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Figure 1: Pictorial representation of whole boundary based video description framework

quence.

∆i =

 M∑
j=1

(hi(j)− hi−1(j))
2

 1
2

(1)

After the computation of histogram difference,
to declare temporal boundary at a particular loca
tion an adaptive threshold γ (γ = mean(∆)+k×
stdev(∆)) employed in Singh et al. (2019) is used,
here the value of constant k is set to 5.2 after fine
tuning. The mathematical expression for the decla
ration of temporal boundary is shown in Equation
2, where Bi record the boundary locations.

Bi =


i, (∆i ≥ γ)&&(∆i > ∆i−1)

&&(∆i > ∆i+1)

continue, Otherwise
(2)

Keyframe selection: After detecting the tem
poral boundaries, a video is divided into different
segments containing similar frames within it. A
simple and computationally efficient approach for
video description is the utilization of information

present in keyframes of the video rather than us
ing several redundant frames. In the proposed ap
proach, a keyframe is selected from each segment
which we get after temporal segmentation. The
frame which is selected as a representative frame
has aminimum distance to the other frames present
in the same shot (segment). This approach is also
adopted by Li et al. (2017) for video summariza
tion. Mathematically, it can be described as follow:

min
i∈[1,nf ]

 nf∑
t=1,t̸=i

Euclidean(h̃i − h̃t)

 (3)

Where nf is the number of frames in a shot, h̃i is
color histogram of the selected frame and h̃t repre
sent the histogram of other frames within the shot.
In this way, a keyframe of each shot is selected
based on the visual similarities within the shot.

3.2 Description generation phase
After selecting keyframes for an input video of N
frames, we extracted three types of features that
are visual appearance features (vf ) which are ex
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Algorithm 1 Temporal segmentation of video with
key frame selection
Input: Video, V
Output: Boundaries,Keyframes
1: procedure shot_detection(V )
2: F ← cv2.V ideoCapture(V )
3: hist0 ← cv2.calcHist(vid.read(F (0)), ch,m, hs, r)
4: for i = 1 to length(F ) do
5: histi ← cv2.calcHist(vid.read(F (i)), ch,m, hs, r)

6: ∆i ←
(√∑M

j=1(histi(j)− histi−1(j))2
)

7: histi−1 ← histi

8: for i = 1 to length(∆)− 1 do
9: if ∆i ≥ γ&&(∆i > ∆i−1)&&(∆i > ∆i+1) then
10: Bi ← record ith

11: else
12: continue

1: FunctionKeyframe_sel(frames,B)
2: for k = 1 to S do ▷ i, j ∈ [1,nf], i ̸= j
3: for i = 1 to nf do
4: for j = 1 to nf do
5: diff(i,j) ← record total dissimilarity difference

6: Keyfrm[k]← min(diff(i,:))

7: return Keyfrm

tracted using 2D CNN (He et al., 2016a), motion
features (vm) using 3D CNN and object features
(vr) extracted using RCNN (Ren et al., 2015).
Then, the appearance and object features (vf and
vr) are postprocessed using BiLSTMs.

3.2.1 Context rich encoding with self
attention

Since a video has multiple actions and events, so
some the events in earlier frames are responsible
for the occurrence of other related events in forth
coming frames. Considering this fact, the post
processed appearance features are passed through
a selfattention layer to get more context rich en
coded visual features. Selfattention allows the
model to look at the visual features of other se
lected keyframes for better visual encoding. So,
initially using the visual features v (v = vf) the
value of keyK(v), valueV (v), and queryQ(v) are
computed using Equation 4 whereWk,Wq andWv

are the weight metrics to be trained.

K(v) = Wkv V (v) = Wvv

and Q(v) = Wqv
(4)

Then, to compute contextrich selfattention fea
ture maps (Oj...S) dotproduct attention is applied
as follow:

Oj = Wg

(
S∑

i=1

αi,jV (vi)

)

where, αi,j = softmax(
K(v)TQ(v)

dk
)

(5)

In the Algorithm 1, ch = channels, m = mask, hs = hist
Size and r = ranges

In the above equations, S is total number of shots
(segments), vf ∈ RS×l, Wk,v,q,g ∈ Rl×l̃ and the
dimension of K(v), V (v) and Q(v) is set to 64
and dk = 8 following the work of Vaswani et al.
(2017) for effectiveness of Self attention mecha
nism. For the encoding of words in the reference
caption, the dense embedded representation which
is obtained from a word embedding layer is passed
to an encoder LSTM (eLSTM). The eLSTM takes
the word embedding of input word (x) at current
time step, global visual features (vg) and decoder
LSTM’s hidden state of last time step as shown
Equation 6.

ht = eLSTM(xt−1, vg, h
d
t−1) (6)

3.2.2 Decoder
After getting encoded contextually rich represen
tation of input word (ht) and visual appearance
features (Oj) they are passed to the decoder along
with motion features (vm) and object features (vr).
Before passing the self attentive appearance fea
tures (Oj) and object features (vr) to decoder
LSTM (dLSTM) they are passed through an atten
tion layer (Attn(Vx, h)) as shown in Equation 7
where V (V = Oi or vr) is encoded features and
W∗ (∗ = h, v) are trainable weights and bt is bias.

Attn(Vx, h) = ϕ(Vj , αi) where, ϕ =

k∑
i=1

αiVi,j

and, αi = softmax(Watanh(WvV + Whht−1 + bt))

(7)

After getting attentive appearance features and ob
ject features from the attention layer they are con
catenated with motion feature (vm) and passed to
decoder LSTM (dLSTM) as shown in Equation 8
where [; ] denotes concatenation and hdt is used in
Equation 6.

ft = [Attn(Oj , ht);Attn(vr, ht); vm]

hdt , c
d
t = dLSTM([ft;ht])

(8)

Further, the word probability st at every time step
is decoded as follow:

st = softmax(MLP ([ft;h
d
t ;ht])) (9)

The cost function used for maximizing the likeli
hood of the correct word and minimizing the loss
of the model is given by Equation 10.

Loss = −
T∑
t=0

logPr(st|st−1, . . . s0;F ) (10)
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Table 1: Results of proposed approach on MSVD dataset and its comparison with other approaches.

Methods BLEU4 METEOR CIDEr ROUGE
Mean pooling
AlexNet (Venugopalan et al., 2014) 31.20 26.90  
AlexNet (COCO) (Venugopalan et al., 2014) 33.30 29.10  
Attention
 SA (Yao et al., 2015) 40.28 29.00  
MMN (Li et al., 2018) 48.00 31.60 68.80 
BP − LSTM (Nabati and Behrad, 2020b) 42.90 32.00 62.20 68.30
Boundary + Attention
Boundary − aware (Baraldi et al., 2017) 42.50 32.40 63.50 
PickNet (Chen et al., 2018) 46.10 33.10 69.20 69.20
MHB (Sah et al., 2020) 43.00 33.20 71.10 68.70
Proposed (vf ) 45.55 30.37 68.73 66.44
Proposed (vf+vm) 48.66 29.90 68.33 65.97
Proposed (vf+ vm+ vr) 50.75 32.50 71.13 70.44

4 Experimental result and discussion

4.1 Datasets

To manifest the effectiveness of the proposed ap
proach, three benchmark datasets are employed
that are: Microsoft research video description cor
pus (MSVD) (Chen and Dolan, 2011), English Mi
crosoft research video to text (MSRVTT) (Xu et al.,
2016) and Hind Microsoft research video to text
(hiMSRVTT) (Singh et al., 2021b). The hiMSR
VTT dataset is recently released dataset for mo
tivating the research on generating video descrip
tions in the native language. The MSVD dataset
include 1, 970 videos with on average 40 descrip
tions for each video while the enMSRVTT and
hiMSRVTT dataset include 10K videos with cor
responding 20 descriptions. Table 2 reports the de
tailed statistics of all the datasets.

Table 2: Detail statistics of all the datasets

Datasets #Training #Val #Test
videos videos videos

MSVD 1200 100 670
MSRVTT 6513 497 2990
hiMSRVTT 6513 497 2990

4.2 Metrics

For the validation of the generated descriptions, we
employs Bilingual EvaluationUnderstudy (BLEU)
(Papineni et al., 2002), Metric for Evaluation of

Translation with Explicit Ordering (METEOR3)
(Banerjee and Lavie, 2005), Consensusbased Im
age Description Evaluation (CIDEr) (Vedantam
et al., 2015) and Recall Oriented Understudy of
Gisting Evaluation (ROUGEL) (Lin, 2004). For
generating the scores for above discussed auto
matic evaluation metricsMicrosoft COCO4 toolkit
is employed.

4.3 Parameter setting and model
implementation

As discussed in section 3.2 for experimentation
we employ ResNet152 (He et al., 2016b) as 2D
CNN model for extracting appearance features of
keyframes and C3D model (Karpathy et al., 2014;
Tran et al., 2015) as 3D CNN for extracting the
motion features. For extracting the region features
FasterRCNN (Ren et al., 2015) trained by (Ander
son et al., 2018) is employed, this model extract 36
region features for each keyframes. The model is
trained with ADAM optimizer with learning rate
1e4 and the learning rate is divided by 10 at every
10th epoch. The number of LSTM hidden units
is set to 512 and during training, the model having
the bestMETEOR score is saved. To avoid over
fitting, a dropout of 0.3 is employed. In the pro
posed work, we tried to search optimal parameters
that work comparatively better than other baseline
models in all the datasets, which will minimize the
time and effort required to search the best parame

3The METEOR score for Hindi text is generated using:
https://github.com/anoopkunchukuttan/meteor_
indic

4https://github.com/tylin/coco-caption

https://github.com/anoopkunchukuttan/meteor_indic
https://github.com/anoopkunchukuttan/meteor_indic
https://github.com/tylin/coco-caption
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Table 3: Results of proposed approach on enMSRVTT dataset and its comparison with other approaches.

Methods BLEU4 METEOR CIDEr ROUGE
Mean/Max pooling
LSTM −GAN (Yang et al., 2018) 36.00 26.10  
Attention
M3 (Wang et al., 2018) 38.13 26.58  
MMN (Li et al., 2018) 37.50 26.40  
ReBiLSTM (Bin et al., 2018) 33.90 26.20  
BP − LSTM (Nabati and Behrad, 2020b) 36.60 27.00 40.50 58.70
MCTA (Wei et al., 2020) 38.50 26.90 43.70 
Boundary + Attention
Boundary − aware (Baraldi et al., 2017) 36.80 26.70 41.20 58.50
PickNet (Chen et al., 2018) 38.90 27.20 42.10 59.50
Proposed (vf ) 35.42 25.21 35.36 57.83
Proposed (vf+vm) 35.95 25.39 35.66 57.38
Proposed (vf+ vm+ vr) 37.18 26.17 40.90 59.41

ters according to the dataset. All the parameter set
tings are the same throughout the experimentation
for all the datasets. A beam search approach with
beam size 7 is employed during testing to generate
the final description.

4.4 Results and discussion

Comparison with existing methods: To analyse
the performance proposed keyframe based video
captioning approach we compare proposed ap
proach with existingmethods. For the better under
standing and fair comparison all the existing meth
ods are categorised into three type of captioning
approaches that are mean/max pooling, attention
and boundary+attention. The approaches such as
AlexNet, LSTMGAN and pLSTM are mean/max
pooling based approaches, MMN, BPLSTM, M3,
ReBiLSTM and MCTA are attention based while
the PickNet, Boundaryaware andMHB are bound
ary based approaches which employ attention as
well.
Table 1, 3 and 4 report quantitative results on

MSVD, enMSRVTT and hiMSRVTT datasets.
Our proposed approach outperforms other exist
ing methods on the MSVD and the hiMSRVTT
dataset, on 3 out of 4 metrics by a reasonable
margin. While on the enMSRVTT dataset, our
model reports comparable scores, although the
PickNet model reports high scores, but in terms of
the average number of frames used to achieve com
petitive performance, the proposed approach out
performs PickNet model. Our model uses 3 ∼ 4
frames per video whereas the PickNet model em

ploy 6 ∼ 8 frames per video.
Ablation study: The proposed approach con

sist of two stage: boundary detection and descrip
tion generation phase. To evaluate the effective
ness of all the employed visual features the pro
posed model is experimented with different vari
ations such as with only appearance features, with
appearance and motion features and with all three
appearance (vf ), motion (vm) and region features
vr. Table 1, 3 and 4 reports the score of proposed
model with all the variation. The effectiveness of
proposed method increases when all three features
are employed which can be clearly seen in table 1,
3 and 4. In order to validate that whether the pro
posed model generates more fluent and adequate
description along with high automatic scores, we
perform a qualitative analysis. Figure 2 shows the
description generated by the proposedmodel along
with the output generated by BP − LSTMs and
ground truth (GT). On observing the output gener
ated by the proposed model for the videos shown
in Figure 2, it is clear that the keyframes based ap
proach can generate better description than BP −
LSTM , which employ n frames for visual encod
ing.

4.4.1 Analysis of picked keyframes
We also analysed the efficiency of the boundary
based keyframe selection algorithm for selecting
the most representative frame from multiple seg
ments of the video. Figure 3 shows the distribu
tion of keyframes selection for both the datasets.
From Figure 3 it is observed that for themajority of
videos, less than 8 frames are picked as a keyframe
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Table 4: Results of proposed approach on hiMSRVTT dataset and its comparison with other approaches.

Methods BLEU4 METEOR CIDEr ROUGE
Mean/Max pooling
pLSTM (Singh et al., 2020b) 26.10 33.00 28.50 51.20
Attention
V A+ SA(Singh et al., 2021b) 36.20 39.30 36.90 59.80
RNM (Tan et al., 2020) 38.80 39.10 36.00 60.70
Proposed (vf ) 34.02 38.40 30.76 58.09
Proposed (vf+vm) 36.11 39.95 31.12 58.95
Proposed (vf+ vm+ vr) 41.01 44.10 32.85 60.80

BPLSTMs: A man is doing tennis match
Our: two men are playing table tennis
Our hi: एक आदमी टेिनस खेल रहा है
GT: two men compete in a game of table tennis

(a) MSRVTT  video7600

BPLSTMs: a man is going through a room
Our: a man is walking
GT: a man is walking with trolley

(b) MSVD  video1929

Figure 2: Sample videos selected from each dataset with their ground truth (GT) and generated output
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Figure 3: Statistic of picked keyframes for both the
datasets

which is due to shorter video length. A video can
have a single shot or multiple shots. For a single
shot video, 4 keyframes are selected at the inter
val of 16 and for a multishot video, the keyframe
is selected using an approach discussed in section
3.1. From Figure 3, it is clearly observed that
around 39% and 28% of videos in MSRVTT and
MSVD respectively, are singleshot videos. The
average number of keyframes selected per video

is 3 ∼ 4 for both MSVD and MSRVTT dataset,
which helps in avoiding unnecessary visual encod
ing of redundant frames and signify the efficiency
of the proposed approach. Sample examples of
picked keyframes are included in supplementary
file.

5 Conclusion

In this paper, we employ a boundaryaware
keyframe selection framework that acts as a plug
andplay module for downstream videorelated
tasks, such as video description and video clas
sification. The objective of the boundary aware
keyframe selection framework is to select a com
pact subset of keyframes for input video, which
minimises the unnecessary processing of visually
similar frames and ensures no degradation in the
quality generated description. In the proposed ap
proach, 3 ∼ 4 frames are selected for an input
video, which is more efficient than the existing
PickNet model, which picks 6 ∼ 8 frames for
each video. The experimental results show that the
keyframesbased approach can outperform exist
ing methods by picking keyframes and extracting
different visual features such as appearance, mo
tion and region features.
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