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ically, at test time, apart from the image, ground
truth dialogue history and the question, a list of
100-candidate answers is also given. The model is
evaluated on retrieval metrics: (1) rank of human
response (Mean, the lower the better), (2) existence
of the human response in top�k ranked responses,
i.e., R@k (3) mean reciprocal rank (MRR) of the
human response (the higher the better) and (4) nor-
malized discounted cumulative gain (NDCG) for
VisDial v1.0 (the higher the better). During eval-
uation, we use the log-likelihood scores to rank
candidate answers.

Human Evaluation. We randomly extract 100
samples for human evaluation according to Wu et al.
(2018), and then ask 3 human subjects to guess
whether the last response in the dialogue is human-
generated or machine-generated. If at least 2 of
them agree it is generated by a human, we think it
passes the Truing Test (M1). In addition, we record
the percentage of responses that are evaluated better
than or equal to human responses (M2), according
to the human subjects’ evaluation.

3.3 Main Results

We compare our proposed model to the state-
of-the-art generative models developed in previ-
ous work. Current encoder-decoder based gen-
erative models can be divided into tree facets.
(1) Fusion-based models: LF (Das et al., 2017)
and HREA (Das et al., 2017) directly encode the
multimodal inputs and decode the answer. (2)
Attention-based models: HCIAE (Lu et al., 2017),
CoAtt (Wu et al., 2018), Primary (Guo et al.,
2019a), ReDAN (Gan et al., 2019), DVAN (Guo
et al., 2019b) and DMRM (Chen et al., 2020a),
DAM, LTMI, KBGN. (3) Visual co-reference res-
olution models: CorefNMN (Kottur et al., 2018),
RvA (Niu et al., 2019). (4) The pretraining model:
VDBERT (Wang et al., 2020).

As shown in Table 1 and Table 2, our MITVG,
which explicitly locates related objects guided by
the textual entities and implements a multimodal
incremental transformer to incrementally build the
representation of the dialogue history and the im-
age, achieves comparable performance on the Vis-
Dial v0.9 and v1.0 datasets. Specifically, our model
outperforms previous work by a significant margin
both on the VisDial v0.9 dataset (0.87 on MRR,
0.31 on R@1, 1.17 on R@5, 0.75 on R10) and the
VisDial v1.0 dataset (0.98 on MRR, 0.76 on R@1,
1.23 on R@5, 1.28 on R10, 0.82 on Mean, and

DMRM MITVG

Method 1 (M1) 0.62 0.76

Method 2 (M2) 0.59 0.70

Table 3: Human evaluation on 100 sampled responses
on VisDial val v1.0. M1: percentage of responses pass
the Turing Test. M2: percentage of responses evaluated
better than or equal to human responses.

1.00 on NDCG). The improvement of R@10 is the
largest and our method also gains a large increase
on MRR and R@1 due to the explicit modeling
of multiple modalities (Seeing Sec 3.5 for further
quantitative analysis).

As shown in Table 3, we conduct human study
to further prove the effectiveness of our model.
Our model achieves the highest scores both on the
metric M1 (0.76) and M2 (0.70) compared with
the previous model, DMRM (Chen et al., 2020a).
These results show that our model can generate a
better contextually and visually coherent response.

3.4 Ablation Study

We also conduct an ablation study to illustrate the
validity of our proposed Multimodal Incremental
Transformer with Visual Grounding. The results
are shown in Table 4.

We implement Multimodal Incremental Trans-
former without Visual Grounding (‘MITVG w/o
VG’) to verify the validity of visual grounding.
As shown in Table 4, comparing ‘MITVG w/o
VG’ with MITVG, we find the metrics decrease
obviously (0.46 on MRR, 0.60 on R@1, 0.68 on
R@5, 0.46 on R@10 and 0.59 on Mean) if visual
grounding is deleted from MITVG. This observa-
tion demonstrates the validity of visual grounding.

To verify the effectiveness of the incremental
transformer architecture, we implement a Multi-
modal Incremental LSTM without Visual Ground-
ing (‘MI-LSTM w/o VG’). A 3-layer bidirectional
LSTM (Schuster and Paliwal, 1997) with multi-
head attention and a 1-layer LSTM with GCA are
applied for encoder and decoder, respectively. All
the LSTM hidden state size is 512. Results in
Table 4 demonstrate the effectiveness of our incre-
mental transformer architecture (compare ‘MITVG
w/o VG’ with ‘MI-LSTM w/o VG’). Results from
the comparison between ‘MITVG w/o VG’ and
DMRM (Chen et al., 2020a) also show the validity
of our incremental transformer to some extent.
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Q1: how tall is the stack ?
GT: 3 suitcases             Ours: 3 suitcases 
Q2: what color are they ?
GT: blue and 2 red       Ours : blue and 2 red
Q3: what do you think they contain ?
GT: probably clothes   Ours: probably clothes

Caption: a stack of luggage below a framed photo
of a map

Q1: is the photo in color ?
GT: yes                  Ours: yes
Q2: how many giraffes ?
GT: more than 3    Ours: 3
Q3: is it daytime ?
GT: yes                  Ours: yes

Caption: several giraffes gather at an elevated 
platform to take food from zoo visitors

(𝑎) (𝑏)

Figure 5: Case study. The text marked in blue indicates the dialogue topic. The answers marked in green and red
indicate the right and wrong answers, respectively. Our MITVG often generates right responses (marked in green)
in keeping with human answers.

Model MRR R@1 R@5 R@10 Mean

DMRM 50.16 40.15 60.02 67.21 15.19

MITVG 51.14 41.03 61.25 68.49 14.37
MITVG w/o VG 50.68 40.43 60.57 68.03 14.96
MI-LSTM w/o VG 50.02 39.85 59.86 67.16 15.78

Table 4: Ablation study of our proposed model on Vis-
Dial val v1.0. “MI-LISM” indicates Multimodal Incre-
mental LSTM. “VG” indicates visual grounding.

Train Validation Test

VisDial v0.9 2.04 1.95 -

VisDial v1.0 2.05 1.93 1.93

Table 5: Average number of the grounded objects in
each question.

3.5 Case Study

As shown in Table 5, we calculate the average num-
ber of the objects associated with entities in each
question for assistant analysis. As shown in Fig-
ure 5 (a), owing to the explicit understanding of
visual content via visual grounding and the mul-
timodal incremental transformer architecture, our
MITVG generates responses in keeping with hu-
man answers. For example, while answering the
question Q1 ‘‘how tall is the stack ?” and Q2 “what
color are they ?”, our model grounds the three suit-
cases accurately via visual grounding, thus giving
the accurate responses “3 suitcases” and “blue and

2 red”. However, as shown in Figure 5 (b), for
questions Q2, MITVG gives a wrong answer be-
cause it focuses on wrong number of objects in the
question by visual grounding.

4 Related Work

Visual Dialogue. Our work touches two
branches of the research in visual dialogue. One
is how to leverage image features. Niu et al.
(2019) utilize object-level image features as visual
attention and refine it by recursively reviewing the
dialog history. Gan et al. (2019) and Chen et al.
(2020a) regard the object-level image features
as visual memory to infer answers progressively
through multiple steps. The other is how to model
dialogue history. Yang et al. (2019a) propose a new
training paradigm inspired by actor-critic policy
gradient (Sutton et al., 1999) for history-advantage
training. Guo et al. (2020) represent each turn
dialogue history with visual content as a node in
a context-aware graph neural network. Park et al.
(2020) refine history information from both topic
aggregation and context matching. Different from
these approaches, we explicitly establish specific
mapping of objects and textual entities to exclude
undesired visual content via visual grounding,
and model multi-turn structure of the dialogue
based on visual grounding to develop a unified
representation combining multi-turn utterances
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along with the relevant objects.

Incremental Structures. There are some suc-
cesses on introducing the incremental structure into
tasks related to dialog systems (Zilka and Jurcicek,
2015; Coman et al., 2019; Li et al., 2019; Das et al.,
2017). In particular, Coman et al. (2019) propose
an incremental dialog state tracker which is updated
on a token basis from incremental transcriptions.
Li et al. (2019) devise an incremental transformer
to encode multi-turn utterances along with knowl-
edge in related documents for document grounded
conversations. Das et al. (2017) propose a dialog-
RNN to produce an encoding for this round and a
state for next round. Our model is different from
these approaches mainly in two aspects: 1) we ex-
plicitly model the relationship between modalities,
i.e., textual utterance and image objects, in visual
dialogue through visual grounding; 2) based on the
explicit association between modalities, our model
incrementally encodes the dialogue history and the
image with well-designed incremental multimodal
architecture to sufficiently understand the dialogue
content, thus generating better responses.

5 Conclusion

We propose a novel Multimodal Incremental Trans-
former with Visual Grounding for visual dia-
logue, named MITVG, which consists of two key
parts: visual grounding and multimodal incremen-
tal transformer. Visual grounding aims to explicitly
model the relationship between multiple modalities.
Based on visual grounding, multimodal incremen-
tal transformer aims to explicitly model multi-turn
dialogue history in the order of the dialogue. Exper-
iments on the VisDial v0.9 and v1.0 datasets show
that our model achieves comparable performance.
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