The study also highlights several limitations
of the approach chosen. They are mainly related
to the difficulty of defining objective criteria in the
evaluation of quality of interpreted texts, and to the
intrinsic shortcomings of evaluating a communica-
tive event only on the basis of the product of the
translation process without the contextual embed-
ding of the evaluation in the communicative setting.
Such shortcomings need to be addressed in future
work.
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Monz, Makoto Morishita, Masaaki Nagata, Toshi-
aki Nakazawa, Santanu Pal, Matt Post, and Mar-
cos Zampieri. 2020. Findings of the 2020 Confer-
ence on Machine Translation (WMT20). In Pro-
ceedings of the Fifth Conference on Machine Trans-
lation, pages 1–55, Online. Association for Compu-
tational Linguistics.

Fernando Batista, Diamantino Caseiro, Nuno Mamede,
and Isabel Trancoso. 2008. Recovering capitaliza-
tion and punctuation marks for automatic speech
recognition: Case study for Portuguese broadcast
news. Speech Communication, 50(10):847–862.

Claudio Bendazzoli. 2018. Corpus-based Interpreting
Studies: Past, Present and Future Developments of
a (Wired) Cottage Industry. In Mariachiara Russo,
Claudio Bendazzoli, and Bart Defrancq, editors,
Making Way in Corpus-based Interpreting Studies,
pages 1–19. Springer Singapore, Singapore. Series
Title: New Frontiers in Translation Studies.

Colin Cherry and George Foster. 2019. Thinking Slow
about Latency Evaluation for Simultaneous Ma-
chine Translation. arXiv:1906.00048 [cs]. ArXiv:
1906.00048.

Chung-Cheng Chiu, Tara N. Sainath, Yonghui Wu, Ro-
hit Prabhavalkar, Patrick Nguyen, Zhifeng Chen,
Anjuli Kannan, Ron J. Weiss, Kanishka Rao, Ekate-
rina Gonina, Navdeep Jaitly, Bo Li, Jan Chorowski,
and Michiel Bacchiani. 2018. State-of-the-art
Speech Recognition With Sequence-to-Sequence
Models. arXiv:1712.01769 [cs, eess, stat]. ArXiv:
1712.01769.

Kyunghyun Cho and Masha Esipova. 2016. Can neu-
ral machine translation do simultaneous translation?
arXiv:1606.02012 [cs]. ArXiv: 1606.02012.

Ángela Collados Aı́s and Olalla Garcı́a Becerra. 2015.
Quality. In Holly Mikkelson and Renee Jourde-
nais, editors, The Routledge handbook of interpret-
ing, Routledge Handbooks in Applied Linguistics.
Routledge, London ; New York.
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Abstract
We implemented a neural machine translation
system that uses automatic sequence tagging
to improve the quality of translation. Instead
of operating on unannotated sentence pairs,
our system uses pre-trained tagging systems
to add linguistic features to source and target
sentences. Our proposed neural architecture
learns a combined embedding of tokens and
tags in the encoder, and simultaneous token
and tag prediction in the decoder. Compared
to a baseline with unannotated training, this
architecture increased the BLEU score of Ger-
man to English film subtitle translation outputs
by 1.61 points using named entity tags; how-
ever, the BLEU score decreased by 0.38 points
using part-of-speech tags. This demonstrates
that certain token-level tag outputs from off-the-
shelf tagging systems can improve the output
of neural translation systems using our com-
bined embedding and simultaneous decoding
extensions.

1 Introduction

Neural machine translation (NMT) uses neural
networks to translate unannotated text between a
source and target language, but without additional
linguistic information certain ambiguous inputs
may be translated incorrectly. Consider the fol-
lowing examples:

1) Titanic struggles between good and evil.
3 선과악사이의엄청난투쟁.

big fight between good and evil
7 타이타닉은선과악사이에서투쟁중이다.

The Titanic is fighting between good and evil

2) Titanic struggles to stay afloat.
3 타이타닉은침몰하지않도록고군분투

중이다.
The Titanic is struggling not to sink

7 침몰하지않기위한엄청난투쟁.
big fight not to sink

In (1), “Titanic” is best translated as a common
adjective; in (2), it most likely refers to a named
entity, the famous ship. In addition to the bare
token sequences, part-of-speech or named entity
annotation of each token, provided manually or
automatically, could provide additional information
to improve the quality of translation.

Natural language processing (NLP) tools have
benefited from the same explosion in deep learning
and neural network developments that has spurred
NMT. NLP tools include part-of-speech (POS) tag-
gers, identifying the syntactic function of each in-
put token, and named entity recognition systems.
Named entity recognition (NER) identifies which
tokens refer to named entities, including proper
nouns such as people, place names, organizations,
or dates. Recently, automatic named entity recog-
nition (NER) systems have seen much develop-
ment and refinement with the same deep learning
tools used for NMT (Li et al., 2020). Automatic
neural NER systems have achieved accuracy ex-
ceeding 92% F1 scores in many languages and do-
mains (Wang et al., 2019; Akbik et al., 2018). NER
tags produced by these systems are useful in many
other natural language processing contexts, such
as coreference resolution, entity linking, or entity
extraction (Ferreira Cruz et al., 2020). POS tag-
gers have also achieved very high accuracy exceed-
ing 98% on public treebank datasets (Akbik et al.,
2018). We aim to use tags from publicly available
pre-trained tagging systems as additional features
to improve NMT training and output.

Tag assisted NMT requires modifications to the
neural architecture to accommodate a tag at each
token position. The encoder must learn an embed-
ding that combines information from each token
and its tag, then compute a hidden state from these
embeddings. The decoder must learn to predict
tokens and their tags simultaneously from the de-
coder state. Adding tag information to the predic-
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tion and corresponding training loss encourages the
model to incorporate this information into its latent
representations to improve outputs.

Compared to an untagged baseline system on
word-tokenized data, our tagged translation system
improved the BLEU score by 1.61 points on Ger-
man to English parallel film subtitles data tagged
with publicly available pre-trained named entity
recognition systems, while part-of-speech tagging
decreased the score by 0.38 BLEU points. Sub-
word tokenization reduced these effects to +0.22
points and –0.22 points respectively. Nonetheless,
this demonstrates the feasibility of using certain
pre-trained tagging outputs to improve translation
quality.

2 Related Work

Very early work addressed named entity transla-
tion by treating automatically identified named en-
tities with a special translation system, usually a
transliterator (Babych and Hartley, 2003). This
work did not attempt to integrate the translation
models for one to benefit from information learned
by the other.

Later, especially with neural machine transla-
tion (NMT) systems, source-side feature augmen-
tation research studied the inclusion of linguistic
feature information into the source-side token em-
beddings, usually by adding in or concatenating
additional learned feature vectors to the token em-
bedding vectors, as we do in this work (Sennrich
and Haddow, 2016; Hoang et al., 2016b; Ugawa
et al., 2018; Modrzejewski et al., 2020; Modrze-
jewski, 2020; Armengol-Estapé et al., 2020). This
approach can also be adopted on the target-side,
as presented here or in (Hoang et al., 2016a, 2018;
Nguyen et al., 2018). However, these methods only
add linguistic feature information to the input, with-
out encouraging the system to model that informa-
tion in any particular way.

Factored translation systems, under both statisti-
cal and neural machine translation, instead explore
the addition of externally supplied linguistic fea-
tures to the raw text at both input and output. These
features include part-of-speech (POS) tags, word
lemmatizations, morphological analysis, and se-
mantic analysis (Koehn and Hoang, 2007; Garcia-
Martinez et al., 2016, 2017; Tan et al., 2020). Fac-
tored translation models map feature-augmented
input into feature-augmented output, however out-
puts include only an underlying lemma together

src

tokens tags

Embed. Embed.
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Encoder

tgt

previous
tokens

previous
tags

Embed. Embed.

+
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Linear
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Softmax
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Figure 1: Tagged seq2seq

with the predicted features. These systems also use
a rule-based morphology toolkit in post-processing
to generate the output surface forms from predicted
output features, requiring knowledge of appropriate
rule systems for the output language. An additional
tagged architecture (Nădejde et al., 2017) predicted
syntax-tagged surface forms, but did so by append-
ing the tags to the surface form tokens directly,
rather than predicting separate factors. In general,
the focus of factored models has been to increase
vocabulary coverage, for example of highly agglu-
titanative languages with rich morphologies, rather
than our goal of disambiguating polysemous of
polysyntactic words or otherwise handling named
entities in a more nuanced way.

Finally, one previous work does consider a fully
tagged (both source and target) factored neural
model predicting tags with surface forms with inde-
pendent layers in much the same way as presented
here (Wagner, 2017). This work showed negative
results for various syntactic tag types on IWSLT’14
shared task data (Cettolo et al., 2014), whereas this
work presents NER and POS tags on film subtitles
data.

3 Tagged seq2seq

We implemented two extensions to the standard
seq2seq encoder-decoder architecture for neural
machine translation to use token-level tags to im-
prove translation results.1 By combining token and
tag embeddings in the input and simultaneously
predicting tokens and tags in the output, the NMT

1Code at https://github.com/compwiztobe/
tagged-seq2seq

256



system learned to translate tagged source sentences
to tagged target sentences (Figure 1). We used
a Transformer encoder and decoder for the base
seq2seq model (Vaswani et al., 2017). Tags are
added to the data as a preprocessing step.

3.1 Combined embedding
Learning an embedding for every possible token
and tag combination would enormously increase
the model’s learnable parameter count. Further-
more, training data is likely to be sparse in its cov-
erage of all possible pairs, but not in its coverage
of the token and tag vocabularies separately. There-
fore, we instead learn a separate embedding vector
for each possible token and each possible tag, effec-
tively concatenating these two vocabularies (rather
than taking the product space). The embedding
vectors for the token and tag at each position are
then added to combine information from both chan-
nels into a single vector, so as not to increase the
size of subsequent model layers and the capacity of
the model, apart from the additional tag embedding
vectors.

3.2 Simultaneous prediction
The decoder state di at each step is conditioned
on the target prefix and the encoded source sen-
tence (3).

di = Decoder(prefix, src) (3)

This shared decoder state is used to predict both
the next token and the next tag, with token and tag
feature projections T and τ (4 and 5).

P (token k | prefix; src) = softmaxk(T
>di) (4)

P (tag k | prefix; src) = softmaxk(τ>di) (5)

We model these probabilities independently (6) for
the same data sparsity and model size reasons as
the embeddings, and we can compute each pair
probability and loss accordingly (7).

P (token, tag | prefix; src)

= P (token | pre.; src) · P (tag | pre.; src)
(6)

L = − logP (token | prefix; src)

− logP (tag | prefix; src)
(7)

This combined loss encourages the shared decoder
state di to model the correct tag identity so that it
can be used by the token prediction layer to im-
prove translation.

4 Data Preparation

4.1 Subtitles corpus

Our experiments focused on film subtitles in Ger-
man and English. The Opus project provided a
parallel German to English subtitles corpus from
OpenSubtitles (Tiedemann, 2012; Aulamo et al.,
2020). This data was cleaned with some rudimen-
tary sentence length filtering, and randomly divided
into a 3 million sentence-pair training split (about
49 million tokens), along with 100,000 pair valida-
tion and test splits (about 1.6 million tokens each).

4.2 Tagging “off the shelf”

Flair NLP tools systems have achieved state-of-the-
art results on the sequence labeling tasks such as
the CoNLL’03 NER dataset and universal part-of-
speech tagging from Universal Dependency tree-
banks (Akbik et al., 2018; Tjong Kim Sang and
De Meulder, 2003; Nivre et al., 2020). We used
the publicly available pre-trained multilingual NER
and universal POS taggers.2 NER tags followed the
BIOES system with four entity classes: PER, per-
son; LOC, location; ORG, organization; and MISC,
miscellaneous. Four classes with four span mark-
ers, plus the null span marker O, gave the same
17-tag vocabulary for NER on both German and
English. Meanwhile, POS tags came from the same
17-tag universal POS tag set for both languages.

Around 3% of words in the OpenSubtitles corpus
were tagged as named entities (non O). We further
divided the test split based on whether any named
entities were found in either the source or the target
sentence. Out of 100,000 test pairs, 79,201 had no
named entities, and 20,799 had some.

4.3 Tokenization

Word tokenization, as used by the tagging systems,
is most straightforward for maintaining one-to-one
alignments between tokens and their assigned tags.
For word tokenization experiments, vocabularies
of size 35,012 for German and 17,196 for English
were selected, resulting in an unknown word re-
placement rate of 3%.

This unknown word replacement was consider-
ably higher on rare word categories, for example
named entities saw a 25 – 30% rate of unknown
words outside the selected word vocabulary. To
alleviate this it is also possible to consider subword

2Models at https://huggingface.co/flair/
{ner,upos}-multi
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Table 1: BLEU scores on word-tokenized sentences
with or without named entities, for models with or with-
out NER tags.

BLEU (%)

NER tags no NEs some NEs all

−src, −tgt3 34.70 32.43 34.15

+src, −tgt4 34.89 32.14 34.22
−src, +tgt5 35.69 35.03 35.53

+src, +tgt 35.84 35.50 35.76

improvement ↑ 1.14 ↑ 3.07 ↑ 1.61

tokenization, so additional experiments were con-
ducted with a shared SentencePiece (Kudo, 2018)
vocabulary of 32,000 subwords, built from the train-
ing split and used to tokenize both languages.

After subword tokenization, the BIOES struc-
ture of named entity spans was propagated across
subword tokens in the natural way to maintain
spans. For POS tags, subwords received the same
tag as their parent word.

5 Experiments

We used a Transformer encoder and de-
coder (Vaswani et al., 2017) for the base
seq2seq system, each with 6 layers and 8 attention
heads, and layer and embedding dimensions 512.
Training was done for 40 epochs at half precision
with the optimizer known as Adam (Kingma and
Ba, 2015) with β = (0.9, 0.98) and an inverse
square root learning schedule with maximum
learning rate 5× 10−4 after 500 updates and decay
1× 10−4. Parameter updates occurred after every
8,192 token-tag pairs at most (rounding off to
complete sentences), with 30% dropout and label
smoothing of 0.1 on the training loss.

At inference time, a beam of 5 candidates was
maintained, and the models were evaluated with
their BLEU score on the token sequence only (tag-
ging accuracy was not evaluated due to the diffi-
culty of establishing alignment).

6 Results

BLEU scores from untagged and tagged transla-
tion experiments show an improvement from the
use of NER tags (Table 1). Adding NER tags, the

3baseline
4enhanced baseline / ablation study
5ablation study

Table 2: BLEU scores for word models with POS tags.

POS tags BLEU (%)

−src, −tgt 34.15

+src, −tgt 34.21
−src, +tgt 33.70

+src, +tgt 33.77

improvement ↓ 0.38

BLEU score on sentences containing some named
entities improved by a larger margin, 3.07 points,
presumably due to the tags’ assistance with trans-
lating those named entities. We also note an im-
provement in the BLEU score on sentences con-
taining no named entities, which increased by 1.14
points. This suggests that given O tag information
the model can also treat common words with confi-
dence that they are not named entities and should
not be translated as such. These improvements av-
eraged out to a net gain of 1.61 BLEU points on
the entire test split.

We also evaluated a model trained with POS
tags, but found a decrease in BLEU score (Table 2).
Translation scores with POS tags decreased by 0.38
BLEU points. There are two ways to understand
this in comparison with NER tags. First, POS tags
carry a significant amount of information about the
sentence, not only helping to disambiguate between
different word senses by part-of-speech, but also
assisting the model with encoding the sentence’s
syntactic structure. Compared to NER tags, this
amount of structural information might be diffi-
cult to model with the same decoder architecture
used for token prediction. Second, POS tags tend
to carry the same amount of information for each
tag at each position, compared to NER tags only
conveying most of their information at the named
entity spans which are few and far between. This
also lends itself to the idea that POS tags have a
higher information content that is less easily mod-
eled by the decoder, leading to worse results than
NER tagging.

6.1 Enhanced baselines and ablation study

For both NER and POS tagged results, the base-
line was the same Transformer architecture trained
only on untagged data (without adding tag embed-
dings or predicting tags from the decoder). Adding
in only source-side tag embeddings could be con-
sidered an enhanced baseline, since this kind of
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Table 3: BLEU scores on subword-tokenized sentences
with or without named entities, for models with or with-
out NER tags.

BLEU (%)

NER tags no NEs some NEs all

−src, −tgt 35.77 36.51 35.96

+src, −tgt 35.83 36.75 36.06
−src, +tgt 35.88 36.82 36.12

+src, +tgt 35.94 36.92 36.19

improvement ↑ 0.17 ↑ 0.41 ↑ 0.22

feature augmentation has already been studied in
depth (Sennrich and Haddow, 2016; Hoang et al.,
2016b). Our results show that this source-only tag-
ging does not provide significant benefits compared
to training on untagged data (Table 1), although for
POS tagging this remains the best result.

On the other hand, adding in target-side tags
while also predicting them from the decoder, with-
out adding in source-side tag embeddings could
be considered an ablation test to isolate the effects
of our main contribution: target-side tag decoding.
Our results show that this target tagging provides
the same benefit as the fully tagged training regime,
demonstrating that it is the simultaneous tag decod-
ing that accounts for the entire effect observed. For
NER tagging this was an improvement in BLEU
scores, but for POS tagging scores decreased when
adding target tagging.

Whereas source-side tag information is added
into the embeddings without any modification to
the training objective, target-side tag predictions
are a part of the modified training loss, so that
it is the target-side tag prediction that pushes the
model to incorporate accurate knowledge of the
tags into its learning representations. That NER tag
modeling improved results while POS tag modeling
did not is consistent with our earlier observation
that POS tag modeling seems to be more difficult
than NER tag modeling, and is not done effectively
by the current architecture.

6.2 Subword tokenization experiments

Experiments with subword tokenized data showed
similar effects, but of a significantly reduced size.
Adding NER tags improved the results, adding
0.22 points to the BLEU score, with the improve-
ment again coming largely from the target side
tagging, and again showing a larger improvement

Table 4: BLEU scores for subword models with or
without POS tags.

POS tags BLEU (%)

−src, −tgt 35.96

+src, −tgt 36.20
−src, +tgt 35.69

+src, +tgt 35.74

improvement ↓ 0.22

on sentences with named entities than on those
without (Table 3). Adding POS tags hurt results,
decreasing the score by 0.22, and again we see
that source-only tagging is best case for POS tag-
ging (Table 4). However, the reduced magnitude of
these deltas to the range of 0.1 – 0.4 BLEU points
suggests these are not significant changes to the
translation performance, in the subword tokeniza-
tion case.

It would appear that subword tokenization inter-
feres with the benefits of tagging the data. Since
tags are aligned one-to-one with the input words,
subword tokenization destroys this alignment, and
copying tags across a word’s constituent subwords
may interfere with the model’s ability to make
sense the of tag information. In particular for
named entities, rare words are likely to tokenized
into a larger number of subword tokens, exacer-
bating this effect. The set of embeddings for the
subwords in a word may not be as useful to the
model for translating a named entity or other rare
category as the single embedding learned specifi-
cally for the full word in a word tokenization set-
ting, and further these subword embeddings may
be affected by other contexts unrelated to the larger
word. Specifically for the named entity case, sub-
word tokenization algorithms might prioritize the
atomicity of certain rare words tagged as named
entities in order to counteract this.

6.3 Token prediction and tagging loss

Due to the conditional independence assumption,
the cross-entropy loss (7) conveniently decomposes
into separate terms for tokens and tags (8), allowing
us to measure the relative information content of
each channel (Table 5).

L = − logP (token | prefix; src)

− logP (tag | prefix; src)

= Ltoken + Ltag

(8)
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Table 5: Token prediction and tagging loss.

↓ cross entropy (bits)

Ltoken Ltag L
no tags −src, −tgt 2.000 — 2.000

+src, −tgt 2.006 — 2.006
NER −src, +tgt 2.001 0.183 2.184

+src, +tgt 1.985 0.183 2.168

+src, −tgt 2.007 — 2.007
POS −src, +tgt 1.995 0.697 2.692

+src, +tgt 1.972 0.695 2.673

While adding tag information naturally increases
the overall cross-entropy, as there are more possibil-
ities to account for and to be predicted, restricting
our attention only to the token loss shows that the
token-level cross-entropy is consistently reduced
from 2.000 (base-2) to 1.985 with NER tags or
1.972 for POS tags. This shows how both tag types
can add disambiguating information to the token
prediction process, with POS tags naturally add
more of such information, since they carry syntac-
tic information.

Looking only at tag-level cross-entropy, it’s inter-
esting to notice that the POS tagging loss is signifi-
cantly higher than the NER tagging loss. While this
could be simply because the lower-bound inherent
entropy is higher (POS tags naturally contain more
information, being more uniformly distributed than
NER tags), this could also be consistent with the
idea that POS tag modeling is more difficult, ex-
plaining the decreased translation scores observed
with POS tag prediction.

7 Model Limitations

It should not go unnoticed that the typical infer-
ence algorithms for sequence labeling, particularly
the BiLSTM-CRF inference employed by most
NER systems, are incompatible with the autore-
gressive sequence decoding algorithms (greedy de-
coding and beam search) used for inference by
seq2seq models. That the beam decoding algo-
rithm (and autoregressive likelihood model) used
here for tags was unable to account for (be condi-
tioned on) the as-yet uncomputed right context was
cause for much apprehension before experimental
results became available. These positive results
notwithstanding, future work could explore how to
better incorporate the full tagging context in tag de-

coding, perhaps, for example, by predicting the se-
quence more wholistically with non-autoregressive
decoding (Gu et al., 2018).

We also imagine that the design of the under-
lying seq2seq architecture may lend itself to cer-
tain types of sequence labeling. For example, the
bidirectional context modeled by a BiLSTM-based
translation model may be more suitable for certain
types of sequence labeling tasks than the Trans-
former’s attentional activations. Because our con-
tributions are agnostic to the type of sequence la-
beling (NER or part-of-speech tagging or any other
kind) as well as to the design of the encoder and
decoder, future experiments should also explore
these possibilities.

8 Conclusion

We implemented extensions to existing neural ma-
chine translation models that allow the use of off-
the-shelf token-level tagging systems to improve
translation accuracy. Translation inputs and train-
ing outputs were tagged with pre-trained sequence
labeling systems. A standard encoder-decoder ar-
chitecture was extended to include tag embeddings
and tag prediction at each token position. At model
input, token and tag embedding vectors were added
to produce a combined embedding. At model out-
put, the final decoder layer used separate softmax
layers to predict tokens and tags. During training,
a combined loss function encouraged the model to
learn token and tag information jointly.

This tag assisted translation system was tested
against baseline token-only systems on a German
to English film subtitle corpus with both word and
subword tokenization. Subword tokenization re-
duced the size of the effect, suggesting the need for
specialized subword tokenization to prioritize the
integrity of important word categories. However,
on word tokenized data, the 1.61 point increase in
BLEU score using named entity tags demonstrates
that the proposed architecture is useful for improv-
ing translation outputs with automatic named en-
tity recognition, while the 0.38 point decrease us-
ing part-of-speech tags indicates more difficulty in
utilizing that tag information. Further examination
of the cross-entropy showed that adding tags re-
duced the token cross-entropy thereby improving
token modeling. Future experiments can explore
the use of other types of tag data as well as other
decoding paradigms.
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Abstract

Sub-word segmentation is currently a stan-
dard tool for training neural machine transla-
tion (MT) systems and other NLP tasks. The
goal is to split words (both in the source and
target languages) into smaller units which then
constitute the input and output vocabularies
of the MT system. The aim of reducing the
size of the input and output vocabularies is to
increase the generalization capabilities of the
translation model, enabling the system to trans-
late and generate infrequent and new (unseen)
words at inference time by combining previ-
ously seen sub-word units. Ideally, we would
expect the created units to have some linguistic
meaning, so that words are created in a compo-
sitional way. However, the most popular word-
splitting method, Byte-Pair Encoding (BPE),
which originates from the data compression lit-
erature, does not include explicit criteria to fa-
vor linguistic splittings, nor to find the optimal
sub-word granularity for the given training data.
In this paper, we propose a statistically moti-
vated extension of the BPE algorithm and an
effective convergence criterion that avoids the
costly experimentation cycle needed to select
the best sub-word vocabulary size. Experimen-
tal results with morphologically rich languages
show that our model achieves nearly-optimal
BLEU scores and produces morphologically
better word segmentations, which allows to out-
perform BPE’s generalization in the translation
of sentences containing new words, as shown
via human evaluation.

1 Introduction

Sub-word segmentation is currently a standard tool
for machine translation systems (see e.g. the sys-
tems submitted to WMT and IWSLT evaluations
(Barrault et al., 2019; Niehues et al., 2019), as well
as systems for a wide variety of NLP tasks (see e.g.
Devlin et al. (2018) and derived works). The goal

∗ Now at Google.

is to split words (both in the source and target lan-
guage) into smaller units which then constitute the
input and output of the machine translation system.
The goal is twofold: On the one hand, sub-word
splitting reduces the size of the input and output vo-
cabularies. This is specially important when using
neural models, as the size of the input layer is fixed
and thus the vocabulary size cannot be dynamically
adjusted. On the other hand, it tries to increase the
generalization capabilities of the translation model,
enabling the system to accept and/or generate new
words at translation time by combining previously
seen units. The most widespread method used for
sub-word splitting in neural machine translation is
Byte Pair Encoding (BPE), introduced by Sennrich
et al. (2016). Since then, BPE has become a default
preprocessing step for many NLP tasks.

The BPE extraction algorithm is an adaptation of
the algorithm introduced by Gage (1994) for data
compression. The main idea of this algorithm is to
replace the most frequent pair of bytes found in the
input data with a new, unseen byte. The process
is repeated until no more byte pairs are repeated
or until no free bytes are available. Sennrich et al.
(2016) took this algorithm as a starting point, con-
sidering characters instead of bytes, and joining
them using the same criterion to produce sub-word
units (more details can be found in Section 3).

One potential problem with this approach is that
the objective of the original BPE algorithm differs
from the goals for which it is being used for trans-
lation, as detailed above. While it is certainly effec-
tive for the first objective (reducing the vocabulary
size), it is arguable whether it is appropriate for the
goal of generating new words (Ataman et al., 2017;
Huck et al., 2017; Banerjee and Bhattacharyya,
2018).

Intuitively, in order to generate new words, we
would expect the sub-word units to have some lin-
guistic meaning, so that a new word can be created
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beklagen
↓

bek@@ lagen

bewertungsinstrumente
↓

bewer@@ t@@ ungsin@@ stru@@ mente

Table 1: Examples of unsatisfactory BPE splitting of
German words. The two words are segmented by break-
ing the underlying morphological structure.

in a compositional way. Being purely frequency
driven, BPE does not take this intuition into con-
sideration, as illustrated in the two German word
examples in Table 1 taken from the WMT’19 train-
ing data. For the first word, the split “be@@ klagen”
would be more satisfactory as the word is derived
from “klagen” (complain); the second word is a
compound word, with the splits “bewertungs@@ in-
strumente” (assessment instruments), separating
the two words, and “bewert@@ ung@@ s@@ instru-
ment@@ e” being morphologically more informed
alternatives.

The BPE algorithm also introduces an additional
practical problem. The original formulation does
not specify a criterion for stopping the creation of
new symbols. If the algorithm runs for an unlimited
time, it will merge all sub-words into the original
input vocabulary, which is clearly undesired. In
practice, one specifies a fixed number of merges to
be carried out, or a threshold frequency and when
the considered symbols fall below this value the
algorithm is stopped. It is however not clear how
to set these hyperparameters, although they can
have a drastic effect on translation quality depend-
ing on the translation direction, task and amount
of data (Denkowski and Neubig, 2017; Sennrich
and Zhang, 2019). Furthermore, these hyperpa-
rameters are rarely optimized, as evaluating them
constitutes a full training-evaluation cycle, which
is notoriously costly.

In this paper we introduce a new criterion for
defining sub-word units that tries to address these
shortcomings. We introduce a probability distribu-
tion over the units which in turn induces a likeli-
hood function over the corpus which we can opti-
mize. We will show how this statistical approach
can guide the extraction process towards more lin-
guistically satisfying units, while still remaining
a purely data driven approach. Having a well

founded optimization criterion also allows us to
define a data driven stopping criterion. Our pro-
posed criterion allows to select a nearly optimal
number of units using only an intrinsic measure
on the training corpus, thus dramatically reducing
experimentation costs.

2 Related work

As stated in the introduction, our starting point is
the BPE algorithm introduced in (Sennrich et al.,
2016). In this work, the authors adapt the data
compression algorithm by Gage (1994) to the task
of sub-word unit generation.

Some authors have tried to expand the extraction
of sub-word units by leveraging linguistic infor-
mation. Sánchez-Cartagena and Toral (2016) use
morphological segmentation for Finnish and com-
pare the effectiveness of these sub-word units for
the WMT evaluation. The system using this seg-
mentation approach together with other extensions
performed best in human evaluation. Huck et al.
(2017) follow a similar approach with the addi-
tion of compound splitting for translation into Ger-
man, achieving improvements of around 0.5 BLEU
points on WMT data. Ataman and Federico (2018)
propose to replace BPE with unsupervised morpho-
logical segmentation which also takes morphologi-
cal coherence into consideration during prediction
of the sub-words. Experiments run under small-
data conditions on TED Talks in five directions, all
from/to English, show systematic improvements
on Arabic, Turkish, Czech, but not on Italian and
German. Banerjee and Bhattacharyya (2018) also
use unsupervised morphological units generated
by Morfessor (Virpioja et al., 2013) as input for a
neural machine translation system and report im-
provements for low-resource conditions. Macháček
et al. (2018) follow a similar approach for transla-
tion into Czech on WMT data, but were not able
to obtains improvements over the standard BPE
approach.

An alternative model to BPE which is also
widely used was presented by Kudo (2018), which
can be considered as an extension of (Schuster and
Nakajima, 2012). They show that using a purely
statistical approach, they are able to achieve sub-
word units that are better linguistically motivated.
Similar to our approach, a probability distribution
over the sub-word units is defined with the goal
of improving the likelihood over the training data.
The strategy for defining the sub-word units differ
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in his approach and ours. While we start with sin-
gle characters and expand the units, Kudo (2018)
starts with a large set of sub-word units and prunes
iteratively until reducing the number to a desired
quantity. Segmentation probabilities are modeled
with a multinomial distribution trained via expecta-
tion maximization.

In order to improve generalization of the seg-
mentation model (i.e. performance on new words),
different regularization approaches have been pro-
posed. Kudo (2018) applies different segmenta-
tions at training time. For each parameter up-
date, segmentations for each word are sampled
from a smoothed posterior distribution computed
from the multinomial distribution. Along the same
line, Provilkov et al. (2019), proposed to generate
alternative segmentations directly with BPE, by
randomly dropping out merging rules. These ap-
proaches, as noted by Kudo (2018), can be seen as
variants of the ensemble training principle, where
many different models are trained (and finally com-
bined) on different subsets of the training data. Our
work differs with respect to (Kudo, 2018) in that
we train an observable model in a stepwise fashion,
like BPE, by maximizing the likelihood of the train-
ing data. Thus, we expect our approach to be more
efficient than Kudo (2018). Differently from Kudo
(2018) and Provilkov et al. (2019), we do not ap-
ply regularization, however nothing prevents from
applying the drop out method also to our merg-
ing rules, although we expect that our model has
already learned more general segmentation rules
than BPE.

To the best of our knowledge, there has been lit-
tle previous work on automatically determining the
number of sub-word units to produce by segmenta-
tion algorithms. Kreutzer and Sokolov (2018) inte-
grate segmentation into the NMT system and find
that the system favors character-based translation
over sub-word segmentation. Henderson (2020)
pointed out that determining vocabulary sizes for
NLP tasks is one of the few aspects that is still done
manually, and suggests it as one possible direction
for future improvement of NLP models.

3 The Byte Pair Encoding (BPE)
algorithm

The BPE training algorithm as presented in (Sen-
nrich et al., 2016) is shown in Algorithm 1. It
closely follows the original BPE for data compres-
sion algorithm by Gage (1994). The algorithm re-

ceives as input a text as a sequence of words, which
in turn are represented as sequences of characters.
The single characters constitute the initial set of
symbols. At each iteration the pair of symbols
(occurring inside words) with highest frequency is
selected and substituted with a new symbol. This
substitution is recorded as a new rule. This merging
operation is repeated for a fixed number of steps.
The algorithm returns the sorted list of merging
rules.

Algorithm 1: BPE training algorithm.
Input: training corpus S of words split into

character sequences; number N of
rules

Output: list R of N merge rules
1 R := []
2 while length(R) ≤ N do
3 (x, y) := argmax

(x,y)
{countS(x, y)}

4 rule := 〈(x, y)→ xy〉
5 S := apply(rule, S)
6 R := append(rule, R)

7 return R

Algorithm 2: BPE inference algorithm
Input: list R of merge rules; word w split

into characters
Output: segmented word

1 foreach rule ∈ R do
2 if matches(rule, w) then
3 w := apply(rule, w)
4 continue

5 return w

Algorithm 2 shows how to apply the set of rules
extracted by Algorithm 1 to a new text. It basically
looks up the ordered list of rules and applies as
many of them as possible.

4 The statistical BPE (S-BPE) algorithm

We can generalize the criterion for BPE unit selec-
tion by adjusting line 3 of Algorithm 1. Specifically,
we define a probability distribution over the BPE
units and define a maximum likelihood optimiza-
tion criterion.

Let S be a corpus of words w from a vocabulary
V , and let each word be decomposed as a sequence
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of symbols (initially characters) s from an alphabet
Σ. The log-likelihood of S can be written as:

L(S,Σ) =
∑

s∈Σ

CS,Σ(s) log Pr(s) (1)

where CS,Σ(s) is the count of symbol s in corpus
S, in which words are segments according to Σ,
i.e.:

CS,Σ(s) =
∑

w∈V
CS(w)CΣ(s, w) (2)

Algorithm 1 initializes Σ with single characters
(Σ0). Then, at each step n of training, it selects
the pair of symbols with the highest frequency or,
equivalently, joint probability:

(x, y) = argmax
x,y∈Σn−1

pn−1(x, y) (3)

thus defining the new alphabet1

Σn = {xy} ∪ Σn−1 (4)

where the probability distribution pn−1 is defined
over the elements of the alphabet Σn−1.

From a statistical modeling perspective, however,
we would be more interested in rules for which the
training data likelihood increases, i.e.:

L(S,Σn) > L(S,Σn−1) (5)

It can be shown (see the Appendix for a deriva-
tion) that for any pair of symbols x, y ∈ Σn−1, the
following inequality holds, which provides a lower
bound for the increase in likelihood:

L(S,Σn) >L(S,Σn−1)

+ CS,Σn(xy) log
pn(xy)

pn(x)pn(y)
,

(6)

where as usual Σn includes xy as given in Equa-
tion 4. Intuitively we can interpret the rightmost
term as the likelihood of each word that contains
the bigram xy being increased by merging the two
symbols2. It also provides a good tie-in to our lin-
guistic intuition about sub-word units: if two units
appear only in combination with each other, they
probably do not have linguistic meaning on their
own. Thus the probability mass will shift to the
probability of the joint symbol, and the probability

1Notice that by implementing Σn as an ordered list (stack),
we get the list of rules R of Algorithm 1 and Algorithm 2.

2This is similar to the pointwise mutual information crite-
rion used to detect collocations (Church and Hanks, 1990).

of the single elements will be greatly reduced. On
the other hand, if x or y do have linguistic mean-
ing, e.g. verb suffixes, they are likely to have a high
probability of appearing in the text, and thus the
gain from joining them together is not as big.

The above inequality thus suggests the new up-
date rule:

(x, y) = argmax
(x,y):Σn={xy}∪Σn−1

CS,Σn(xy)×
[

log pn(xy)− log pn(x)− log pn(y)
]
.

(7)
Note an important difference between Equa-

tions (3) and (7): In (3) we use a bigram probability
pn−1(x, y) computed on Σn−1×Σn−1, while in (7)
we use a unigram probability pn(xy) computed on
Σn. The two probabilities are expected to be close
but not the same.

Note that in practice, in the course of the algo-
rithm the count for a unit may drop to 0 (due to
all the occurrences being combined with another
unit to form a new pair), thus producing a proba-
bility of 0. In order to avoid computation of log 0
in Equation (7) we use Laplace smoothing for the
computation of all probabilities.

4.1 Stopping criterion

One open question when defining BPE units is how
many operations to carry out. As shown in Algo-
rithm 1, this number is a parameter of the extraction
algorithm, and there is no defined way to select it.
The number of units has an important effect on the
quality of the translation system (see Section 5), but
selecting the optimal number involves training and
testing a translation system for each candidate, at
a high computational cost. Thus, normally system
builders resort to previous experience and select a
number of units that has worked well on previous
tasks, although the performance can be very task
dependent.

With the statistical formulation of BPE, for each
operation we can compute a corresponding (approx-
imate) increase in likelihood on the training corpus
through Equation 6. Looking at the evolution of
the likelihood, we can define a criterion of when to
stop defining new units. Specifically, let us define
δi as the (approximate) increase in likelihood when
defining the i-th BPE unit. We will stop the algo-
rithm, and thus define the number of unitsN , when
δN ≤ kδ1, with k < 1. In order to improve the
robustness of the criterion, in practice it is better to
average each δi with the previous M values.
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Tokens
Language Sentences English Foreign

German 5.9M 121.0M 114.1M
Romanian 612.4K 15.9M 16.2M
Latvian 4.5M 66.8M 56.3M
Estonian 879.9K 22.7M 17.0M
Turkish 207.7K 5.1M 4.5M
Finnish 2.6M 61.1M 43.9M

Table 2: Training corpora statistics. Tokenization was
carried out using the Moses tokenizer.

Of course, one could argue that we just substi-
tuted one parameter of the algorithm with another,
which also has to be selected externally. However,
as we will show in Section 5, the same value ob-
tains nearly optimal results for most language arcs.

Another possibility that could be considered for
defining the number of operations is to measure the
evolution of the likelihood on an external develop-
ment corpus, and stop the iterations when the like-
lihood decreases. We implemented this approach,
but found that the likelihood on the development
corpus increases monotonically for each new unit
extracted (up to the maximum number we allowed
for the experiments), and thus it does not provide a
useful stopping criterion for the algorithm.

5 Experimental results

We conducted experiments for machine translation
in a variety of languages, focusing on morpholog-
ically rich ones, using the data available from the
latest WMT evaluation campaign where the lan-
guage pair was used. We include results for Fin-
ish (Fi), German (De) [WMT’19], Estonian (Et),
Turkish (Tr) [WMT’18], Latvian [WMT’17] and
Romanian (Ro) [WMT’16], all paired with En-
glish (En) and for both translation directions. We
used all available corpora for translation model
training, except ParaCrawl. Corpora statistics can
be found in Table 2. It can be seen that we experi-
ment with a wide variety of corpus sizes, varying
between 200K sentences up to nearly 6 million.

For BPE training, the corpora were subsampled
to 1M sentences for BPE training3, and a com-
mon BPE model was trained for the source and
target languages (which also share the same em-

3Experiments with the standard BPE training did not show
any difference in performance between using the downsam-
pled corpus or the full corpus.

bedding matrix). Experiments were carried out
using Sockeye (Hieber et al., 2017) using mostly
the default settings, except for a transformer ar-
chitecture consisting of 20 encoder layers and 2
decoder layers (Hieber et al., 2020). The corpora
were tokenized using the Moses tokenizer.

5.1 Analysis of BPE segmentation
We will start by focusing on the analysis of the
produced sub-word units. Table 3 shows some
differences between the statistical approach and
the standard approach on words found in the Ger-
man training data. The first example clearly shows
how BPE does not use any linguistic information,
even splitting the pair of characters ‘ue’, which
is an alternative form of the letter ‘ü’. In contrast,
S-BPE produces a much more morphologically mo-
tivated split by separating the ‘s’ at the end, which
denotes genitive case. In the next two examples,
S-BPE splits the words as derived forms of other
words (‘stehenden’ and ‘laeufige’, respectively). In
the last two examples, S-BPE correctly splits com-
pound words into individual components. For none
of these cases the standard BPE finds a linguisti-
cally satisfying sub-word decomposition. However
note that although S-BPE improves over BPE, a
more refined morphological splitting would still be
possible for the last two examples.

Revisiting the examples of Table 1, we see that
“beklagen” is now split into “be@@ kla@@ gen”, and
“bewertungsinstrumente” into “bewer@@ tungs@@ in-
strumente”, which do not exactly correspond to the
splitting points suggested in Section 1, but are more
satisfactory than the BPE segmentation.

In order to quantify these improvements we use
the data provided by the Morpho Challenge 2010
shared task (Kurimo et al., 2010). As part of the
data of this evaluation, a morphological segmen-
tation of words was provided for English, Finnish
and Turkish. We applied the BPE and S-BPE mod-
els to the development dataset, and computed the
F1-score of the produced segmentations, using the
morphological segmentation as reference. For BPE
segmentation, we selected the optimal segmenta-
tion as measured by the BLEU score on the trans-
lations of the WMT test data (see also Section 5.3).
The results4 are shown in Table 4. As English is
a common language for all investigated language
arcs, we provide results for the different language

4Note that these scores are for comparison of BPE and
S-BPE only, and will be clearly outperformed by dedicated
systems for the task.
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Word BPE S-BPE

ungluecks unglu@@ ecks unglueck@@ s
anstehenden anstehenden an@@ stehenden
vorlaeufige vorlaeufi@@ ge vor@@ laeufige
gefangengenommen gefan@@ gen@@ genommen gefangen@@ genommen
finanzdienstleistungen finanzdienstleistungen finanz@@ dienstleistungen

Table 3: Segmentation examples of German words: S-BPE produces consistent segmentations of single and
compound words, while BPE breaks in some cases the morphological structure of words.

Language Arc BPE S-BPE

English

→ Fi 23.81 24.68
→ De 25.46 24.82
→ Ro 23.07 26.96
→ Lv 20.84 25.74
→ Et 20.83 23.09
→ Tr 22.47 25.67

Finnish → En 12.14 14.57
Turkish → En 23.00 22.90

Table 4: Morpho Challenge results (F1 score).

pairs. It can be seem that S-BPE produces more
linguistically motivated splits of English words in
five out of six cases. For Finnish, S-BPE also pro-
duces better linguistic units, while for Turkish the
F1 score is nearly identical. In light of these results
we can affirm that in most cases S-BPE produces
more linguistically motivated units than standard
BPE.

5.2 Human evaluation

In the previous section we showed how S-BPE
produces more linguistically motivated units. Of
course, the main question is if these units help the
system produce better translations. We hypothesize
that S-BPE affects mainly single words, specially
unknown words or words rarely seen in training
(e.g. morphological variations of known words),
and this effect is hardly captured by BLEU. There-
fore we focus on human evaluation first and will
present results with BLEU in the next section.

We carried out a human evaluation on English-
German and English-Turkish (both directions) with
a subset of test sentences where at least one un-
known word was found. BLEU did not show sig-
nificant differences between BPE and S-BPE on
this subset of sentences. A blind test was carried
out with 7 members of our department, all native
speakers of Turkish (1) or German (6) and experts

in NLP.
The evaluators were shown a source sentence,

together with a highlighted word, and the output of
the BPE and S-BPE systems. They had to answer
two questions: which system produced a better
translation of the highlighted word? And, which
system produced a better translation of the sentence
overall? Table 5 shows examples of the German-to-
English test sentences highlighting the translations
of the unknown German word inside the transla-
tions of the sentence, as produced with BPE and
S-BPE. (For completeness we also show the seg-
mentation of the unknown German word.)

The results of the human evaluation are shown
on Table 6. It can be seen that when BPE and S-
BPE produce different translations for the words
being evaluated, in the majority of cases human
graders prefer the translations produced with S-
BPE. In particular, for language arcs involving Ger-
man, the percentage of sentences for which trans-
lations based on S-BPE are preferred over transla-
tions based on BPE is 41.3% vs. 23.3% and 41.5%
vs. 29.3%. These results are statistical significant
(using a paired proportion test, with p < 0.01). It
is known that German has a high lexical prolificity,
with a high number of morphological variations as
well as compound words. In fact, out of 2 000 sen-
tences of the De→En test set 736 (36.8%) contain
unknown words. These results confirm the supe-
rior generalization of S-BPE over BPE, both at the
word and sentence levels.

For Turkish we also observe a preference for the
S-BPE translations of unknown words, as well as a
general preference for S-BPE sentences for English
to Turkish translation, with no clear winner for the
reverse direction. The statistical significance of
these results is lower than for German, clearly due
to the smaller amount of evaluated sentences.

5.3 Translation results

In this section we present global translation results,
evaluated using BLEU scores. Table 7 compares
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Segmentation Sentence

Source Wegen der Umstellung auf den neuen Abgas- und Verbrauchsprüfs-
tandard WLTP gebe es Produktionsausfälle bei Audi, sagte Schot der
"Heilbronner Stimme".

Reference After conversion to the new emissions and consumption standard
WLTP, there were production losses at Audi, Schot told the ‘Heilbronner
Stimme’.

BPE verbrau@@ ch@@ spru@@ ef@@
standard

Due to the changeover to the new exhaust and exhaust test standard
WLTP there were production downs at Audi, said the "Heilbronner
Stimme".

S-BPE verbrauch@@ spruef@@
standard

Due to the changeover to the new WLTP exhaust and consumption
testing standard, production was lost at Audi, Schot said "Heilbronner
Voice".

Source Es gibt keine Abbiegespur auf den Haaße-Hügel.
Reference There is no turning lane on Haaße Hügel.
BPE ab@@ bi@@ e@@ ges@@ pur There is no bending on the Haasse Hill.
S-BPE ab@@ bie@@ ge@@ spur There is no turning lane on the Haasse hill.

Source In der Haushaltwarenabteilung im Obergeschoss kippt der Geflügelte
einen mit Espresso zubereiteten Cocktail namens "Golden Eye", passend
zum Festival-Award.

Reference In the household goods department on the upper floor, the winged man
tips down a cocktail made with espresso called "Golden Eye", which is
suited to the festival award.

BPE haushalt@@ war@@ enab@@
teilung

In the household section on the upper floor, the poultry tick a cocktail
prepared with espresso called "Golden Eye", in line with the festival
award.

S-BPE haushalt@@ waren@@
abteilung

In the household goods department on the upper floor the poultry tilts
a cocktail prepared with espresso called "Golden Eye", matching the
festival award.

Source Der 46-jährige Fahrer des Notarztautos hatte am Samstagnachmittag
mit Blaulicht und Martinshorn eine rote Ampel überfahren.

Reference The 46 year old driver of the ambulance ran a red light on Saturday
afternoon with the blue lights flashing and siren sounding.

BPE not@@ arz@@ tau@@ tos The 46-year-old driver of the notary car had passed a red light on
Saturday afternoon with the blue light and Martinshorn.

S-BPE no@@ tar@@ z@@ t@@ autos The 46-year-old driver of the emergency car had overrun a red traffic
light on Saturday afternoon with blue-light and Martinshorn.

Table 5: Translation examples showing the impact of morphologically wrong segmentation by BPE and how
statistical BPE avoids such errors. Notice that the words causing the errors were not observed at training time.

Better word Better sentence
Arc BPE S-BPE BPE S-BPE

En→ De 10.0% 21.3%∗∗ 23.3% 41.3%∗∗

De→ En 17.1% 26.3%∗∗ 29.3% 41.5%∗∗

En→ Tr 11.8% 23.5% 11.8% 35.3%∗

Tr→ En 18.9% 39.6%∗ 30.2% 30.2%

Table 6: Results of the human evaluation. The numbers
indicate the proportion of wins by each system (ties
are omitted from the table for brevity). Evaluated sen-
tences, in top-down order, were 150, 369, 34, and 53,
respectively. Statistical significance, measured with a
paired proportion test, is reported for p < 0.01 (**) and
p < 0.05 (*).

the BLEU scores for the different language pairs
using BPE for a range of sub-word unit numbers
(from 4K to 96K). One first observation is that the
number of units has an important effect on trans-
lation performance. We can see that the effect can
be as much as 2 BLEU points (Et → En). The
optimal number of operations also varies greatly
between languages, with En→ Fi obtaining opti-
mum performance at 96K (although without much
variability), while other arcs like e.g. En→ Tr hav-
ing the best performance at just 4K operations. If
we conduct a similar grid search for S-BPE, we can
draw similar conclusions about the optimal number
of operations, noting that the effect of choosing an
incorrect number operations is even more impor-
tant. The full results can be found in the Appendix.

Table 7 also shows the results of using the stop-
ping criterion described in Section 4.1, with stop-
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BPE

Arc 4K 8K 16K 32K 48K 64K 96K S-BPE (#ops)

En→ Fi 20.79 20.95 20.89 20.92 20.93 20.90 21.08 20.92? (7 269)
Fi→ En 23.33 23.63 23.71 22.94 22.95 22.89 23.17 23.86? (7 719)
En→ De 36.93 37.62 37.60 38.00 38.38 38.15 38.17 37.46 (5 864)
De→ En 34.43 34.35 35.12 35.22 34.71 35.04 34.80 34.84 (5 704)
En→ Ro 23.98 24.08 23.78 22.88 22.85 22.88 22.77 23.92? (7 169)
Ro→ En 33.18 33.45 32.63 31.15 31.20 31.08 31.52 32.73 (7 709)
En→ Lv 17.27 17.41 17.72 17.26 16.86 16.86 17.11 17.35? (6 819)
Lv→ En 18.26 18.50 18.59 18.50 18.32 18.32 18.59 18.65? (7 334)
En→ Et 17.28 16.90 16.83 15.98 15.92 15.71 16.17 17.18? (7 039)
Et→ En 22.17 21.95 21.76 20.90 20.07 20.03 20.51 22.06? (7 464)
En→ Tr 13.00 12.69 12.00 12.02 11.77 11.73 11.47 12.89? (8 384)
Tr→ En 17.66 17.85 17.19 16.80 16.98 17.04 16.60 17.84? (9 114)

Table 7: Results for different language pairs. For BPE we use the number of operations given in the head of the
table (4K, 8K, etc.), for S-BPE we use early stopping (with k = 0.002 and averaging the last 5 iterations). The
symbol ? marks systems for which S-BPE is not significantly different than the best BPE system. S-BPE results in
bold are within ±0.4 BLEU of the optimal BPE result.

ping parameter set to k = 0.002 and averaging over
the last 5 iterations. These values were obtained
empirically by doing a grid search over a small set
of values and languages. It can be seen that the
results obtained for most translation directions are
in the range of the optimal result obtained by BPE,
with many results not being statistical significantly
different, as computed with the bootstrap method
(Koehn, 2004), with 99% confidence interval. One
can also consider that there is additional variability
due to random initialization of the NMT optimiza-
tion algorithm, in our experience in the range of
±0.4 BLEU. We also marked the systems within
this range in the table.5

It is also worth noting that for the language arcs
where the stopping criterion is outperformed by the
optimized baseline BPE extraction, the difference
in performance is smaller than the difference due
to choosing an incorrect number of operations on
the standard BPE approach.

In conclusion, we do not see a clear difference
in BLEU scores with S-BPE with respect to the
standard BPE approach, using the optimal number
of operations. However, as Sections 5.1 and 5.2
show, we obtain focused improvements on single
words, which improves the translation quality as

5We did not do an extensive search for random initializa-
tions for this investigations due to the high number of experi-
ments involved.

perceived by human judges.

6 Conclusions and future work

We introduced a statistical extension of BPE extrac-
tion. It introduces a well-founded objective for unit
selection, which also allows the definition of a sta-
tistically motivated stopping criterion. Using this
approach we achieve nearly optimal machine trans-
lation performance as measured with BLEU, while
at the same time producing more linguistically mo-
tivated units. This leads to better translations of
single words, which increases the translation qual-
ity as perceived by human judges, especially in the
case of sentences containing unseen words. Using
the stopping criterion we approximate the optimal
selection of number of units, without the need to
perform the costly optimization required by BPE,
involving a full training-evaluation cycle for each
tested number of operations.

Regarding future work, we observe that the prob-
ability distributions defined for our approach are
closely related to those used for n-gram language
models. Thus, smoothing methods can be applied,
which can enhance the robustness of the method
for unseen events, which opens a wide variety of
possible extensions of this work.

The code is available from https:
//github.com/amazon-research/
statistical-byte-pair-encoding.
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Appendix

A Full derivation of likelihood increase

Lemma Given a, b, c such that a > 0, b > a and 0 < c < b we have:

a− c

b− c
<

a

b
. (1)

Proof. By assumption denominators are positive, hence we can rearrange (1) as: b(a−c) < a(b−c). By
assumption, a(b−c) < ab from which we get b(a−c) < ab and (a−c) < a which is true by assumption.�

Define the count of a sub-word unit s ∈ Σ for a corpus S and a sub-word vocabulary Σ as CS,Σ(s).
The likelihood function is then defined as

L(S,Σ) =
∑

s∈Σ

CS,Σ(s) log p(s) (2)

We are interested in the increase in likelihood at step n

∆Ln(S) = L(S,Σn)− L(S,Σn−1) . (3)

When adding a new rule 〈(x, y)→ xy〉 in step n of the algorithm, thus defining Σn, we can express the
likelihood increase as1

∆Ln(S) =
∑

s∈Σn−1\{x,y}

(
CS,Σn(s) log pn(s)− CS,Σn−1(s) log pn−1(s)

)

+
∑

s∈{x,y}

(
CS,Σn(s) log pn(s)− CS,Σn−1(s) log pn−1(s)

)

+ CS,Σn(xy) log pn(xy)

(4)

We note that for s ∈ Σn−1 \ {x, y}

CS,Σn(s) = CS,Σn−1(s) and pn(s) > pn−1(s) (5)

as the total number of observations (denominator of pn) shrinks after combining two symbols. Thus, for
the first term in equation 4 we have

∑

s∈Σn−1\{x,y}

(
CS,Σn(s) log pn(s)− CS,Σn−1(s) log pn−1(s)

)
> 0 . (6)

This quantity is expected to be small, specially when the number of produced symbols increases.
Next, let us note that for the counts of the units involved in the new rule, we have

CS,Σn(x) = CS,Σn−1(x)− CΣn(xy)

CS,Σn(y) = CS,Σn−1(y)− CΣn(xy)
(7)

(the equation holds for both x and y because the CΣn(xy) is added to the total amount of units).
For the probability of x and y we are reducing the occurrences and the total number of events by the

same positive amount, which is lower that the sample size. Hence, by subtracting the same counts from
the sample size and from the previous Lemma we can derive:

pn(x) =
CS,Σn(x)

CS,Σn(·) =
CS,Σn−1(x)− CS,Σn(xy)

CS,Σn−1(·)− CS,Σn(xy)

<
CS,Σn−1(x)

CS,Σn−1(·) = pn−1(x)

(8)

1As some counts may decrease to 0 when defining a new pair, we use the convention 0 log 0 = 0.
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and similarly for y.
Using (6) and (8) in (4) we obtain

∆Ln(S) >
∑

s∈{x,y}

(
CS,Σn(s) log pn(s)− CS,Σn−1(s) log pn(s)

)

+ CS,Σn(xy) log pn(xy)

(9)

and using the count relations from (7) we arrive at

∆Ln(S) > CS,Σn(xy) [log pn(xy)− log pn(x)− log pn(y)] . (10)
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B Additional S-BPE results

(a) English-to-German

# ops BPE S-BPE

4K 36.93 36.47
8K 37.62 37.11
16K 37.60 37.04
32K 38.00 37.59
48K 38.38 36.71
64K 38.15 37.90
96K 38.17 37.88

(b) German-to-English

# ops BPE S-BPE

4K 34.43 33.78
8K 34.35 34.38
16K 35.12 35.56
32K 35.22 34.84
48K 34.71 35.18
64K 35.04 35.17
96K 34.80 34.60

(c) English-to-Romanian

# ops BPE S-BPE

4K 23.98 24.09
8K 24.08 24.16
16K 23.78 23.64
32K 22.88 22.14
48K 22.85 19.09
64K 22.88 17.85
96K 22.77 16.85

(d) Romanian-to-English

# ops BPE S-BPE

4K 33.18 32.82
8K 33.45 32.80
16K 32.63 32.70
32K 31.15 29.63
48K 31.20 24.78
64K 31.08 22.80
96K 31.52 21.58

(e) English-to-Latvian

# ops BPE S-BPE

4K 17.27 16.86
8K 17.41 17.11
16K 17.72 17.26
32K 17.26 17.26
48K 16.86 16.86
64K 16.86 16.86
96K 17.11 17.11

(f) Latvian-to-English

# ops BPE S-BPE

4K 18.26 18.32
8K 18.50 18.59
16K 18.59 18.50
32K 18.50 18.33
48K 18.32 18.32
64K 18.32 18.32
96K 18.59 18.59

(g) English-to-Estonian

# ops BPE S-BPE

4K 17.28 17.62
8K 16.90 17.26
16K 16.83 17.07
32K 15.98 15.91
48K 15.92 14.21
64K 15.71 12.32
96K 16.17 11.09

(h) Estonian-to-English

# ops BPE S-BPE

4K 22.17 21.91
8K 21.95 21.79
16K 21.76 21.83
32K 20.90 20.80
48K 20.07 17.95
64K 20.03 15.58
96K 20.51 13.58

(i) English-to-Turkish

# ops BPE S-BPE

4K 13.00 13.28
8K 12.69 12.93
16K 12.00 12.05
32K 12.02 7.62
48K 11.77 6.30
64K 11.73 5.75
96K 11.47 5.25

(j) Turkish-to-English

# ops BPE S-BPE

4K 17.66 17.72
8K 17.85 17.87
16K 17.19 17.25
32K 16.80 11.83
48K 16.98 9.19
64K 17.04 8.24
96K 16.60 7.61

(k) English-to-Finnish

# ops BPE S-BPE

4K 20.79 20.60
8K 20.95 21.03

16K 20.89 20.82
32K 20.92 20.56
48K 20.93 21.00
64K 20.90 20.13
96K 21.08 20.63

(l) Finnish-to-English

# ops BPE S-BPE

4K 23.33 23.57
8K 23.63 23.75
16K 23.71 23.49
32K 22.94 23.05
48K 22.95 22.92
64K 22.89 21.95
96K 23.17 20.21

Table 7: Translation results for different language pairs with BPE and S-BPE, varying the number of operations. In
bold, the best result for each language arc.
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Abstract
Complex natural language applications such
as speech translation or pivot translation tra-
ditionally rely on cascaded models. However,
cascaded models are known to be prone to er-
ror propagation and model discrepancy prob-
lems. Furthermore, there is no possibility of
using end-to-end training data in conventional
cascaded systems, meaning that the training
data most suited for the task cannot be used.
Previous studies suggested several approaches
for integrated end-to-end training to overcome
those problems, however they mostly rely on
(synthetic or natural) three-way data. We
propose a cascaded model based on the non-
autoregressive Transformer that enables end-
to-end training without the need for an ex-
plicit intermediate representation. This new
architecture (i) avoids unnecessary early de-
cisions that can cause errors which are then
propagated throughout the cascaded models
and (ii) utilizes the end-to-end training data
directly. We conduct an evaluation on two
pivot-based machine translation tasks, namely
French→German and German→Czech. Our
experimental results show that the proposed
architecture yields an improvement of more
than 2 BLEU for French→German over the
cascaded baseline.

1 Introduction

Many complex natural language applications such
as speech translation (Sperber and Paulik, 2020)
or pivot translation (Utiyama and Isahara, 2007;
De Gispert and Marino, 2006) traditionally rely on
cascaded models. The technique of model cascad-
ing is commonly used to solve problems that can
be divided into a sequence of sub-problems where
the solution to the first problem is used as an input
to the second and so on. Typically cascaded sys-
tems include several consecutive and independently
trained models, each of which aims to solve a par-
ticular sub-task. For example in a cascaded speech

translation system an automatic speech recogni-
tion model receives the audio signal as an input
and generates a transcription as an output of the
first sub-task. This output could be passed to a
system that adds punctuation and capitalization to
the sequence, before, as a final step, a machine
translation system is applied.

Cascaded models are appealing if there is more
training data for each of the sub-tasks than for the
full task. Examples for such scenarios include auto-
matic speech translation (AST), image captioning
in non-English languages, and non-English ma-
chine translation. However, cascaded models are
prone to error propagation, meaning that decision
errors in the first model are forwarded to and possi-
bly amplified by the second model. Usually, there
is also a loss of information when passing informa-
tion between models since the interface between
models traditionally requires each model to output
a discrete decision. This means that the deeper
knowledge that the model may encode in its rep-
resentation of the output is reduced to a ‘surface
form’ of a particular prediction, which is passed on
to the following model. Lastly, in conventional cas-
caded system there is no possibility to make use of
end-to-end training data, meaning that the training
data most suited for the task cannot be used.

To tackle these problems, several approaches for
integrated end-to-end training of cascaded models
have been proposed and applied to different NLP
tasks (Bahar et al., 2021; Sperber et al., 2019; Sung
et al., 2019). Integrated end-to-end training is usu-
ally achieved by merging the consecutive models
and fine-tuning the resulting system on the end-
to-end training data. Although the idea of this
approach is simple, it remains an open challenge
how to choose the interface between the models
in such a way that they can be trained, e.g. by
gradient propagation. Furthermore, most of these
approaches rely on synthetic or natural multi-way
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training data, i.e. data that does not only provide an
(input, output) pair but also the correct label for all
sub-tasks involved. For a detailed discussion of the
literature, we refer to Section 2. In this work we fo-
cus on the task of pivot-based machine translation,
i.e. the translation from a source (src) language
via a pivot (piv) language to the desired target (trg)
language, as an example for a two-stage task that
is traditionally solved by model cascading.

We propose a cascaded model based on the non-
autoregressive Transformer (NAT) that enables end-
to-end training without the need for an explicit
intermediate representation, that is inevitable in
autoregressive models. This new architecture (i)
avoids unnecessary early decisions that can cause
errors which are then propagated throughout the
cascaded models (ii) utilizes the src→trg, src→piv
and piv→trg training data and (iii) communicates
the full information from the src→piv model down-
stream by providing a natural interface between the
src→piv and piv→trg models.

2 Related Work

Several approaches were proposed in recent years
to address the weaknesses of the traditional cas-
caded models. Early works investigated the appli-
cations of the N-best list decoding both in speech
translation and pivot-based translation (Woszczyna
et al., 1993; Lavie et al., 1996; Och and Ney, 2004;
Utiyama and Isahara, 2007). The N-best list decod-
ing allows to pass multiple intermediate hypotheses
and avoid unnecessary early decisions. An efficient
alternative to the n-best list is lattices, which re-
placed the n-best list for the speech translation
models (Zhang et al., 2005; Schultz et al., 2004;
Matusov et al., 2008). However, the usage of the
discrete decisions does not allow to train cascaded
model jointly on src→trg data.

Most recent works are focusing instead on
the joint or integrated training for sequence-to-
sequence cascaded models. Thus, (Cheng et al.,
2017) suggested a joint training approach for the
pivot-based neural machine translation. In their
work, two attention-based RNN models (Bahdanau
et al., 2015) are trained jointly with different con-
nection terms in the objective function and the
src→trg as a bridging corpus. Another approach is
to apply the transfer-learning technique for pivot-
based NMT (Kim et al., 2019), meaning that the
direct src→trg model is initialized with the re-
spective weights from the pre-trained models, and

fine-tuned on src→trg corpus through the train-
able adapter. Pivot-based NMT is typically used
in a low-resource src→trg setup, and multilingual
NMT systems proved to be successful in this sce-
nario (Johnson et al., 2017; Aharoni et al., 2019;
Zhang et al., 2020). To tackle a low-resource NMT
problem, (Kim et al., 2019) also explore differ-
ent ways to extend the back-translation idea (Sen-
nrich et al., 2016a) for src→piv→trg scenarios.
However, since this work aims to provide the gen-
eral framework for the integrated training of cas-
caded sequence-to-sequence models, we do not aim
for comprehensive comparisons with multilingual
NMT systems and various data augmentation strate-
gies. We refer to (Kim et al., 2019) for in-depth
comparison studies.

In speech translation, the tight model integration
for the cascaded models also attracted attention
from the community. (Anastasopoulos and Chi-
ang, 2018; Wang et al., 2019; Sperber et al., 2019)
discussed either use of attention or hidden state vec-
tors as a connection interface for the tight model
integration in cascaded systems. Recently, (Bahar
et al., 2021) proposed to use posterior distribution
as an input to the encoder of the second model.

3 Background

3.1 Sequence-to-Sequence modeling

The modeling of the sequence-to-sequence prob-
lems, namely converting the source sequence fJ1
in one domain to the target sequence eI1 in another
domain, is nowadays usually done using encoder-
decoder deep neural networks (Sutskever et al.,
2014; Bahdanau et al., 2015; Vaswani et al., 2017).
The purpose of the encoder is to map the input
sequence fJ1 to a continuous, hidden vector repre-
sentation h, from which the decoder decodes the
target sequence.

In applications such as machine translation, the
Transformer (Vaswani et al., 2017), an attention-
based sequence-to-sequence model, is considered
state of the art (Barrault et al., 2020).

Commonly the probability distribution over the
target sequences in sequence-to-sequence models
is expressed by a left-to-right factorization:

p(eI1|fJ1 ) =
I∏

i=1

p(ei|ei−11 , fJ1 ). (1)

These models are also called autoregressive, mean-
ing that each consecutive token in the target se-
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quence depends on the left context of the same
sequence.

3.2 Non-Autoregressive NMT

In contrast to the autoregressive modelling ap-
proach, the non-autoregressive Transformer (Gu
et al., 2018) assumes that all tokens in the target se-
quence are generated independently of each other.
This means in particular that there is no need for
a search procedure at inference time since target
tokens can be generated and optimized in parallel.
However, current approaches also need an explicit
length model as additional input to the decoder. Gu
et al. (2018) utilize the standard Transformer archi-
tecture and provide several modifications in order
to obtain a non-autoregessive machine translation
system.

Recent works proposed to relax the indepen-
dence constraints during training and use iterative
decoding for the NAT, meaning that instead of only
one decoding pass, the model relies on the multi-
ple passes, and conditional dependence might be
used on the consecutive passes to achieve better
performance (Ghazvininejad et al., 2019; Gu et al.,
2019; Lee et al., 2018; Stern et al., 2019). Such
decoding procedure allows shrinking the gap be-
tween the performance of the autoregressive and
non-autoregressive models.

3.3 Pivot-based Machine Translation

A cascading system ps2t for pivot-based machine
translation consists of a src→piv model ps2p and
a piv→trg model pp2t, which typically have a dis-
joint parameter set. While both models are trained
independently, they work in cooperation when pro-
ducing the translation, i.e., the most likely target
sequence êÎ1 for the given source sequence fJ1 . The
pivot sequence zK1 can be viewed as a latent vari-
able, and the target sequence probability can be
expressed by summing over all pivot sequences:

ps2t(e
I
1|fJ1 ) =

∑

zK1

pp2t(e
I
1|zK1 , fJ1 )ps2p(z

K
1 |fJ1 )

=
∑

zK1

pp2t(e
I
1|zK1 )ps2p(z

K
1 |fJ1 ).

Since the sum over all possible pivot hypothesis zK1
is intractable in practice, instead two-pass decoding
is used as an approximation to obtain the target

hypotheses:

ẑK̂1 = argmax
K,zK1

K∏

k=1

ps2p(zk|zk−11 , fJ1 ) (2)

êÎ1 = argmax
I,eI1

I∏

i=1

pp2t(ei|ei−11 , ẑK̂1 ). (3)

We investigate the stability and potential for im-
provement of this interface in the Section 6.1.

4 Model Integration

Starting from the conventional cascaded model, as
described in Section 3.3, we propose to connect the
two consecutive encoder-decoder models through
an end-to-end trainable interface. The src→piv
model consists of both Encoders2p and Decoders2p,
similarly the piv→trg model consists of Encoderp2t
and Decoderp2t. We introduce an interface which
connects Decoders2p to the Encoderp2t. The main
requirement for this connection interface is to be
differentiable to make the gradient propagation pos-
sible. In order to fulfill this requirement, we fol-
low the previous work (see more in Section 2) and
choose to focus on two possible interfaces:

• Decoder States Interface: Pass the final se-
quence of hidden states vectors of the last
src→piv Decoders2p layer as an input to the
Encoderp2t. The input embedding layer and
positional encoding layer are omitted in the
Encoderp2t, and the hidden states vector is
then used directly as an input to the next self-
attention block (see Figure 1a).

• Decoder Posteriors Interface: Pass the
probability distribution ps2p(zK1 |i, fJ1 ) of the
Decoders2p. The embedding matrix E from
Encoderp2t is used to calculate a ‘soft embed-
ding’

∑

v∈V
Evps2p(zk = v|fJ1 ).

Hence, the Decoders2p and Encoderp2t are
connected through the softmax layer, as
shown shown in Figure 1b.

Note that the decoder posteriors interface requires
the src→piv and piv→trg model to share a common
vocabulary V .

Two autoregressive encoder-decoder models can
be connected through these interfaces as shown
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(a) Decoder States Interface. (b) Decoder Posteriors Interface.

Figure 1: Two proposed connection interfaces between src→piv and piv→trg models for integrated training. The
blocks in gray represents are omitted layers of the original cascaded Transformer architecture. For simplicity we
do not show the Encoders2p and Decoderp2t.
*Note that the input embedding is now a full fledged matrix multiplication, not a multiplication with a one-hot
vector which is equivalent to a column selection.

in Figure 2a. However, at training time the
Decoders2p requires a pivot sequence as an input.
If there is no access to the three-way src→piv→trg
data, the pivot sequence has to be obtained by doing
a search in training, which is computationally very
prohibitive in a real world task, or via forward or
backward translation beforehand (synthetic data).
The disadvantage of using synthetic data is that the
pivot sequences remain static throughout the train-
ing, this means that the cascaded src→piv→trg
model is trained on pivot sequences which be-
come less relevant the more training updates the
src→piv models receives. To avoid a sub-optimal,
discrete intermediate representation while still ben-
efit from the model integration, we propose to re-
place src→piv autoregressive Transformer with a
non-autoregressive one as shown in Figure 2b. The
usage of NAT allows to replace the pivot sequence
with a sequence of unknowns during the training
on src→trg data. Since the decoder states interface
do not use the embeddings of the Encoderp2t, sim-
ilar to other works, the Encoderp2t can be safely
omitted in the integrated model (Figure 2c).

Training such a cascaded model can be done
with the following steps:

• Pre-training:

– Train src→piv model on src→piv cor-

pora
– Train piv→trg model on piv→trg cor-

pora

• Concatenation: Concatenate the models in the
cascade through the interface and initialize
respective components with the pre-trained
weights.

• Fine-tuning: fine-tune the resulting integrated
model on the src→trg data.

This yields a src→trg architecture in which all pa-
rameters are pre-trained and which makes use of
all parameters from the pre-trained models, with
the exception of one linear layer and an embed-
ding matrix in the decoder states interface. Please
note that although we are focusing on pivot-based
NMT as our target task, we argue that the proposed
integration method can be easily adapted to any
Transformer-based cascaded model.

5 Experimental Results

To test and verify the proposed cascaded model,
we conduct experiments on French→German and
German→Czech data from the WMT 2019 news
translation task1.

1http://www.statmt.org/wmt19/
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(a) AR-based integrated model.

(b) NAT-based integrated model.

(c) Three-components NAT-based integrated model.

Figure 2: Different variants of the encoder-decoder model integration through the connection interface.

5.1 Data

Training data for French→German includes Eu-
roparl corpus version 7 (Koehn, 2005), Common-
Crawl2 corpus and the newstest2008-2010. The
total number of parallel sentences is 2.3M.

The original German→Czech task was con-
strained to unsupervised translation, but we utilized
the available parallel data to relax these constraints.
The corpus consists of NewsCommentary version
14 (Tiedemann, 2012) and we extended it by in-
cluding newssyscomb20093 and the concatenation
of previous years test sets newstest2008-2010 from
the news translation task. The total amount of par-
allel sentences is 230K.

For both tasks we use newstest2011 as the de-
velopment set and newstest2012 as the test sets.
The data statistics, including pre-training data, are
collected in Table 1.

Sentences Words (target)
direct data French→German 2.3M 53M
pre-train French→English 35M 905M

English→German 9.7M 221M
direct data German→Czech 230K 4.5M
pre-train German→English 9.1M 180M

English→Czech 49M 486M

Table 1: Training data overview.

2https://commoncrawl.org/
3http://www.statmt.org/wmt09/

system-combination-task.html

5.2 Preprocessing

For each parallel corpus, we apply a standard pre-
processing procedure: First, we tokenize each cor-
pus using the Moses4 tokenizer. Then a true-casing
model is trained on all training data and applied
to both training and test data. In the final step,
we train byte-pair encoding (BPE) (Sennrich et al.,
2016b) with 32000 merge operations. In order to
enable model integration, we train BPE jointly on
all available data for the respective language.

5.3 Model and Training

We implement the models described in Sec-
tion 4 using the fairseq (Ott et al., 2019)
sequence-to-sequence extendable framework.
As non-autoregressive src→piv model, we
choose the Conditional Masked Language Model
(CMLM) (Ghazvininejad et al., 2019) with 6 layers
for both encoder and decoder, and a standard
6 layer ‘base’ Transformer for the piv→trg
system (Vaswani et al., 2017). For each interface,
the length of the pivot sequence is set to the length
of the source sequence by default. More on the
length modeling is discussed in the Section 6.4.
For the decoder states interface, the last decoder is
used for all the experiments.

For model fine-tuning, the Adam op-
timizer (Kingma and Ba, 2015) with
β = {(0.9, 0.98)} and the learning rate
0.5 × 10−5 is used for all the models. The

4http://www.statmt.org/moses/
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learning rate is reduced during training based
on the inverse square root of the update. Ad-
ditionally, 10,000 and 4,000 warm-up updates
have been used for French→German and
German→Czech accordingly. The dropout
is set to 0.1 for French→German and 0.3 for
German→Czech. We set the effective batch size
to 65,536 following the fairseq recommendations
for the non-autoregressive models. Although
CMLM provides the Mask-Predict decoding
algorithm (Ghazvininejad et al., 2019), in our work
we only use one iteration and obtain probability
distribution and hidden states from the fully
masked sequence, which means that each token is
only conditioned on the source tokens. Results are
reported using the sacreBLEU5 implementation of
BLEU (Papineni et al., 2002).

We compare our models against three baselines:

• direct baseline: The direct baseline is the
Transformer base model, which is trained only
on src→trg (direct) parallel data.

• AR pivot baseline: A baseline system com-
posed of cascading a src→piv and a piv→trg
autoregressive (AR) models. These two mod-
els are autoregressive Transformer ‘base’ mod-
els with six layers of encoder and decoder, re-
spectively. The individual models are trained
on either src→piv or piv→trg data. There is
no fine-tuning on the src→trg data, and results
are reported based on the inference only.

• NA pivot baseline: Similarly to the AR base-
line, we provide the results for the non-
autoregressive (NA) pivot baseline. The
main difference is that the non-autoregressive
CMLM model is selected as the src→piv
model. We follow standard training procedure
for the CMLM as described in (Ghazvinine-
jad et al., 2019), and as for hyperparameters,
we rely on the fairseq guidelines6. While
pre-training, a random mask is applied to the
decoder input, meaning that the number of
observed and masked tokens varies for each
batch. During decoding, we employ five
decoding iterations to achieve better perfor-
mance on the src→piv model. The Trans-
former base piv→trg model is trained in the

5https://github.com/mjpost/sacrebleu
6https://github.com/pytorch/fairseq/

blob/master/examples/nonautoregressive_
translation/scripts.md

same way as for the AR pivot baseline.

Additionally, we compare our NA integrated
model with the AR integrated model (2a) based
on the synthetic data generation (Hilmes, 2020).
Synthetic data is generated by the forward pass of
the src→piv model offline before fine-tuning on the
src→trg data, meaning that the pivot hypotheses
stay the same during fine-tuning.

We report the best results for the proposed cas-
caded model with the different interfaces in Ta-
ble 2. The best checkpoint is selected based on
BLEU score of the development set. The results
show up to 2.1% BLEU improvements for the de-
coder states and decoder posteriors interfaces on
French→German compare to the pivot baseline.
On the other hand, there is a 2.0% BLEU degrada-
tion of the performance while using decoder pos-
teriors interface on German→Czech compare to
the pivot baseline and up to 2.3% BLEU degrada-
tion using decoder states interface. We suppose
that such degradation can be based on the training
data size since the German→Czech is ten times
smaller than French→German. To check on our
assumption, we perform additional analysis with
the different training data partitions in Section 6.2.
Moreover, according to the decoder states interface
results, the usage of the additional encoder showed
its usefulness compared to the three-components
architecture.

6 Analysis

6.1 Error Propagation

Error propagation is a well-known problem of
cascaded models. In the following we investi-
gate how significantly errors in one model in-
fluence the following models. To this end, we
monitor both the individual model performance
and the end-to-end cascaded performance by run-
ning experiments on a three-way test set that
consists of (source, pivot, target) triples. For
that purpose, we extract 3000 overlapping sen-
tences from NewsCommentary v14 for WMT
French→English and WMT English→German to
create a new test set that is disjoint with the train-
ing data. We train a 6-layer ‘base’ Transformer
for French→English (src→piv) and another for
English→German (piv→trg). In order to analyse
the impact of disturbances and simulate errors in
the French→English system, we generate a weaker
hypothesis by:
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French→German German→Czech
BLEU[%] BLEU[%]

dev test dev test

A
R direct baseline 20.0 20.4 13.5 14.0

pivot baseline 19.5 20.7 18.8 18.1
N

A
In

t.

Pivot hypothesis (NA pivot baseline) 17.1 18.1 17.3 16.6
Decoder States w/o Encoderp2t 20.9 21.8 15.5 15.5

w Encoderp2t 21.5 22.8 16.5 16.7
Decoder Posteriors 21.6 22.7 16.8 17.0

A
R

In
t. Decoder States† 20.6 21.2 16.6 16.8

Decoder Posteriors† 20.5 21.1 17.9 17.1

Table 2: Results for integrated training with different non-autoregressive (NA) interfaces on src→trg data in com-
parison to autoregressive (AR) baseline model. All pivot/cascaded models are pre-trained on the respective data.
We use newstest{2011,2012} as dev and test respectively. Results marked with † are taken from (Hilmes,
2020).

• Applying artificial character-level noise: With
a probability of pnoise each character in the
decoded pivot hypothesis is replaced with a
random character from the character set of the
sentence

• Using a weaker checkpoint than the baseline

• Reducing the beam size to 1 (greedy search)

By applying these procedures, we control the per-
formance of the src→piv model while maintaining
a stable performance for the piv→trg model. As is
shown in Figure 3, the errors in the src→piv model
are actually deflated by the piv→trg system, since
a loss of 1.0 BLEU in the src→piv system results in
only a drop of around 0.5 BLEU for the cascaded
src→trg system.

Similarly, we conduct experiments in the other
direction. By improving the quality of the predic-
tion from the src→piv model, we study the poten-
tial gain for the src→trg task. For that purpose, we
translate each source sentence to a 10-best list of
pivot sentences. Using the pivot reference from
the three-way test set we can select the single best
hypothesis based on the sentence-level BLEU

The sentence with the best BLEU score among
ten candidates is then passed to the piv→trg model.
This cheating experiment results in an improve-
ment of 6.2% absolute BLEU on the src→piv
model, which in turn however only results in
1.4% absolute BLEU improvement on the cascaded
src→trg model. We conclude that (i) the piv→trg
models weakens both improvements and errors of

Figure 3: Impact of errors in the src→piv model on the
performance of the cascaded src→trg system.

the src→piv model and (ii) the ambiguities in an
src→piv 10-best list hold room for an improvement
of over 1.0 BLEU.

6.2 Effect of Training Data Size

To investigate how much the NAT-based inte-
grated model quality depends on the training
data size, we train our model on randomly sam-
pled 50%, 30%, and 10% selections of the orig-
inal French→German training corpus. To pre-
vent overfitting on a small corpus, we increase
the dropout rate to 0.3 compared to 0.1 on full
French→German corpus. The Table 3 shows that
when training on 10% of the original data, the
discrepancy between the best model performance
is around 2.4% BLEU. This setup simulates the
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data conditions of German→Czech since the total
amount of training sentences in German→Czech
corpus is around 10% of the French→German cor-
pus. Based on our experimental results, we suppose
that the integrated model needs some minimum
amount of parallel src→trg data to achieve the ac-
ceptable performance.

data percentage BLEU[%]

100% 21.5
50% 21.0
30% 20.6
10% 19.1

Table 3: French→German dev set results using differ-
ent training data partitions. The data percentage refers
to the relative size of the training corpus comparing
to the full French→German training set. All experi-
ments use the decoder states interface for NAT-based
integrated training.

6.3 Effect of Model Pre-training

In our experiments for the NAT-based integrated
model, we solely rely on the models’ pre-training,
which means that instead of random initialization
for the NAT-based integrated model components,
we utilize the weights from the respective pre-
trained models. In this section, we study the im-
portance of model pre-training and its impact on
the final model performance. For that purpose, we
train the NAT-based integrated model with various
initialization options.

Figure 4: German→Czech dev set results for different
parameter pre-training schemes. src→piv indicates that
both Encoders2p and Decoders2p are pre-trained and all
other parameters are randomly initialized. We use a
similar notation for the other pre-training schemes. All
experiments use the decoder states interface for NAT-
based integrated training.

Figure 5: French→German dev set results for different
parameter pre-training schemes. All experiments use
the decoder states interface for NAT-based integrated
training.

Figure 4 and Figure 5 show that initialization of
scr→piv encoder and decoder is crucial for the final
model performance. Without initialization or with
pre-training only piv→trg encoder and decoder, it
is impossible to train the end-to-end system. We
see a similar trend while using the decoder posteri-
ors interface.

6.4 Length Modeling

Length modeling for the non-autoregressive de-
coder is one of the bottlenecks for our proposed
NAT-based integrated model. The pivot sequence
length has to be set in advance, and it can not be
refined. In most of our experiments, we set the
length of the intermediate sequence to be equal to
the source sequence length both in training and test
time. As a result, we do not fine-tune the length
model using the src→trg data. Moreover, the as-
sumption that source length should match the pivot
length does not hold for every language pair. In
Table 4 we experiment with using different length
estimates and report how it affects the end-to-end
translation quality.

The results show that better length modeling
can lead to more than 2% BLEU improvements.
However, for our experiments, we have not tried
any sophisticated length prediction methods. We
suppose that further exploration will be beneficial
for the integrated model performance.

6.5 Decoder Iterations

The iterative refinement of the hypotheses by a non-
autoregressive decoder plays an essential role in
achieving better performance (Ghazvininejad et al.,
2019; Gu et al., 2019). We observe that, the NA
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length source
French→German German→Czech

BLEU[%] BLEU[%]

random 19.2 14.6
source 21.6 16.8
target 18.9 16.5
predicted 21.3 17.2

Table 4: Results for the different pivot length estimates
on the dev set. Length source random refers to the
length choice based on uniform distribution in the in-
terval [2, 100). predicted refers to the usage of
the CMLM length prediction component for length as-
signment. source and target indicate the length
choice based on the source sequence or target sequence
lengths. All experiments use the decoder posteriors in-
terface for NAT-based integrated training.

baseline with one decoder iteration of the src→piv
model results in 8.2 BLEU on the French→German
development set, while five iterations of the same
decoder yield 17.1 BLEU. However, simply in-
creasing the number of iterations during decoding
with the integrated model does not lead to simi-
lar improvements. Note that the output of the NA
decoder is handed to an encoder, which a) more
expressive than a softmax layer and b) is trained on
the single-iteration output. This mismatch between
training and decoding could be the reason why de-
coder iterations are not beneficial for the integrated
model. Additionally, we experimented with de-
coder iterations during training of the integrated
model, but it breaks the gradient propagation. Al-
though our initial experiments with the iterations
have been unsuccessful, we think that they can
be applied for training using such approaches as
Gumbel-Softmax (Jang et al., 2017).

6.6 Knowledge Distillation

Sequence-level knowledge distillation (KD) (Kim
and Rush, 2016) proved to be useful for the training
of non-autoregressive models (Zhou et al., 2020).
Although it improves the src→piv model perfor-
mance, our initial experiments show that KD results
in a 0.1-0.3 BLEU degradation on the integrated
model.

7 Conclusion

In this work, we propose a novel architecture for
the integrated training of cascaded models based
on a non-autoregressive Transformer. We train
the model on src→piv, piv→trg, and src→trg data
overcoming a drawback of conventional cascaded
models. Moreover, it provides a natural inter-

face between two Transformer-based models and
avoids unnecessary early decisions for intermedi-
ate representations. Our experimental results on
the task of pivot-based machine translations show
that the NAT-based integrated model outperforms
the pivot baseline by up to 2.1% BLEU on WMT
French→German.

We analyze the integrated model and conclude
that the src→piv system is crucial for the final trans-
lation performance. Further work is required to
apply established NAT improvements to this new
architecture, such as iterative decoding in the cas-
caded training and further experiments on knowl-
edge distillation in the src→piv pre-training, both
of which show significant improvements in stan-
dalone systems (Ghazvininejad et al., 2019; Gu
et al., 2018, 2019; Zhou et al., 2020). Additionally,
more sophisticated techniques for length modeling,
such as an external length model or multiple length
candidates, can be applied in the future to improve
the quality of the pivot hypotheses.

Even though we test our cascaded architecture
on the task for pivot-based machine translation, we
can use the architecture in any application, where a
combination of sequential models is beneficial.
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Abstract

In this paper, we investigate the driving factors
behind concatenation, a simple but effective
data augmentation method for low-resource
neural machine translation. Our experiments
suggest that discourse context is unlikely the
cause for concatenation improving BLEU by
about +1 across four language pairs. Instead,
we demonstrate that the improvement comes
from three other factors unrelated to discourse:
context diversity, length diversity, and (to a
lesser extent) position shifting.

1 Introduction

Many attempts have been made to augment neural
machine translation (MT) systems to use discourse
context (Junczys-Dowmunt, 2019; Stojanovski and
Fraser, 2019; Saunders et al., 2020; Zhang et al.,
2018; Sun et al., 2020; Läubli et al., 2018; Kim
et al., 2019; Tan et al., 2019; Zheng et al., 2020;
Jean et al., 2017). One particularly simple method
is to concatenate consecutive pairs of sentence-
pairs during training, but not during translation
(Agrawal et al., 2018; Tiedemann and Scherrer,
2017; Ngo and Trinh, 2021; Kondo et al., 2021).1

In this paper, we confirm that this simple method
helps, by roughly +1 BLEU across four low-
resource language pairs. But we demonstrate that
the reason it helps is not discourse context, be-
cause concatenating random pairs of sentence-pairs
yields the same improvement.

Instead, we view concatenation as a kind of
data augmentation or noising method (one which
pleasantly requires no alteration to the text, unlike
data augmentation methods that disturb word order

1As this paper was being finalized, Kondo et al. (2021)
published independent work also presenting random concate-
nation as data augmentation for NMT. They find that concate-
nation helps the model translate long sentences better, while
the focus of the present paper is to explain thoroughly why it
helps.

(Belinkov and Bisk, 2018; Anastasopoulos et al.,
2019) or replace words with automatically-selected
words (Gao et al., 2019; Fadaee et al., 2017; Wang
et al., 2018)). Concatenating random sentences is
easier than concatenating consecutive sentences,
because many parallel corpora discard document
boundaries, drop sentence-pairs, or even reorder
sentence-pairs, so it can be difficult to know which
sentence-pairs are truly consecutive.

But the fact that random concatenation helps so
much creates a mystery, which is the focus of the
paper. If the reason is not discourse context, what
is the reason? We consider three new hypotheses:

• Random concatenation creates greater diver-
sity of positions, because it lets the model
see sentences shifted by effectively random
distances.

• Random concatenation creates greater diver-
sity of contexts, helping the model learn what
not to attend to.

• Random concatenation creates greater diver-
sity of sentence lengths within a minibatch.

Through a careful ablation study, we demonstrate
that all three of these factors more or less contribute
to the improvement, and together completely ex-
plain the improvement.

2 Concatenation

We first present the concatenation methods and
confirm that they improve low-resource translation.

2.1 Methods
Let Dorig = {(xi, yi) | i = 1, . . . ,N} be the origi-
nal training data. We consider two concatenation
strategies:

CONSEC Concatenate consecutive sentence-pairs:
Dnew = {(xixi+1, yiyi+1) | i = 1, . . . ,N − 1}.
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RAND Same as CONSEC, but randomly permute
Dorig before concatenation.

For example, consider the following en→vi sen-
tence pairs:

And I think back . → Và tôi nghĩ lại .
I think back to my father . → Tôi nghĩ lại về cha
tôi .

With <BOS>/<EOS> markings, the concatenated
sentence-pairs would be:

source input: And I think back . <EOS> I think
back to my father . <EOS>
target input: <BOS> Và tôi nghĩ lại . <BOS> Tôi
nghĩ lại về cha tôi .
target output: Và tôi nghĩ lại . <EOS> Tôi nghĩ lại
về cha tôi . <EOS>

Since consecutive training examples often come
from the same document, CONSEC lets the model
look at some of the discourse context during train-
ing. In RAND, however, the concatenated sentences
are almost always unrelated. In both cases, we train
models on the combined data, Dorig ∪ Dnew.

2.2 Initial experiments

We experiment on four low-resource language
pairs: {Galician, Slovak} to English and English
to {Hebrew, Vietnamese} (Qi et al., 2018; Luong
and Manning, 2015) using Transformer (Vaswani
et al., 2017). We use the same setup as Nguyen
and Salazar (2019), with PreNorm, FixNorm and
ScaleNorm, as it has been shown to perform well
on low-resource tasks. Since the data comes pre-
tokenized, we only apply BPE. Data statistics and
hyper-parameters are summarized in Table 1.

For baseline, the training data is Dorig. For con-
catenation, we first create Dnew, then combine it
with Dorig to create the training data. Following
Morishita et al. (2017), we randomly shuffle the
training data and read it in chunks of 10k exam-
ples. Each chunk is sorted by source length before
being packed into minibatches of roughly 4096
source/target tokens each.

We calculate tokenized BLEU using
multi-bleu.perl (Koehn et al., 2007) and
measure statistical significance using bootstrap
resampling (Koehn, 2004).

As seen in Table 2, concatenation consistently
outperforms the baseline across all datasets with
significant improvement (p < 0.01) on almost ev-
ery case. We observe that there is generally more

improvement with less training data. For exam-
ple, en→he with more than 200k training examples
gets only +0.5 BLEU, but gl→en with only 10k
sentences achieves +1.3 BLEU. On average, this
method yields +1 BLEU over all four language
pairs. We can also see that concatenating consec-
utive or random sentence pairs results in similar
performance. For this reason, all the following
ablation studies are conducted with RAND unless
noted otherwise.

3 Analysis

Why does a method as simple as concatenation
help so much? We reject the initial hypothesis that
the model is assisted by discourse context (§3.1)
and consider three new hypotheses related to data
augmentation (§3.2–§3.4).

3.1 Discourse context

Since consecutive sentences often come from the
same document, CONSEC provides the model with
more discourse context during training. For RAND,
however, the two sentences in a generated example
are unlikely to have any relation at all. Despite
this difference, we can see from Table 2 that both
CONSEC and RAND achieve similar performance.

To better understand whether discourse context
plays any role here, we conduct a simple experi-
ment. We perform concatenation just as in CONSEC
and RAND, but on the dev set (as well as the training
set), and measure BLEU on the concatenated dev
set. The new BLEU scores are shown in Table 3,
showing that even having discourse context avail-
able at translation time does not enable CONSEC to
do better than RAND. While we acknowledge that
there could be improvement due to discourse con-
text that is not captured by BLEU, we can also say
that the gain in BLEU that we do observe with
concatenation is independent of the availability of
discourse context.

3.2 Position shifting

Since the Transformer uses absolute positional en-
codings, if a word is observed only a few times,
the model may have difficulty generalizing to oc-
currences in other positions. Moreover, if there are
too few long sentences, the model may have dif-
ficulty translating words very far from the start of
the sentence. In concatenation, the second sentence
is shifted by a random distance n with n being the
first sentence’s length in the sense that its positions
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train/dev/test sents. (x1000) train steps/epoch epochs layers heads dropout BPE ops.

gl→en 10/0.68/1 100 1000 4 4 0.4 3k
sk→en 61/2.27/2.45 600 200 6 8 0.3 8k
en→vi 133/1.55/1.27 1500 200 6 8 0.3 8k
en→he 210/4.52/5.51 2000 200 6 8 0.3 8k

Table 1: Some statistics of the datasets and models used.

gl→en sk→en en→vi en→he average
dev test dev test dev test dev test dev ∆ test ∆

baseline 22.9 20.7 29.2 30.3 29.0 32.7 30.3 28.1 27.8 28.0
CONSEC 24.9 22.9† 30.3 31.5† 29.2 33.5† 30.6 28.6† 28.8 +1.0 29.1 +1.1
RAND 25.3 23.1† 30.3 31.6† 29.2 33.0 30.8 28.5† 28.9 +1.1 29.0 +1.0

Table 2: Consecutive (CONSEC) and random (RAND) concatenation give the same BLEU improvement across our
four low-resource language pairs. † = statistically significant improvement on the test set compared to baseline
(p < 0.01).

dev BLEU
gl→en sk→en en→vi en→he avg

CONSEC 23.5 29.6 29.7 31.1 28.5
RAND 24.0 29.2 29.4 31.3 28.5

Table 3: Even when we concatenate consecutive sentence-pairs during translation, CONSEC does not outperform
RAND. All BLEU scores in this table are computed on concatenated versions of the dev sets, and so are not compa-
rable with the scores in other tables.

Row gl→en sk→en en→vi en→he avg ∆

1 baseline 22.9 29.2 29.0 30.3 27.8
2 baseline + sim-shift 22.7 29.8 29.0 30.4 28.0 +0.2
3 baseline + uniform-shift 23.8 29.8 29.3 30.5 28.4 +0.6
4 RAND 25.3 30.3 29.2 30.8 28.9 +1.1
5 RAND + uniform-shift 25.5 30.7 29.14 30.7 29.0 +1.2

Table 4: Position shifting improves accuracy somewhat, but the version of position shifting that mimics that of
concatenation (sim-shift) gives less of an improvement than shifting by distances uniformly sampled from [0, 100]
(uniform-shift). All BLEU scores are on dev sets.

Row gl→en sk→en en→vi en→he avg ∆

1 RAND 25.3 30.3 29.2 30.8 28.9
2 RAND + mask 24.3 30.0 28.9 30.6 28.5 −0.4
3 RAND + sep-batch 24.9 30.1 29.1 30.6 28.7 −0.2
4 RAND + mask + sep-batch 23.2 29.8 29.3 30.5 28.2 −0.7
5 RAND + mask + sep-batch + reset-pos 23.1 29.6 28.9 30.5 28.0 −0.9

Table 5: Masking attention to prevent concatenated sentences from attending to one another (mask) reduces accu-
racy. Forming minibatches so as to prevent concatenation from increasing length diversity (sep-batch) also reduces
accuracy. When we do both and also remove the effect of position shifting (reset-pos), we eliminate essentially all
the improvement due to concatenation. All BLEU scores are on dev sets.

289



<10 [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) >=60

Length bucket

19

20

21

22

23

24

25

26

27

B
L

E
U

sim-shift uniform-shift

BLEU score by length bucket for gl2en

0 20 40 60 80 100 120 140

0

0.2

0.4

0.6

0.8

1

Percentile of target sentence length for gl2en

Figure 1: gl2en: dev BLEU scores by length bucket
(top) and its train length percentile (bottom).

are indexed from n instead of 0. We hypothesize
that this allows the model to see, and thus, to be
better-trained on more positions.

If the improvement indeed comes from position
shifting, we should be able to reproduce it with-
out concatenation. In concatenation, we train on
Dorig ∪ Dnew. While Dnew has the same number of
sentences as Dorig (§2.1), each sentence is a con-
catenation of two sentences in Dorig. This means
that in total, 1/3 of sentences are shifted. So, we
simulate the position-shifting that occurs in con-
catenation as follows. For each sentence-pair ( fi, ei)
in the training data, with probability 1/3, choose a
random training sentence pair ( f j, e j) and shift fi
by | f j| and ei by |e j|. We call this system sim-shift.

We also try a more uniform shifting method,
called uniform-shift, in which we sample, with
probability 0.1, distances s and t uniformly from
[0, 100] and shift fi by s and shift ei by t.

Lines 1–3 in Table 4 show that both uniform-
shift and sim-shift do help somewhat. Surprisingly,
sim-shift is outperformed by uniform-shift, espe-
cially for gl→en with a gap of 0.9 BLEU. We at-
tribute this to the fact that uniform-shift tends to
shift sentences for longer distances and hence better
generalizes to longer sentences. Indeed, as shown
in Figure 1 (bottom), most training sentences in
gl→en are shorter than 60. In Figure 1 (top), we
see that uniform-shift outperforms sim-shift by the
largest margin on the longest sentences. Neverthe-

less, adding uniform-shift on top of RAND (Table 4,
row 5) only improves it very slightly.

To conclude, we show that position shifting can
have a positive impact on low-resource NMT. How-
ever, it seems to contribute only a small part of the
improvement due to concatenation, as we will con-
firm below (§3.5).

3.3 Context diversity
In an attention layer, each query word is free to
attend to any key word, and the model must learn
to distinguish the keys that are related to a query
from those that are not. Let us call the former
positive contexts and the latter negative contexts.
While positive contexts are important for deter-
mining how to translate a word, it is not trivial
to generate more positive contexts, as it requires
creating more parallel sentences that actually use
the word. By contrast, creating more negative con-
texts is easy; this is what concatenation does. So
one hypothesis is that concatenation helps by creat-
ing more negative contexts to improve the model’s
ability to attend to positive contexts.

To test this, we modify RAND by masking all self-
attentions so that, in each concatenated example,
each sentence can only attend to itself and not the
other sentence. Similarly, in cross-attention, each
target sentence can only attend to its corresponding
source sentence, not the other one. Table 5, row 2
shows that this masking removes a large part of the
improvement due to concatenation, showing that
the availability of negative contexts during training
does help during translation.

3.4 Length diversity
The last possible effect of concatenation that we
consider is also the most subtle. Following previ-
ous work (Morishita et al., 2017; Ott et al., 2019),
we first sort sentences by length, then splitting into
minibatches of a fixed number of tokens. This puts
sentences of similar lengths into the same mini-
batch, which improves computation efficiency as
there is less padding. However, as observed by
Morishita et al. (2017), short and long sentences
are qualitatively different, so creating a minibatch
of only short sentences or only long sentences ap-
proximates the full gradient less well than a mini-
batch of random sentences would.

With random concatenation, we again put ex-
amples of similar lengths into the same minibatch,
but each example may consist of two sentences of
very different lengths. Thus, it improves diversity
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within a minibatch while retaining efficiency. We
hypothesize that this greater length diversity is part
of the reason concatenation helps.

To evaluate this hypothesis, we try a different
batch generation strategy from the one described
above in Section 2.2. In this setup, called sep-
batch, we make two changes. First, the creation of
Dnew comes after sorting by sentence length (but
before division into minibatches), so that in Dnew,
each example comes from two similar-length ones.
Second, we create batches from Dorig and Dnew
separately so there is no mixture of short sentences
in Dorig and long sentences in Dnew.

As we can see in Table 5, removing length di-
versity (sep-batch, row 3) causes a small negative
impact of −0.2 BLEU. So length diversity may be
a contributing factor to concatenation’s improve-
ment.

3.5 Feature ablation

We have shown that all three hypotheses (position
diversity, context diversity, and length diversity)
seem to contribute to the BLEU improvement due
to concatenation. To see whether these hypotheses
exhaustively explain it, we test all three together.
First, we apply mask and sep-batch together, re-
sulting in a drop of −0.7 BLEU (Table 5, row 4).

Finally, to remove the effect of position shifting,
we additionally reset the positions of the second
sentence in every concatenated example so they
start at 0 again (reset-pos). Applying this on top
of mask and sep-batch, it brings about the largest
drop of −0.9 BLEU compared to RAND, resulting in
a final model that is very close to the baseline (28.0
vs. 27.8 in Table 4, row 4). Indeed, this model is
only significantly different from the baseline on
sk→en (p < 0.01). We conclude that these three
hypotheses completely account for the improve-
ment due to concatenation.

4 Conclusion

Random concatenation is a simple and surpris-
ingly effective data augmentation method for low-
resource NMT. Although the improvement of +1
BLEU it yields seems mysterious at first, we have
shown that it can be explained by the fact that con-
catenation increases positions, context, and length
diversity. Of these three factors, context diversity
seems to be the most important.
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