
336

Figure 3: Examples from CORD (left) and CORD++(right) dev sets. (a) Parses are shown in grouped key-value
format with the errors in red. (b) The illustration of serialization error. (c) The input tokens serialized by Sadv.

Table 2: The dataset properties.

Dataset Lang. Abbr.
# of field

types
# of examples
(train:dev:test) # of fields Mean # of

text nodes Depth
Layout

complexity

CORD IDN co 30 800:100:100 13030 62.3 2 low
CORD+ IDN co+ " " " 62.3 2 high
CORD++ IDN co++ " " " 62.3 2 high
CORD-M IDN co-m " 400:50:50 " 124.6 3 low
Receipt-idn IDN ri 50 9508:458:450 209728 209 2 low
namecard JPN nc 12 22076:256:100 231528 19.4 1 high
Invoice JPN inv 62 896:79:83 37115 412 2 high
FUNSDa ENG fu 4 149:50 9743 179 3 high

a The statistics are from Jaume et al. (2019).

eralizable way. We first show that our model can
handle hierarchical structure in documents by eval-
uating the model on two datasets CORD (Park
et al., 2019) and Receipt-idn that consist of (In-
donesian) receipt images. We then show SPADEs
can perform well on tasks that require modeling
the complex spatial relationship in documents by
reporting the performance on name card IE where
the spatial layout is more complex than receipts.
Then the evaluation on the invoice dataset shows
the advantage of SPADEs when both of the two
challenging factors are simultaneously present. Fi-
nally, we show that SPADEs can handle even more
types of documents by evaluating the model on a
form understanding dataset, FUNSD (Jaume et al.,
2019). Table 3 summarizes the performance of
several baseline models and SPADEs in various
semi-structured document information extraction
tasks.

Handling hierarchical structure in documents
CORD consists of receipt images without creases
or warping. SPADEs initially achieves 91.5% and
87.4% in F1 with and without the oracle (ground
truth OCR results), respectively (Table 3, 1st row,
co). Their dependency parsing score is also shown

Table 3: Parse prediction accuracy. The datasets are referred
by their abbreviations in Table. 2. ∆F1 indicates the difference
between SPADEs (2nd row) and sadv+bert+iob2 (4th row).

test (+oracle†) test

Model co ri nc inv co co+ co++ ri nc inv

SPADEs w/o tca 91.5 92.7 94.0 87.4 87.4 86.1 82.6 88.5 91.1 84.5
SPADEs 92.5 93.3 94.3 88.1 88.2 87.4 83.1 89.1 91.6 85.0
s+bert+iob2 92.4∗ 93.3∗ - - 90.1 74.0 52.0 88.1 - -
sadv+bert+iob2 92.5∗ 93.4∗ 94.4∗ 84.9∗ 90.1 85.4 64.8 89.3 90.5 83.1

∆F1 0 -0.1 -0.1 +3.2 -1.9 +2.0 +18.3 -0.2 +1.1 +1.9

UB-flat 58.1 65.4 100 83.2 - - - - - -

† The input tokens are recognized by human annotators.
* The input tokens are line-grouped by human annotators.

in Table 7 in Appendix (1st panel, co). To push
the performance further, we notice that individual
text nodes have a single incoming edge for each
relation except in special documents like table (Fig.
1). Using this property, we integrate Tail Collision
Avoidance algorithm (tca) that iteratively trims the
tail-sharing-edges and generate new edges until the
process becomes self-consistent (Section 4.2). F1
increases by +1.0% and +0.8% with and without
the oracle upon the integration (2nd row, co).

Importance of generating hierarchical struc-
ture in receipt IE In receipt IE task, the inter-
grouping of fields is critical due to multiple appear-
ance of same field types such as menu name and
price (Fig. 3a). Without the field grouping, the
maximum achievable score is 58.1 F1 (Table 3, 6th
row, UB-flat). Generating hierarchical parses from
the semi-structured documents is relatively new
and thus the direct comparison to previous state-
of-the-art methods are not feasible without con-
siderable modification. General confidential issue
related to industrial documents and multi-lingual
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properties of our task also hinder the comparison.
In this regard, we build our own baselines con-
sisting of the manually engineered serializer and
BERT-based double IOB taggers (s+bert+iob25).

BERT-tagger The serializer generates pseudo-
1D-text from the input tokens distributed in 2D
and groups them line-by-line based on their height
differences. BERT+iob2 predicts the boundary be-
tween the fields and between the groups of the
fields (see Section 3.2 for the detail). In CORD,
s+bert+iob2 shows comparable performance with
SPADEs with the oracle (-0.1 F1) but shows +1.9
F1 on the test set (2nd and 3rd rows, co). The
relatively lower score of SPADEs on the test set
may originate from the small size of the training set
(800, Table 2) as SPADEs needs to handle the text
serialization in a data-driven way. Indeed, when
both models are trained using Receipt-idn that con-
sists of 9508 training examples, SPADEs outper-
forms by +1.0 F1 on the test set (2nd and 3rd rows,
Receipt-idn).

Inflexibility of tagging model in handling com-
plex spatial relationships Next, we prepare
CORD+ and CORD++, which are more chal-
lenging setups where the images are warped or
tilted as often seen in real-world applications
(Fig. 3). SPADEs significantly outperforms
s+bert+iob2 (+13.4% F1 in CORD+, +31.1% F1.b
in CORD++). This is due to the failure in the se-
rialization in s+bert+iob2 resulting in line-mixing
(Fig. 3b, c and Fig. 5, 6 in Appendix). To un-
derstand how much improvement can be achieved
through further manual engineering, we prepare
sadv+bert+iob2 which is equipped with the ad-
vanced serializer where polynomial fitting is em-
ployed to group tokens placed on curvy line. The
result shows although there is a large improve-
ment in CORD+ and CORD++ task compared to
s+bert+iob2, SPADEs still shows the better perfor-
mance (+2.0% in CORD+, +18.3% in CORD++,
1st and 4th rows). This shows the limitation of
a serializer-based method that it cannot be easily
generalized to handle document images in wild
and the performance can be bottlenecked by the
serialization step regardless of how advanced tag-
ging models are. The competent performance of
SPADEs on CORD-M, a dataset generated by con-
catenating two receipt images from CORD into a
single image (Fig. 4 in Appendix), further high-

5S stands for the serializer.

lights the flexibility of SPADEs.

Handling documents having complex layout
We further evaluate SPADEs on name card IE task.
Unlike receipts, no inter-grouping between fields is
necessary for name card IE. However, name cards
often have a complex layout such as non-horizontal
alignment of text or multi column even without
tilting and warping (Fig. 1d). Our model achieves
+1.1% F1 compared to sadv+bert+iob2 on the test
set (Table 3, nc).

Handling documents having both hierarchical
structure and complex layout To fully explore
the capability of SPADEs, we further evaluate the
model on invoice IE task. Typical invoices have a
hierarchical structure where some fields need to be
grouped together, such as item name, count, and
price that correspond to one same item. In addi-
tion, invoices also have a relatively complex lay-
out, having multiple tables or columns. SPADEs
achieves +1.9 F1 compared to sadv+bert+iob2 (Ta-
ble. 3, inv).

Handling general documents In order to see if
SPADEs can handle more general kinds of doc-
uments, we use the FUNSD form understanding
dataset (Jaume et al., 2019) where document IE is
performed under a more abstract setting by finding
general key-value pairs and their inter-grouping
(Section A.1.6). The performance is measured
on two OCR-independent subtasks (Jaume et al.,
2019): (1) “entity-labeling (ELB)” which predicts
the information category of the serialized words,
and (2) “entity-linking (ELK)” which measures the
score for key-value pair link prediction. The evalu-
ation reveals that SPADEs achieves the state of the
art on ELK, outperforming the previous baseline
by 37.3% F1 (Table 4, rightmost column). In ELB,
SPADEs achieves +11.5% F1 absolute improve-
ment with respect to BERT-Base Tagger. Both mod-
els use BERT-Base as a backbone. Although the F1
scores of LayoutLM are higher than our model,
their contributions are orthogonal to ours since
they focus on making a better pretrained model.
Also, it cannot perform ELK. We emphasize that
SPADEs solves the three subtasks–ELB, ELK, and
word serialization–simultaneously, while other tag-
ger models need to use the perfectly serialized in-
put text and solve only entity labeling. The stable
performance of SPADEs over randomly rotated
documents (ELB-R) or shuffled tokens (ELB-S)
supports this highlighting the merit of the serializer-
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free architecture.

Table 4: F1 scores for two FUNSD subtasks: entity labeling
(ELB, ELB-R, and ELB-S) and entity linking (ELK). “Need S”
means the input tokens should be serialized. “# of D” indicates
the number of documents used for layout pretraining.

Model Need S # of D ELB ELB-R ELB-S ELK

Baselinea ◦ 0 57 - - 4
BERT-Base Tagger∗ ◦ 0 60.1 43.9 (-16.2) 42.5 (-17.6) -
BERT-Large Tagger∗ ◦ 0 64.6 47.6 (-17.0) 42.7 (-21.9) -
LayoutLM-Base Taggerb ◦ 500K 69.9 - - -
LayoutLM-Base Tagger∗ ◦ 11M 78.9 72.5 (-6.4) 70.2 (-8.7) -
SPADEs† × 0 71.6 70.5 (-1.1) 72.0 (+0.4)$ 41.3
aJaume et al. (2019). b From Xu et al. (2019).
∗ The source code from https://github.com/microsoft/unilm/tree/master/layoutlm.
$ The separation of long input text (> 512) into multiple independent inputs
introduces small difference in F1.
†Five encoder layers are used for computational efficiency.

Ablation study We probe the role of each com-
ponent of SPADEs via ablation study (Table 5).
The performance drops dramatically upon the re-
moval of the relative coordinate information of to-
kens in the self-attention layer, highlighting its im-
portance in the serializer-free encoder (2nd row).
When the absolute coordinates are used in the in-
put instead of the relative coordinates, F1 drops by
6.9% (3rd row). Finally, 2.6% drop in F1 is ob-
served upon the removal of the data augmentation
during training (4th row).

Table 5: Ablation study on CORD dataset.

Model F1

SPADEs† 84.5
(-) relative coordinate 10.5 (-74.0)
(-) relative coordinate (+) absolute coordinate 78.6 (-6.9)
(-) data augmentation 81.9 (-2.6)

† Five encoder layers are used for computational efficiency.

7 Conclusion

We present SPADEs, a spatial dependency parser
that can extract highly structured information from
documents that have complex layouts. By formulat-
ing document IE as a spatial dependency graph con-
struction problem, we provide a powerful unified
framework that can extract hierarchical informa-
tion without feature engineering. We empirically
demonstrate the effectiveness of our model over var-
ious real-world documents—receipts, name cards,
and invoices—and in a popular form understanding
task.
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A Appendices

A.1 Dataset
A.1.1 Dataset collection
The internal datasets Receipt-idn, namecard and Invoice are annotated by the crowd through an in-house
web application following (Park et al., 2019; Hwang et al., 2019). First, each text segment is labeled
(bounding box and the characters inside) for the OCR task. The text segments are further grouped
according to their field types by the crowds. For Receipt-idn and Invoice, additional group-ids are
annotated to each field for inter-grouping of them. The text segments placed on the same line are also
annotated through row-ids. For quality assurance, the labeled documents are cross-inspected by the
crowds.

A.1.2 CORD, CORD+, CORD++, and CORD-M for receipt IE
CORD and their variant consist of 30 information categories such as menu name, count, unit price,
price, and total price (Table 6). The fields are further grouped and forms the information layer at a
higher level.

A.1.3 Receipt-idn for receipt IE
Receipt-idn is similar to CORD but includes more diverse information categories (50) such as store name,
store address, and payment time (Table 6).

A.1.4 namecard for name card IE
namecard consists of 12 field types, including name, company name, position, and address (Table
6). The task requires grouping and ordering of tokens for each field. Although there is only a single
information layer (field), the careful handling of complex spatial relations is required due to the large
degree of freedom in the layout.

A.1.5 Invoice for invoice IE
Invoice consists of 62 information categories such as item name, count, price with tax, item
price without tax, total price, invoice number, invoice date, vendor name, and
vendor address (Table 6). Similar to receipts, their hierarchical information is represented via
inter-field grouping.

A.1.6 FUNSD for general form understanding
FUNSD form understanding task consists of two sub tasks: entity labeling (ELB) and entity linking (ELK).
In ELB, tokens are classifed into one of four fields–header, question, answer, and other–while doing
serialization of tokens within each field. Both subtasks assume that the input tokens are perfectly serialized
with no OCR error. To emphasize the importance of correct serialization in the real-world, we prepare
two variant of ELB tasks: ELB-R and ELB-S. In ELB-R, the whole documents are randomly rotated
by a degree of -20◦–20◦ and the input tokens are serialized using rotated y-coordinates. In ELB-S task,
the input tokens are randomly shuffled. In both tasks, the relative order of the input tokens within each
field remain unchanged. In ELK task, tokens are linked based on their key-value relations (inter-grouping
between fields). For example, each “header” is linked to the corresponding “question”, and “question” is
paired with the corresponding “answer”.

Table 6: The representative fields of the datasets.

Dataset representative fields and their numbers

CORD,CORD+, CORD++,CORD-M menu name (2572), count (2357), unit price (737), price (2559), total price (974)

Receipt-idn
menu name (28832), munu count (27132), menu unitprice (11530),

menu price (28028), total price (10284), store name (9413), payment time (9817)

namecard name (25917), company name (24386), position (22848), address (26018)

Invoice
item name (2761), count (1950), price with tax(781), price without tax (2230),

total price (844), invoice number (803), invoice date (987), vendor name (993), vendor address (993),

FUNSDa header (563), question (4343), answer (3623), other (1214)

a From (Jaume et al., 2019).
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A.2 Evaluation metric
During calculation of F1 for parses, the difference between prediction and ground truth is not counted
in store name, menu name, and item name fields in receipt and invoice when the edit distance (ED) is
less then 2 or when the ED/gt-string-length ≤ 0.4. Also, in Japanese documents, white spaces are ignored.

In the FUNSD form understanding task, we measure entity labeling (ELB) and entity linking (ELK)
scores following (Jaume et al., 2019). ELB measures the field classification accuracy of already “per-
fectly” serialized tokens of each field (words group), whereas ELK measures the inter-grouping accuracy
between word groups. As SPADEs does both the serialization of the fields and grouping between fields
simultaneously, we do not feed the serialized tokens into SPADEs but only use the oracle information to
indicate the first text node of each field from the predicted graph. These text nodes effectively represent
entire fields and are used for the evaluation.

A.3 The score for the dependency relation prediction

Table 7: The score for the dependency relation prediction. s and g stand for rel-s
and rel-g.

Precision Recall F1

Model rel co ri nc inv fu co ri nc inv fu co ri nc inv fu

s - tca s 96.4 97.7 90.7 97.4 60.6† 97.1 98.8 92.0 98.3 63.7† 96.8 98.3 91.3 97.8 62.2†
s - tca g 87.8 91.1 - 86.7 41.1† 90.1 93.8 - 88.0 34.4† 88.9 92.4 - 87.3 37.4†

s s 96.8 97.8 91.9 97.6 70.4† 97.1 98.8 91.3 98.2 59.8† 96.9 98.3 91.6 97.9 64.6†
s g 89.9 92.2 - 88.6 49.7† 89.2 93.1 - 86.3 30.5† 89.6 92.7 - 87.4 37.8†

UB-no-ser s 100 100 100 100 - 32.7 31.3 57.7 18.8 - 49.3 47.7 73.1 31.7 -
UB-no-ser g 0 0 - 0 - 0 0 - 0 - 0 0 - 0 -

†Five encoder layers are used instead of twelve for computational efficiency.

a

b

c

{
{'menu_name': ['Lemon Tea (L)'], 'count': ['1'], 'price': ['25000']}
{'total_price': ['25000'], 'cash_price': ['30000'], 'change_price': ['5000']}

}
{
{'menu_name': ['PKT TELOR/PERK'], 'price': ['26000']}
{'menu_name': ['TERONG'], 'price': ['12000']}
{'menu_name': ['PARU'], 'price': ['23000']}
{'menu_name': ['SBL GR'], 'price': ['20000']}
{'menu_name': ['NESTLE 330 ML'], 'price': ['8000']}
{'subtotal_price': ['89000'], 'tax_price': ['8900']}
{'total_price': ['97900'], 'menuqty_cnt': ['5.00xITEMS'], 'cash_price': ['100000'], 'change_price': ['2100']}

}

Figure 4: The example of a receipt image from CORD-M (a), the predicted parse (b), and the accuracy table (c).
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Figure 5: The example from CORD, CORD+, and CORD++ dev sets (ids 0–3).
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Figure 6: The example from CORD, CORD+, and CORD++ dev sets (ids 4–7).


