
Proceedings of the First Workshop on Interactive Learning for Natural Language Processing , pages 16–24
August 5, 2021. ©2021 Association for Computational Linguistics

16

SHAPELURN:
An Interactive Language Learning Game with Logical Inference

Katharina Stein Leonie Harter
Department of Language Science and Technology

Saarland Informatics Campus
Saarland University, Germany

{kstein, leonieh, lgeiger}@coli.uni-saarland.de

Luisa Geiger

Abstract
We investigate if a model can learn natural lan-
guage with minimal linguistic input through in-
teraction. Addressing this question, we design
and implement an interactive language learn-
ing game that learns logical semantic represen-
tations compositionally. Our game allows us
to explore the benefits of logical inference for
natural language learning. Evaluation shows
that the model can accurately narrow down po-
tential logical representations for words over
the course of the game, suggesting that our
model is able to learn lexical mappings from
scratch successfully.

1 Introduction

An open question in NLP research is how models
can learn natural language most successfully and
effectively. Many state-of-the-art semantic parsers
and machine learning algorithms are dependent on
large data sets for successful training. This poses
a problem when using NLP applications for low-
resource languages or specific domains for which
only little annotated training data is available if any
at all (Klie et al., 2020). Interactive NLP Systems
can overcome these problems as they start with a
small or even empty set of training data that gets
extended based on user feedback for the predictions
the model makes based on its current parameters
(Lee et al., 2020). Therefore, learning mappings
from natural language to formal representations
through interaction with a user is an attractive ap-
proach for low-resource settings. The model pa-
rameters are optimized based on feedback and the
resulting data itself can be used as training data for
other models avoiding costly manual annotations.

However, the interaction with a not yet fully
trained model can get monotonous or can lead to
frustration on the part of the users if they do not
benefit from the interaction themselves (Lee et al.,
2020). Wang et al. (2016) present an interactive

language learning setting, called SHRDLURN, in
which a model learns a language by interacting with
a player in a game environment, hence making the
interactive learning setting more attractive and fun
for users. Their model is language independent and
can be taught any language from scratch.

Here we follow Wang et al. (2016) and design
and implement an interactive language learning
game where a model learns to map natural language
to logical forms in a compositional way based on
the feedback provided by the player1. Whereas
Wang et al. (2016)’s model learns to map instruc-
tions to executable logical forms, we aim to learn
logical formulas that evaluate to truth values with
respect to the current state of the game environment.
This decision was taken because the additional in-
formation about the truth can be incorporated in the
parsing and learning process in order to already re-
strict the potential logical formulas. Overall, we are
trying to answer the following research questions:
Can we implement a model that 1) can learn a nat-
ural language from scratch only from interacting
with a user and 2) is not dependent on any language
specific syntax and is hence language independent.

2 Previous Work

Several approaches map natural language to logical
form for its ability to model inferences. Zettle-
moyer and Collins (2005) present a learning algo-
rithm for mapping sentences to their lambda calcu-
lus semantic representations and automatically in-
ducing a combinatory categorical grammar (CCG).
Zettlemoyer and Collins (2007) extend this algo-
rithm to make the grammar more flexible. Pasupat
and Liang (2015) also present a flexible semantic
parsing framework, the floating parser, for learning
mappings from natural language to logical forms

1The complete code is available under https://
github.com/itsLuisa/SHAPELURN

https://github.com/itsLuisa/SHAPELURN
https://github.com/itsLuisa/SHAPELURN

17

in the lambda dependency-based compositional se-
mantic language (Liang, 2013). Liang and Potts
(2015) present a framework for learning to map
natural language utterances to logical forms that
combines the principle of compositionality with a
standard machine learning algorithm.

Current approaches that aim at overcoming the
need for costful annotated training data include the
interactive human-in-the-loop method where a hu-
man corrects annotations predicted by a machine
learning system and this feedback is used to im-
prove future predictions. Klie et al. (2020) use this
approach for the task of Entity Linking and He et al.
(2016) apply the approach to a CCG parser, thereby
improving parsing performance. Goldwasser and
Roth (2014) present a learning approach where a
model learns to map natural language instructions
to logical representations of solitaire game rules
based on feedback. Finally, Zhang et al. (2018)
present a game for grounded language acquisition
where a human teaches an agent language from
scratch in a natural language conversation.

3 From SHRDLURN to SHAPELURN

3.1 Game Design

Wang et al. (2016) designed their model to perform
a block building task in 3-D space using natural lan-
guage instructions from the player. The computer
and player work together towards a shared goal
(a specific block position) while only the player
knows the goal and only the computer can move
the blocks. The more successful the model learns
the human’s language, the faster this shared goal
can be reached (Wang et al., 2016).

Based on this idea, we design a 2-D game envi-
ronment where the model and player work towards
teaching the model a language with the user giving
descriptive input about the environment. The user
is presented with a randomly generated picture dis-
playing varying numbers of objects which have one
of three shapes (circle, square, triangle) and one of
four colors (red, blue, yellow, green) (see Figure
1). The picture corresponds to a 4× 4-grid which
is internally represented as a matrix allowing for
simplified spatial calculations.

The user is asked to describe one or more of
the displayed objects by typing in one phrase in
a language of their choice. Importantly, this lan-
guage should be kept consistent in order for the
computer to recognize language specific patterns.
The program proceeds by parsing the input into

Figure 1: The interface displaying three randomly gen-
erated objects the user can use to build an utterance

a logical formula, comparing it to the matrix and
then making a guess on which object(s) the user
was referring to by marking them with a black bor-
der. The user can then provide feedback in terms of
selecting the right marking by skipping through the
computer’s guesses which show up in descending
order according to their probability (see A.1). Like
this, the feedback is specific enough for the model
to learn lexical mappings.

This process is repeated over 4 levels of alter-
nating complexity (regarding both the number of
displayed blocks and the length of the input) each
consisting of 20 (level 2) or 15 (other levels) pic-
tures. The learning algorithm is responsible for the
guesses to improve as the game proceeds and lets
the model adapt to the input language.

3.2 Preprocessing and Parsing

We tokenize, lowercase and stem the input, since
learning is much quicker if it is clear that e.g. trian-
gle and triangles refer to the same shape. In order
to stem language independently, we use a cosine
similarity based heuristic. To compare two tokens,
we transform them into vectors with length of the
longer one. If they have the same character at a
position, the vectors get a 1 there. Otherwise one
vector gets a 1 and the other a -1. If the cosine
similarity of the vectors is > 0.65, we assume the
tokens to belong to the same word (see Figure 2).

Figure 2: Two stemming examples

18

Since Liang and Potts (2015)’s framework2,
which we use as groundwork, employs a CYK
parser that forces players to adhere to a strict syn-
tax, we equipped it with Pasupat and Liang (2015)’s
floating parser instead. This parser stores interme-
diate results in a chart according to their semantic
category c and size s (Figure 3), but does not con-
sider which indices the covered tokens span. This
allows to parse syntactic structures without binding
the user to a certain syntax. We adjust the three
derivation rules for parsing to our grammar:

(1) (TokenSpan, i, j)[s] → (c, 1)[f]

(2) ∅ → (c, 1)[f]

(3) (c1, s1)[f1] + (c2, s2)[f2] → (c, s1 + s2)[f1(f2)]

Rule (1) is a lexical rule matching a token span
from index i-j to a rule in the lexicon entry of the
word in this span telling us which category c and
which function f to use. Rule (2) allows us to
establish lexical logical forms matching words we
have not seen in the input and proceeds with these
”imaginary tokens” as in (1). It is used to create
the formula in the parse chart field (E,1) in Figure
3. Rule (3) combines parse items of categories the
grammar allows to combine. We only allow each
token to be used once per parse.

Previous work used beam search to address the
huge number of possible parse trees (Wang et al.,
2016; Pasupat and Liang, 2015). However, as beam
search does not guarantee that the correct parse is
kept we decided to not use a heuristic approach
for pruning. Instead, we restrict the number of
parses by building only formulas up to the size
corresponding to the number of tokens in the input
plus four. Additionally, we allow each token to be
mapped to only one lexical rule per parse. This
averts building non-sense constructions like (ex-

ist([2])(blue(BF(triangle,all))))(exist([1])(blue(BF(square,all))))

for the utterance ”two triangles and one blue
square” (considering the picture in Figure 1).

Figure 3: Parse Chart for ”one blue circle”

3.3 Grammar
For our grammar we use the same overall structure
as Liang and Potts (2015) (see A.3 for the complete

2https://github.com/cgpotts/annualreview-complearning

grammar). The main information is encoded in the
lexicon which is a dictionary that pairs words with
a list of corresponding lexical rules. A lexical rule
is a triple of a category (B, C, E, N, POS or CONJ),
a logical form and a weight. For example, the word
”red” is paired with (C, red, w), where C is the
category, red the logical form as defined by the
grammar and w the current weight.

The logical formulas for entries of category B
and N are evaluated directly whereas the other log-
ical forms are functions whose evaluation is speci-
fied separately using lambda calculus. For exam-
ple, red is defined as the function λx(BF (red, x))
where BF (condition, list) is a function that
yields all blocks from list that fulfill condition.

We use a set of binary CFG rules to define which
categories can be combined and how logical for-
mulas are applied to each other to yield larger for-
mulas, e.g. BC→ C B specifies that formulas of
category C and B can be combined to a formula of
category BC by applying C to B.

Each completed formula V is composed of at
least one sub-formula of the categories B, N, E
and C, and the categories POS and CONJ allow to
build more complex formulas for inputs including
relative positions and conjunctions.3 Descriptions
not specifying a color are handled by rule (2) of
the floating parser that introduces a lexical rule of
category C with an empty condition into the parse.
For lower parsing complexity, users are instructed
to mention only the objects, e.g. ”a circle” instead
of ”there is a circle”. We model the implicit exis-
tential quantification with a lexical rule for exists
that gets introduced into each formula by rule (2).

3.4 Learning Algorithm
Like Wang et al. (2016), we aim to learn correct
lexical rule(s) for all words in the lexicon. Initially,
every new word gets paired with every lexical rule.
Following Zettlemoyer and Collins (2005)’s ap-
proach in a simplified way, we delete the most un-
likely pairs during training leaving the correct ones
remain. We use Liang and Potts (2015)’s learn-
ing algorithm, a linear regression model optimized
with stochastic gradient descent (SGD), which re-
turns weight changes for word-rule pairs improving
the model. Whereas Wang et al. (2016)’s features
consist of n-grams and skip-grams for the utterance,
tree-grams for the formulas and a formula depth,

3The denotation of a formula V consists of the truth of the
description w.r.t. the picture and the list of blocks that make
the description true.

19

our features only contain a list of word-rule pairs.
This is sufficient, since the formula’s structure and
depth and the distances between combinable words
are handled by the floating parser.

After a training round we get weight changes for
all words in the input paired with the rules used
to build the gold standard logical formulas and
the ones predicted by the model. We sum up the
weights for each pair after every training step. If
a weight sum reaches the lower threshold of -0.1,
we delete this rule for the corresponding word. If
all pairs get weight change 0, SGD has converged,
so the model is optimal for the current training
batch. Hence, the word rule pairs used to build the
formulas for the current training utterance must be
the correct ones and all others can be deleted. If a
weight sum reaches the upper threshold of 1.0, we
assume this rule to be correct and delete all other
rules for the word with weight sum ≤ 0.

As different formulas can have the same deno-
tation (see Figure 4), we group all formulas evalu-
ating to true by the guessed blocks they evaluate
to. Only these guesses are then presented to the
player. The formulas leading to the correct blocks,
as determined by the user feedback, are used as
gold standard training batch. During training we
collate all possible parses. Otherwise too much
information is lost, which causes deletions of cor-
rect rules. Liang and Potts (2015)’s cost function
gave us too few weight changes 6= 0. Therefore,
we average over all rules of a formula if this rule
was also used in the gold formulas (value 1) or not
(value 0):

1

n

n∑
i=1

{
0 if(wi, ri) in goldword rule pairs

1 otherwise

n: number of tokens wi: token number i

ri: rule applied to wi to get current formula

gold word rule pairs: word rule pairs leading to gold formula

Figure 4: Four formulas with the same denotation

4 Evaluation

For a preliminary evaluation of the performance of
the model we collected and analyzed data of seven
participants who played the game in English (3),
Spanish (1), German (2) and Esperanto (1). One
of the participants completed two levels, four three
levels and only two completed all four levels.

We planned to follow Wang et al. (2016) and
count how often the user needs to click ”NEXT”
i.e. how far down the ranked parses the correct
solution is. For our project to be viewed as success-
ful, this number should decrease over the course
of the game. Due to the simple game design, the
exclusion of formulas evaluating to false and the
grouping of identical markings, the total number
possible markings is very low throughout the whole
game and so is the number of clicks needed to ar-
rive at the desired one (M = 1.27). But because of
our simplified game setting, this cannot be directly
compared to Wang et al. (2016)’s results. Since
the number of clicks almost does not change in our
case, it is not a meaningful measure for evaluating
the improvement of the model.

To assess performance within the model itself,
we analyze the remaining rules for each word. Ini-
tially, there are 20 possible rules per word as each
new word gets paired with each rule from the lexi-
con and ideally exactly the correct rule(s) for each
word should be left finally. Figure 5 shows the
average number of rules per word left after each
level. As our data set is very small the results have
to be taken with a grain of salt. Nevertheless, the
plot reveals that the model was able to decrease the
number of possible rules per word by about 15 (see
A.2). Manual investigation of the remaining rules
at the end of level 3 revealed a total of 1202 dele-
tions (63.9%), out of which only seven were falsely
deleted (0.58%). This indicates that our model is
able to successfully exclude incorrect mappings.

5 Discussion

Although, the setting of our language learning
game is simpler than SHRDLURN, the 2-D grid
environment allows to elicit different kinds of in-
puts that involve the composition of colors and
shapes as well as relative spatial relations between
objects that can be nested. In contrast to Wang
et al. (2016), the player task in our game is not
to give instructions to reach a specified goal state
from the current state but to describe some part of
the current state of the game (picture). Although

20

Figure 5: Mean number of rules per word left after each
level. Error bars indicate 95% confidence intervals.

we restrict the complexity of the descriptions in the
first levels to improve the first learning phase, the
player task is in general a very open task as there
are many ways to describe objects in a grid and
the player can freely choose the objects to describe
as well as the properties used to reference them.
This makes the setting particularly interactive and
allows to investigate in which ways humans choose
and formulate their descriptions.

The design of the player task allows us to use the
truth values of the parses in order to present only
the true guesses to the player. Hence, the number
of potential denotations is limited by the number
of possibilities to mark different combinations of
objects in the picture. This decreases the number of
denotations the player can choose from compared
to Wang et al. (2016) where the number of potential
successor states for a current state is much higher.
Although our design inhibits to use the number of
clicks during the game as evaluation measurement,
we see the overall low number of guesses as an
advantage: the player spends less time on clicking
through wrong guesses even in cases where the
correct denotation is ranked very low what can
improve the playing and success experience.

We find that the informativeness of feedback
plays a crucial role in interactive learning. Our re-
sults indicate that making the current ”knowledge”
of the computer as explicit as possible, e.g. by
marking all blocks mentioned in the input, could
be a promising starting point as simple user feed-
back can provide enough information for learning.

During testing we found that the learning
progress depends on specific combinations of de-
scriptions and pictures. Learning appears to benefit
from situations where the correct formula for the
description differs in one lexical rule from other
true parses: ”a red circle” is more informative with
respect to the meaning of ”red” for a picture that

shows a red circle and a circle in another color than
for a picture displaying only one (red) circle.

The main advantage of using only input from
the player to train the model is its independence
of the availability of (annotated) training data as
opposed to approaches requiring large data sets
such as neural approaches. Hence, our approach
is applicable for low resource settings. However,
our model requires a grammar that covers all se-
mantic concepts that can be part of the interaction.
Due to our game design, the number of concepts
our grammar needs to address is very limited but
extending the domain requires increasing the num-
ber of handwritten rules. Therefore, scaling the
model to larger domains would require the costful
construction of a large-scale grammar.

Concerning the scalability of the game environ-
ment, the model could be easily adjusted to create
more complex pictures as long as an adequate in-
ternal representation is found.

A key challenge of our work was the high uncer-
tainty of the model. The computer has no initial
knowledge about language and must consider each
lexicon entry for each word. Additionally, the float-
ing parser can combine the corresponding logical
formulas in any order, discard tokens from the in-
put and add additional logical forms. The number
of parses is thus huge for short sentences and grows
exponentially with sentence length, vastly increas-
ing parsing and learning times. Future work could
use beam search at higher levels to handle this.

6 Conclusion

We implement an interactive language learning
game where the computer learns natural language
based on user feedback. We find that learning inter-
actively from scratch with a language independent
model is complex due to the huge number of po-
tential parses. Our results indicate that our model
is able to learn language through interaction and
low-resource domains and languages could benefit
from such an approach. Future work will address
the trade-off between increasing flexibility and in-
creasing processing times.

Acknowledgments

We would like to thank Dr. Lucia Donatelli for the
valuable discussions and support throughout the
project development and writing process. Further,
we would like to express our gratitude towards the
participants of our evaluation experiment.

21

References
Dan Goldwasser and Dan Roth. 2014. Learning from

natural instructions. Machine learning, 94(2):205–
232.

Luheng He, Julian Michael, Mike Lewis, and Luke
Zettlemoyer. 2016. Human-in-the-loop parsing. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
2337–2342, Austin, Texas. Association for Compu-
tational Linguistics.

Jan-Christoph Klie, Richard Eckart de Castilho, and
Iryna Gurevych. 2020. From Zero to Hero: Human-
In-The-Loop Entity Linking in Low Resource Do-
mains. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6982–6993, Online. Association for Computa-
tional Linguistics.

Ji-Ung Lee, Christian M. Meyer, and Iryna Gurevych.
2020. Empowering Active Learning to Jointly Op-
timize System and User Demands. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4233–4247, On-
line. Association for Computational Linguistics.

Percy Liang. 2013. Lambda dependency-based compo-
sitional semantics. arXiv preprint arXiv:1309.4408.

Percy Liang and Christopher Potts. 2015. Bringing ma-
chine learning and compositional semantics together.
Annual Review of Linguistics, 1(1):355–376.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1470–1480, Beijing, China. Association for Compu-
tational Linguistics.

Sida I. Wang, Percy Liang, and Christopher D. Man-
ning. 2016. Learning language games through in-
teraction. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2368–2378, Berlin,
Germany. Association for Computational Linguis-
tics.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence, UAI’05, page
658–666, Arlington, Virginia, USA. AUAI Press.

Luke S. Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed ccg grammars for parsing
to logical form. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 678–687.

Haichao Zhang, Haonan Yu, and Wei Xu. 2018. Inter-
active language acquisition with one-shot visual con-
cept learning through a conversational game. arXiv
preprint arXiv:1805.00462.

A Appendices

A.1 Game Design

Level Instruction
0 Welcome to SHAPELURN, where

you can teach the computer any
language of your choice!
You will be looking at different
pictures and describing them to the
computer in one sentence.
There will be four levels with
different constraints on the
descriptions.
Please use short sentences in the
first two levels and do not use
negation at all.

1 Use only the shapes and/or the num-
ber of blocks for your description
e.g.: ’a circle’ or ’two forms’

2 You can additionally describe the
blocks by color
e.g: ’two blue forms’

3 Now you can describe relations
between blocks and use conjunction
(please don’t use colors)
e.g.: ’a circle under a square’

4 Describe whatever you want!

Table 1: The overall instructions for the input descrip-
tions (0) and the level specific constraints for the de-
scriptions.

Figure 6 - 8 illustrate the course of the game for
an example picture and the input description ”two
triangles”. The user is shown a picture and enters
a description. Then the computer makes a guess
and the user clicks NEXT until the correct guess is
shown.

https://doi.org/10.1007/s10994-013-5407-y
https://doi.org/10.1007/s10994-013-5407-y
https://doi.org/10.18653/v1/D16-1258
https://doi.org/10.18653/v1/2020.acl-main.624
https://doi.org/10.18653/v1/2020.acl-main.624
https://doi.org/10.18653/v1/2020.acl-main.624
https://doi.org/10.18653/v1/2020.acl-main.390
https://doi.org/10.18653/v1/2020.acl-main.390
https://doi.org/10.1146/annurev-linguist-030514-125312
https://doi.org/10.1146/annurev-linguist-030514-125312
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.18653/v1/P16-1224
https://doi.org/10.18653/v1/P16-1224
https://doi.org/10.18653/v1/P18-1243
https://doi.org/10.18653/v1/P18-1243
https://doi.org/10.18653/v1/P18-1243

22

Figure 6: Grid generated by the model in level 1

Figure 7: First guess of the model, user clicks NEXT

Figure 8: Next guess is correct, user clicks YES

A.2 Evaluation

Level Mean SD Participants
1 14.801 0.114 7
2 8.691 1.319 7
3 7.116 1.250 6
4 5.280 0.396 2

Table 2: Mean and sd for the average number of rules
per word in the lexicon at the end of each level

A.3 The Grammar

Rule
1 V→ EN BC
2 V→ CONJ 1 V
3 CONJ 1→ CONJ V
4 EN→ E N
5 BC→ C B
6 BC→ POS NB BC
7 POS NB→ POS N BC
8 POS N→ POS N

Table 3: The rules of the CFG grammar used to derive
the input utterances and the logical forms

23

Lexical Rule: (category, logical form, weight) Example Word
1 (B, BF ([λb(b.shape == ”rectangle”)], all), w) ”square”
2 (B, BF ([λb(b.shape == ”circle”)], all), w) ”circle”
3 (B, BF ([λb(b.shape == ”triangle”)], all), w) ”triangle”
4 (B, BF ([], all), w) ”form”
5 (N, range(1, 17), w) ”a”
6 (N, [1], w) ”one”
7 (N, [2], w) ”two”
8 (N, [3], w) ”three”
9 (C, green, w) ”green”
10 (C, blue, w) ”blue”
11 (C, yellow, w) ”yellow”
12 (C, red, w) ”red”
13 (POS, over, w) ”over”
14 (POS, under, w) ”under”
15 (POS, next, w) ”next [to]”
16 (POS, left, w) ”[to the] left [of]”
17 (POS, right, w) ”[to the] right [of]”
18 (CONJ, und, w) ”and”
19 (CONJ, oder, w) ”or”
20 (CONJ, xoder, w) ”or”
21 (C, anycol, w) ∅
22 (E, exist, w) ∅ / [there is]
Function BF (condition, all) returns all blocks from the list of all blocks of the
picture that fulfill condition condition

Table 4: The lexicon of the grammar where each lexical rule is triple of (category, logical form, weight) and English
example words for each rule.

24

Logical Form from Lexicon Function for interpretation
1 exist λn(λb(update guess(b) and len(b) in n))

2 green λx(BF ([λb(b.color == ”green”)], x))

3 blue λx(BF ([λb(b.color == ”blue”)], x))

4 yellow λx(BF ([λb(b.color == ”yellow”)], x))

5 red λx(BF ([λb(b.color == ”red”)], x))

6 anycol λx(BF ([], x))

7 over λn(λx(λy(PT (y, x, n, ”o”))))

8 under λn(λx(λy(PT (y, x, n, ”u”))))

9 next λn(λx(λy(PT (y, x, n, ”n”))))

10 left λn(λx(λy(PT (y, x, n, ”l”))))

11 right λn(λx(λy(PT (y, x, n, ”r”))))

12 und λv1(λv2(v1 and v2))

13 oder λv1(λv2(v1 or v2))

14 xoder λv1(λv2((v1 and not v2)or(v2 and not v1))))

Function BF (condition, x) returns all blocks from the list x that fulfill condition condition
Function PT (y, x, n, ”pos”) returns all blocks from the list y that stand in position ”pos” to n
blocks from list x
Function update guess(b) returns a list of all mentioned blocks by recursively backtracking from
the blocks in list b

Table 5: The functions used to interpret the logical forms for the categories E, C, POS and CONJ.

CFG Logical Form Denotation
1 B→ circle BF(circle, all) the list with all blocks of the picture with shape circle
2 N→ one [1] [1]
3 C→ blue blue the C s.t. C(x) returns a list of all blocks of x with color blue
4 POS→ over over the POS s.t. POS(y)(x)(n) returns the sublist of blocks from y that

are located over n blocks from x
5 E→ ∅ exist the E s.t. E(b)(n) returns True if length of b satisfies n and False

otherwise
6 BC→ C B C(B) application of denotation of C to denotation of B
7 V→ EN BC EN(BC) application of denotation of EN to denotation of BC
8 EN→ E N E(n) application of denotation of E to denotation of n
Input utterance: ”one blue square over a red triangle”
Logical Form: exist([1])(over(range(1, 17))(blue(BF (square, all)))(red(BF (triangle, all))))
Denotation: True and the list of guessed blocks consisting of the blue square and the red triangle

Table 6: Illustration of the way in which the grammar works for the example ”[there is] one blue square over
a red triangle”. The upper part shows the lexical rules and the mid part the combination rules needed for the
example sentence. The lower part shows the input utterance with its simplified logical form and the corresponding
denotation with respect to the picture in Figure 1 in the paper.

