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Abstract

An emerging line of research in Explainable
NLP is the creation of datasets enriched with
human-annotated explanations and rationales,
used to build and evaluate models with step-
wise inference and explanation generation ca-
pabilities. While human-annotated explana-
tions are used as ground-truth for the infer-
ence, there is a lack of systematic assessment
of their consistency and rigour. In an attempt
to provide a critical quality assessment of Ex-
planation Gold Standards (XGSs) for NLI,
we propose a systematic annotation method-
ology, named Explanation Entailment Verifica-
tion (EEV ), to quantify the logical validity of
human-annotated explanations.

The application of EEV on three mainstream
datasets reveals the surprising conclusion that
a majority of the explanations, while appear-
ing coherent on the surface, represent logi-
cally invalid arguments, ranging from being in-
complete to containing clearly identifiable log-
ical errors. This conclusion confirms that the
inferential properties of explanations are still
poorly formalised and understood, and that ad-
ditional work on this line of research is nec-
essary to improve the way Explanation Gold
Standards are constructed.

1 Introduction

Explanation Gold Standards (XGSs) are emerging
as a fundamental enabling tool for step-wise and
explainable Natural Language Inference (NLI). Re-
sources such as WorldTree (Xie et al., 2020; Jansen
et al., 2018), QASC (Khot et al., 2020), among oth-
ers (Wiegreffe and Marasović, 2021; Thayaparan
et al., 2020b; Bhagavatula et al., 2020; Camburu
et al., 2018) provide a corpus of linguistic evidence
on how humans construct explanations that are per-
ceived as plausible, coherent and complete.

Designed for tasks such as Textual Entailment
(TE) and Question Answering (QA), these refer-

e-SNLI

Premise: A man in an orange vest leans over a pickup truck.
Hypothesis: A man is touching a truck.
Label: entailment

Explanation: 
Man leans over a pickup truck implies that he is touching it.

Worldtree

Question: Which of the following characteristics would
best help a tree survive the heat of a forest fire?
[A] large leaves [B] shallow roots 
[*C] thick bark [D] thin trunks

Explanation: 
Protecting something means preventing harm.
Fire causes harm to trees, forests, and other living things.
Thickness is a measure of how thick an object is.
A tree is a kind of living thing.

QASC

Question: Differential heating of air can be harnessed for
what?
[*A] electricity production [B] erosion prevention 
[C] transfer of electrons [D] reduce acidity of food

Explanation:
Differential heating of air produces wind.
Wind is used for producing electricity.

Figure 1: Does the answer logically follow from the
explanation? While step-wise explanations are used
as ground-truth for the inference, there is a lack of as-
sessment of their consistency and rigour. We propose
EEV , a methodology to quantify the logical validity
of human-annotated explanations.

ence datasets are used to build and evaluate models
with step-wise inference and explanation genera-
tion capabilities (Valentino et al., 2021; Cartuyvels
et al., 2020; Kumar and Talukdar, 2020; Rajani
et al., 2019). While these explanations are used
as ground-truth for the inference, there is a lack
of systematic assessment of their consistency and
rigour, introducing inconsistency biases within the
models.

This paper aims to provide a critical quality as-
sessment of Eplanation Gold Standards for NLI
in terms of their logical inference properties. By
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systematically translating natural language explana-
tions into corresponding logical forms, we induce
a set of recurring logical violations which can then
be used as testing conditions for quantifying quality
and logical consistency in the annotated explana-
tions. More fundamentally, the paper reveals the
surprising conclusion that a majority of the explana-
tions present in explanation gold standards contain
one or more major logical fallacies, while appear-
ing to be coherent on the surface. This study reveals
that the inferential properties of explanations are
still poorly formalised and understood.

The main contributions of this paper can be sum-
marised as:

1. Proposal of a systematic methodology, named
Explanation Entailment Verification (EEV ),
for analysing the logical consistency of NLI
explanation gold-standards.

2. Validation of the quality assessment method-
ology for three contemporary and mainstream
reference XGSs.

3. The conclusion that most of the annotated
human-explanations in the analysed samples
represent logically invalid arguments, ranging
from being incomplete to containing clearly
identifiable logical errors.

2 Related Work

An emerging line of research in Explainable NLP
is focused on the creation of datasets enriched
with human-annotated explanations and rationales
(Wiegreffe and Marasović, 2021). These resources
are often adopted as Explanation Gold Standards
(XGSs), providing additional supervision for train-
ing and evaluating explainable models capable of
generating natural language explanations in support
of their predictions (Valentino et al., 2021, 2020;
Kumar and Talukdar, 2020; Cartuyvels et al., 2020;
Thayaparan et al., 2020a; Rajani et al., 2019).

XGSs are designed to support Natural Language
Inference, asking human-annotators to transcribe
the reasoning required for deriving the correct pre-
diction (Thayaparan et al., 2020b). Despite the pop-
ularity of these datasets, and their application for
measuring explainability on tasks such as Textual
Entailment (Camburu et al., 2018), Multiple-choice
Question Answering (Xie et al., 2020; Jhamtani
and Clark, 2020; Khot et al., 2020; Jansen et al.,
2018), and other inference tasks (Wang et al., 2020;

Ferreira and Freitas, 2020b,a; Bhagavatula et al.,
2020), little has been done to provide a clear un-
derstanding on the nature and the quality of the
reasoning encoded in the explanations.

Previous work on explainability evaluation has
mainly focused on methods for assessing the qual-
ity and faithfulness of explanations generated by
deep learning models (Camburu et al., 2020; Subra-
manian et al., 2020; Kumar and Talukdar, 2020;
Jain and Wallace, 2019; Wiegreffe and Pinter,
2019). Our work is related to this research, but fo-
cuses instead on the resources on which explainable
models are trained. In that sense, this paper is more
aligned to gold standard evaluation methods, which
aim to design systematic approaches to qualify the
content and the inference capabilities involved in
mainstream NLP benchmarks (Lewis et al., 2021;
Bowman and Dahl, 2021; Schlegel et al., 2020;
Ribeiro et al., 2020; Pavlick and Kwiatkowski,
2019; Min et al., 2019). However, to the best of
our knowledge, none of these methods have been
adopted to provide a critical assessment of human-
annotated explanations present in XGSs.

3 Explanation Gold Standards

Given a generic classification task T , an Explana-
tion Gold Standard (XGS) is a collection of dis-
tinct instances of T , XGS(T ) = {I1, I2, . . . , In},
where each element of the set, Ii = {Xi, si, Ei},
includes a problem formulation Xi, the expected
solution si for Xi, and a human-annotated explana-
tion Ei.

In general, the nature of the elements in a XGS
can vary greatly according to the task T under con-
sideration. In this work, we restrict our investiga-
tion to Natural Language Inference (NLI) tasks,
such as Textual Entailment and Question Answer-
ing, where problem formulation, expected solution,
and explanations are entirely expressed in natural
language.

For this class of problems, the explanation is
typically a composition of sentences, whose role is
to describe the reasoning required to arrive at the
final solution. As shown in the examples depicted
in Figure 1, the explanations are constructed by hu-
man annotators transcribing the commonsense and
world knowledge necessary for the correct answer
to hold. Given the nature of XGSs for NLI, we
hypothesise that a human-annotated explanation
represents a valid set of premises from which the
expected solution logically follows.
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Multiple-choice Question Answering

XGS

Question: Differential heating of air can
be harnessed for what?
[*A] electricity production 
[B] erosion prevention 
[C] transfer of electrons 
[D] reduce acidity of food

Explanation:
Differential heating of air produces wind.
Wind is used for producing electricity.

Differential heating of air
produces wind.
Wind is used for producing
electricity.

Differential heating of air can
be harnessed for electricity
production.

Premises (P)

Conclusion (c)

Φ

ψ

Formulas

Entailment?

Valid and non redundant

Valid, but redundant
premises

Missing plausible
premise

Logical error

No discernible argument

Textual Entailment

XGS

Premise: A man in an orange vest leans
over a pickup truck.
Hypothesis: A man is touching a truck.
Label: entailment

Explanation: 
Man leans over a pickup truck implies
that he is touching it.

A man in an orange vest leans
over a pickup truck.
Man leans over a pickup truck
implies that he is touching it.

A man is touching a truck.

Φ

ψ

Formulas

Entailment?

Valid and non redundant

Valid, but redundant
premises

Missing plausible
premise

Logical error

No discernible argument

(1) Problem definition, (2) formalisation, (3) verification.

(1)

(2)

(3)

(3)

(2)

(1)

Premises (P)

Conclusion (c)

Figure 2: Overview of the Explanation Entailment Verification (EEV ) applied to different NLI problems. EEV
takes the form of a multi-label classification problem where, for a given NLI problem, a human annotator has to
qualify the validity of the inference process described in the explanation through a pre-defined set of classes.

In order to validate or reject this hypothesis, we
design a methodology aimed at evaluating XGSs in
terms of logical entailment, quantifying the extent
to which human-annotated explanations actually
entail the final answer.

4 Explanation Entailment Verification

We present a methodology, named Explanation En-
tailment Verification (EEV ), aimed at quantifying
and assessing the quality of human-annotated ex-
planations in XGS for NLI tasks, in terms of their
logical inference properties.

To this end, we design an annotation frame-
work that takes the form of a multi-label classi-
fication problem defined on a XGS. Specifically,
the goal ofEEV is to label each element in a XGS,
Ii = {Xi, si, Ei}, using one of a predefined set of
classes qualifying the validity of the inference pro-
cess described in the explanation Ei.

Figure 2 shows a schematic representation of
the annotation pipeline. One of the challenges in-
volved in the design of a standardised methodol-
ogy for EEV is the formalisation of an annotation
task that is applicable to NLI problems with differ-
ent shapes, such as Textual Entailment (TE) and
Multiple-choice Question Answering (MCQA). To
minimise the ambiguity in the annotation and make
it independent of the specific NLI task, we define
a methodology composed of three major steps: (1)
problem definition; (2) formalisation; and (3) veri-
fication.

In the problem definition step, each example Ii in

the XGS is translated into an entailment form (P |=
c), identifying a set of sentences P representing the
premises for the entailment, and a single sentence c
representing its conclusion. As illustrated in Figure
2, this step defines an entailment problem with a
single surface form that allows abstracting from the
NLI task under investigation.

In the formalisation step, the sentences in P
and c are translated into a logical form (Φ |= ψ).
Specifically, the formalisation is performed using
event-based semantics, in which verbs correspond
to event-types, and their objects to semantic roles
(additional details on the formalism are provided
in section 4.3). This step aims to minimise the am-
biguity in the interpretation of the meaning of the
sentences, supporting the annotators in the identifi-
cation of logical errors and gaps in the explanations,
and maximise the inter-annotator agreement in the
downstream verification task.

The final step corresponds to the actual multi-
label classification problem. Specifically, the anno-
tators are asked to verify whether the formalised
set of premises Φ entails the conclusion ψ (Φ |= ψ)
and to classify the explanation in the correspond-
ing example Ii = {Xi, si, Ei} selecting one of the
following classes: (1) Valid and non redundant; (2)
Valid, but redundant premises; (3) Missing plausi-
ble premise; (4) Logical error; (5) No discernible
argument. The classes are mutually exclusive: each
example can be assigned to one and only one label.

After EEV is performed for each instance in
the dataset, the frequencies of the classification
labels can be adopted to estimate and evaluate the
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overall entailment properties of the explanations in
the XGS under consideration.

4.1 Problem definition
The problem definition step consists in the identi-
fication of the sentences in Ii = {Xi, si, Ei} that
will compose the set of premises P and the conclu-
sion c for the entailment problem P |= c.

Here, we describe the procedure adopted for
translating a specific NLI task into the entail-
ment problem of interest given its original sur-
face form. In particular, we employ two different
translation procedures for Textual Entailment (TE)
and Multiple-choice Question Answering (MCQA)
problems.

Textual Entailment (TE). For a TE task, the
problem formulation Xi is generally composed of
two sentences, p and h, representing a premise and
a hypothesis (see e-SNLI in figure 1). Each exam-
ple in a TE task can be classified using one of the
following labels: entailment, neutral, and contra-
diction (Bowman et al., 2015). In this work, we
focus on examples where the expected solution si is
entailment, implying that the hypothesis h is a con-
sequence of the premise p. Therefore, to define the
entailment verification problem, we simply include
the premise p in P and consider the hypothesis h as
a the conclusion c. For this class of problems, the
explanation Ei describes additional factual knowl-
edge necessary for the entailment p |= h to hold
(Camburu et al., 2018). Specifically, the sentences
in Ei can be interpreted as a further set of premises
for the entailment verification problem and are in-
cluded in P .

Multiple-choice Question Answering (MCQA).
In the case of MCQA, Xi is typically composed
of a question Qi = {c1, . . . , cn, q}, and a set
of mutually exclusive candidate answers Ai =
{a1, . . . , am} (see QASC and Worldtree in figure
1). In this case, the expected label si corresponds
to one of the candidate answers in Ai (Jansen et al.,
2018; Khot et al., 2020). Qi can include a set of in-
troductory sentences c1, . . . , cn acting as a context
for the question q. We consider each sentence ci in
the context as a premise for q and include it in P .
Similarly to TE, we interpret the explanationEi for
a MCQA example as a set of premises that entails
the correct answer si. Therefore, the sentences in
Ei are included in P . The question q takes the
form of an elliptical assertion, and the candidate
answers are possible substitutions for the ellipsis.

Therefore, to derive the conclusion c, we adopt the
correct answer si as a substitution for the ellipsis in
q. Details on the formalisation adopted for MCQA
problems are described in section 4.3.

4.2 Verification
In the verification step, the annotators adopt the
formalised set of premises Φ and conclusion ψ
to classify the entailment problem in one of the
following categories:

1. Valid and non-redundant: The argument is
formally valid, and all premises are required
for the derivation.

2. Valid, but redundant premises: The argu-
ment is formally valid, but some premises
are not required for the derivation. This in-
cludes the cases where more than one premise
is present, and the conclusion simply repeats
one of the premises.

3. Missing plausible premise: The argument
is formally invalid, but would become valid
on addition of a reasonable premise, such as,
for example, “If x affects y, then a change to x
affects y”, or “If x is the same height as y and
y is not as tall as z then x is not as tall as z”.

4. Logical error: The argument is formally in-
valid, apparently as a result of confusing “and”
and “or” or “some” and “all”, or of illicitly
changing the direction of an implication.

5. No discernible argument: The argument is
invalid, no obvious rescue exists in the form
of a missing premise, and no simple logical
error can be identified.

4.3 Formalisation
In this section, we describe an example of formal-
isation for a MCQA problem. A typical multiple-
choice problem is a triple consisting of a ques-
tion Q together with a set of candidate answers
A1, . . . , Am. It is understood that Q takes the form
of a elliptical assertion, and the candidate answers
are possible substitutions for the ellipsis. The task
is to determine which of the candidate answers
would result in an assertion entailed by some pu-
tative knowledge-base. The corpora investigated
feature a list of multiple-choice textual entailment
problems together, in each case, with a specifica-
tion of a correct answer and an explanation in the
form of a set of assertions Φ from the knowledge
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base providing a justification for the answer. For ex-
ample, the following problem together with its res-
olution is taken from the Worldtree corpus (Jansen
et al., 2018).

Question: A group of students are studying bean
plants. All of the following traits are affected by
changes in the environment except . . .

Candidate answers: [A] leaf color. [B] seed
type. [C] bean production. [D] plant height.

Correct answer: B

Explanation: (i) The type of seed of a plant is
an inherited characteristic; (ii) Inherited character-
istics are the opposite of learned characteristics;
acquired characteristics; (iii) An organism’s envi-
ronment affects that organism’s acquired character-
istics; (iv) A plant is a kind of organism; (v) A bean
plant is a kind of plant; (vi) Trait is synonymous
with characteristic.

In formalising such problems, we represent the
question as a sentence of first-order logic featuring
a schematic formula variable P (corresponding to
the ellipsis), and the candidate answers as first-
order formulas. In the above example, we assume
that the essential force of the question to find a
characteristic of plants not affected by those plants’
environments. That is, we are asked for a P making
the schematic formula

∀xyzwe(bnPlnt(x) ∧ env(y, x)∧
changeIn(z, y) ∧ trait(w, x) ∧ affct(e)∧

agnt(e, z) ∧ P → ¬ptnt(e, w)). (1)

into a true statement. We formalise the correct
answer (B) by the atomic formula sdTp(w, x) “w
is the seed type of x”, with the other candidate
answers formalised similarly. In choosing predi-
cates for formalisation, we typically render com-
mon noun-phrases using predicates, taking these
to be relational if the context demands (e.g. “envi-
ronment/seed type of a plant x”). In addition, we
typically render verbs as predicates whose argu-
ments range over eventualities (events, processes,
etc.), related to their participants via a standard
list of binary “semantic role” predicates (agent, pa-
tient, theme) etc. Thus, to say that “x affects y”
is to report the existence of an eventuality e of
type “affecting”, such that x is the agent of e and
y its patient. This approach, although somewhat
strained in many general contexts, aids standard-
ization and, more importantly, also makes it easier

to deal with adverbial phrases. Of course, many
choices in formalisation strategy inevitably remain.

The knowledge-base excerpt Φ is formalised
straightforwardly as a finite set of first-order formu-
las, following the same general rendering policies.
In the case of the above example, sentences (i), (ii)
and (iv)–(vi) in Φ might be formalised as:

∀xy(plnt(x)∧sdTp(y, x) → char(y, x)∧inhtd(y))

∀xy(char(x, y) ∧ inhtd(x) → ¬acqrd(x))

∀x(plnt(x) → orgnsm(x))

∀x(bnPlnt(x) → plnt(x))

∀xy(trait(x, y) ↔ char(x, y)),

with the more complicated sentence (iii) formalised
as

∀xyw(orgnsm(x) ∧ env(y, x)∧
char(w, x) ∧ acqrd(w) →
∃e(affct(e) ∧ agnt(e, y) ∧ ptnt(e, w)))

(2)

Denoting by ψ the result of substituting sdTp(w, x)
for P in (1), we ask ourselves: Does Φ entail ψ?
A moment’s thought shows that it does not. At the
very least, statement (iii) in the explanation, whose
prima facie formalisation is (2), must instead be
read as asserting that an organism’s environment af-
fects only that organism’s acquired characteristics,
that is to say:

∀xyw(orgnsm(x) ∧ env(y, x) ∧ char(w, x)∧
∃e(affct(e) ∧ agnt(e, y) ∧ ptnt(e, w)) →

acqrd(w)).

(3)

This is not unreasonable, of course. Generaliza-
tions in natural language are notoriously vague as
to the direction of implication; let Φ′ be the result
of substituting (3) for (2) in Φ. Does Φ′ entail ψ?
Again, no. The problem this time is that, model-
theoretically speaking, just because something is
affected by a change in its environment, that does
not mean to say it is affected by its environment.
An assertion to the effect that it is would have to
be postulated:

∀xyzw(env(y, x) ∧ changeIn(z, y)∧
∃e(affct(e) ∧ agnt(e, z) ∧ ptnt(e, w)) →
∃e(affct(e) ∧ agnt(e, y) ∧ ptnt(e, w))).

Let Φ′′ be the result of augmenting Φ′ in this way.
Then Φ′′ does indeed entail ψ.
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Feature Worldtree QASC e-SNLI

Task MCQA MCQA TE
Multi-hop yes yes no
Crowd-sourced no yes yes
Explanation type generated + composed composed generated
Avg. number of sentences 6 2 1

Table 1: Features of the datasets selected for the Explanation Entailment Verification (EEV ).

Applying a general principle of charity, it is rea-
sonable to take the interpretation of the explanation
to be given by Φ′. However, the additional premise
required to obtain Φ′′ seems to have been forgot-
ten. Although not a logical truth, it has the status
of a plausible general principle of the kind that is
frequently explicitly articulated in the Worldtree
database. Therefore, we classify this example as a
missing plausible premise.

5 Corpus Analysis

We employ EEV to analyse a set of contempo-
rary XGSs designed for Textual Entailment and
Multiple-choice Question Answering.

In the following sections, we describe the
methodology adopted for extracting a representa-
tive sample from the selected XGSs, and for imple-
menting the annotation pipeline efficiently. Finally,
we present the results of the annotation, reporting
the frequency of each entailment verification class
and presenting a list of qualitative examples to pro-
vide additional insights on the logical properties of
the analysed explanations.

5.1 Selected Datasets

We select three contemporary XGSs with different
and complementary characteristics. In particular,
we apply our methodology to two MCQA datasets
(Worldtree (Jansen et al., 2018), QASC(Khot et al.,
2020)) and one TE benchmark (e-SNLI (Camburu
et al., 2018)).

The main features of the selected XGSs are re-
ported in Table 1. Multi-hop indicates whether the
problem requires step-wise reasoning, combining
more than one sentence to compose the final ex-
planation. Crowd-sourced indicates whether the
resource is curated using standard crowd-sourcing
platforms. Explanation type represents the method-
ology adopted to construct the explanations. Gen-
erated means that the sentences in the explanations
are entirely created by human annotators. On the
other hand, composed means that the sentences are
retrieved from an external knowledge resource. Fi-

nally, the last row reports the average number of
sentences composing the explanations.

5.2 Annotation Task

The bottleneck of the annotation framework lies in
the formalisation phase, which is generally time
consuming and requires trained experts in the field.
In order to make the application of EEV efficient
in practice, we extract a sub-set of n = 100 ex-
amples from each XGS (Worldtree, QASC, and
e-SNLI). To maximise the representativeness of
the explanations in the subset, given a fixed size n,
we combine a set of sampling methodologies with
effect size analysis. The details of the sampling
methodology are described in section 5.3 while the
results are presented in section 5.4. Code and data
adopted for the experiments are available online 1.

The extracted examples are randomly assigned
to 2 annotators with an overlap of 20 instances to
compute the inter-annotator agreement. All the
annotators are active researchers in the field of Nat-
ural Language Processing and Computational Se-
mantics. Table 2 reports the inter-annotator agree-
ment achieved on each dataset separately. Over-
all, we observe an average of 72% accuracy in the
multi-label classification task, computed consider-
ing the percentage of overlaps between the final
entailment verification classes chosen by the anno-
tators.

5.3 Sampling Methodology

To maximise the representativeness of the expla-
nations for the subsequent annotation task, while
analysing a fixed number n of examples for each
dataset, we combine a set of sampling methodolo-
gies with effect size analysis. In this section, we
describe the sampling techniques adopted for each
dataset.

A stratified sampling methodology has been
adopted for the Worldtree corpus (Xie et al., 2020;
Jansen et al., 2018). The stratified sampling con-

1https://github.com/ai-systems/
explanation-entailment-verification/

https://github.com/ai-systems/explanation-entailment-verification/
https://github.com/ai-systems/explanation-entailment-verification/


82

sists in partitioning the dataset using a set of classes
and performing random sampling from each class
independently. This strategy guarantees that the
same amount of examples is extracted from each
class. The stratified technique requires the classes
to be collectively exhaustive and mutually exclu-
sive – i.e, each example has to belong to one and
only one class. To apply stratified sampling on
Worldtree, we consider the high-level topics in-
troduced in (Xu et al., 2020), which are used to
classify each question in the dataset according to
one of the following categories: Life, Earth, Forces,
Materials, Energy, Scientific Inference, Celestial
Objects, Safety, Other. The same technique cannot
be applied to e-SNLI (Camburu et al., 2018) and
QASC (Khot et al., 2020) since the examples in
these datasets are not partitioned using any abstract
set of classes. In this case, therefore, we use ran-
dom sampling on the whole dataset to extract a
fixed number n of examples.

Once a fixed number of examples n is extracted
from each dataset, we consider the annotated expla-
nation sentences of each example to verify whether
the extracted set of explanations is representative
of the whole dataset. To perform this analysis, we
assume the predicates in the explanation sentences
to be the expression of the type of knowledge of
the whole explanation. Therefore, we consider
the extracted sample of explanations representative
if the distribution of predicates in the sample is
correlated with the same distribution in the whole
dataset. To this end, we compute the frequencies
of the verbs appearing in the explanation sentences
from the extracted sub-set and original dataset sep-
arately. Subsequently, we compare the frequencies
in the sub-sample with the frequencies in the whole
dataset computing a Pearson correlation coefficient.
In this case, a coefficient greater than .7 indicates
a strong correlation between the types of explana-
tions in the sample and the types of explanations in
the original dataset. After running the sampling for
t times independently, we select the subset of expla-
nations for each dataset with the highest Pearson
correlation coefficient. Table 3 reports the Pearson
correlation for the subsets adopted in our analysis
with fixed sample size n = 100.

5.4 Results

The quantitative analysis presented in this sec-
tion aims to empirically assess the hypothesis that
human-annotated explanations in XGSs constitute

Dataset Agreement Accuracy

Worldtree .70
QASC .70
e-SNLI .75

Table 2: Inter-annotator agreement computed in terms
of accuracy in the multi-label classification task consid-
ering the first annotator as a gold standard.

Dataset Correlation Coefficient

Worldtree .964
QASC .958
e-SNLI .987

Table 3: Effect size analysis of the samples extracted
from each XGS for the downstream EEV annotation.

valid and non-redundant logical arguments for the
expected answers. We report the quantitative re-
sults of the explanation entailment verification in
Table 4. Specifically, the table reports the percent-
age of the frequency of each verification class in
the analysed samples. The column AVG reports the
average for each class.

Overall, we observe that the results of the anno-
tation task tend to reject our research hypothesis,
with an average of only 20.42% of analysed expla-
nations being classified as valid and non redundant
arguments. When considering also valid, but redun-
dant explanations (21.91%), the average percent-
age of valid arguments reaches a total of 42.33%.
Therefore, we can conclude that the majority of the
explanations represent invalid arguments (57.66%).

We observed that the majority of invalid argu-
ments are classified as missing plausible premise.
This finding implies that a significant percentage of
annotated explanations are incomplete arguments
(26.00%), that can be made valid on addition of a
reasonable premise. We attribute this result to the
tendency of human explainers to take for granted
part of the world knowledge required in the expla-
nation (Walton, 2004).

A lower but significant percentage of explana-
tions contain identifiable logical errors (11.19%),
which result from confusing the set of quantifiers
and logical operators, or from illicitly changing the
direction of an implication. Similarly, 20.47% of
the explanations where labeled as no discernible
arguments, where no obvious premise can be added
to make the argument valid and no simple logical
error can be detected. This result can be attributed
partly to natural errors occurring in a gold standard
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Entailment Verification Class Worldtree QASC e-SNLI AVG

Valid and non-redundant 12.24 17.65 31.37 20.42
Valid, but redundant premises 26.53 7.84 31.37 21.91

Missing plausible premise 38.78 21.57 17.65 26.00
Logical error 6.12 17.65 9.80 11.19
No discernible argument 16.33 35.29 9.80 20.47

Valid argument 38.77 25.49 62.74 42.33
Invalid argument 61.23 74.51 37.25 57.66

Table 4: Results of the application of EEV for each entailment verification category.

creation process, partly to the effort required for
human-annotators to identify logical fallacies in
their explanations. In the remaining of this section,
we analyse the results obtained on each XGS.

Worldtree. The analysed sample contains the
highest percentage of incomplete arguments, with
a total of 38.78% explanations classified as missing
plausible premise. This result can be explained
by the fact that the questions in Worldtree require
complex forms of reasoning, facilitating the con-
struction of arguments containing implicit world
knowledge and missing premises. At the same time,
the dataset contains the smallest percentage of logi-
cal errors (6.12%). We attribute this outcome to the
fact that Worldtree is not crowd-sourced, implying
that the quality of the annotated explanations is
more easily controllable using internal verification
methods.

QASC. This XGS contains the highest rate of
invalid arguments (62.74%), with 35.29% of the
explanations classified as no discernible argu-
ment. One of the factors contributing to these
results might be related to the length of the con-
structed explanations, which is limited to 2 facts
extracted from a predefined corpus of sentences.
The high rate of no discernible arguments and miss-
ing premises (35.29% and 21.57% respectively)
suggests that the majority of the questions require
additional world knowledge and more detailed ex-
planations. This conclusion is also supported by
the percentage of valid, but redundant arguments,
which is the lowest among the analysed samples
(7.84%). Finally, the highest rate of logical errors
(17.65%) might be due to a combination of factors,
including the complexity of the question answering
task and the adopted crowd-sourcing mechanism,
which prevent a thorough quality assessment.

e-SNLI. The sample includes the highest percent-
age of valid arguments with a total of 31.37%.

However, we noticed that the complexity of the rea-
soning involved in e-SNLI is generally lower than
Worldtree and QASC, with most of the textual en-
tailment problems being an example of monotonic-
ity reasoning. This observation is supported by the
highest percentage of valid, but redundant cases
(31.37%), where the explanation simply repeats the
content of the conclusion. This occurrs quite often
for examples of lexical entailment, where the words
in the conclusion are a subset of the words in the
premise. The lexical entailment instances, in fact,
do not require any additional world knowledge,
making any attempt of constructing an explanation
redundant. Despite these characteristics, our evalu-
ation suggests that a significant percentage of argu-
ments are invalid (37.25%). Again, this percentage
might be the results of different factors, including
the errors produced by the crowd-sourcing process.

Table 5 reports a set of representative cases ex-
tracted from the evaluated samples. For each en-
tailment verification class, we report an example
extracted from the XGS with the highest percent-
age of instances in that class.

5.5 Contrastive Explanations
Previous studies highlight the fact that explanations
are contrastive in nature, that is, they describe why
an event P happened instead of some counterfactual
event Q (Miller, 2019; Lipton, 1990). Following
this definition, we perform an additional analysis
to verify whether the explanations contained in
MCQA datasets are contrastive with respect to the
wrong candidate answers – i.e., the explanation
supports the validity of the correct answer while
excluding the set of alternative choices. In order
to quantify this aspect, we asked the annotators to
label the questions with more than one plausible
answer, whose explanations do not mention any
discriminative commonsense or world knowledge
that explains why the gold answer is correct instead
of the alternative choices.
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Problem Formulation Explanation XGS

Valid and non-redundant (20.42%)

Premise: A smiling woman is playing the violin in front
of a turquoise background. Hypothesis: A woman is
playing an instrument.

A violin is an instrument. e-SNLI

Valid, but redundant premises (21.91%)

Premise: Four people are bandaging a head wound. Hy-
pothesis: People are bandaging an injured head.

People are bandaging an injured head wound. e-SNLI

Missing plausible premise (26.00%)

Question: A group of students are studying bean plants.
All of the following traits are affected by changes in the
environment except [A] Leaf color [*B] Seed type [C]
Bean production [D] Plant height

The type of seed of a plant is an inherited characteris-
tic. Inherited characteristics are the opposite of learned
characteristics; acquired characteristics. An organism’s
environment affects that organism’s acquired characteris-
tics. A plant is a kind of organism. Trait is synonymous
with characteristic.

Worldtree

Logical error (11.19%)

Question: What group of animals do chordates belong
to? [A] graptolites [B] more abundant [C] warm-blooded
[D] four limbs [E] epidermal [*F] Vertebrates [G] ani-
mals [H] insects

Chordates have a complete digestive system and a closed
circulatory system. Vertebrates have a closed circulatory
system.

QASC

No discernible argument (20.47%)

Question: What do plants require for reproduction? [A]
energy [B] nutrients [C] bloom time [*D] animals [E]
sunlight [F] Energy. [G] food [H] hormones

Plants require seed dispersal for reproduction. Seeds are
probably dispersed by animals.

QASC

Table 5: Examples of explanations classified with different entailment verification categories.

Dataset Non contrastive explanations

Worldtree 26.53
QASC 49.02

Table 6: Percentage of explanations in the MCQA sam-
ple labeled as non contrastive.

The results of this experiment are reported in
Table 6. Overall, we found that a significant per-
centage of explanations are labeled as non con-
trastive. This outcome is particularly evident for
QASC. We attribute these results to the presence of
multi-adversary answer choices in QASC, which
are generated automatically to make the dataset
more challenging for language models. However,
we found that this mechanism can produce ques-
tions with more than one plausible correct answer,
which can cause the explanation to loose its con-
trastive function (see QASC examples in Table 5).

6 Conclusion and Future Work

This paper proposed a systematic annotation
methodology to quantify the logical validity of
human-annotated explanations in Explanation Gold
Standards (XGSs). The application of the frame-
work on three mainstream datasets led us to the

conclusion that a majority of the explanations rep-
resent logically invalid arguments, ranging from
being incomplete to containing clearly identifiable
logical errors.

The main limitation of the framework lies in
the scalability of its current implementation, which
is generally time consuming and requires trained
semanticists. One way to improve its efficiency
is to explore the adoption of supporting tools for
the formalisation, such as semantic parsers and/or
automatic theorem provers.

Despite the current limitations, this study offers
some important pointers for future work. On the
one hand, the results suggest that logical errors can
be reduced by a careful design of the gold standard,
such as authoring explanations with internal ver-
ification strategies or reducing the complexity of
the reasoning task. On the other hand, the finding
that a large percentage of curated explanations still
represent incomplete arguments has a deeper impli-
cation on the nature of explanations and on what
annotators perceive as a valid and complete logical
argument. Therefore, we argue that future progress
on the design of XGSs will depend, among other
things, on a better formalisation and understanding
of the inferential properties of explanations.
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André Freitas. 2021. Unification-based reconstruc-
tion of multi-hop explanations for science questions.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 200–211, Online.
Association for Computational Linguistics.

Marco Valentino, Mokanarangan Thayaparan, and
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