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Abstract

Sub-word segmentation is currently a stan-
dard tool for training neural machine transla-
tion (MT) systems and other NLP tasks. The
goal is to split words (both in the source and
target languages) into smaller units which then
constitute the input and output vocabularies
of the MT system. The aim of reducing the
size of the input and output vocabularies is to
increase the generalization capabilities of the
translation model, enabling the system to trans-
late and generate infrequent and new (unseen)
words at inference time by combining previ-
ously seen sub-word units. Ideally, we would
expect the created units to have some linguistic
meaning, so that words are created in a compo-
sitional way. However, the most popular word-
splitting method, Byte-Pair Encoding (BPE),
which originates from the data compression lit-
erature, does not include explicit criteria to fa-
vor linguistic splittings, nor to find the optimal
sub-word granularity for the given training data.
In this paper, we propose a statistically moti-
vated extension of the BPE algorithm and an
effective convergence criterion that avoids the
costly experimentation cycle needed to select
the best sub-word vocabulary size. Experimen-
tal results with morphologically rich languages
show that our model achieves nearly-optimal
BLEU scores and produces morphologically
better word segmentations, which allows to out-
perform BPE’s generalization in the translation
of sentences containing new words, as shown
via human evaluation.

1 Introduction

Sub-word segmentation is currently a standard tool
for machine translation systems (see e.g. the sys-
tems submitted to WMT and IWSLT evaluations
(Barrault et al., 2019; Niehues et al., 2019), as well
as systems for a wide variety of NLP tasks (see e.g.
Devlin et al. (2018) and derived works). The goal
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is to split words (both in the source and target lan-
guage) into smaller units which then constitute the
input and output of the machine translation system.
The goal is twofold: On the one hand, sub-word
splitting reduces the size of the input and output vo-
cabularies. This is specially important when using
neural models, as the size of the input layer is fixed
and thus the vocabulary size cannot be dynamically
adjusted. On the other hand, it tries to increase the
generalization capabilities of the translation model,
enabling the system to accept and/or generate new
words at translation time by combining previously
seen units. The most widespread method used for
sub-word splitting in neural machine translation is
Byte Pair Encoding (BPE), introduced by Sennrich
et al. (2016). Since then, BPE has become a default
preprocessing step for many NLP tasks.

The BPE extraction algorithm is an adaptation of
the algorithm introduced by Gage (1994) for data
compression. The main idea of this algorithm is to
replace the most frequent pair of bytes found in the
input data with a new, unseen byte. The process
is repeated until no more byte pairs are repeated
or until no free bytes are available. Sennrich et al.
(2016) took this algorithm as a starting point, con-
sidering characters instead of bytes, and joining
them using the same criterion to produce sub-word
units (more details can be found in Section 3).

One potential problem with this approach is that
the objective of the original BPE algorithm differs
from the goals for which it is being used for trans-
lation, as detailed above. While it is certainly effec-
tive for the first objective (reducing the vocabulary
size), it is arguable whether it is appropriate for the
goal of generating new words (Ataman et al., 2017;
Huck et al., 2017; Banerjee and Bhattacharyya,
2018).

Intuitively, in order to generate new words, we
would expect the sub-word units to have some lin-
guistic meaning, so that a new word can be created
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beklagen
↓

bek@@ lagen

bewertungsinstrumente
↓

bewer@@ t@@ ungsin@@ stru@@ mente

Table 1: Examples of unsatisfactory BPE splitting of
German words. The two words are segmented by break-
ing the underlying morphological structure.

in a compositional way. Being purely frequency
driven, BPE does not take this intuition into con-
sideration, as illustrated in the two German word
examples in Table 1 taken from the WMT’19 train-
ing data. For the first word, the split “be@@ klagen”
would be more satisfactory as the word is derived
from “klagen” (complain); the second word is a
compound word, with the splits “bewertungs@@ in-
strumente” (assessment instruments), separating
the two words, and “bewert@@ ung@@ s@@ instru-
ment@@ e” being morphologically more informed
alternatives.

The BPE algorithm also introduces an additional
practical problem. The original formulation does
not specify a criterion for stopping the creation of
new symbols. If the algorithm runs for an unlimited
time, it will merge all sub-words into the original
input vocabulary, which is clearly undesired. In
practice, one specifies a fixed number of merges to
be carried out, or a threshold frequency and when
the considered symbols fall below this value the
algorithm is stopped. It is however not clear how
to set these hyperparameters, although they can
have a drastic effect on translation quality depend-
ing on the translation direction, task and amount
of data (Denkowski and Neubig, 2017; Sennrich
and Zhang, 2019). Furthermore, these hyperpa-
rameters are rarely optimized, as evaluating them
constitutes a full training-evaluation cycle, which
is notoriously costly.

In this paper we introduce a new criterion for
defining sub-word units that tries to address these
shortcomings. We introduce a probability distribu-
tion over the units which in turn induces a likeli-
hood function over the corpus which we can opti-
mize. We will show how this statistical approach
can guide the extraction process towards more lin-
guistically satisfying units, while still remaining
a purely data driven approach. Having a well

founded optimization criterion also allows us to
define a data driven stopping criterion. Our pro-
posed criterion allows to select a nearly optimal
number of units using only an intrinsic measure
on the training corpus, thus dramatically reducing
experimentation costs.

2 Related work

As stated in the introduction, our starting point is
the BPE algorithm introduced in (Sennrich et al.,
2016). In this work, the authors adapt the data
compression algorithm by Gage (1994) to the task
of sub-word unit generation.

Some authors have tried to expand the extraction
of sub-word units by leveraging linguistic infor-
mation. Sánchez-Cartagena and Toral (2016) use
morphological segmentation for Finnish and com-
pare the effectiveness of these sub-word units for
the WMT evaluation. The system using this seg-
mentation approach together with other extensions
performed best in human evaluation. Huck et al.
(2017) follow a similar approach with the addi-
tion of compound splitting for translation into Ger-
man, achieving improvements of around 0.5 BLEU
points on WMT data. Ataman and Federico (2018)
propose to replace BPE with unsupervised morpho-
logical segmentation which also takes morphologi-
cal coherence into consideration during prediction
of the sub-words. Experiments run under small-
data conditions on TED Talks in five directions, all
from/to English, show systematic improvements
on Arabic, Turkish, Czech, but not on Italian and
German. Banerjee and Bhattacharyya (2018) also
use unsupervised morphological units generated
by Morfessor (Virpioja et al., 2013) as input for a
neural machine translation system and report im-
provements for low-resource conditions. Macháček
et al. (2018) follow a similar approach for transla-
tion into Czech on WMT data, but were not able
to obtains improvements over the standard BPE
approach.

An alternative model to BPE which is also
widely used was presented by Kudo (2018), which
can be considered as an extension of (Schuster and
Nakajima, 2012). They show that using a purely
statistical approach, they are able to achieve sub-
word units that are better linguistically motivated.
Similar to our approach, a probability distribution
over the sub-word units is defined with the goal
of improving the likelihood over the training data.
The strategy for defining the sub-word units differ
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in his approach and ours. While we start with sin-
gle characters and expand the units, Kudo (2018)
starts with a large set of sub-word units and prunes
iteratively until reducing the number to a desired
quantity. Segmentation probabilities are modeled
with a multinomial distribution trained via expecta-
tion maximization.

In order to improve generalization of the seg-
mentation model (i.e. performance on new words),
different regularization approaches have been pro-
posed. Kudo (2018) applies different segmenta-
tions at training time. For each parameter up-
date, segmentations for each word are sampled
from a smoothed posterior distribution computed
from the multinomial distribution. Along the same
line, Provilkov et al. (2019), proposed to generate
alternative segmentations directly with BPE, by
randomly dropping out merging rules. These ap-
proaches, as noted by Kudo (2018), can be seen as
variants of the ensemble training principle, where
many different models are trained (and finally com-
bined) on different subsets of the training data. Our
work differs with respect to (Kudo, 2018) in that
we train an observable model in a stepwise fashion,
like BPE, by maximizing the likelihood of the train-
ing data. Thus, we expect our approach to be more
efficient than Kudo (2018). Differently from Kudo
(2018) and Provilkov et al. (2019), we do not ap-
ply regularization, however nothing prevents from
applying the drop out method also to our merg-
ing rules, although we expect that our model has
already learned more general segmentation rules
than BPE.

To the best of our knowledge, there has been lit-
tle previous work on automatically determining the
number of sub-word units to produce by segmenta-
tion algorithms. Kreutzer and Sokolov (2018) inte-
grate segmentation into the NMT system and find
that the system favors character-based translation
over sub-word segmentation. Henderson (2020)
pointed out that determining vocabulary sizes for
NLP tasks is one of the few aspects that is still done
manually, and suggests it as one possible direction
for future improvement of NLP models.

3 The Byte Pair Encoding (BPE)
algorithm

The BPE training algorithm as presented in (Sen-
nrich et al., 2016) is shown in Algorithm 1. It
closely follows the original BPE for data compres-
sion algorithm by Gage (1994). The algorithm re-

ceives as input a text as a sequence of words, which
in turn are represented as sequences of characters.
The single characters constitute the initial set of
symbols. At each iteration the pair of symbols
(occurring inside words) with highest frequency is
selected and substituted with a new symbol. This
substitution is recorded as a new rule. This merging
operation is repeated for a fixed number of steps.
The algorithm returns the sorted list of merging
rules.

Algorithm 1: BPE training algorithm.
Input: training corpus S of words split into

character sequences; number N of
rules

Output: list R of N merge rules
1 R := []
2 while length(R) ≤ N do
3 (x, y) := argmax

(x,y)
{countS(x, y)}

4 rule := 〈(x, y)→ xy〉
5 S := apply(rule, S)
6 R := append(rule, R)

7 return R

Algorithm 2: BPE inference algorithm
Input: list R of merge rules; word w split

into characters
Output: segmented word

1 foreach rule ∈ R do
2 if matches(rule, w) then
3 w := apply(rule, w)
4 continue

5 return w

Algorithm 2 shows how to apply the set of rules
extracted by Algorithm 1 to a new text. It basically
looks up the ordered list of rules and applies as
many of them as possible.

4 The statistical BPE (S-BPE) algorithm

We can generalize the criterion for BPE unit selec-
tion by adjusting line 3 of Algorithm 1. Specifically,
we define a probability distribution over the BPE
units and define a maximum likelihood optimiza-
tion criterion.

Let S be a corpus of words w from a vocabulary
V , and let each word be decomposed as a sequence
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of symbols (initially characters) s from an alphabet
Σ. The log-likelihood of S can be written as:

L(S,Σ) =
∑
s∈Σ

CS,Σ(s) log Pr(s) (1)

where CS,Σ(s) is the count of symbol s in corpus
S, in which words are segments according to Σ,
i.e.:

CS,Σ(s) =
∑
w∈V

CS(w)CΣ(s, w) (2)

Algorithm 1 initializes Σ with single characters
(Σ0). Then, at each step n of training, it selects
the pair of symbols with the highest frequency or,
equivalently, joint probability:

(x, y) = argmax
x,y∈Σn−1

pn−1(x, y) (3)

thus defining the new alphabet1

Σn = {xy} ∪ Σn−1 (4)

where the probability distribution pn−1 is defined
over the elements of the alphabet Σn−1.

From a statistical modeling perspective, however,
we would be more interested in rules for which the
training data likelihood increases, i.e.:

L(S,Σn) > L(S,Σn−1) (5)

It can be shown (see the Appendix for a deriva-
tion) that for any pair of symbols x, y ∈ Σn−1, the
following inequality holds, which provides a lower
bound for the increase in likelihood:

L(S,Σn) >L(S,Σn−1)

+ CS,Σn(xy) log
pn(xy)

pn(x)pn(y)
,

(6)

where as usual Σn includes xy as given in Equa-
tion 4. Intuitively we can interpret the rightmost
term as the likelihood of each word that contains
the bigram xy being increased by merging the two
symbols2. It also provides a good tie-in to our lin-
guistic intuition about sub-word units: if two units
appear only in combination with each other, they
probably do not have linguistic meaning on their
own. Thus the probability mass will shift to the
probability of the joint symbol, and the probability

1Notice that by implementing Σn as an ordered list (stack),
we get the list of rules R of Algorithm 1 and Algorithm 2.

2This is similar to the pointwise mutual information crite-
rion used to detect collocations (Church and Hanks, 1990).

of the single elements will be greatly reduced. On
the other hand, if x or y do have linguistic mean-
ing, e.g. verb suffixes, they are likely to have a high
probability of appearing in the text, and thus the
gain from joining them together is not as big.

The above inequality thus suggests the new up-
date rule:

(x, y) = argmax
(x,y):Σn={xy}∪Σn−1

CS,Σn(xy)×[
log pn(xy)− log pn(x)− log pn(y)

]
.

(7)
Note an important difference between Equa-

tions (3) and (7): In (3) we use a bigram probability
pn−1(x, y) computed on Σn−1×Σn−1, while in (7)
we use a unigram probability pn(xy) computed on
Σn. The two probabilities are expected to be close
but not the same.

Note that in practice, in the course of the algo-
rithm the count for a unit may drop to 0 (due to
all the occurrences being combined with another
unit to form a new pair), thus producing a proba-
bility of 0. In order to avoid computation of log 0
in Equation (7) we use Laplace smoothing for the
computation of all probabilities.

4.1 Stopping criterion

One open question when defining BPE units is how
many operations to carry out. As shown in Algo-
rithm 1, this number is a parameter of the extraction
algorithm, and there is no defined way to select it.
The number of units has an important effect on the
quality of the translation system (see Section 5), but
selecting the optimal number involves training and
testing a translation system for each candidate, at
a high computational cost. Thus, normally system
builders resort to previous experience and select a
number of units that has worked well on previous
tasks, although the performance can be very task
dependent.

With the statistical formulation of BPE, for each
operation we can compute a corresponding (approx-
imate) increase in likelihood on the training corpus
through Equation 6. Looking at the evolution of
the likelihood, we can define a criterion of when to
stop defining new units. Specifically, let us define
δi as the (approximate) increase in likelihood when
defining the i-th BPE unit. We will stop the algo-
rithm, and thus define the number of unitsN , when
δN ≤ kδ1, with k < 1. In order to improve the
robustness of the criterion, in practice it is better to
average each δi with the previous M values.
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Tokens
Language Sentences English Foreign

German 5.9M 121.0M 114.1M
Romanian 612.4K 15.9M 16.2M
Latvian 4.5M 66.8M 56.3M
Estonian 879.9K 22.7M 17.0M
Turkish 207.7K 5.1M 4.5M
Finnish 2.6M 61.1M 43.9M

Table 2: Training corpora statistics. Tokenization was
carried out using the Moses tokenizer.

Of course, one could argue that we just substi-
tuted one parameter of the algorithm with another,
which also has to be selected externally. However,
as we will show in Section 5, the same value ob-
tains nearly optimal results for most language arcs.

Another possibility that could be considered for
defining the number of operations is to measure the
evolution of the likelihood on an external develop-
ment corpus, and stop the iterations when the like-
lihood decreases. We implemented this approach,
but found that the likelihood on the development
corpus increases monotonically for each new unit
extracted (up to the maximum number we allowed
for the experiments), and thus it does not provide a
useful stopping criterion for the algorithm.

5 Experimental results

We conducted experiments for machine translation
in a variety of languages, focusing on morpholog-
ically rich ones, using the data available from the
latest WMT evaluation campaign where the lan-
guage pair was used. We include results for Fin-
ish (Fi), German (De) [WMT’19], Estonian (Et),
Turkish (Tr) [WMT’18], Latvian [WMT’17] and
Romanian (Ro) [WMT’16], all paired with En-
glish (En) and for both translation directions. We
used all available corpora for translation model
training, except ParaCrawl. Corpora statistics can
be found in Table 2. It can be seen that we experi-
ment with a wide variety of corpus sizes, varying
between 200K sentences up to nearly 6 million.

For BPE training, the corpora were subsampled
to 1M sentences for BPE training3, and a com-
mon BPE model was trained for the source and
target languages (which also share the same em-

3Experiments with the standard BPE training did not show
any difference in performance between using the downsam-
pled corpus or the full corpus.

bedding matrix). Experiments were carried out
using Sockeye (Hieber et al., 2017) using mostly
the default settings, except for a transformer ar-
chitecture consisting of 20 encoder layers and 2
decoder layers (Hieber et al., 2020). The corpora
were tokenized using the Moses tokenizer.

5.1 Analysis of BPE segmentation
We will start by focusing on the analysis of the
produced sub-word units. Table 3 shows some
differences between the statistical approach and
the standard approach on words found in the Ger-
man training data. The first example clearly shows
how BPE does not use any linguistic information,
even splitting the pair of characters ‘ue’, which
is an alternative form of the letter ‘ü’. In contrast,
S-BPE produces a much more morphologically mo-
tivated split by separating the ‘s’ at the end, which
denotes genitive case. In the next two examples,
S-BPE splits the words as derived forms of other
words (‘stehenden’ and ‘laeufige’, respectively). In
the last two examples, S-BPE correctly splits com-
pound words into individual components. For none
of these cases the standard BPE finds a linguisti-
cally satisfying sub-word decomposition. However
note that although S-BPE improves over BPE, a
more refined morphological splitting would still be
possible for the last two examples.

Revisiting the examples of Table 1, we see that
“beklagen” is now split into “be@@ kla@@ gen”, and
“bewertungsinstrumente” into “bewer@@ tungs@@ in-
strumente”, which do not exactly correspond to the
splitting points suggested in Section 1, but are more
satisfactory than the BPE segmentation.

In order to quantify these improvements we use
the data provided by the Morpho Challenge 2010
shared task (Kurimo et al., 2010). As part of the
data of this evaluation, a morphological segmen-
tation of words was provided for English, Finnish
and Turkish. We applied the BPE and S-BPE mod-
els to the development dataset, and computed the
F1-score of the produced segmentations, using the
morphological segmentation as reference. For BPE
segmentation, we selected the optimal segmenta-
tion as measured by the BLEU score on the trans-
lations of the WMT test data (see also Section 5.3).
The results4 are shown in Table 4. As English is
a common language for all investigated language
arcs, we provide results for the different language

4Note that these scores are for comparison of BPE and
S-BPE only, and will be clearly outperformed by dedicated
systems for the task.
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Word BPE S-BPE

ungluecks unglu@@ ecks unglueck@@ s
anstehenden anstehenden an@@ stehenden
vorlaeufige vorlaeufi@@ ge vor@@ laeufige
gefangengenommen gefan@@ gen@@ genommen gefangen@@ genommen
finanzdienstleistungen finanzdienstleistungen finanz@@ dienstleistungen

Table 3: Segmentation examples of German words: S-BPE produces consistent segmentations of single and
compound words, while BPE breaks in some cases the morphological structure of words.

Language Arc BPE S-BPE

English

→ Fi 23.81 24.68
→ De 25.46 24.82
→ Ro 23.07 26.96
→ Lv 20.84 25.74
→ Et 20.83 23.09
→ Tr 22.47 25.67

Finnish → En 12.14 14.57
Turkish → En 23.00 22.90

Table 4: Morpho Challenge results (F1 score).

pairs. It can be seem that S-BPE produces more
linguistically motivated splits of English words in
five out of six cases. For Finnish, S-BPE also pro-
duces better linguistic units, while for Turkish the
F1 score is nearly identical. In light of these results
we can affirm that in most cases S-BPE produces
more linguistically motivated units than standard
BPE.

5.2 Human evaluation

In the previous section we showed how S-BPE
produces more linguistically motivated units. Of
course, the main question is if these units help the
system produce better translations. We hypothesize
that S-BPE affects mainly single words, specially
unknown words or words rarely seen in training
(e.g. morphological variations of known words),
and this effect is hardly captured by BLEU. There-
fore we focus on human evaluation first and will
present results with BLEU in the next section.

We carried out a human evaluation on English-
German and English-Turkish (both directions) with
a subset of test sentences where at least one un-
known word was found. BLEU did not show sig-
nificant differences between BPE and S-BPE on
this subset of sentences. A blind test was carried
out with 7 members of our department, all native
speakers of Turkish (1) or German (6) and experts

in NLP.
The evaluators were shown a source sentence,

together with a highlighted word, and the output of
the BPE and S-BPE systems. They had to answer
two questions: which system produced a better
translation of the highlighted word? And, which
system produced a better translation of the sentence
overall? Table 5 shows examples of the German-to-
English test sentences highlighting the translations
of the unknown German word inside the transla-
tions of the sentence, as produced with BPE and
S-BPE. (For completeness we also show the seg-
mentation of the unknown German word.)

The results of the human evaluation are shown
on Table 6. It can be seen that when BPE and S-
BPE produce different translations for the words
being evaluated, in the majority of cases human
graders prefer the translations produced with S-
BPE. In particular, for language arcs involving Ger-
man, the percentage of sentences for which trans-
lations based on S-BPE are preferred over transla-
tions based on BPE is 41.3% vs. 23.3% and 41.5%
vs. 29.3%. These results are statistical significant
(using a paired proportion test, with p < 0.01). It
is known that German has a high lexical prolificity,
with a high number of morphological variations as
well as compound words. In fact, out of 2 000 sen-
tences of the De→En test set 736 (36.8%) contain
unknown words. These results confirm the supe-
rior generalization of S-BPE over BPE, both at the
word and sentence levels.

For Turkish we also observe a preference for the
S-BPE translations of unknown words, as well as a
general preference for S-BPE sentences for English
to Turkish translation, with no clear winner for the
reverse direction. The statistical significance of
these results is lower than for German, clearly due
to the smaller amount of evaluated sentences.

5.3 Translation results

In this section we present global translation results,
evaluated using BLEU scores. Table 7 compares
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Segmentation Sentence

Source Wegen der Umstellung auf den neuen Abgas- und Verbrauchsprüfs-
tandard WLTP gebe es Produktionsausfälle bei Audi, sagte Schot der
"Heilbronner Stimme".

Reference After conversion to the new emissions and consumption standard
WLTP, there were production losses at Audi, Schot told the ‘Heilbronner
Stimme’.

BPE verbrau@@ ch@@ spru@@ ef@@
standard

Due to the changeover to the new exhaust and exhaust test standard
WLTP there were production downs at Audi, said the "Heilbronner
Stimme".

S-BPE verbrauch@@ spruef@@
standard

Due to the changeover to the new WLTP exhaust and consumption
testing standard, production was lost at Audi, Schot said "Heilbronner
Voice".

Source Es gibt keine Abbiegespur auf den Haaße-Hügel.
Reference There is no turning lane on Haaße Hügel.
BPE ab@@ bi@@ e@@ ges@@ pur There is no bending on the Haasse Hill.
S-BPE ab@@ bie@@ ge@@ spur There is no turning lane on the Haasse hill.

Source In der Haushaltwarenabteilung im Obergeschoss kippt der Geflügelte
einen mit Espresso zubereiteten Cocktail namens "Golden Eye", passend
zum Festival-Award.

Reference In the household goods department on the upper floor, the winged man
tips down a cocktail made with espresso called "Golden Eye", which is
suited to the festival award.

BPE haushalt@@ war@@ enab@@
teilung

In the household section on the upper floor, the poultry tick a cocktail
prepared with espresso called "Golden Eye", in line with the festival
award.

S-BPE haushalt@@ waren@@
abteilung

In the household goods department on the upper floor the poultry tilts
a cocktail prepared with espresso called "Golden Eye", matching the
festival award.

Source Der 46-jährige Fahrer des Notarztautos hatte am Samstagnachmittag
mit Blaulicht und Martinshorn eine rote Ampel überfahren.

Reference The 46 year old driver of the ambulance ran a red light on Saturday
afternoon with the blue lights flashing and siren sounding.

BPE not@@ arz@@ tau@@ tos The 46-year-old driver of the notary car had passed a red light on
Saturday afternoon with the blue light and Martinshorn.

S-BPE no@@ tar@@ z@@ t@@ autos The 46-year-old driver of the emergency car had overrun a red traffic
light on Saturday afternoon with blue-light and Martinshorn.

Table 5: Translation examples showing the impact of morphologically wrong segmentation by BPE and how
statistical BPE avoids such errors. Notice that the words causing the errors were not observed at training time.

Better word Better sentence
Arc BPE S-BPE BPE S-BPE

En→ De 10.0% 21.3%∗∗ 23.3% 41.3%∗∗

De→ En 17.1% 26.3%∗∗ 29.3% 41.5%∗∗

En→ Tr 11.8% 23.5% 11.8% 35.3%∗

Tr→ En 18.9% 39.6%∗ 30.2% 30.2%

Table 6: Results of the human evaluation. The numbers
indicate the proportion of wins by each system (ties
are omitted from the table for brevity). Evaluated sen-
tences, in top-down order, were 150, 369, 34, and 53,
respectively. Statistical significance, measured with a
paired proportion test, is reported for p < 0.01 (**) and
p < 0.05 (*).

the BLEU scores for the different language pairs
using BPE for a range of sub-word unit numbers
(from 4K to 96K). One first observation is that the
number of units has an important effect on trans-
lation performance. We can see that the effect can
be as much as 2 BLEU points (Et → En). The
optimal number of operations also varies greatly
between languages, with En→ Fi obtaining opti-
mum performance at 96K (although without much
variability), while other arcs like e.g. En→ Tr hav-
ing the best performance at just 4K operations. If
we conduct a similar grid search for S-BPE, we can
draw similar conclusions about the optimal number
of operations, noting that the effect of choosing an
incorrect number operations is even more impor-
tant. The full results can be found in the Appendix.

Table 7 also shows the results of using the stop-
ping criterion described in Section 4.1, with stop-



270

BPE

Arc 4K 8K 16K 32K 48K 64K 96K S-BPE (#ops)

En→ Fi 20.79 20.95 20.89 20.92 20.93 20.90 21.08 20.92? (7 269)
Fi→ En 23.33 23.63 23.71 22.94 22.95 22.89 23.17 23.86? (7 719)
En→ De 36.93 37.62 37.60 38.00 38.38 38.15 38.17 37.46 (5 864)
De→ En 34.43 34.35 35.12 35.22 34.71 35.04 34.80 34.84 (5 704)
En→ Ro 23.98 24.08 23.78 22.88 22.85 22.88 22.77 23.92? (7 169)
Ro→ En 33.18 33.45 32.63 31.15 31.20 31.08 31.52 32.73 (7 709)
En→ Lv 17.27 17.41 17.72 17.26 16.86 16.86 17.11 17.35? (6 819)
Lv→ En 18.26 18.50 18.59 18.50 18.32 18.32 18.59 18.65? (7 334)
En→ Et 17.28 16.90 16.83 15.98 15.92 15.71 16.17 17.18? (7 039)
Et→ En 22.17 21.95 21.76 20.90 20.07 20.03 20.51 22.06? (7 464)
En→ Tr 13.00 12.69 12.00 12.02 11.77 11.73 11.47 12.89? (8 384)
Tr→ En 17.66 17.85 17.19 16.80 16.98 17.04 16.60 17.84? (9 114)

Table 7: Results for different language pairs. For BPE we use the number of operations given in the head of the
table (4K, 8K, etc.), for S-BPE we use early stopping (with k = 0.002 and averaging the last 5 iterations). The
symbol ? marks systems for which S-BPE is not significantly different than the best BPE system. S-BPE results in
bold are within ±0.4 BLEU of the optimal BPE result.

ping parameter set to k = 0.002 and averaging over
the last 5 iterations. These values were obtained
empirically by doing a grid search over a small set
of values and languages. It can be seen that the
results obtained for most translation directions are
in the range of the optimal result obtained by BPE,
with many results not being statistical significantly
different, as computed with the bootstrap method
(Koehn, 2004), with 99% confidence interval. One
can also consider that there is additional variability
due to random initialization of the NMT optimiza-
tion algorithm, in our experience in the range of
±0.4 BLEU. We also marked the systems within
this range in the table.5

It is also worth noting that for the language arcs
where the stopping criterion is outperformed by the
optimized baseline BPE extraction, the difference
in performance is smaller than the difference due
to choosing an incorrect number of operations on
the standard BPE approach.

In conclusion, we do not see a clear difference
in BLEU scores with S-BPE with respect to the
standard BPE approach, using the optimal number
of operations. However, as Sections 5.1 and 5.2
show, we obtain focused improvements on single
words, which improves the translation quality as

5We did not do an extensive search for random initializa-
tions for this investigations due to the high number of experi-
ments involved.

perceived by human judges.

6 Conclusions and future work

We introduced a statistical extension of BPE extrac-
tion. It introduces a well-founded objective for unit
selection, which also allows the definition of a sta-
tistically motivated stopping criterion. Using this
approach we achieve nearly optimal machine trans-
lation performance as measured with BLEU, while
at the same time producing more linguistically mo-
tivated units. This leads to better translations of
single words, which increases the translation qual-
ity as perceived by human judges, especially in the
case of sentences containing unseen words. Using
the stopping criterion we approximate the optimal
selection of number of units, without the need to
perform the costly optimization required by BPE,
involving a full training-evaluation cycle for each
tested number of operations.

Regarding future work, we observe that the prob-
ability distributions defined for our approach are
closely related to those used for n-gram language
models. Thus, smoothing methods can be applied,
which can enhance the robustness of the method
for unseen events, which opens a wide variety of
possible extensions of this work.

The code is available from https:
//github.com/amazon-research/
statistical-byte-pair-encoding.

https://github.com/amazon-research/statistical-byte-pair-encoding
https://github.com/amazon-research/statistical-byte-pair-encoding
https://github.com/amazon-research/statistical-byte-pair-encoding
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Appendix

A Full derivation of likelihood increase

Lemma Given a, b, c such that a > 0, b > a and 0 < c < b we have:

a− c

b− c
<

a

b
. (1)

Proof. By assumption denominators are positive, hence we can rearrange (1) as: b(a−c) < a(b−c). By
assumption, a(b−c) < ab from which we get b(a−c) < ab and (a−c) < a which is true by assumption.�

Define the count of a sub-word unit s ∈ Σ for a corpus S and a sub-word vocabulary Σ as CS,Σ(s).
The likelihood function is then defined as

L(S,Σ) =
∑
s∈Σ

CS,Σ(s) log p(s) (2)

We are interested in the increase in likelihood at step n

∆Ln(S) = L(S,Σn)− L(S,Σn−1) . (3)

When adding a new rule 〈(x, y)→ xy〉 in step n of the algorithm, thus defining Σn, we can express the
likelihood increase as1

∆Ln(S) =
∑

s∈Σn−1\{x,y}

(
CS,Σn(s) log pn(s)− CS,Σn−1(s) log pn−1(s)

)

+
∑

s∈{x,y}

(
CS,Σn(s) log pn(s)− CS,Σn−1(s) log pn−1(s)

)
+ CS,Σn(xy) log pn(xy)

(4)

We note that for s ∈ Σn−1 \ {x, y}

CS,Σn(s) = CS,Σn−1(s) and pn(s) > pn−1(s) (5)

as the total number of observations (denominator of pn) shrinks after combining two symbols. Thus, for
the first term in equation 4 we have∑

s∈Σn−1\{x,y}

(
CS,Σn(s) log pn(s)− CS,Σn−1(s) log pn−1(s)

)
> 0 . (6)

This quantity is expected to be small, specially when the number of produced symbols increases.
Next, let us note that for the counts of the units involved in the new rule, we have

CS,Σn(x) = CS,Σn−1(x)− CΣn(xy)

CS,Σn(y) = CS,Σn−1(y)− CΣn(xy)
(7)

(the equation holds for both x and y because the CΣn(xy) is added to the total amount of units).
For the probability of x and y we are reducing the occurrences and the total number of events by the

same positive amount, which is lower that the sample size. Hence, by subtracting the same counts from
the sample size and from the previous Lemma we can derive:

pn(x) =
CS,Σn(x)

CS,Σn(·)
=

CS,Σn−1(x)− CS,Σn(xy)

CS,Σn−1(·)− CS,Σn(xy)

<
CS,Σn−1(x)

CS,Σn−1(·)
= pn−1(x)

(8)

1As some counts may decrease to 0 when defining a new pair, we use the convention 0 log 0 = 0.
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and similarly for y.
Using (6) and (8) in (4) we obtain

∆Ln(S) >
∑

s∈{x,y}

(
CS,Σn(s) log pn(s)− CS,Σn−1(s) log pn(s)

)
+ CS,Σn(xy) log pn(xy)

(9)

and using the count relations from (7) we arrive at

∆Ln(S) > CS,Σn(xy) [log pn(xy)− log pn(x)− log pn(y)] . (10)
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B Additional S-BPE results

(a) English-to-German

# ops BPE S-BPE

4K 36.93 36.47
8K 37.62 37.11
16K 37.60 37.04
32K 38.00 37.59
48K 38.38 36.71
64K 38.15 37.90
96K 38.17 37.88

(b) German-to-English

# ops BPE S-BPE

4K 34.43 33.78
8K 34.35 34.38
16K 35.12 35.56
32K 35.22 34.84
48K 34.71 35.18
64K 35.04 35.17
96K 34.80 34.60

(c) English-to-Romanian

# ops BPE S-BPE

4K 23.98 24.09
8K 24.08 24.16
16K 23.78 23.64
32K 22.88 22.14
48K 22.85 19.09
64K 22.88 17.85
96K 22.77 16.85

(d) Romanian-to-English

# ops BPE S-BPE

4K 33.18 32.82
8K 33.45 32.80
16K 32.63 32.70
32K 31.15 29.63
48K 31.20 24.78
64K 31.08 22.80
96K 31.52 21.58

(e) English-to-Latvian

# ops BPE S-BPE

4K 17.27 16.86
8K 17.41 17.11
16K 17.72 17.26
32K 17.26 17.26
48K 16.86 16.86
64K 16.86 16.86
96K 17.11 17.11

(f) Latvian-to-English

# ops BPE S-BPE

4K 18.26 18.32
8K 18.50 18.59
16K 18.59 18.50
32K 18.50 18.33
48K 18.32 18.32
64K 18.32 18.32
96K 18.59 18.59

(g) English-to-Estonian

# ops BPE S-BPE

4K 17.28 17.62
8K 16.90 17.26
16K 16.83 17.07
32K 15.98 15.91
48K 15.92 14.21
64K 15.71 12.32
96K 16.17 11.09

(h) Estonian-to-English

# ops BPE S-BPE

4K 22.17 21.91
8K 21.95 21.79
16K 21.76 21.83
32K 20.90 20.80
48K 20.07 17.95
64K 20.03 15.58
96K 20.51 13.58

(i) English-to-Turkish

# ops BPE S-BPE

4K 13.00 13.28
8K 12.69 12.93
16K 12.00 12.05
32K 12.02 7.62
48K 11.77 6.30
64K 11.73 5.75
96K 11.47 5.25

(j) Turkish-to-English

# ops BPE S-BPE

4K 17.66 17.72
8K 17.85 17.87
16K 17.19 17.25
32K 16.80 11.83
48K 16.98 9.19
64K 17.04 8.24
96K 16.60 7.61

(k) English-to-Finnish

# ops BPE S-BPE

4K 20.79 20.60
8K 20.95 21.03

16K 20.89 20.82
32K 20.92 20.56
48K 20.93 21.00
64K 20.90 20.13
96K 21.08 20.63

(l) Finnish-to-English

# ops BPE S-BPE

4K 23.33 23.57
8K 23.63 23.75
16K 23.71 23.49
32K 22.94 23.05
48K 22.95 22.92
64K 22.89 21.95
96K 23.17 20.21

Table 7: Translation results for different language pairs with BPE and S-BPE, varying the number of operations. In
bold, the best result for each language arc.


