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tation. Besides, on Weibo dataset, removing one
or two components, the performance of MCAN
does not drop significantly as on Twitter dataset.
This benefits from balanced data distribution and
the stability of fine-tuned BERT and VGG-19, as
mentioned in Section 4.4.

(a) MCAN-A

(b) MCAN

Figure 6: Visualizations of learned latent feature repre-
sentations.

Qualitative Analysis. To illustrate the effective-
ness of co-attention layers in MCAN, we quali-
tatively visualize the joint representation of three
modalities learned by MCAN-A and the fused rep-
resentation R(4)

C learned by MCAN on Weibo test-
ing set with t-SNE (Maaten and Hinton, 2008), as
shown in Figure 6. The label of each tweet is real
or fake.

From Figure 6, we can observe that the separabil-
ity of the feature representation learned by MCAN
is much better than its reduced model MCAN-A.
MCAN-A can learn discriminable features, but
many features are still easily misclassified, showing

in Figure 6(a). On the contrary, the features learned
by MCAN are more discriminable with a more sig-
nificant segregated area between two types of sam-
ples, as exhibited in Figure 6(b). This is attributed
to the cascaded way of stacking co-attention layers
in MCAN, which fuses the characteristics of mul-
tiple modalities deeply and boosts to distinguish
fake news and real news.

From the above phenomena, we can conclude
that the proposed method MCAN learns better and
more distinctive feature representations with the co-
attention layers, thus achieving better performance.

4.6 Case Studies

To further illustrate the importance of multimodal
features for fake news detection, we compare the
results reported by MCAN and unimodal models
(Text and Spatial) and exhibit some fake news cor-
rectly captured by MCAN but missed by unimodal
models.

Before washed away by flood, an 
Indian man calmly gave the last 
gesture to a photographer.  

A group of dolphins brought a dog 
that fell into a canal to safe area.

Figure 7: Some fake news detected by MCAN but
missed by Text on the Weibo dataset.

Figure 7 shows two top-confident tweets suc-
cessfully detected by MCAN but missed by text-
only MCAN. The textual contents of the two exam-
ples can provide little evidence that it is fake news.
However, the two attached images seem forged
pictures.

The water mantis lives in sewers. 
Its head has two to three times the 
poison of pufferfish and has no 
antidote.   

Several urban management officers 
are frantically plundering street-
side property worth more than 100 
million yuan.

Figure 8: Some fake news detected by MCAN but
missed by Spatial on the Weibo dataset.
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In Figure 8, the two examples are detected by
MCAN but missed by Spatial. The attached images
in two examples look normal. However, the words
in the tweet seem exaggerated and unbelievable. It
is challenging for spatial-domain-only MCAN to
detect, but with multimodal features, our MCAN
model identifies them correctly.

These comparative cases prove that when a
single-modal model, whether a text-based model or
an image-based model, cannot correctly distinguish
fake news, the proposed MCAN using multimodal
features can give high confidence.

5 Conclusions

In this work, we propose a novel Multimodal Co-
Attention Networks (MCAN) to tackle the chal-
lenge of fusing multimodal (textual and visual) fea-
tures for fake news detection. We utilize three
different sub-networks to extract features from text,
spatial domain, and frequency domain, respectively.
Then the three features are deeply fused by stack-
ing co-attention layers, which is inspired by human
behavior. When people read news with image, im-
age and text are read once or multiple times, and
continuously fused in brain. Experiments on two
public benchmark datasets for fake news detection
validate the effectiveness of MCAN, and the re-
sults show that MCAN outperforms the current
state-of-the-art methods. In the future, we plan to
extend the co-attention based fusion approach in
MCAN to other fake news research, such as fake
news diffusion.
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