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Abstract
Automatic news recommendation has gained
much attention from the academic community
and industry. Recent studies reveal that the key
to this task lies within the effective representa-
tion learning of both news and users. Exist-
ing works typically encode news title and con-
tent separately while neglecting their semantic
interaction, which is inadequate for news text
comprehension. Besides, previous models en-
code user browsing history without leveraging
the structural correlation of user browsed news
to reflect user interests explicitly. In this work,
we propose a news recommendation frame-
work consisting of collaborative news encod-
ing (CNE) and structural user encoding (SUE)
to enhance news and user representation learn-
ing. CNE equipped with bidirectional LSTMs
encodes news title and content collaboratively
with cross-selection and cross-attention mod-
ules to learn semantic-interactive news repre-
sentations. SUE utilizes graph convolutional
networks to extract cluster-structural features
of user history, followed by intra-cluster and
inter-cluster attention modules to learn hier-
archical user interest representations. Experi-
ment results on the MIND dataset validate the
effectiveness of our model to improve the per-
formance of news recommendation1.

1 Introduction

Online news applications, such as CNN News and
MSN News, have become more and more people’s
first choices to obtain the latest news (Das et al.,
2007). With a deluge of news generated every day,
an efficient news recommendation system should
push relevant news to users to satisfy their diverse
personalized interests (IJntema et al., 2010).

From the perspective of representation learning
(Bengio et al., 2013), existing works mainly study
how to effectively encode news and users into dis-
criminative representations (Okura et al., 2017; Wu

1Our code is released at https://github.com/Veason-
silverbullet/NNR

News Category Title
N1 Travel The Spookiest Place in Every State
N2 Travel The Best Islands in the World: 2019 Readers’ Choice Awards

N3 Sports Long Island high school football coach suspended for running up the score 
against previously underfeated foe

N4 Travel 50 states, 50 places: The top natural wonder in your state
N5 Sports Potential Florida State football coaching targets
N6 Sports Curse of the No. 3 Seed in the Initial CFP Rankings: How Would That Work?

(a) A user’s browsing history (sorted by click timestamp)

Curse of the No. 3 Seed in 
the Initial CFP Rankings: 
How Would That Work?

The team ranked third in 
the initial College Football 
Playoff rankings has never 
made the playoffs. Does 

that mean Alabama is 
toast this year? We take a 
look at the trend and ask 
How Would That Work? 

Distillation

Interpretation

(b) Semantic interaction between news title and content

Title

ContentAn example news of MIND dataset

N6

…

Figure 1: (a) An example of user browsing history. (b)
An example of news title-content semantic interaction.

et al., 2019a; Wang et al., 2020). News encoders
typically extract semantic representations of news
from the textual spans (e.g., news title and con-
tent). User encoders are employed to learn the
representation of a user from her browsing history.
News recommendation models predict the match-
ing probabilities between candidate news and users
by measuring the similarity of their representations.

Existing news recommendation models typically
encode news title and content separately and en-
code users’ browsing histories without explicit
structural modeling. We argue that these encodings
restrict the power of the news and user represen-
tations. To enhance news and user encoding, this
work is established based on the two aspects of
news and user representation learning:

(1) Encoding the semantic interaction between
news title and content: Title and content play dif-
ferent roles in news, but they are complementary.
News title distills the information of content, while
content interprets the details of title, as shown in
Figure 1(b). Previous works treat news title and
content as two separate textual features, leading to
a “semantic encoding dilemma”. This dilemma is
dyadic as: (i) Although a news title is much shorter
than content, the performance of title-encoding is

https://github.com/Veason-silverbullet/NNR
https://github.com/Veason-silverbullet/NNR
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empirically better than content-encoding (Wu et al.,
2020). This can be attributed to the crucial informa-
tion that the human-summarized title naturally rep-
resents; (ii) News titles are always subjective and
rhetorical to attract potential readers. This leads to
a severe textual data sparsity problem. News titles
with unseen terminology, metaphor and ambiguity
make it difficult to comprehend news with limited
title wording (Shree et al., 2019). For example in
Figure 1(b), the word “curse” is a metaphor, which
cannot be resolved by the training corpus or the title
itself, due to its unique semantic occurrence. News
encoders must turn to the content to interpret the se-
mantics of the word “curse” (i.e., “has never made
the playoffs” and “mean Alabama is toast”). How-
ever, news encoders proposed by previous works ei-
ther extract features solely from the title, or encode
title and content separately, then perform concate-
nation or attention fusion on them (Zhu et al., 2019;
Wu et al., 2019a). Such separate encodings of title
and content without leveraging their semantic inter-
action are inadequate for news text comprehension.

(2) Encoding the user-interest-news correlation
with hierarchical cluster-structure: While a user
usually has diverse interests in news topics, her
browsed news with the same topic is often linked
by some logical correlation. For example in Fig-
ure 1(a), the news N3, N5 and N6 are labeled as
sports news and logically correlated with the topic
“football”, forming a virtual user interest cluster.
None of the single news can precisely represent the
overall user interest in “football”. However, refined
user interest in “football” can be encoded by ag-
gregating the news N3, N5 and N6. With aspects
of user interests encoded within specific clusters,
overall user representations can be aggregated by
leveraging the correlation among interest clusters.
Previous works typically formulate user history as
an ordered linear sequence of news. Based on this
sequential formulation, recurrent neural networks
(Okura et al., 2017; An et al., 2019) and attention
networks (Zhu et al., 2019; Wu et al., 2019a,b,c)
are proposed to encode user history. These encod-
ing methods viewing user history as a sequence
of news cannot explicitly model the hierarchical
user-interest-news correlation. Compared to linear
sequences, hierarchical clusters are more suitable
to represent a user’s diverse interests. User history
can be structurally formulated into certain interest
clusters, as correlated news shares information in a
specific interest cluster. Encoding user history with

hierarchical cluster-structure is more precise to rep-
resent the correlation of news and user interests.

To address the above issues, in this work, we
propose collaborative news encoding (CNE) and
structural user encoding (SUE) to learn semantic-
interactive news representations and hierarchical
user representations. We conduct experiments on
the MIND dataset (Wu et al., 2020), showing the
encoding effectiveness of our proposed model. Ex-
periments and further analyses validate that (i)
CNE can enhance news encoding by exploiting the
word-level semantic interaction between news title
and content with cross-selective and cross-attentive
mechanisms; (ii) SUE utilizes hierarchical cluster
graphs to model the correlation of a user’s browsed
news, which can extract more precise user inter-
est representations; (iii) our model significantly
outperforms existing state-of-the-art news recom-
mendation models on the real-world MIND dataset.

2 Related Work

News recommendation is not only an important
research task in NLP (Wu et al., 2020) but also
a core component of industrial personalized news
service (Okura et al., 2017). Conventional collab-
orative filtering (CF) approaches (Wang and Blei,
2011) exploit the interaction relationship between
news and users. Since news only lasts for a short
period, CF-based methods suffer from severe cold-
start problem. To tackle this, content-based meth-
ods used handcrafted features to encode news and
users (Li et al., 2010; Son et al., 2013; Bansal et al.,
2015). In recent years, deep neural models have
achieved superior performance in news recommen-
dation. Many studies pinpointed that this improve-
ment came from the fine-grained news and user rep-
resentations, which were extracted by deep neural
networks (Wu et al., 2019a,c; Wang et al., 2020).

For news representation learning, existing works
used convolutional neural networks (CNN) (An
et al., 2019), knowledge-aware CNN (Wang et al.,
2018), personalized attention networks (Wu et al.,
2019b), and multi-head self-attention networks
(Wu et al., 2019c) to extract features from news
title text as news representations. Zhu et al. (2019)
employed parallel CNNs to encode news title and
content respectively and then concatenated them
into a unified representation. Wu et al. (2019a)
encoded news title and content separately and in-
corporated them with multi-view attention.

For user representation learning, Okura et al.
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(2017) used GRU to encode user history by ordered
timestamp. An et al. (2019) utilized RNN to learn
short-term user representations from the browsing
history, combined with long-term user embeddings.
Various attention networks are also widely used
to attend to important news in user history (Wu
et al., 2019a,b; Zhu et al., 2019). Wu et al. (2019c)
employed multi-head self-attention (Vaswani et al.,
2017) to capture deep interaction of user browsed
news. These works formulated user history as an
ordered linear sequence of news, to which recurrent
or attention models were applied without modeling
the structural correlation of user browsed news. Hu
et al. (2020) formulated news and user jointly with
a bipartite graph and disentangled user preferences
with routing mechanism, which however implicitly
relied on the manually-set latent preference factor.

3 Methodology

Our model is composed of the Collaborative News
Encoding (CNE) module presented in Section 3.1
and Structural User Encoding (SUE) module pre-
sented in Section 3.2. CNE and SUE extract repre-
sentations of candidate news and users respectively.
The overall model architecture is illustrated in Fig-
ure 2. Finally, Section 3.3 will describe the click
predictor and details of model training.

3.1 Collaborative News Encoding

3.1.1 Cross-selective Encoding
The news encoder is employed to learn semantic
news representations from news title and content.
Given the title word sequence xt = [xt1, x

t
2, ..., x

t
N ]

and content word sequence xc = [xc1, x
c
2, ..., x

c
M ],

they are mapped to word embeddings W t =
[wt

1, w
t
2, ..., w

t
N ] and W c = [wc

1, w
c
2, ..., w

c
M ],

where N and M are the word sequence lengths.
For simplicity, we only formulate the title encod-
ing part of our model (denoted by superscript t).
The content encoding formula is symmetric as a
counterpart (denoted by superscript c) and omitted.

First, two parallel bidirectional LSTMs are em-
ployed to extract the sequential features from the
title and content word embeddings respectively.
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where {ht} and {ct} are LSTM hidden states and
cell states. The i-th title sequential feature is fused

as hti = [
−→
h

t

i;
←−
h

t

i], where [·; ·] denotes vector con-
catenation. We consider the global semantic infor-
mation of title (content) preserved in its LSTM cell
states and concatenate the last forward −→c t

N and
backward←−c t

1 as the semantic memory vector mt.

mt = [−→c t
N ;←−c t

1] (3)

To facilitate semantic interaction between title
and content, we design a gated cross-selective net-
work, inspired by Geng et al. (2020). Concretely,
we utilize the semantic memory vectormc(t) to per-
form feature recalibration (Hu et al., 2018) on the
sequential features {ht(c)} by a sigmoid gate func-
tion. The motivation behind this gate function is to
utilize the memory vector of content (title) mc(t) to
cross-select important semantic information from
the i-th title (content) sequential feature ht(c)i .

Gateti = σ(W h
g h

t
i +Wm

g m
c + bg) (4)

h̃ti = Gateti � hti (5)

where σ is sigmoid activation, � denotes element-
wise multiplication. h̃ti is the cross-selective feature
of the i-th title sequential feature hti interacting with
the content memory vector mc. It is the first stage
of collaborative title-content semantic interaction.

3.1.2 Cross-attentive Encoding
Based on the cross-selective sequential feature {h̃},
a two-phase attention module is designed to learn
cross-attentive representations of title and content.
First, we employ self-attention layers to learn the
self-attentive representation of the sequential {h̃}.

αt
self = softmax(vTtanh(Wh̃t + b))

rtself =
N∑
i=1

αt
self,ih̃

t
i (6)

Then we employ the self-attentive representation
rself as a query, and the {h̃} as key-value pairs to
build cross-attention layers2. It is the second stage
of collaborative title-content semantic interaction.

αt
cross = Attention(rcself , {h̃t})

rtcross =
N∑
i=1

αt
cross,ih̃

t
i (7)

2Practically, we employ the scaled dot-product attention
proposed by Vaswani et al. (2017). Attention(Q,K) =

softmax( Q̄K̄T
√
d

), where Q̄ = QWQ, K̄ = KWK . The
same attention functions are also applied in Eq. (10) and (12).
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Figure 2: The overall architecture of our model. The graph construction is based on the user history in Figure 1(a).

We compute element-wise summation (denoted
as ⊕) of the self-attentive representation rself and
cross-attentive representation rcross to derive the
title and content semantic-interactive representa-
tions, i.e., rt and rc. Finally, we concatenate rt and
rc as the collaborative news representation rn.

rn = [rt; rc] = [rtself ⊕ rtcross; rcself ⊕ rccross] (8)

3.2 Structural User Encoding
3.2.1 Cluster-based Encoding of User History
The user encoder is employed to learn user interest
representations from their browsing histories. To
formulate the cluster-structure of user interests, we
construct a hierarchical cluster graph in two steps:

Intra-cluster Subgraph G1. We construct an
original cluster graph3 with the topic category label
of news (e.g., “Sports” and “Travel” in Figure 1(a)).
We build the subgraph G1 = (Vn, En) by treat-
ing the browsed news as nodes {Vn} and adding
bidirectional edges {En} to those nodes, which
share the same category labels. Each news node of
{Vn} is associated with its embedding rn in Eq. (8).
Each cluster contains multiple browsed news with a
specific topic, reflecting an aspect of user interests.

Inter-cluster Subgraph G2. Besides intra-
cluster refinement of user interests, modeling inter-
cluster correlation is also essential to leverage the
overall information of user history. For each clus-
ter Ci in G1, we add a new cluster proxy node V i

p .
We build the subgraph G2 = ({Vn, Vp}, {E1

p , E
2
p})

by adding bidirectional edges {E1
p} to those news

3https://en.wikipedia.org/wiki/Cluster_graph

nodes {Vn} and proxy nodes {Vp} within the same
clusters and fully connecting {Vp} by bidirectional
edges {E2

p}. The node embedding of {Vp} is initi-
ated as zero-embedding rp. News node information
among clusters aggregates via cluster proxy nodes.

The hierarchical cluster graph G consists of intra-
and inter-cluster subgraphs: G = {G1,G2}. With d-
dimensional node embedding vectors {rni }

|Vn|
i=1 and

{rpi }
|Vp|
i=1, we define the history feature matrix as

H0 = [rn; rp] ∈ R(|Vn|+|Vp|)×d. For graph G, we
denote its normalized adjacency matrix as Ã and de-
gree matrix as D̃. We use graph convolutional net-
works (GCN) (Kipf and Welling, 2017) to extract
structural representations of user history. To miti-
gate the over-smoothing issue of deep GCN (Chen
et al., 2020), we add residual connections to adja-
cent GCN layers, following Li et al. (2019).

H l+1 = ReLU(D̃−
1
2 ÃD̃−

1
2H lW l) +H l (9)

where W l is a trainable matrix. The GCN extracts
structural features on graph G, refining specific
user interest representations within clusters and
aggregating overall user history information among
clusters. We train GCN of L layers and derive the
structural user history representation from the news
node embeddings as rh = {HL

i }
|Vn|
i=1 ∈ R|Vn|×d.

3.2.2 Intra-cluster Attention
Given the |C| interest clusters implied by |Vn|
user’s browsed news, there are |Ci| news in cluster
Ci. The structural user history representation rh

can be viewed as rh = {rhi }
|C|
i=1 =

{
{rhi,j}

|Ci|
j=1

}|C|
i=1

.

https://en.wikipedia.org/wiki/Cluster_graph
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To derive intra-cluster features associated with can-
didate news, we design an intra-cluster attention
layer, regarding the candidate news representation
rncan as a query, and the j-th intra-cluster feature
rhi,j of cluster Ci as a key-value pair.

αintra
i = Attention(rncan, {rhi })

rintracl,i =

|Ci|∑
j=1

αintra
i,j rhi,j (10)

The intra-cluster feature rintracl,i attends to the

node-level features {rhi,j}
|Ci|
j=1 of cluster Ci, asso-

ciated with the candidate news representation rncan.
The rintracl,i refines the i-th user interest representa-
tion within the cluster Ci of graph G.

3.2.3 Inter-cluster Attention
Before inter-cluster modeling, a nonlinear transfor-
mation is performed to project the rintracl,i , which is
originally a linear combination of node-level fea-
tures in cluster Ci, into cluster-level feature spaces.

r̃intracl,i = ReLU(W̃ rintracl,i + b̃) + rintracl,i (11)

To derive inter-cluster features associated with
candidate news, we design an inter-cluster attention
layer, regarding the candidate news representation
rncan as a query, and the i-th intra-cluster feature
r̃intracl,i of graph G as a key-value pair.

αinter = Attention(rncan, {r̃intracl })

rintercl =

|C|∑
i=1

αinter
i r̃intracl,i (12)

The inter-cluster feature rintercl attends to the
cluster-level features {r̃intracl,i }

|C|
i=1 of graph G, asso-

ciated with the candidate news representation rncan.
With intra-cluster and inter-cluster attention, rintercl

hierarchically aggregates user interest representa-
tions within the cluster graph G. rintercl is adopted
as the user representation ru, i.e., ru = rintercl .

3.3 Click Predictor and Model Training
Given the news and user representations rn and
ru, the click predictor is employed to predict the
probability that user u clicks on news n. Motivated
by the previous works (Wang et al., 2018; Wu et al.,
2019a), we compute the dot-product ŷn,u of rn

and ru, i.e., ŷn,u = 〈rn, ru〉, as the unnormalized
matching score of news n and user u.

Following common practice of previous works
(Huang et al., 2013; Wang et al., 2020), we employ
negative sampling strategy to model training. For

# users 200,000 # users in train set 189,532
# news 78,520 # news in train set 75,858

# training logs 594,433 # positive samples 902,330
Avg. title len 11.67 Avg. content len 41.01

Table 1: Statistics of the 200K-MIND dataset.

each user click-impression, i.e., the i-th impression
log that user u had clicked on news n, we compute
its unnormalized matching score as ŷ+i . Besides,
we randomly sample K pieces of news, which are
not clicked by the user u. Unnormalized matching
scores ŷ−i,j are computed for these K negative sam-
ples, where j = 1, ...,K. By such means, it can
be reformulated as a (K + 1)-way classification
problem. We employ softmax function to derive
the normalized matching probabilities and sum up
the negative log-likelihood of positive samples over
the training dataset D, as model training loss L.

L = −
|D|∑
i=1

log
exp(ŷ+i )

exp(ŷ+i ) +
∑K

j=1 exp(ŷ
−
i,j)

(13)

4 Experiment Setup

4.1 Dataset and Experiment Settings

We conduct experiments on the MIND dataset (Wu
et al., 2020). MIND is a large-scale English
news recommendation dataset built from real-world
MSN news and anonymized user click logs4. Since
the MIND is quite large-scale, following existing
works (Wu et al., 2019a,b,c; Wang et al., 2020)5,
we randomly sample 200K users’ click logs out of 1
million users from the user behavior logs of MIND
training and validation sets. Since the MIND test
set is not labeled, we half-split the original valida-
tion set into experimental validation and test sets.
We employ the abstract column texts in MIND as
the news content texts6. Detailed statistics of the
200K-MIND dataset are shown in Table 1.

We truncate news title and content with the max-
imum length of 32 and 128 respectively. The num-
ber of news in user browsing history is capped at 50.
Following (An et al., 2019; Wu et al., 2019a,b,c),
we perform negative sampling with the sampling ra-
tio K of 4 (see Section 3.3). The word embedding
is initialized from the pretrained 300-dimensional

4https://msnews.github.io
5These works used the MSN news dataset with 10K sam-

pled users, as training on the full MIND dataset with 1 million
users is very expensive in GPU time.

6Detailed MIND dataset format at https://github.com/msn
ews/msnews.github.io/blob/master/assets/doc/introduction.md

https://msnews.github.io
https://github.com/msnews/msnews.github.io/blob/master/assets/doc/introduction.md
https://github.com/msnews/msnews.github.io/blob/master/assets/doc/introduction.md
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Glove embedding (Pennington et al., 2014). The
number of GCN layers in SUE is set as L = 4 (in-
vestigated in Section 5.4). We use Adam opti-
mizer (Kingma and Ba, 2015) with the learning rate
of 1e-4 to train our model with the dropout rate of
0.2. The area under the ROC curve (AUC), mean
reciprocal rank (MRR), and normalized discounted
cumulative gain (nDCG@5 and nDCG@10) are
adopted as ranking metrics to evaluate model per-
formance. We set the batch size to 64 and conduct
early stopping if the validation AUC score had not
improved over 5 epochs. We independently repeat
each experiment for 10 times and report the average
performance scores.

4.2 Comparison Methods

We compare our model with state-of-the-art general
and news-specific recommendation methods.

General Recommendation Methods. General
methods utilize handcrafted features to learn news
and user representations. We use the TF-IDF fea-
tures extracted from news and user history with
the one-hot news and user IDs as input features for
the experiments. The general methods include (1)
LibFM (Rendle, 2012), a factorization machine
estimating the sparse feature interaction between
news and users; (2) DSSM (Huang et al., 2013),
a deep structured semantic model, regarding the
user history as a query and candidate news as key
documents; (3) Wide&Deep (Cheng et al., 2016),
a framework consisting of wide channels with a lin-
ear model and deep channels with a neural model.

Neural News Recommendation Methods. We
compete with the state-of-the-art neural models,
which are specifically designed for news recom-
mendation, including (1) DAE-GRU (Okura et al.,
2017), encoding news with a denoising autoen-
coder and users with a gated recurrent network; (2)
DFM (Lian et al., 2018), a deep fusion model using
multi-channel inception blocks to capture various
interaction among news features; (3) DKN (Wang
et al., 2018), utilizing knowledge-aware CNNs to
fuse knowledge encoding and textual encoding of
news title; (4) LSTUR (An et al., 2019), encoding
news title with a CNN network, while jointly mod-
eling long-term user preferences and short-term
user interests with a GRU network; (5) NAML (Wu
et al., 2019a), utilizing CNN networks to encode
title and content texts, while encoding the category
and subcategory topics with dense layers. The text
and topic representations are incorporated by multi-

Methods AUC MRR nDCG@5 nDCG@10
LibFM 61.16 27.88 30.06 36.44
DSSM 64.74 30.12 33.22 39.50

Wide&Deep 64.62 29.87 32.71 39.11
DAE-GRU 65.98 31.48 34.93 41.12

DFM 64.63 29.80 32.82 39.29
DKN 66.20 31.25 34.23 40.92

LSTUR 68.10 32.87 36.46 42.69
NAML 68.63† 33.16 36.79 43.07

NPA 67.34 32.59 35.98 42.28
NRMS 68.61 33.46† 37.02† 43.30†

FIM 68.44 32.95 36.58 42.97
CNE-SUE 69.55? 33.70? 37.54? 43.79?

CNE w/o CS 69.39 33.52 37.30 43.62
CNE w/o CA 69.48 33.61 37.39 43.68

SUE w/o GCN 69.31 33.48 37.25 43.53
SUE w/o HCA 69.40 33.52 37.37 43.65

Table 2: Performance comparison results († denotes the
highest baseline scores, ? denotes that the performance
improvements over all baseline methods are validated
by Student’s unpaired t-test with p-value < 0.01).

view attention. NAML uses an attention network as
its user encoder; (6) NPA (Wu et al., 2019b), attend-
ing to important words and news articles by per-
sonalized attention networks built with user embed-
dings; (7) NRMS (Wu et al., 2019c), utilizing effec-
tive multi-head self-attention networks (Vaswani
et al., 2017) to extract fine-grained representations
from the news title and user history respectively;
(8) FIM (Wang et al., 2020), encoding news titles
with dilated convolution networks and modeling
the interaction between candidate news and user
history with 3D convolutional matching networks.

Variants of Our Model. To further verify the
efficacy of our model design, we also experiment
with the ablation variants of our model by respec-
tively removing the cross-selection module (CNE
w/o CS), cross-attention module (CNE w/o CA),
GCN layers (SUE w/o GCN), and hierarchical
cluster attention module (SUE w/o HCA).

5 Experiment Results and Analyses

5.1 Main Comparison Results

Table 2 shows the performance comparison results.
Our model CNE-SUE achieves the highest perfor-
mance consistently in all evaluation metrics. De-
tailed observations can be obtained as follows.

General recommendation methods yield much
lower performance than most neural news recom-
mendation methods. This is due to that deep neural
models can learn refined representations adaptively,
which are more effective than general feature engi-
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News Enc. AUC MRR nDCG@5 nDCG@10
CNN 68.31 33.07 36.65 42.92

KCNN 65.27 30.72 33.67 40.28
Per-CNN 68.37 33.12 36.68 42.90
MHSA 68.26 33.07 36.59 42.83
NAML 68.63† 33.16† 36.79† 43.07†

CNE 69.21 33.32 37.16 43.44
NAML-T 68.49 33.21 36.89 43.11
NAML-C 67.22 32.08 35.62 41.76
CNE-T 68.25 33.18 36.80 43.12
CNE-C 67.96 32.65 36.34 42.44

Table 3: Ablation study of news encoders (KCNN de-
notes knowledge-aware CNN in DKN, Per-CNN de-
notes CNN with personalized attention in NPA, MHSA
denotes multi-head self-attention networks in NRMS,
∗-T(C) denotes title (content) encoding only).

neering with fixed handcrafted features.
In all evaluation metrics, our model CNE-SUE

outperforms all comparison methods by significant
margins (+0.92% AUC, +0.24% MRR, +0.52%
nDCG@5, and +0.49% nDCG@10 compared to
the best baseline performance). This performance
improvement derives from the collaborative news
representations and structural user representations
extracted by our model. Specifically, CNE can ex-
tract more accurate news semantics by leveraging
the title-content semantic interaction, compared
to title-encoding (e.g., LSTUR, NRMS, and FIM)
and separate encodings of title and content (e.g.,
NAML). SUE modeling diverse user interests with
hierarchical cluster structure is more powerful than
the comparison methods formulating user history
as a linear sequence of news, which employ recur-
rent neural networks (e.g., LSTUR) or attention
networks (e.g., NPA, NAML, and NRMS).

From table 2, we can observe varying degrees
of performance decreases on the ablation vari-
ants compared to our full model. It suggests the
usefulness of different components in our model.
CNE w/o CA performs the best among all variants.
This is because the news representations learned
by CNE are composed of self- and cross-attentive
representations (refer to Eq. (8)), and the remaining
self-attention can achieve suboptimal performance.
Removing GCN layers leads to the most significant
impact on performance, indicating the efficacy of
structural modeling on user history.

5.2 Effectiveness of Collaborative Encoding

We conduct ablation experiments on news encoders.
For fair comparison and excluding the influence of

User Enc. AUC MRR nDCG@5 nDCG@10
LSTUR 68.10 32.87 36.46 42.69

ATT 68.31 33.07 36.65 42.92
Per-ATT 66.97 32.22 35.48 41.82
Can-ATT 68.48 33.23 36.73 43.04
MHSA 68.75† 33.34† 36.97† 43.26†

SUE 69.03 33.53 37.26 43.48

Table 4: Ablation study of user encoders (ATT denotes
vanilla attention networks, Per-ATT denotes person-
alized attention in NPA, Can-ATT denotes candidate-
aware attention in DKN, MHSA denotes multi-head
self-attention networks in NRMS).

SUE, all ablation models apply the same attention
user encoders. We also examine the title and con-
tent encodings. Table 3 shows the ablation results7.

From the ablation results, we can observe that
CNE significantly outperforms other existing news
encoding methods. NAML is also competitive, as
it can incorporate informative representations from
news texts and topic categories. Table 3 also shows
that title-encoding (∗-T) is much more effective
than content-encoding (∗-C), though content texts
are theoretically more informative. This confirms
the “semantic encoding dilemma” in news encod-
ing and may explain why many existing works (e.g.,
LSTUR, NPA, NRMS, and FIM) employ title-
encoding only. Comparing NAML to NAML-T,
there is no significant performance enhancement.
In contrast, CNE achieves much higher scores than
the individual title and content encodings (CNE-T
and CNE-C). It validates the necessity of encoding
news title and content with word-level semantic in-
teraction to enhance news representation learning.

5.3 Effectiveness of Structural Encoding

We conduct ablation experiments on user encoders.
For fair comparison and excluding the influence of
CNE, all ablation models apply the same CNN title
encoders. Table 4 shows the ablation results.

According to Table 4, MHSA performs much
better than other baseline user encoders. This is
because MHSA (Vaswani et al., 2017) can model
the correlation of each pair of news in user history.
It validates the necessity of modeling the correla-
tion of historical news in user encoding. Moreover,
Table 4 shows that SUE significantly outperforms
MHSA. This is because the manner of encoding his-
torical news correlation with hierarchical clusters in

7We did not include the ablation of FIM, because the FIM
news encoder produces special hierarchical 3D-sized represen-
tations, which are incompatible with other ablation encoders.
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Figure 3: The performance of our model on validation
set with respect to the number of GCN layers (the trend
of ndcg@10 is similar to ndcg@5 and hence omitted).

Curse of the No . 3 Seed in the initial CFP rankings How
Would That Work ?

(a) Attention weights of our model over the title words.

The team ranked third in the initial College Football Playoff
rankings has never made the playoffs . does that mean
Alabama is toast this year ? we take a look at the trend
and ask How Would That Work ?

(b) Attention weights of our model over the content words.

Figure 4: Attention weight visualization on the news
N6 (darker colors denote higher attention weights).

SUE is more fine-grained than MHSA. Concretely,
modeling intra-cluster news interaction is more ef-
fective to reflect aspects of user interests, while
modeling inter-cluster user interests interaction is
more effective to encode overall user representa-
tions. The ablation results indicate that structural
modeling of the hierarchical user-interest-news cor-
relation can effectively enhance user encoding.

5.4 Parameter Analysis

We investigate the influence of the number of GCN
layers L in our model. Figure 3 shows the results.
The model performance on validation set increases
and reaches a peak, as L increases from 1 to 4. This
is because equipped with deeper GCN, the model
can capture more fine-grained information of user
browsing behaviors by modeling higher-order in-
teraction of browsed news. Nevertheless, as L con-
tinues to increase, the model performance begins
to decline. This may be because deep GCN always
suffers from the over-smoothing issue (Chen et al.,
2020). As GCN becomes too deep, the user history
representations rh tend to be indistinguishable and
impair the ultimate user representations. Herein,
L = 4 is optimal for our model.

Figure 5: The AUC scores of different models with re-
spect to the number of user interest clusters.

5.5 Case Study

We then probe into how our model processes news
texts. According to Eq. (6), (7), and (8), we de-
fine the word attention weights of title (content) as
αt(c) = (α

t(c)
self + α

t(c)
cross)/2, where αt(c) ∈ [0, 1].

As shown in Figure 4, we visualize our model’s out-
put title (content) attention weights αt(c) over the
title (content) words of the news N6 in Figure 1.

From Figure 4(a), we observe that our model
mainly attends to the words “curse” and “CFP”,
which contain the core information of the news
N6. It validates that our model can distill the most
informative words from the news title. As the con-
tent visualization shown in Figure 4(b), our model
mostly attends to the words “Alabama” and “toast”,
which interpret the specific semantics of the word
“curse” in the context of the news N6. Besides,
our model also attends to the important contextual
words, such as “initial”, “rankings”, and “trend”.
These title and content attention weights indicate
that our model can accurately encode the news N6.

5.6 Analysis on User Interest Modeling

We analyze how our model performs with different
numbers of user interest clusters |C| (refer to Sec-
tion 3.2). The results are shown in Figure 5. When
|C| = 1, our model slightly underperforms NAML.
This is because our model is overfitted to represent
single user interest with cluster graphs. All mod-
els’ performance increases with the growth of |C|.
This is because the models can learn more precise
user representations as more news information is
incorporated. In cases of |C| > 1, our model con-
sistently outperforms all baselines. It validates the
usefulness of encoding user history with hierarchi-
cal cluster-structure in cases of modeling diverse
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user interests. Moreover, the performance of all
models decreases when |C| becomes too large (i.e.,
|C| > 8). This reveals the challenge of predicting
a user’s news-clicking behavior when her browsing
history covers too many kinds of news topics.

6 Conclusion

In this work, we present a neural news recommen-
dation model with collaborative news encoding
and structural user encoding. CNE leverages the
title-content semantic interaction to enhance news
encoding. SUE exploits the correlation of browsed
news and represents user interests with hierarchical
cluster graphs to enhance user encoding. Experi-
ment results show that our model achieves signif-
icant performance enhancement compared to the
existing state-of-the-art methods. We also further
analyze our model and validate its effectiveness.
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