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Abstract

Large generative language models have been
very successful for English, but other lan-
guages lag behind, in part due to data and com-
putational limitations. We propose a method
that may overcome these problems by adapt-
ing existing pre-trained models to new lan-
guages. Specifically, we describe the adapta-
tion of English GPT-2 to Italian and Dutch by
retraining lexical embeddings without tuning
the Transformer layers. As a result, we obtain
lexical embeddings for Italian and Dutch that
are aligned with the original English lexical
embeddings. Additionally, we scale up com-
plexity by transforming relearned lexical em-
beddings of GPT-2 small to the GPT-2 medium
embedding space. This method minimises the
amount of training and prevents losing infor-
mation during adaptation that was learned by
GPT-2. English GPT-2 models with relearned
lexical embeddings can generate realistic sen-
tences in Italian and Dutch. Though on aver-
age these sentences are still identifiable as arti-
ficial by humans, they are assessed on par with
sentences generated by a GPT-2 model fully
trained from scratch.

1 Introduction

Large pre-trained language models have brought
unprecedented progress in NLP, but also concerns
regarding the excessive computing power needed
to train them (Strubell et al., 2019). Limited access
to large amounts of computational resources, as
well as environmental considerations, curb possi-
bilities for less-resourced and less-researched lan-
guages. Additionally, models like GPT-2 (Radford
et al., 2019) are trained on amounts of data that are
not available for most languages. As a result of
these limitations, language models are commonly
trained for English, whereas reproductions in other
languages may underperform or not exist.

That language models can benefit from informa-
tion in other languages has been demonstrated by

the effectiveness of multilingual BERT (mBERT)
and XLM-RoBERTa (Conneau et al., 2020). How-
ever, for downstream tasks mBERT has been shown
to be outperformed by monolingual models for
higher resource languages whereas lower resource
languages can still achieve better results without
pre-trained language models (Nozza et al., 2020;
Wu and Dredze, 2020).

Rather than pursuing a multilingual direction,
we aim at exploiting existing language models
and language similarities to create models for new
languages. Specifically, we develop a multi-step
procedure for adapting English GPT-2 (Radford
et al., 2019) to Italian and Dutch. Dutch is geneti-
cally closely related to English, both being West-
Germanic languages, while Italian is a more distant
Romance language from the same Indo-European
language family (Eberhard et al., 2020). It is how-
ever worth noticing that at sentence level English
and Italian tend to have the same word order (SVO),
while Dutch is SVO in main clauses, but SOV in
subordinate ones; at noun phrase level, English
and Dutch share constituent order (for example
adjective-noun) while Italian is different (mostly
noun-adjective). A GPT-2 based model has previ-
ously been trained from scratch for Italian (De Mat-
tei et al., 2020). We can thus compare sentences
generated by this model with sentences generated
by our adapted model. For Dutch, no other GPT-2
based models exist, but similar BERT-based mod-
els have been trained from scratch (de Vries et al.,
2019; Delobelle et al., 2020).

Procedure Overview and Contributions When
training a new language model, weights of an exist-
ing pre-trained model for another language can be
used for initialisation. The first step in our training
procedure is to only retrain the lexical embeddings
of the GPT-2 small model, without touching the
Transformer layers. We show that retrained lexical
embeddings are well aligned with the English vo-
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cabulary and that GPT-2 is capable of generating
realistic text in Italian and Dutch after this step.
Next, we demonstrate that the lexical embeddings
of larger GPT-2 models can be approximated by
transforming the small lexical embeddings to the
GPT-2 medium lexical embedding space. The least-
squares regression method is the most effective
transformation method for this scaling procedure.
Human judgements show that generated sentences
are often realistic, but become even more consis-
tently so after additional finetuning of the Trans-
former layers. This improvement is stronger for
Dutch than for Italian.

The steps in our pipeline yield GPT-2 based lan-
guage models for Italian and Dutch which are made
available on the Hugging Face model hub1; the
source code is available on Github2. On the last
page, we also include a ‘recipe’ for creating GPT-2
models for new languages.

2 Background

Previous and current research relevant for the
present work is found in the more general field
of transfer learning, with a specific focus on lan-
guage transfer. We also discuss how our approach
of translating lexical layers in different model sizes
relates to work on aligning word embeddings.

2.1 Language transfer

Transfer learning can be an effective strategy to
adapt models to lower-resource languages by ini-
tially training a model for a source language and
then further training (parts of) the model for a target
language. It has been successfully used to create
machine translation models with little parallel data
(Zoph et al., 2016) as well as other classic NLP
tasks (Lin et al., 2019).

In machine translation a model can be adapted
by initially training it for a high-resource language
pair after which the model should be partially re-
trained for a low-resource language (Zoph et al.,
2016; Nguyen and Chiang, 2017; Kocmi and Bojar,
2018). Retraining a randomly initialised lexical
layer while freezing the rest of the model is an
effective method to adapt a model to a new lan-
guage, and dictionary based initialisation is not
required to get the best performance (Zoph et al.,
2016). Artetxe et al. (2020) show that a monolin-

1https://huggingface.co/GroNLP
2https://github.com/wietsedv/

gpt2-recycle

gual BERT model can be adapted from a source
language to a different target language by retrain-
ing the lexical layer for the target language while
freezing the Transformer layers in the model. Zero
shot adaptation for downstream tasks is possible by
finetuning the original source model with source
language data and swapping lexical layers after-
wards. Lexical layer retraining approaches may be
effective despite the presence of source and target
language dissimilarities if a downstream task does
not require perfect data. However, these methods
have not been applied yet to generative language
models where dissimilarities can cause clear syn-
tactic and lexical errors.

Language similarity plays a role in the effective-
ness of transfer learning for language models. For
instance, in machine translation French is a better
parent model for Spanish than German (Zoph et al.,
2016). Word order differences between languages
can negatively influence transfer performance, and
Kim et al. (2019) show that randomly swapping
words in the source language, which forces the
model to rely less on consistent word order, can im-
prove performance in the target language. Overall,
genetic similarity between source and target lan-
guages can play a role, but Lin et al. (2019) have
shown that in practice the geographic distances be-
tween countries of origin, syntactic similarity and
subword overlap are better predictors of transfer
performance for machine learning, part-of-speech
tagging, dependency parsing and entity linking.

2.2 Aligning word embeddings

Alignment of lexical embeddings, for example for
multiple languages, is most prominently done with
mapping-based approaches (Ruder et al., 2019).
Typically, a function is determined that transforms
one vector space to another based on a seed lexicon.
This lexicon is a dictionary of anchor points that
should result close together after transformation.

An influential method for learning a lexical em-
bedding mapping is the least-squares linear trans-
formation method by Mikolov et al. (2013). They
observe that words and their translations in other
languages show similar constellations of related
words after such a transformation. An alternative
method that is generally considered to be an im-
provement (Ruder et al., 2019) is the orthogonal
procrustes solution. This method adds the con-
straint that the transformation matrix must be or-
thogonal. In practice this means that the transfor-

https://huggingface.co/GroNLP
https://github.com/wietsedv/gpt2-recycle
https://github.com/wietsedv/gpt2-recycle
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mation only contains rotations and reflections and
no scaling and translation. This constraint enables
length normalisation (Xing et al., 2015) and en-
sures monolingual invariance (Artetxe et al., 2016).

Mapping-based approaches rely on isomorphism,
which means that a one-to-one token mapping be-
tween source and target lexical embedding spaces
should be possible. This assumption is used for
bilingual lexicon induction after alignment (Con-
neau et al., 2018). However, the isomorphism as-
sumption highly depends on language similarity
and (amount of) training data (Søgaard et al., 2018).
Some more complex alignment methods like RCLS
(Joulin et al., 2018) optimise for dictionary trans-
lation performance, which assumes isomorphism,
but simpler methods like the orthogonal procrustes
solution are more effective for downstream tasks
like natural language inference (Glavaš et al., 2019).
Mohiuddin et al. (2020) propose a solution to the
isomorphism problem by learning a new shared em-
bedding space with an auto-encoding neural model
instead of trying to fit the embeddings of one lan-
guage in the space of another language.

3 Resources

Models The models that we train are based on the
pre-trained GPT-2 language models (Radford et al.,
2019). GPT-2 is an auto-regressive Transformer-
decoder based language model for English and
comes in four sizes: small (12 layers), medium
(24 layers), large (36 layers) and extra large (48
layers). Our experiments use the small (sml) and
medium (med) model sizes.

Pre-training data The GPT-2 models are (fur-
ther) pre-trained with Italian (ita) and Dutch
(nld) data. The Italian pre-training data is the
same dataset that was used to train the Italian
GPT-2 small language model GepPpeTto (De Mat-
tei et al., 2020). This dataset is a combination
of Wikipedia data (2.8GB) and web texts from
the ItWaC corpus (11GB; Baroni et al. 2009).
Dutch data consists of a combination of Wikipedia
(2.0GB), newspaper articles (2.9GB; Ordelman,
Roeland J.F. et al. 2007), books (6.5GB) and ar-
ticles from various Dutch news websites (2.1GB).
Documents are filtered to only contain Dutch texts
using the Wikipedia-trained fastText language iden-
tifier (Joulin et al., 2017), and are deduplicated
based on exact sentence matches. The final Dutch
pre-training data contains 13GB of plain text, of
which 5% is reserved as development data.

Evaluation data The Italian models are tested
using the same three corpora that were used to eval-
uate GePpeTto (De Mattei et al., 2020): Wikipedia,
ItWaC, EUR-Lex (laws), newspapers and blog
posts. A 5% subset of this data is used for de-
velopment. For perplexity evaluation, the Dutch
500 million word, 22-genre SoNaR corpus is used
(Oostdijk et al., 2013). The smaller 1 million word
SoNaR-1 subcorpus is used as development data.

Tokenisation The datasets are tokenised using
byte-pair-encoding (BPE). For better comparison,
the Italian vocabulary is taken from the GePpeTto
model (De Mattei et al., 2020). The Dutch BPE vo-
cabulary is based on the full pre-training data and it
has been ensured that every character that is used in
the Dutch language is present as a single character
token in the vocabulary. A large vocabulary size is
beneficial because words are less often split in sep-
arate tokens, but vocabularies that are too large will
have low token coverage for uncommon tokens.

Computation Training a model like GPT-2 is a
computationally expensive task that requires access
to costly hardware for long training times. All mod-
els discussed in this paper are trained with eight par-
allel NVIDIA V100 32GB GPUs on the Peregrine
high performance computing cluster at the Univer-
sity of Groningen. For efficient implementation of
the models, we use PyTorch (1.6.0; Paszke et al.
2019), PyTorch Lightning (0.9.0; Falcon 2019) and
Transformers (3.0.2; Wolf et al. 2020). We imple-
ment four strategies to decrease general training
time. First, the models are trained with 16-bit auto-
matic mixed-precision training (Micikevicius et al.,
2018). This decreases training time with a factor of
two to three times. Second, we split each document
in windows of 128 instead of 1024 tokens when we
only train the lexical embeddings. Third, we min-
imise padding by using bucketed random sampling
which means that sequences within minibatches
have roughly the same length. Finally, we use max-
imum batch sizes that fit into GPU memory and use
gradient accumulation in order to do backpropaga-
tion only for every 2000 examples. The models are
trained with the Adam optimiser (Kingma and Ba,
2017) and initial learning rates are chosen based
on the steepest loss slope with gradually increasing
learning rates (Smith, 2017). The learning rate is
reduced by 10% on when training loss reaches a
plateau. More implementation details are given in
the git repository.
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4 Cross-language Transfer

We adapt GPT-2 for Italian and Dutch with mini-
mal random initialisation. The lexical embeddings
in GPT-2 are trained with an English BPE vocab-
ulary. Therefore, they are not usable for the new
languages and the lexical embedding layer has to be
randomly initialised for the target vocabulary. This
lexical embedding layer is used both as the first and
the last layer of GPT-2 (tied weights). Relearning
lexical embeddings with frozen Transformer layers
prevents catastrophic forgetting in the Transformer
layers when the embeddings are still random.

Relearning lexical embeddings Relearning lex-
ical embeddings is nearly as computationally ex-
pensive as fully training the model, because back-
propagation has to be done through the full model
in order to update the lexical embeddings in the first
layer of the model. However, loss values stabilize
after only one to two epochs with lexical embed-
ding relearning whereas full model training takes
more training time. We retrain the lexical embed-
dings for the sml and med model for Italian and
Dutch by training until loss on the validation data
stops decreasing. When we retrain the sml model,
the perplexities on our Italian and Dutch test data
become 44.2 and 48.9 respectively. These perplex-
ity scores show that the sml model can predict
Dutch and Italian tokens reasonably well without
having retrained the Transformer layers. There-
fore, the English Transformer layers are at least
partially language-independent and our relearning
method automatically aligns lexical embeddings to
the embedding space of the English model. How-
ever, if we retrain the med lexical layer for Italian
and Dutch with the same method, test data per-
plexities are 81.2 and 185.0. These unsatisfactory
med perplexities could be due to stopping train-
ing too early or to arriving at a suboptimal local
optimum. Training for a longer time or trying dif-
ferent random initialisations defeats the purpose of
minimising computational requirements. A more
efficient method that uses the already learned sml
embeddings is described in Section 5.

Vocabulary alignment The lexical embeddings
of both the original English tokens as well as the
relearned Italian and Dutch lexical embeddings can
be considered to inhabit the same embedding space
because the lexical embeddings of all three lan-
guages are tuned to minimise loss with the exact
same Transformer layers. Therefore, tokens with

English Italian Dutch

while mentre terwijl
genes geni genen
clothes vestiti kleren
musicians composi[...] artiesten
permitted ammessa toegelaten
Finally infine Eindelijk
satisfied soddisfatto tevreden

Accuracy: 85% 89%

Table 1: Alignment of closest tokens in the lexical em-
beddings of smlrle for Italian and Dutch. Accuracy
scores are based on a manual evaluation by the authors
of 200 random aligned tokens. Semantically correct
subword matches are included.

similar meaning in different languages should be
close to each other if the lexical embeddings are
properly trained. Table 1 shows the closest Italian
and Dutch tokens of a random sample of English
tokens. These alignments show that the optimal
lexical embeddings for both Italian and Dutch are
often literal translations of English tokens. Thanks
to similarity of context-dependent structures like
syntax in these three languages, the English model
can be adapted to Italian and Dutch. Based on this
small sample, Dutch to English alignment seems
to be slightly more accurate than Italian to English,
but a more thorough study would be required to
evaluate the actual relation between genetic simi-
larity and alignment potential through this method.

Text generation Table 2 shows some examples
of unconditioned text generation of the English
sml with relearned lexical embeddings for Italian
and Dutch. These examples show that the model
can generate proper Italian and Dutch sentences, al-
though it sometimes uses English word order where
the correct word order differs in Dutch, or ignores
grammatical gender agreement in Italian defaulting
to the singular masculine, or doesn’t always pro-
duce correctly Italian prepositional articles (“di la”,
en: of the vs “della”, en: of-the). Phrases in italics
in Table 2 highlight such mistakes.

The literal English translations, however, show
that the models can generate proper Italian and
Dutch grammar that differs from English. Italian
and Dutch lexical embeddings are not only aligned
with equivalent English tokens, but unexpected cor-
rect syntax shows that the grammatical functions of
words have also been adapted. For example, in Ital-
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Italian Literal English translation

La prima parte del film venne distribuito in Giappone con
l’aggiunta della colonna sonora.

The first part of the film was distributed in Japan with the
addition of the soundtrack.

L’unico motivo di la mia insoddisfazione fu il fatto che
l’inizio della sua attività [. . . ]

The only reason of the my unsatisfaction was the fact that the
beginning of-the his/her activity [. . . ]

Il suo nome deriva da un vocabolo arabo. The his/her name derives from a word Arabic.

Dutch Literal English translation

In een artikel in de Journal of Economicologie (1998), The
New York Times schrijft:

In an article in the Journal of Economicology (1998), The
New York Times writes:

Ik kan me niet voorstellen dat mensen van mijn generatie
zijn zo boos op mij te wachten.

I can me not imagine that people of my generation are so
mad at me to wait.

Ik heb niets gedaan om mijn moeder te helpen. I have nothing done to my mother to help.

Table 2: A selection of generated sentences by the sml model with Italian and Dutch lexical embeddings. Phrases
in italics are ungrammatical in the target language.

ian the noun-adjective order is opposite to English
and realised correctly; also, the use of the definite
article in front of a possessive pronoun is correctly
introduced, while ungrammatical in English.

This shows that the relatively low-dimensional
context-independent lexical embeddings in GPT-2
contain syntactic features of the tokens in addition
to semantics, and confirms previous findings of
high information density in the lexical layer of
language models (de Vries et al., 2020). Therefore,
language adaptation can be to some extent effective
by adapting the lexical embedding layer without
retraining Transformer layers at all.

5 Scaling up Complexity

Replacing the original lexical embeddings with lex-
ical embeddings from a different target language
seems an effective way to initialise full model trans-
fer to that target language. However, relearning the
lexical embeddings of a new vocabulary requires
full forward and backward propagation through
the whole model. Therefore, this becomes an in-
creasingly more expensive task for larger model
sizes. When multiple model sizes need to be trans-
ferred to a new language, the lexical embeddings
do not need to be retrained from scratch. Instead,
vocabulary alignment between the source and tar-
get languages for the smaller model could be used
to initialise the embeddings for a larger model.

After relearning the lexical embeddings of the
sml model for Italian and Dutch, we observed
that tokens with similar meaning in different lan-
guages are close to each other in the embedding
space. This alignment effect should also be present
in properly trained lexical embeddings of larger

models. Given that we have at our disposal known
embeddings for all 50K English tokens for every
model size, we can use these data points to trans-
form model size sml to larger model size med.

Regardless of architecture, embeddings are only
considered to be alignable if they are trained un-
der identical conditions with the same type and
amount of data (Levy et al., 2015; Ruder et al.,
2019). Our goal differs from previous alignment ef-
forts since instead of aligning languages, we align
separately trained embeddings for different model
sizes, trained on the same data with identical and
fully parallel vocabularies in English. The em-
beddings differ in dimensionality (768d for sml,
1024d for med) and the different model sizes may
influence the amount and density of information in
the lexical embeddings.

5.1 Transformation methods

The 50K parallel English tokens can be used to find
an optimal transformation between lexical embed-
dings of different model sizes. The completeness
of this mapping due to shared vocabularies between
models eliminates the need to use complex solu-
tions like refinement or bootstrapping the lexicon
(Artetxe et al., 2018). We compare three simple
supervised alignment methods for transformation
from source space sml to target space med.

Regression (lstsq) A classic approach for map-
ping lexical embeddings is mean-squared-error
minimising linear regression with the least-squares
method (Ruder et al., 2019; Mikolov et al., 2013).
This method learns a transformation matrix W that
minimises the Euclidean distance between source
and target embeddings. The optimal matrix is ap-



841

Italian Dutch
Model Int@1k PPL Int@1k PPL PPL (1 epoch)

medrle (1 epoch) 0.38 - 185.02 - -

smlrle
proc−−→ med 0.61 8.12 ×1012 0.61 5.02 ×1012 52.69

smlrle
lstsq−−−→ med 0.56 364.06 0.56 293.61 47.57

smlrle
1−nn−−−→ med 0.37 2,764.19 0.36 1,101.59 50.25

smlrle
10−nn−−−−→ med 0.37 20,715.80 0.35 11,871.66 56.88

Table 3: Scores for different transformation methods. Int@1K are the average 1k nearest English neighbours
intersection (int) fractions between sml and transformed med embeddings. PPL is the perplexity on the test sets
for Italian and Dutch. PPL (1 epoch) indicates the perplexity after one epoch of training, which is low if the
transformed embeddings were close to a good local optimum.

proximated with stochastic gradient descent, and
therefore this is not an exact solution.

Orthogonal Procrustes (proc) More recent
alignment approaches constrain the transformation
W to be an orthogonal matrix (Ruder et al., 2019;
Artetxe et al., 2016). This constraint enables us-
ing the exact solution for the orthogonal Procrustes
problem (Xing et al., 2015). The exact solution
only rotates and reflects data points to be as close
as possible to the target space without any scaling
or translation, preserving monolingual invariance
in the source embeddings (Artetxe et al., 2016).

Weighted K-Nearest Neighbours (knn) Unlike
typical alignment approaches, we have a complete
set of parallel data points in the source and target
spaces (English). The unknown target language
tokens can be approximated by taking the K near-
est English tokens in the source sml embedding
space and using the distance-weighted sum of these
tokens in the target med embedding space.

5.2 Results after transformation
Table 3 shows med embedding similarity with
source sml embeddings and perplexities on test
data with transformed embeddings, as well as the
transformed embeddings with one additional epoch
of training. Results are consistent for Italian and
Dutch. Nearest English neighbours are best pre-
served with the Orthogonal Procrustes method.
However, the perplexity scores are extremely high
for this method. The perplexity scores with the
different methods vary in complete orders of mag-
nitude. Based on this, the least-squares regression
method outperforms the other methods. After one
epoch of additional training with transformation ini-
tialised embeddings, the lstsq method still outper-

Model PPL
ita nld

smlrle 44.19 48.85
smlrle + finetuning 42.45 39.59
smlfull* 193.15 219.34

medrle + finetuning 42.51 44.68

GePpeTto (sml) 106.84 -

Table 4: Perplexities of the concatenated test data for
the final models. The medrle model is in practice the

smlrle
lstsq−−−→ med model. * The smlfull model is

trained for the equivalent amount of time as the smlrle
+ finetuning models, but with all layers unfrozen.

forms the other methods. It even outperforms the
sml model with fully tuned lexical embeddings.

6 Full model finetuning

After obtaining lexical embeddings for Italian and
Dutch to be plugged into the English GPT-2 mod-
els, the full models can be finetuned for the target
language. The best performing lexical embeddings
will be used to train the sml and med Italian and
Dutch models. These are the lexical embeddings
that are relearned from random initialisation for the
sml model. For the med model, the lstsq trans-
formed sml embeddings with additional training

are used (smlrle
lstsq−−−→ med+rle).

The relearned lexical embeddings reduce the risk
of information loss while the model is adjusting
to a new language. Nevertheless, information can
still be lost during training. For instance for the
sml Dutch model, validation loss increases with
a learning rate of 10−4, but this does not happen
with a lower learning rate of 10−5.
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7 Obtained models and evaluation

For both Italian and Dutch, we evaluate three mod-
els: (i) the English sml model with relearned lex-
ical embeddings; (ii) the sml model with addi-
tional finetuning to the target language; and (iii)
the English med model with relearned lexical em-
beddings that were initialised by transforming sml
embeddings with the least-squares method. For
Italian, we also include the GPT-2 small based GeP-
peTto model (De Mattei et al., 2020), which was
trained from scratch. This inclusion offers the op-
portunity of a direct comparison between a GPT-2
model trained from scratch and those obtained with
our transfer approach. We run both an automatic
and a human-based evaluation. For the former, we
compare perplexity scores on unseen test data in
different genres. For the latter, we collect and com-
pare judgements over generated and gold texts by
native speakers of Italian and Dutch.

7.1 Perplexity

Table 4 shows perplexity scores on concatenated
multi-genre test data based on a strided moving
window perplexity calculation.3 Perplexities are
calculated with Italian and Dutch vocabularies of
30K tokens. These results show that perplexities
are low when only relearning the lexical embed-
dings for both Italian and Dutch. Further finetuning
of the sml model seems to have the greatest effect
for the Dutch language. The med models with re-
learned lexical embeddings have lower perplexity
than the equivalent sml models. This shows that
language transferability based on the lexical layer
is not restricted to small model sizes. Moreover,
we see that our proposed method results in lower
perplexity scores than regular full model finetun-
ing of the English model. The overall perplexity
scores of Italian are closer to each other than the
Dutch perplexities. We also tested perplexities by
the different genres that make up both the Italian
and the Dutch datasets (see Figure 5 and Figure 6
for details), and observed that while perplexities
vary greatly per genre, the model ranking per genre
is consistent with the global scores.

7.2 Human Judgements

The perplexity scores give an indication on how
well a language is represented by language models,

3Window sizes are 128 tokens and strides are 64 tokens
except for GePpeTto. GePpeTto was trained with at most 100
tokens, so its window size is 100 with a 50 token stride.

Model Social News Legal

smlrle 134.64 67.14 16.95
smlrle + finetuning 118.19 55.63 15.36

medrle 123.64 59.18 14.95

GePpeTtosml 179.47 80.83 34.71

Table 5: Perplexities for different genres within the
Italian test data. Rankings are consistent with Table 4
except for the legal domain.

Model Proceedings News Legal

smlrle 44.47 239.14 52.01
smlrle + finetuning 36.35 171.83 42.92

medrle 40.62 234.52 45.01

Table 6: Perplexities for some SoNaR genres in Dutch.
Models rankings are consistent across genres.

but this does not reliably tell how good the model
is in a generative setting. For this, we resort to hu-
man judgements. Human assessments of generated
texts are collected for the models that incorporate
the crucial steps in our approach and achieve rea-
sonable perplexity scores: the sml models with
only relearned lexical embeddings, the finetuned
sml models and the higher complexity med mod-
els with only relearned lexical embeddings based
on transformed sml lexical embeddings.

Texts are assessed in isolation by means of a
direct evaluation (Novikova et al., 2018).4 Sub-
jects are presented with texts on the screen, and are
asked whether the texts they see could have been
written by a human. All subjects are pre-informed
that some of the texts they will see are machine
generated. Rather than discrete answers, we obtain
continuous evaluations by offering the possibility
of clicking anywhere on a bar whose extremes are
“no” to the left and “yes” to the right.

The evaluation interface is made with PsychoPy3
(Peirce et al., 2019) and hosted with Pavlovia5.

Italian models were evaluated by 24 participants
(9 M, 15 F) with ages ranging from 26 to 63 with
a median age of 46. The Dutch models were eval-
uated by 15 participants (11 M, 4 F) with ages
ranging from 23 to 36 with a median age of 27.

The three final models are evaluated for both lan-
guages; for Italian, we also add GePpeTto (De Mat-
tei et al., 2020). Human written gold sentences

4A direct evaluation is opposed to a comparative one, usu-
ally involving a ranking task (Novikova et al., 2018; De Mattei
et al., 2020); this is left to future work.

5https://pavlovia.org

https://pavlovia.org
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(a) Human judgement scores for Italian texts.
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(b) Human judgement scores for Dutch texts.

Figure 1: Human judgement scores based on a continuous scale. Most judgements were close to 0 or 1.

were sampled from the test data as an additional
condition. For each of these 5 Italian and 4 Dutch
conditions, 100 sentences are evaluated. Each par-
ticipant has evaluated 50 to 150 sentences and each
sentence is evaluated by 3 to 5 participants. As a
result, we obtain 1950 evaluations for 500 Italian
texts and 1550 evaluations for 400 Dutch texts.

All artificial sentences are randomly generated
without conditioning and with beam search (5
beams, with top 50 tokens or a summed probability
of at least 90%), and a temperature of 3.0. Setting
the temperature value >1 means decreasing the
sampling probability of likely tokens, and therefore
increases variation between generated samples.

Longer sentences have a higher chance to con-
tain mistakes, so a model that generates longer
sentences may have a disadvantage. However, ex-
plicitly controlling sentence length is not possible
nor desired since sentence length may also be an
indication of model quality. For both languages
the randomly sampled gold sentences have more
long sentences than the models, but the sml model
with finetuning also sometimes generates longer
sentences. We filter out sentences longer than 30
tokens to decrease sentence length effects on judge-
ments. The remaining Italian sentences have me-
dian lengths of 18 or 22 words and the Dutch ones
16 or 17 words for the different conditions.

Figure 1 shows the distributions of human judge-
ments per condition. Variance seems to be high
due to the non-normally distributed scores as rel-
atively many scores are close to zero, half or one.
The model differences appear stronger for Dutch
than Italian, but for both languages the subjects
have given high scores to gold sentences. This is
expected and indicates that the participants are able

to correctly judge real human texts. Of the three
trained models, the small model with additional
finetuning achieves the highest scores.

For the Italian model comparison we use a
linear mixed-effects model but with only author
as fixed effect and random intercepts for partici-
pants and sentences. There is no significant ef-
fect for sentence length. The judgements on gold
texts are significantly higher than all model judge-
ments (p < 0.005) except for smlfine. However,
smlfine is not significantly better than GePpeTto
nor the smlrle and medrle models (p > 0.05).

For Dutch we use a linear mixed-effects model
with fixed effects for author and sentence length
(in number of words) and random intercepts for
participants and sentences. Sentence length has a
significant negative effect (p < 0.001). All arti-
ficial authors score significantly lower than gold
(p < 0.001). As for Italian, the smlfine model ap-
pears the best model, but in this case the judgement
scores are significantly higher than for the other
two models (p < 0.001). The smlrle and medrle
models do not differ significantly from each other.

The human judgements show consistent results
across the languages, but differences between
Dutch judgements are stronger than for Italian.
This seems to mirror the smaller perplexity dif-
ferences for Italian than for Dutch. Whether demo-
graphic or cultural differences also play a role in
this difference will need to be further investigated.

In sum, we see that the English GPT-2 models
with relearned lexical embeddings are recognisable
as artificial, whereas this problem is attenuated
after additional finetuning. The sml model with
additional finetuning performs at least as well as
the GePpeTto model that was trained from scratch.
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8 Conclusion

We have described methods to adapt GPT-2 to ge-
netically related languages and to increase model
complexity. Retraining lexical embeddings forces
the model to learn representations that are aligned
between English and the target language. GPT-2 is
able to generate realistic text in another language,
but human judgements reveal that additional fine-
tuning of the full model is needed to generate real-
istic sentences more consistently. Relearned lexical
embeddings show signs of syntactic adaptation to
the new language, though not fully consistently.

Dutch is genetically closer to English than Ital-
ian, but our results do not prove that this method
works better for Dutch. Future research on the rela-
tion between degrees and types of language similar-
ity and transferability of models will enable more
effective monolingual transfer, and possibly train-
ing better multilingual models by selecting optimal
clusters of languages. This kind of work offers a
privileged perspective into the information learned
by generative language models and provides empir-
ical ground for linguistic typology research (e.g.,
uncovering which linguistic aspects are more uni-
versal, and which more language-specific).

Relearning lexical embeddings using our method
can still be considered an expensive solution, but
training costs decrease when a smaller embedding
space is scaled up to the embedding space of a
larger model. In other words, approximating a good
initialisation of the embedding weights decreases
training time. This method also enables adaptation
of (extra) large GPT-2 models to other languages.

If you can borrow pre-trained weights, why re-
train models from scratch? In the right column we
summarise the steps for the shortest path to train
your own GPT-2 for another language.

Acknowledgments

We gratefully acknowledge the support of the
Dutch Research Council (NWO Aspasia grant for
M. Nissim) and the financial support of the Cen-
ter for Groningen Language and Culture (CGTC).
Additionally, we would like to thank Lorenzo De
Mattei for sharing the Italian data with us. We
would also like to thank the Center for Information
Technology of the University of Groningen for pro-
viding access to the Peregrine high performance
computing cluster. Finally, we thank the anony-
mous reviewers for their insightful feedback. Any
mistakes remain our own.

Impact Statement

This work aims to minimize the environmental im-
pact of training large neural language models by
adapting existing models and by using smart initial-
isation of model weights. However, experiments in
this paper still require the use of GPUs for extended
periods of time which has environmental impact.
Our final models are published and all models that
automatically generates natural text could unfortu-
nately be used maliciously. While we cannot fully
prevent such uses once our models are made pub-
lic, we do hope that writing about risks explicitly
and also raising awareness of this possibility in the
general public are ways to contain the effects of po-
tential harmful uses. We are open to any discussion
and suggestions to minimise such risks.

This paper describes several steps that are taken
to transfer GPT-2 to a different language. The
recommended shortest path to replicate this for
another language is to follow these steps:

Vocabulary Create a new BPE vocabulary for
your target language. The optimal size for your
vocabulary depends on your language, so select
the size by stepwise increments until the number
of tokens per sentence slows to decrease.

Start small Re-initialise the lexical embed-
dings of the small GPT-2 model for your vocabu-
lary size and only retrain the lexical embeddings.

Increase model size If you want to train a
larger model size, fit a least-squares regression
model to the English lexical embeddings in the
small and larger model size and use the fitted
model to transform your newly trained lexical
embeddings to a larger model size.

Optimise your embeddings Do additional
lexical embedding training in the target model
size. Transformed embeddings are a good ini-
tialisation, but they are not perfect.

Finetune Unfreeze the full target model and
do some finetuning to make sure that syntax dif-
ferences are learned by the new model. Use a
low learning rate like 10-5.

Create your own GPT-2 model
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