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Abstract

In recent years, world business in online dis-
cussions and opinion sharing on social media
is booming. Re-entry prediction task is thus
proposed to help people keep track of the dis-
cussions which they wish to continue. Never-
theless, existing works only focus on exploit-
ing chatting history and context information,
and ignore the potential useful learning sig-
nals underlying conversation data, such as con-
versation thread patterns and repeated engage-
ment of target users, which help better un-
derstand the behavior of target users in con-
versations. In this paper, we propose three
interesting and well-founded auxiliary tasks,
namely, Spread Pattern, Repeated Target user,
and Turn Authorship, as the self-supervised
signals for re-entry prediction. These auxiliary
tasks are trained together with the main task in
a multi-task manner. Experimental results on
two datasets newly collected from Twitter and
Reddit show that our method outperforms the
previous state-of-the-arts with fewer parame-
ters and faster convergence. Extensive exper-
iments and analysis show the effectiveness of
our proposed models and also point out some
key ideas in designing self-supervised tasks.1

1 Introduction

Online social media platforms are popular for indi-
viduals to discuss topics they are interested in and
exchange viewpoints. However, a large number
of online conversations are posted every day that
hinder people from tracking the information they
are interested in. As a result, there is a pressing
demand for developing an automatic conversation
management tool to keep track of the discussions
one would like to keep engaging in.

Re-entry prediction (Zeng et al., 2019; Back-
strom et al., 2013) is proposed to meet such de-
mand. It aims to foresee whether a user (henceforth

1The code is available at https://github.com/
Lingzhi-WANG/ReEntryPrediction

target user) will come back to a conversation they
once participated in. Nevertheless, the state-of-the-
art work (Zeng et al., 2019) mostly focuses on rich
information in users’ previous chatting history and
ignores the thread pattern information (Backstrom
et al., 2013; Tan et al., 2019). To this end, we study
in re-entry prediction by exploiting the conversa-
tion thread pattern to signal whether a user would
come back since the degree of repeated engage-
ment of users can indicate their temporary interests
in the ongoing conversation.

Self-supervised learning aims to train a model
on labels that are automatically derived from the
data itself. Compared to previous generic self-
supervised methods (e.g., Switch, Replace, and
Mask), task-specific methods can achieve better
performance (Jing and Tian, 2020), especially on
medium-sized datasets, since task-oriented designs
can better capture domain-specific features and
thus achieve better performance for the target task.
Therefore, we propose a prediction model (main
model) for re-entry prediction (main task) with
three auxiliary self-supervised tasks (Spread Pat-
tern Prediction, Repeated Target User Prediction
and Turn Authorship Prediction) to assist learning
of main model for re-entry prediction.

Spread Pattern Prediction is inspired by expan-
sionary and focused thread in Backstrom et al.
(2013), where thread pattern reflects the develop-
ment of a conversation. We implement this task
in a simplified but reasonable way to discriminate
thread patterns based on the number of participated
users. On the other hand, Zeng et al. (2019) shows
that target users who contribute two or more posts
in a conversation have a higher probability of com-
ing back. Hence, we introduce a Repeated Target
User Prediction task to facilitate the learning of the
main model by capturing the target user’s behav-
ior, i.e., whether the target user has posted more
than one message in a given context. Finally, we
introduce the Turn Authorship Prediction task, in

https://github.com/Lingzhi-WANG/ReEntryPrediction
https://github.com/Lingzhi-WANG/ReEntryPrediction
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Figure 1: X-axis: thread pattern, e.g., “AB” repre-
sents thread where user A posts then B posts. Y-axis:
re-entry rate, e.g., the re-entry rate for “AB” is 27%,
means that 27% of the target users (user “B”) in this
kind of conversations will come back.

which we step further from the Repeated Target
User Prediction task to predict if each turn’s author-
ship is the target user. Thus, the model can track
the participation of the target user and also know
the thread pattern reflecting by the position of the
target user who acts as a probe.

To better illustrate our motivation, Figure 1
shows the re-entry rate of six representative thread
patterns on Reddit dataset. As we can see, the left
three threads with user number “≤ 2” (focused)
show a higher re-entry rate than the right three
threads with user number “> 2” (expansionary).
We can also see that although “ABCA” is expan-
sionary, it has repeated target user “A”, which leads
to a higher re-entry rate than the other two ex-
pansionary threads. Therefore, we can conclude
that both Spread Pattern and Repeated Target User
signals help predict re-entry behavior. Further-
more, since more challenging tasks get better per-
formance (Mao, 2020), we propose Turn Author-
ship Prediction, where we predict whether each
turn’s author is a target user or not.

Before the introduction of pretraining technique
(Peters et al., 2018; Devlin et al., 2018; Radford
et al., 2019), researchers focused on developing
complex models (Lu and Ng, 2020), such as key
phrase generation with neural topic model (Wang
et al., 2019b) and structured models for coreference
resolution (Martschat and Strube, 2015; Björkelund
and Kuhn, 2014). Thus models are time-consuming
in training and testing. For this reason, we pro-
pose our compact main model, which consists of
three parts, turn encoder, conversation encoder and
prediction layer. In addition, the chatting history
information of the target user is also applied to our
model by initializing the beginning hidden state of
the target turn. The main model is jointly trained
with the three self-supervised tasks in the manner

of multi-task training and outperforms the BERT-
based (Devlin et al., 2018) model which consists of
large number of parameters and is time-consuming.

In summary, our contributions are three-fold:

• Three self-supervised tasks are proposed to facil-
itate learning of the main model by capturing the
thread pattern and participation trajectory of the
target user.

• Experimental results on two newly constructed
datasets, Twitter and Reddit, show that our meth-
ods outperform the previous state-of-the-arts
with fewer parameters and faster convergence.

• Extensive experiments and analyses provide
more insights on how our models work and how
to design effective self-supervised tasks for con-
versational prediction task.

The remainder of this paper is organized as follows.
The related work is surveyed in Section 2. Section
3 and 4 present the proposed approach, including
model architecture and designed self-supervised
tasks. Section 5 and 6 then present the experimental
setup and results respectively. Finally, conclusions
are drawn in Section 7.

2 Related Work

Re-entry Prediction. Re-entry prediction (Zeng
et al., 2019; Backstrom et al., 2013; Budak and
Agrawal, 2013) aims to forecast whether the users
will return to a discussion they once entered
and Zeng et al. (2019) achieves state-of-the-art
performance by exploiting user’s history context
(Flek, 2020). Re-entry prediction focuses on
conversation-level response prediction (Zeng et al.,
2018; Chen et al., 2011). Most of them adopt a
complex framework (Zeng et al., 2018) and mas-
sive parameters (see Figure 4(b)) while our model
is simple and effectively combines the current con-
versation and chatting history.

Self-supervised Learning. Self-supervised
learning aims to train a network on an auxiliary
task where the ground-truth label is automatically
derived from the data itself (Wu et al., 2019; Lan
et al., 2019; Erhan et al., 2010; Hinton et al., 2006).
It has been applied to many tasks, such as text
classification (Yu and Jiang, 2016), neural machine
translation (Ruiter et al., 2019), multi-turn response
selection (Xu et al., 2020), summarization (Chen
and Wang, 2019) and dialogue learning (Wu et al.,
2019). These auxiliary tasks can be categorized
into word-level tasks and sentence-level tasks.
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In word-level tasks, nearby word prediction
(Mikolov et al., 2013) and next word prediction
(Bengio et al., 2003; Wang and Gupta, 2015) are
widely explored in language modeling. Masked
language model (Devlin et al., 2018) is also in the
line of word-level tasks.

In sentence-level tasks, Wang et al. (2019a) ex-
ploits Mask, Replace and Switch for extractive sum-
marization. Wu et al. (2019) propose Inconsistent
Order Detection for dialogue learning. Xie et al.
(2020) exploit Drop, Replace, and TOV (Temporal
Order Verification) for story cloze test. Xu et al.
(2020) also design several self-supervised tasks to
improve the performance of response selection.

Most of the previous self-supervised tasks (both
in word-level and sentence-level) focus on the
general domain while our work is based on task-
orientated supervised methods and achieves better
performance.

3 Re-entry Prediction Framework

This section describes our re-entry prediction
framework. The left part of Figure 2 shows our
overall structure. In the following, we first intro-
duce the input and output in Section 3.1. Then in
Section 3.2, we describe our prediction framework.
Finally, the learning objective of the entire model
will be given in Section 3.3.

3.1 Input and Output

The input of our model contains two parts: the
observed conversation c and chatting history ch

of target user u. The conversation c is formal-
ized as a sequence of turns (e.g., posts or tweets)
< t1, t2, ..., tm > where m represents the length
of conversation (number of turns) and tm is posted
by user u. ti is the i-th turn of the conversation
and contains words< wi,1, wi,2, ..., wi,ki >, where
wij is the j-th word in i-th turn and ki is the word
length of i-th turn. The chatting history ch is con-
structed by concatenating the turns (in training cor-
pus) that are authored by the user u into a sequence
following their posting time.

For output, we yield a Bernoulli distribution
p(c, ch) to indicate the estimated likelihood of
whether u will re-engage in the conversation c, giv-
ing the chatting history ch of u.

3.2 Re-entry Prediction Model

Our model consists of three modules: turn encoder,
conversation encoder, and prediction layer.

Turn Encoder. We first feed each word wi,j in
turn ti into an embedding layer and get the word
representation ei,j . The turn representation is then
modeled via a turn encoder, where a word-level
bidirectional gated recurrent unit (Bi-GRU) (Cho
et al., 2014) is adopted. The hidden states of Bi-
GRU are defined as:

−→
hj = fGRU (ej ,hj−1),

←−
hj = fGRU (ej ,hj+1) (1)

The output of our turn encoder is the concatenation
of the last hidden states of both directions of Bi-
GRU: h = [

−→
hj ;
←−
hj ].

To incorporate the information of the user’s chat-
ting history, we also use the same procedure de-
scribed above to encode each history turn thi in ch.
We then apply another Bi-GRU layer to capture the
temporal features among these history turns and de-
rive the final representation of chatting history hh

for target user u. Finally, we use hh to initialize the
hidden states of the last conversation turn (posted
by target user u) tm’s turn encoder, and the initial-
ization mechanism is proven to be helpful in Wang
et al. (2020). The following equation describes the
initialization:

−−→
hm,0 =

←−−−−
hm,km = η(W0h

h + b0) (2)

where
−−→
hm,0 and

←−−−
hm,km are the initial states of both

directions, and η is a Tanh activated function. W0

and b0 are learnable parameters.
With the initialization process, we produce more

informative representation of the final turn hm,
since it can encode information from both current
conversation c and target user u’s chatting history.

Conversation Encoder. To learn the conversa-
tional structure representations for c, we apply a
third Bi-GRU, to capture the interactions between
adjacent context turns:

−→rj = fGRU (hj , rj−1),
←−rj = fGRU (hj , rj+1) (3)

We concatenate the outputs of both directions and
get the turn representations of c: rj = [−→rj ;←−rj ].

Since different turns might play different roles in
predicting target user u’s re-entry behavior (e.g. the
turns that u directly replied before should be more
important than other turns), we apply an attention
mechanism here to force our model to pay more
attention to important turns. Concretely, the final
representation of conversation c is defined as:

r =

m∑
j=0

ajhj , aj = softmax(Watthj + batt) (4)

where Watt and batt are learnable parameters.
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Figure 2: Our main model (left part) and three self-supervised tasks (right part) for re-entry prediction.

Prediction Layer. We predict the final output
ŷ ∈ [0, 1], which signals how likely u will re-
engage in c, with the following prediction layer:

ŷ = σ(vT [r,hm] + b) (5)

where v and b are learnable parameters and σ()
is the sigmoid function. Here we concatenate the
conversation representation r and hidden state of
final turn hm as input, to emphasize the role of
final turn posted by target user u.

3.3 Learning Objective

Following Zeng et al. (2019), we use binary cross-
entropy loss as our learning objective. Also, to
deal with the imbalance of positive and negative
instances in training corpus, we weigh differently
for their losses. The equation for our main task is
defined as follows:

Lmain = −
∑
i∈T

[
λ ·yi log(ŷi)+µ(1−yi) log(1− ŷi)

]
(6)

where T is the training corpus, yi denotes the
ground-truth label for i-th instance in the train-
ing corpus (label is 1 if target user re-engages later,
otherwise 0), and λ and µ are hyper-parameters to
trade off the weights between positive and negative
instances. Generally, the values for λ and µ can be
tuned based on the ratios of positive and negative
examples in the training corpus.

4 Self-Supervised Tasks

This section describes the proposed self-supervised
tasks that guide the re-entry prediction model to
better capture user behaviors in online conversa-
tions. The right part of Figure 2 illustrates our
three self-supervised tasks.

4.1 Spread Pattern Prediction

Backstrom et al. (2013) shows that expansionary
(engagement among many users) and focused (re-
peated engagement among few users) are two kinds
of spread patterns in online multi-party conversa-
tions. Distinguishing spread patterns of conversa-
tions is helpful in predicting the future trajectory of
the conversation. Therefore, we propose the Spread
Pattern Prediction task (SP task in Figure 2) which
is a simplified form of the work of Backstrom et al.
(2013).

We divide conversations into two types – fo-
cused conversation (Cfocused) and expansionary
conversation (Cexp). Focused conversations are
composed of repeated discussions between only
two active users while expansionary conversations
contain more than two users. We then make binary
prediction between focused (label ysp = 1) and
expansionary (ysp = 0) conversation with another
prediction layer (the reason for assigning label 1 to
focused conversation can be found in Section 6.3):

ŷsp = p(c ∈ Cfocused) = σ(vT
sp[r,hm] + bsp) (7)

where r and hm are the same as Eq. 5, vsp and bsp
are learnable parameters.

We still apply weighted binary cross entropy
introduced in Eq. 6 as our learning objective. To
simplify the hyper parameter tuning, we force the
trade off weight to be the ratio between positive and
negative instances. Below describes the equation:

LSP = −
∑
i∈T

[
λsp · yspi log(ŷspi )+ (1− yspi ) log(1− ŷspi )

]
(8)

where λsp equals to the number of positive in-
stances divided by that of negative ones in training
corpus. ŷspi is the output of the i-th instance.
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4.2 Repeated Target Prediction

Zeng et al. (2019) shows that their model achieves
better performance in second or third re-entry pre-
diction (i.e. the target user has already contributed
two or three turns) than first re-entry prediction. It
might be attributed to the fact that users who partic-
ipated in the conversation twice or more are more
likely to return to this conversation (see statistic
in Table 1). Therefore, we design Repeated Target
Prediction task (refer to RT task in Figure 2). We
label those conversations containing repeated tar-
get users with 1 (yrt = 1) and other conversations
with 0 (yrt = 0) and carry out binary prediction:

ŷrt = p(∃i, ui = um) = σ(vT
rt[r,hm] + brt) (9)

where r and hm are the same as Eq. 5, vrt and brt
are learnable parameters.

The learning objective for this task can be sum-
marized as below, following similar idea in SP:

LRT = −
∑
i∈T

[
λrt · yrti log(ŷrti ) + (1− yrti ) log(1− ŷrti )

]
(10)

4.3 Turn Authorship Prediction

By combining the intention of the SP and RT
tasks, we further design Turn Authorship Predic-
tion (henceforth TA) task. The TA task aims to
predict whether the turn’s author is the target user
and we label "yes" with 1 and "no" with 0. This
task benefits the main task by signaling both the
conversation spread pattern and repeated user pat-
tern. Specifically, this is a turn-level authorship
prediction and can help learn meaningful turn rep-
resentations, which are essential for conversation
modeling.

Formally, we output each turn’s score as the sim-
ilarity between hidden states of current turn (hi,
i = 1, 2, ...,m− 1) and target turn (hm), followed
by a sigmoid activated function:

ŷtaj = p(uj = um) = σ(hj · hm) (11)

which reflects the probability of turn j being au-
thored by the target user. Mean Square Error (MSE)
loss is applied for TA task:

LTA =
∑
i∈T

mi−1∑
j=1

(ytaij − ŷtaij )2 (12)

where mi is the turn number of conversation i.

Twitter Reddit
# of convs 45,111 16,340
# of turns 229,435 58,189
Avg # of turns per conv 5.09 3.56
Avg len of turn per conv 20.3 42.9
% with repeated target 63.2 39.7
% of positive instances 48.9 21.3

Table 1: Statistics of Twitter and Reddit datasets. “Avg
# of turns” means the average turn number. “len” refers
to the number of tokens. “% with repeated target” rep-
resents the ratio of conversations that target users have
appeared at least twice in context. “Positive instances”
are the conversations which target users re-engage later.

4.4 Training Procedure
All three auxiliary tasks are trained on parameters
shared with the main task except for the final pre-
diction layer (Section 3.2) in a multi-task learning
manner. The final total loss is:

Lfinal = Lmain + αspLSP + αrtLRT + αtaLTA (13)

where αsp, αrt, αta are hyper-parameters.

5 Experimental Setup

Datasets. For experiments, we construct two new
datasets from Twitter and Reddit. The raw Twitter
and Reddit data is released by Zeng et al. (2018,
2019) and both in English. For both Twitter and
Reddit, we form the conversations with postings
and replies (all the comments and replies also
viewed as a single turn) following the practice in
Li et al. (2015) and Zeng et al. (2018).

In our main experiment, different from Zeng
et al. (2019), we do not focus on predicting first re-
entries (i.e. only giving the context until the target
user’s first participation), we generalize the setting
into re-entry prediction regardless of the number
of user’s past participation. In this way, our model
can learn more general and applicable features for
re-entry prediction in diverse scenarios.

The statistics of the two datasets are shown in
Table 1. As can be seen, Twitter dataset is much
larger than Reddit dataset, with longer conversa-
tions (derived from the average number of turns)
and shorter turns (observed from the average length
of turns). Besides, it contains more conversations
with repeated target users, which means that we are
more likely to predict the second or third re-entries.
At last, Reddit dataset is severely imbalanced in
the ratio of positive and negative samples. This
indicates that users in Reddit usually do not come
back to the conversation they once participated in.
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Figure 3: X-axis: thread patterns (the same meaning
as in Fig. 1). Left Y-axis: the number of user patterns;
Right Y-axis: re-entry rate for each user pattern.

We also present the distribution of thread pat-
terns with their re-entry rate for Reddit in Figure
3. It can be seen that “AB”, “ABA” and “ABC”
are the most frequent patterns. And re-entry rate
for focused conversations (i.e. only two users par-
ticipate, such as “AB” and “ABAB”) is generally
higher than expansionary conversations, since prior
contributions in one conversation may result in con-
tinued participation. Such a phenomenon verifies
our motivation to design self-supervised tasks.

Preprocessing. We applied the Glove tweet pre-
processing toolkit (Pennington et al., 2014) to the
Twitter dataset. As for the Reddit dataset, we first
tokenized the words with the open-source natural
language toolkit (NLTK) (Loper and Bird, 2002).
We then removed all the non-alphabetic tokens and
replaced links with the generic tag “URL”. For
both datasets, a vocabulary was maintained with
all the remaining tokens, including emoticons and
punctuation marks.

Parameter Setting. For the parameters in the
main model, we first initialize the embedding layer
with 200-dimensional Glove embedding (Penning-
ton et al., 2014), whose Twitter version is used
for the Twitter dataset and Common Crawl version
is applied to Reddit2. For our BiGRU layers, we
set the size of hidden states for each direction to
200. We employ Adam optimizer (Kingma and Ba,
2015) with initial learning rate 1e-4 and early stop
adoption (Caruana et al., 2001) in training. The
batch size is set to 32. Dropout strategy (Srivastava
et al., 2014) and L2 regularization are used to alle-
viate overfitting. And the tradeoff parameters αsp,
αrt, αta are all set to 0.2. All the hyper-parameters
above are tuned on the validation set by grid search.

2https://nlp.stanford.edu/projects/
glove/

Evaluation Metrics. We use area under the
Curve of ROC (AUC), accuracy (ACC), precision
(Pre), and F1-scores (F1) to evaluate baselines and
our method. Note that, to save spaces, we do not in-
clude Recall scores since it can be calculated with
Pre and F1.

Baselines and Comparisons. We first compare
four baselines. The first method is a weak base-
line RANDOM that randomly predicts "yes-or-no"
labels. The second model, referred to as CCCT, is
from an earlier work (Backstrom et al., 2013) that
trains a bagged decision tree with manually-crafted
features including arrival patterns, time effects,
and most related terms, etc. The third compared
model, BILSTM+BIA (Zeng et al., 2019), yields
state-of-the-art results with a BiLSTM modeling
turn information and a bi-attention mechanism ex-
tracting the interaction effects between context
and history. We also compare BERT+BILSTM,
where the turn representations are extracted with
BERT (Devlin et al., 2018), and a BiLSTM is ap-
plied for modeling the conversation structure. For
our proposed method, we further compare different
self-supervised tasks (SP, RT, TA).

6 Experimental Results

In this section, we first introduce the main com-
parison results in Section 6.1. Then the effects of
our methods and how our methods make effects are
given in Section 6.2 and Section 6.3 respectively.
Finally, Section 6.4 yields further discussion on
user history and error analysis.

6.1 Main Comparison Results
Table 2 reports the main results on the two datasets.
Several interesting observations can be drawn:
• History and attention mechanism are useful.

Compared to BIGRU, both BIGRU+HISTORY and
BIGRU+ATT achieve better performance. The in-
tegration of them, i.e., FULL MAIN, brings greater
improvement, which means both user’s past be-
haviors and the key turns of current context are
important to signal the user’s re-entry behavior.
• Self-supervised tasks are all beneficial. The

main model trained with any one of the three self-
supervised tasks outperforms the main model itself.
Specifically, TA task achieves the best performance
on AUC and F1 on both datasets.
• Self-supervised methods perform bet-

ter than BERT-based model. Compared to
BERT+BILSTM, FULL MAIN trained with SP

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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Models Twitter Reddit
AUC Acc Pre F1 AUC Acc Pre F1

Baselines
RANDOM 50.3±0.56 50.1±0.54 51.2±0.55 50.5±0.55 49.3±1.38 49.5±1.44 22.0±1.24 30.6±1.73

CCCT(Backstrom et al., 2013) 62.4 60.3 57.9 64.9 60.1 57.2 29.5 36.1
BILSTM+BIA(Zeng et al., 2019) 57.3±1.18 51.8±0.45 52.3±0.21 67.9±0.19 60.9±2.75 55.8±3.81 28.1±1.70 38.3±2.08

BERT+BILSTM(Devlin et al., 2018) 67.8±0.26 60.8±0.33 57.2±0.22 69.7±0.19 62.5±0.11 55.3±2.00 28.2±1.06 39.5±0.33

W/O Self-supervised Task
BIGRU 65.4±0.69 58.1±1.59 54.9±1.55 67.8±0.35 58.6±3.00 48.1±3.85 26.1±1.87 38.1±1.24

BIGRU+HISTORY 65.1±0.64 58.2±1.21 55.2±1.13 68.6±0.53 61.8±3.15 52.4±2.42 27.4±1.63 39.1±1.46

BIGRU+ATT 66.5±0.79 59.3±1.11 56.2±1.14 68.7±0.40 59.3±3.95 51.7±3.39 27.1±2.50 37.5±1.35

BIGRU+HIS+ATT(FULL MAIN) 67.3±0.62 59.9±1.39 56.7±1.15 69.4±0.83 61.6±3.93 53.4±4.11 29.1±2.93 39.4±1.51

With Self-supervised Task(s)
FULL MAIN+SP 67.1±0.47 59.9±1.10 57.1±1.04 69.9±0.30 62.8±0.82 58.1±2.18 29.6±1.42 40.0±0.25

FULL MAIN+RT 67.4±0.41 60.0±1.06 57.1±1.02 69.3±0.16 63.2±1.40 59.6±1.86 30.1±1.14 39.9±0.98

FULL MAIN+TA 68.6±0.86 61.0±0.90 58.4±0.91 70.5±0.19 64.6±0.91 57.7±2.12 29.1±1.81 40.6±0.27

Table 2: Main comparison results displayed with average scores (in %) and their standard deviations over the
results with 5 sets of random initialization seeds. The best results in each column are in bold. Our model yields
better scores than all comparisons for all metrics.

Tasks Twitter Reddit
AUC Acc Pre F1 AUC Acc Pre F1

REPLACE 65.6 58.2 55.5 69.3 62.3 54.9 28.8 39.2
SWITCH 65.8 58.0 56.8 69.1 61.1 52.8 27.2 38.9
MASK 64.3 57.5 55.3 68.5 60.7 53.0 27.6 38.7
TA (OUR) 68.6 61.0 58.4 70.5 64.6 57.7 29.1 40.6

Table 3: Comparison results (in %) of different self-
supervised tasks. TA task yields better performance
than Replace, Switch and Mask on all metrics.

or RT task achieves comparable performance on
Twitter and better performance on Reddit. Besides,
FULL MAIN trained with TA task consistently
outperforms BERT+BILSTM on both datasets.
The reason might be that the TA task can better
capture the user’s re-entry behaviors and thus leads
to better performance of the main model.
• Self-supervised learning can make the perfor-

mance more stable. We can see that all models
with auxiliary self-supervised tasks have a smaller
standard deviation, which means self-supervised
learning can reduce the impact of the model’s pa-
rameter initialization and make the performance
more stable.

6.2 Effects of Our Self-Supervised Tasks

To further validate the effects of our self-supervised
tasks, we compare them with three generic self-
supervised tasks. Also, we investigate the training
efficiency of our main model.

Compare with other self-supervised tasks. We
compare our best task TA with three popular self-
supervised tasks: Replace, Switch and Mask. We
follow the turn-level setting in Wang et al. (2019a)
and implement them as follows. Replace: ran-
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1 2 3 4 5 6 7 8 9 10

Full Main BERT-LSTM
LSTM-BiA FullMain+TA

(a) Convergent Speed (b) Para Size & Train Time

Figure 4: For Fig. 4(a), X-axis: epoch index, Y-axis:
F1 score. For Tab. 4(b), “Size" means the parameter
size, “Time" refers to the time that one epoch needed.

domly replaces some turns in a conversation with
random turns from other conversations, then pre-
dict which turns are replaced (each turn has one la-
bel, while 1 means replaced, 0 otherwise). Switch:
randomly switches some turns of the conversation,
then predict which turns are not in the original
positions (1 means not in the original position, oth-
erwise 0). Mask: randomly masks the represen-
tations of some turns, then predicts them from a
candidate list. Refer to Table 3, our self-supervised
task outperforms other generic tasks on the both
datasets. This is probably because our tasks can
capture more useful information (e.g., thread pat-
tern and user trajectory) which are vital to re-entry
prediction.

Compare with baselines. As discussed in Sec-
tion 6.1, models with self-supervised learning
show more stable performance. We further ex-
plore their differences with respect to convergence
speed, parameter size, and training time. We
present F1 scores (in validation set) of the first
10 epochs for the four models, BERT+BILSTM,
BILSTM-BIA (Zeng et al., 2019), our main model
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Figure 5: X-axis: thread pattern (the same meaning as
in Fig. 3). Y-axis: F1 score (in %).

without self-supervised learning (FULL MAIN)
and our main model with self-supervised learning
(FULLMAIN+TA) in Figure 4(a). As we can see,
FULLMAIN+TA achieves the highest F1 scores
from the first epoch. This is due to the benefits of
our efficient pattern-guided self-supervised learn-
ing. On the other hand, FULLMAIN+TA converges
early at around the third epoch while the other
models are trained slowly and converge later. We
also present the parameter size and train time of
one epoch for BERT-BILSTM (BERT), BILSTM-
BIA and FULLMAIN+TA (Our model) in Table
4(b). It can be seen that FULL MAIN+TA has fewer
parameters and faster training speed.

6.3 How Do Our Methods Work?

We also explore the inherent properties of our meth-
ods and show how they work. In this way, we
would like to point out some key ideas in designing
task-oriented self-supervised tasks.

What types of conversations are benefited? To
understand how our self-supervised tasks work, we
explore the performance of six different kinds of
conversations categorized by their thread patterns.
Three of them (“AB”, “ABA” and “ABAB”) are
focused conversations, the others (“ABC”, “ABCD”
and “ABCA”) are expansionary conversations. The
results together with our main model without self-
supervised (FULL MAIN) are displayed in Figure
5. It can be seen that SP brings larger gains for
focused conversations than expansionary ones; and
RT improves the cases with repeated target users
(“ABA”, “ABAB” and “ABCA”) most. Such re-
sults show that SP and RT tasks benefit the main
task by improving performance on their positive in-
stances. This raises a suggestion on designing task-
oriented self-supervised tasks, i.e., choosing tasks
related to the instances that your current model is
not good at. Also, different self-supervised tasks
can be proposed for different purposes in a real sys-
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41.5

SP RT TA

W/O Our Inverse

(a) Effects of Labeling
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50.0

0 1 2 3 [4,8) [8,16) [16, +∞)

W/O History With History

(b) Effects of History Num

Figure 6: Fig.6(a) displays the F1 scores (in %, Y-axis)
for SP, RT and TA in three different scenarios: with-
out these tasks (W/O), the labels for these tasks are the
same as main results (Our) and the labels are inverted
(Inverse). For Fig.6(b), X-axis: the number of history
turns that target user has, Y-axis: F1 score (in %).

tem. On the other hand, TA performs consistently
better in all six cases, because the turn-level label-
ing emphasizes the model capability of tackling all
kinds of conversations. This raises another sugges-
tion, i.e., designing tasks that can reflect model’s
ability in different dimensions.

Will our methods still work if the labels are in-
verted? In general, when we evaluate the perfor-
mance of a task, positive instances count more than
negative instances, since we care more about true
positives in calculating precision and recall. There-
fore, we wonder whether the labeling strategies will
affect the results. To this end, we invert the labels
of our self-supervised tasks by changing the label
1 to 0 and label 0 to 1. For example, we used to
label focused conversations as 1 and expansionary
conversations as 0 in SP task. Now we label them
with opposite labels to explore how the methods
work. From the results shown in Figure 6(a), the
performance of inverted SP and inverted RT is even
poorer than the model without self-supervised tasks
(W/O). Inverted TA shows better performance than
W/O, but the F1 score is still lower than the original
labeled TA. We attribute such performance drop
to the inconsistent labeling between auxiliary task
and main task. This means that the positive label
in the auxiliary task should be related to that in the
main task so as to enhance learning. Therefore, we
turn to the final finding in our experiments, i.e., la-
beling strategies make a difference for the designed
self-supervised tasks.

6.4 Further Discussion

Effects of user history. To understand how user
history affects prediction, we present F1 scores for
the model with history and without history in Fig-
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ure 6(b). Our model with history performs better
for users having more than 1 history conversation
and perform worse in the cases of only 0 and 1.
This is because our model needs sufficient informa-
tion to capture personalized features.

Error analysis. We have tried the joint training
of all three auxiliary tasks and find that perfor-
mance is similar to training only with TA task. This
might be attributed to the difficulty of balancing
among so many tasks during joint training. An-
other reason is that TA task has already covered the
information in SP and RT task as its idea comes
from the combination of the previous two tasks. On
the other hand, our model performs worse in pre-
dicting the expansionary conversations (Figure 5),
since most users in such conversations tend to not
return, and the reasons for that might be diverse,
e.g., too busy to reply. We leave how to enhance
the performance in such cases as our future work.

7 Conclusion

We present a basic model with three novel self-
supervised tasks for re-entry prediction. Exper-
iments on two newly constructed conversation
datasets, Twitter and Reddit, show that our model
outperforms the previous models with fewer param-
eters and faster convergence. Further discussions
provide more insights on how our model works and
how to design task-oriented self-supervised tasks.
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