
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 2086–2095
August 1–6, 2021. ©2021 Association for Computational Linguistics

2086

RetroGAN: A Cyclic Post-Specialization System for Improving
Out-of-Knowledge and Rare Word Representations

Pedro Colon-Hernandez1, Yida Xin2, Henry Lieberman3,
Catherine Havasi4, Cynthia Breazeal1, and Peter Chin2

1MIT Media Lab
{pe25171,cynthiab}@media.mit.edu

2Boston University
{yxin,spchin}@cs.bu.edu

3MIT CSAIL
lieber@media.mit.edu

4Basis Technologies∗

havasi@basistech.com

Abstract

Retrofitting is a technique used to move word
vectors closer together or further apart in their
space to reflect their relationships in a Knowl-
edge Base (KB). However, retrofitting only
works on concepts that are present in that
KB. RetroGAN uses a pair of Generative Ad-
versarial Networks (GANs) to learn a one-
to-one mapping between concepts and their
retrofitted counterparts. It applies that map-
ping (post-specializes) to handle concepts that
do not appear in the original KB in a manner
similar to how some natural language systems
handle out-of-vocabulary entries. We test our
system on three word-similarity benchmarks
and a downstream sentence simplification task,
and achieve the state of the art (CARD-660).
Altogether, our results demonstrate our sys-
tem’s effectiveness for out-of-knowledge and
rare word generalization.

1 Introduction

Retrofitting word embeddings with a KB (Faruqui
et al., 2015; Speer and Chin, 2016; Mrkšić et al.,
2017) means taking a vector space of word embed-
dings and finding a mapping that moves some of
these word vectors closer together and others fur-
ther apart, such that these vectors’ new positions
in the vector space are in better agreement with
the relationships between the same words (a.k.a.,
concepts) in a KB (Speer and Chin, 2016; Mrkšić
et al., 2017). However, the retrofitting process can
only work on concepts that are actually present
in the KB (a.k.a., constraints), which means that
retrofitting can get us improved performance in
semantic tasks only on the overlapping vocabu-
lary between the KB and the word embeddings.

∗Work done while at the MIT Media Lab

Post-specialization(Vulić et al., 2018; Kamath et al.,
2019) is a solution to this problem; it is a series
of techniques that try to (1) learn the mapping that
retrofitting establishes and (2) generalize the map-
ping to the rest of the embedding vocabulary.

We develop and present a post-specialization
system called RetroGAN that builds upon the ap-
proach presented as AuxGAN (Ponti et al., 2018)
by extending it to have a pair of Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2014).
A regular GAN minimizes the loss when learning
the function for post-specialization. Our pair works
in a cyclic manner to minimize the losses of both
the post-specialization and the inverse to ensure
that there is a one-to-one mapping between the two
domains. This constrains the outputs for unseen
data in both domains and leads to achieving higher
performance for unseen concepts.

2 Related Work

Within the field of retrofitting, work has been
done in exploring the various ways of infusing
constraints or KBs into word embeddings. The
original work by (Faruqui et al., 2015) only used
synonymy relationships but not antonymy relation-
ships, which meant that word embeddings with
similar (synonymous) semantics in the KB would
be pulled together, but word embeddings with dis-
similar (antonymous) semantics would not be sep-
arated. The Attract-Repel work by (Mrkšić et al.,
2017) addressed this shortcoming by incorporating
antonymy relationships in a retrofitting procedure:
synonymous embeddings are attracted to each
other, while antonymous embeddings are repelled
against each other. This line of work was con-
tinued with the work done by Lexical Entailment
Attract-Repel (Vulić and Mrkšić, 2018)(LEAR),
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Word Distributional Neighbor Retrofitted Neighbor
Dog dog, dogs, puppy, pup , canine, pet, doggie, beagle,

dachshund, cat
dog, beagle, pooch, dachshund, puppy, mutt, poo-
dle, Rottweiler, canine, labrador

Doggo pooch, doggies, bae, chihuahua, rad, pug, kitty,
dane, furbabies, \uf602

doggies, pooch, dachshund, four-legged, Yorkie,
corgi, whippet, amigos, Weimaraner, Dog

Table 1: Results of the 10 most similar embeddings for “dog” and “doggo” for FastText embeddings. The distri-
butional neighbors are the closest embeddings in the original distributional space and the retrofitted neighbors are
the closest in the RetroGAN post-specialized space. We can see that “doggo” was near slangs such as “bae” and
“furbabies”, but after post-specialization, it gets closer to words that we regard as semantically similar to “dog.”
The one-to-one mapping that RetroGAN provides is key to being able to incorporate useful semantic information
into rare-words possibly like “doggo”.

which looks to add the asymmetric lexical entail-
ment relationship to Attract-Repel. 1

Building on these works, a series of techniques
called post-specialization were developed. These
techniques consist on utilizing neural models to
learn retrofitting mappings such as (Glavaš and
Vulić, 2018) and (Ponti et al., 2018; Kamath et al.,
2019) which use a Deep Feed-forward Neural Net-
work and a Generative Adversarial Network (GAN)
respectively. Post-specialization permits, provided
a static word embedding, to generate its retrofitted
counterpart on the fly with a trained system. A
concrete example is in table 1.

As it stands, attention has been shifted to us-
ing contextual embeddings such as those produced
from BERT (Devlin et al., 2019) on downstream
tasks. Only recently have there been efforts in in-
corporating external, KB assertions into pre-trained
transformer-based systems (e.g., KnowBERT (Pe-
ters et al., 2019), Align-mask-select (Ye et al.,
2019), and LIBERT (Lauscher et al., 2019)). LIB-
ERT bridges contextual and retrofitted embeddings
by leveraging the knowledge in retrofitted embed-
dings to find lexical tuples that are fed into BERT
to focus on their lexical information.

GANs have been utilized extensively in the im-
age domain to create lifelike images. CycleGAN
(Zhu et al., 2017) and other cyclic systems (Kim
et al., 2017) have been utilized to perform style
transfer (i.e. apply certain distinctive characteris-
tics from one image domain into another). Cycle-
GAN serves to learn a, possibly unpaired, one-to-
one mapping from one domain to another. To ef-
fectively utilize paired data, the work by (Tripathy
et al., 2018) modifies the CycleGAN architecture
to include a conditional cyclic loss in which new
discriminators are conditioned to determine if a
generated sample is real or not based on a given,

1We do not use LEAR because in the original work, it did
not alter the similarity tasks results, but they can be exchanged.

possibly paired, input. This in turn permits leverag-
ing paired data to improve the one-to-one mapping.

3 RetroGAN

RetroGAN is a system that builds on (Ponti et al.,
2018) by utilizing a CycleGAN-like architecture
(i.e., we use a pair of GANs cyclicly but our lay-
ers are different from the original CycleGAN). We
chose the CycleGAN-like architecture because, in
our domain, the cycle-consistency constraints can
enforce a one-to-one mapping from original em-
beddings to retrofitted embeddings. This map-
ping guarantees that unseen concepts will have
their own, unique retrofitted counterparts. We use
RetroGAN to learn the mapping of Attract-Repel
(Mrkšić et al., 2017) retrofitting (with the synonymy
and antonymy constraints from the Attract-Repel
paper(Mrkšić et al., 2017)) on a subset of static
word embeddings (i.e.., FastText (Bojanowski et al.,
2017), and Numberbatch (Speer et al., 2017)), and
perform post-specialization on the entire set.

3.1 Model & Architecture

RetroGAN consists of two GANs that interplay
to balance a combination of losses to transform
a particular word embedding xi ∈ X from its
original domain X to its counterpart yi ∈ Y in
the retrofitted domain Y , and vice-versa. In both
GANs that we employ, the generator consists of an
input layer followed by 2 hidden dense layers with
2048 neurons and each followed by a dropout layer
(with a percentage of 0.2 for the dropouts), and a
final linear output layer with the same dimension-
ality as the input. The output of this layer, for the
trained G : X → Y produces the post-specialized
embeddings (i.e. a batch of 32 FastText embed-
dings produces 32 post-specialized embeddings).
The hidden layers employ the ReLU (Nair and Hin-
ton, 2010) activation function. Our discriminators
have a similar structure (an input layer, 2 hidden
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layers with dropout but a percentage of 0.3), how-
ever, the second hidden layer is followed by a batch
normalization layer and the output is a single neu-
ron with a sigmoid activation. The reason for the
batch normalization layer was to stabilize the train-
ing. We also utilized a third and fourth conditional
discriminator following (Tripathy et al., 2018), to
leverage the cyclic architecture on paired data.

A novelty in RetroGAN is the combination of
cyclic and non-cyclic optimization objectives: the
regular adversarial loss for both GANs (LGAN );
the cyclic loss for both generators (LCY C); the
identity loss for both generators (LID); the max
margin loss similar to (Weston et al., 2011; Ponti
et al., 2018) for both the generators and addition-
ally for the cycle of generators (LMM ); and the
conditional cycle consistency loss (LcCY C) intro-
duced in (Tripathy et al., 2018). The combined
objective has the following form:

L(G,F,DX , DY ) = LGAN (G,DY , X, Y )+

LGAN (F,DX , X, Y ) + λLCY C(G,F )+

γLID(G,F,X, Y ) + LMM (G,F,X, Y )+

ςLcCY C(G,F,DcX , DcY , X, Y )

(1)

where G : X → Y is the generator that maps
the source domain X of plain word embeddings
to the target domain Y of retrofitted word embed-
dings; F : Y → X is the generator that does the
opposite; DX and DY are the discriminators for
the corresponding domains; and DcX , DcY are our
cycle conditional discriminators. For brevity, we
only go into details on LMM and LcCY C . The
other losses are the standard ones found in their re-
spective works: LGAN is the adversarial loss from
(Goodfellow et al., 2014). LCY C is the cycle con-
sistency loss from (Zhu et al., 2017) with a scaling
factor of λ (which we set to 1); and LID is the iden-
tity loss from (Zhu et al., 2017), which we scale
with γ (which we set to 0.01). LID serves as a
check of whether the embedding is already in the
correct domain. LMM is the max margin loss with
random confounders as used by (Ponti et al., 2018),
and as a novel aspect, we add a cyclic margin loss:

LMM (G,F,X, Y ) = Σ
||x||
i=1 Σk

j=1|j 6=iτ [

(δMM − cos(G(xi), yi) + cos(G(xi), yj))+

(δMM − cos(F (yi), xi) + cos(F (yi), xj))+

(δMM − cos(G(F (yi)), yi) + cos(G(F (yi)), yj))(δMM − cos(G(F (yi)), yi) + cos(G(F (yi)), yj))(δMM − cos(G(F (yi)), yi) + cos(G(F (yi)), yj))+

(δMM − cos(F (G(xi)), xi) + cos(F (G(xi)), xj))(δMM − cos(F (G(xi)), xi) + cos(F (G(xi)), xj))(δMM − cos(F (G(xi)), xi) + cos(F (G(xi)), xj))]

(2)

Equation 2, intuitively, tries to make generated em-
beddings similar to their gold-standard and differ-
ent from confounders. RetroGAN further enforces

this constraint across the cycle. Lastly, we have
LcCY C which is the conditional cycle loss (Tripa-
thy et al., 2018)2, which we scale with ς (set to 1):

LcCY C(G,F,DcX , DcY , X, Y ) =

Ex∼pdata [log(DcX(G(x), x))]+

Ex∼pdata [log(1 −DcX(G(x), F (G(x))))]+

Ey∼pdata [log(DcY (F (y), y))]+

Ex∼pdata [log(1 −DcY (F (y), G(F (y))))]

(3)

3.2 Experimental Setup
To train our system we utilize the ADAM (Kingma
and Ba, 2015) optimizer with a learning rate of 5e-5
for the generators and 1e-4 for the non-conditional
discriminators. We do not train the discriminators
used in the regular GAN loss, and instead train
the ones in the conditional cycle consistency loss.
We also note that we did not perform explicit fine
tuning of the scaling parameters, but we will do
so in future work through a grid search. We train
for 312,500 mini-batches which is the equivalent
to the AuxGAN training, using a batch size of 32.

In our tests we use the English Common Crawl
FastText with sub-word information (FT-CC) and
Numberbatch 19.08 (NB) to see how performance
would be affected by using embeddings that were
already retrofitted with a large KB. We ran the
Attract-Repel (Mrkšić et al., 2017)3 procedure on
all these embeddings then proceeded to perform our
post-specialization tests on learning the mapping
from FT-CC to the resulting retrofitted embeddings.

We ran the word similarity benchmarks: Sim-
Lex (SL)(Hill et al., 2015) SimVerb (SV)(Gerz
et al., 2016), and the Cambridge Rare Word (C660)
dataset (Pilehvar et al., 2018). We utilize the Dis-
joint (evaluating words which were not seen in
the constraints) and Full (evaluating words which
were seen in constraints) settings from (Ponti et al.,
2018) for SL and SV, and evaluate C660 on the Full
setting to test performance on rare words. The max-
imum values for the similarity benchmarks while
training are listed in table 2.

We trained the publicly available AuxGAN
model on 10 epochs of 1M iterations (which in
AuxGAN is a single embedding pair rather than a
batch of pairs) with both plain stochastic gradient
descent (SGD) and ADAM (learning rate of 0.1)
and selected the best performing one (ADAM) to

2In future work we will additionally incorporate the paired
conditional adversarial loss.

3We use the default settings found in
https://github.com/nmrksic/attract-repel

https://github.com/nmrksic/attract-repel
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Disjoint Full
FT-CC, A-R FT-CC, A-R+NB FT-CC, Attract-Repel FT-CC, A-R+NB

Models SL SV SL SV SL SV C660 SL SV C660
Distributional 0.4644 0.3649 0.4499 0.3643 0.4644 0.3649 0.2973 0.4499 0.3643 0.1068
Attract-Repel 0.4644 0.3649 0.4499 0.3643 0.7790 0.7632 0.3768 0.7748 0.7667 0.2203
AuxGAN 0.6127 0.4641 0.6116 0.5331 0.6901 0.5756 0.3899 0.6565 0.5872 0.2088
RetroGAN 0.6028 0.4702 0.6648 0.5971 0.7717 0.7192 0.5240 0.7960 0.7483 0.5581

Table 2: Word similarity tests results: We run two distinct scenarios in which the words present in SL and SV are
present (Full) in Attract-Repel (A-R) retrofitting constraints or not (Disjoint). The Distributional row represents
the results of the tests using the publicly available embeddings (FT-CC). The results are the Spearman correlation
(ρ) between the Cosine distance of the embeddings we are evaluating and the human similarity measurements. The
results for AuxGAN and RetroGAN are the average of 3 runs.

5% 10% 25% 50%
SL SV C660 SL SV C660 SL SV C660 SL SV C660

Attract-Repel 0.347 0.355 0.113 0.550 0.589 0.187 0.701 0.700 0.217 0.759 0.747 0.252
AuxGAN 0.615 0.510 0.453 0.667 0.569 0.470 0.679 0.581 0.475 0.685 0.600 0.490
RetroGAN 0.624 0.538 0.489 0.701 0.652 0.493 0.738 0.690 0.502 0.755 0.716 0.511

Table 3: Out of knowledge tests: We evaluate the performance of retrofitting and post specialization at varying
percentages of test words seen in constraints. The full table can be seen in Appendix B

compensate for convergence speed discrepancies.
Additionally, similar to (Ponti et al., 2018) we also
evaluated on Light-LS (Glavaš and Štajner, 2015)
with the default dataset (Horn et al., 2014) to test
downstream performance. We evaluate the accu-
racy of simplification substitutions(i.e., the amount
of words that are substituted correctly when com-
pared to a gold standard). We utilize the first 500k
words in FT-CC and the complete Numberbatch
(generating the vocabulary’s FastText embeddings
as the distributional model). To test the retrofitted
embeddings we substitute them in the original set.

3.3 Results & Discussion

RetroGAN outperforms AuxGAN in the majority
of similarity benchmarks. We note that RetroGAN
sets the state of the art on the rare-words benchmark
(C660)(previously, to the best of our knowledge, it
was 0.543 and 0.55 in (Yang et al., 2019; Fukuda,
2020)). In the similarity results for Full , we note
the same observations that were noted in AuxGAN:
there are some inconsistent gains and losses, which
may be due to the combination of loss functions
which may make the systems imprecise; although
they spread the knowledge throughout the embed-
dings, they lose some precision when compared
with the original retrofitted embeddings. The re-
sults for the lexical simplification (Light-LS) can
be seen in table 4 where RetroGAN dominates.

We wanted to compare the out-of-knowledge
(OOK) performance more in depth and to do this,
we joined the words in SimLex (SL) and SimVerb

(SV) and selected increasingly larger amounts of
them ({5,10,25,50,75,100}%). We then selected
the constraints that included these words, trained
RetroGAN and AuxGAN with these constraints,
and evaluated performance on SL, SV, and C660.
Part of this can be seen in table 3. We see that
RetroGAN’s performance increases every time that
new constraints are added, whereas AuxGAN’s
performance begins to peak after 25% of the con-
straints which may indicate more efficient knowl-
edge distribution thanks to the cyclic system. Later
on, the performance of RetroGAN kept increas-
ing, but was less than the base retrofitted embed-
dings, possibly because of the lack of precision
from the combination of losses. Lastly, we per-
formed a small ablation study (Appendix A) on
RetroGAN’s losses. We note that the max-margin
loss from (Ponti et al., 2018) is necessary for high
performance in all the tests. We also notice that the
cyclic (cyclic max-margin and cycle conditional
discriminator) losses are essential for improved
performance on the OOK and rare-word similarity
benchmarks. We also see that the removal of the
cyclic max-margin loss speeds up early learning
and its addition stabilizes later learning respectively
which may indicate a need to balance this. Future
work will explore how to balance this losses, but
it may be possible to put a scheduler to enable the
loss after a peak. More details on the ablation study
can be found in Appendix A.
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Models FT-CC NB
Distributional 0.6553 0.6974
Attract-Repel 0.6993 0.6874
AuxGAN 0.7214 0.7335
RetroGAN 0.7595 0.7735

Table 4: Light-LS accuracy on (Horn et al., 2014)

4 Conclusion

This work presents an improvement on post-
specialization work through the use of a
CycleGAN-like system called RetroGAN. We
show that RetroGAN gives improved performance
in both the Full (words which were seen in knowl-
edge/constraints) and the Disjoint (words which
were not seen in the constraints) evaluation settings
for three benchmarks. It additionally has better per-
formance on a downstream lexical simplification
task, further confirming its improved generaliza-
tion ability. We conclude that RetroGAN is an
improved system for post-specializing embeddings
for rare and OOK concepts.4
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A Ablation Tests

We performed a small ablation study to exam-
ine how the multiple losses in RetroGAN affect
performance. A one-by-one removal of these
can be seen in figures 2(a),2(b),2(c),2(j),2(k),2(l).
A toggle of each of the losses can be seen in:
2(a),2(b),2(c),2(j),2(k),2(l). The difference be-
tween the toggle and one-by-one removal is that
in the toggle, we simple turn off the specified loss
and leave the others untouched, whereas in the one-
by-one removal we turn off one-by-one the losses,
in this way we can see the individual effects, and
the group effects. We evaluated the FT-CC and the
Attract-Repel retrofitted FT-CC in the same scenar-
ios as the evaluations before (Disjoint and Full).
We note that the Disjoint setting for Card includes
some of the words in the constraints.

The max margin loss utilized by (Ponti et al.,
2018) (one way maxmargin loss) is essential for
high performance on the datasets. Without this
loss, in all of the figures, we see that the scores
in all our tests fall by at least by 0.1. This is seen
in both the toggle and the one-by-one case. We
can also see that the Cyclic version of this loss
(cycle maxmargin loss) slows down learning ini-
tially, but stabilizes it in later iterations. We can
see that by removing it we get higher performance
in earlier iterations but the performance decays as
more iterations are given. This may be because it
tries to enforce that the semantic components of the
embeddings be similar after going through the cy-
cle, but it may be a hard objective to achieve. This
loss is especially useful for the rare-word Card-660
evaluation. By looking at the toggle ablation test
for this loss, we can see that it indeed can lead to
better earlier performance, however it decays with
time.

The identity loss (id loss) helps to stabilize the
training in later iterations. Removal of this loss
significantly affects the disjoint settings, and the
reason for it may be that it gives some indication of
the important semantic components of the vectors
that are being post-specialized. This in the disjoint
setting leads to significant performance reductions
on the later iterations. Interestingly enough, by
toggling off only this loss, we can see that it leads
to better performance, which means that with all
the other losses, it may contain redundant informa-
tion that may hinder performance, however if the
model relies on the loss without other losses, its
information is useful.

The Cycle Conditional discriminator loss (cy-
cle discriminator loss) also contributes to the sta-
bility and generalization of the later learning. Re-
moving this loss does not improve early learning,
save on the Card-660 dataset, and in most of the
other tests, there is not a large noticeable difference.
However, on the disjoint setting we do see that it
performance decays in later iterations. We suspect
the conditioning helps slightly in the stabilization,
and generalization of the system, but its effect is
not too much.

The Cycle Loss (cycle mae loss), also stabilizes
and helps in the generalization of our system. We
can see in the disjoint settings in particular, that
its removal hinders the model in later iterations.
We suspect that since the consistency is not being
enforced, the model does not learn effectively to
preserve important, possibly non-semantic, parts
from the distributional and the retrofitted domain.

As a practical recommendation, we suggest re-
moving the cyclic max-margin loss either com-
pletely (pausing the training early at it’s peak
around 50k-100k iterations), or toggling it after
this initial training to get the speedup and the gen-
eration. Another practical recommendation may be
to disable the identity loss all by itself. The other
losses can be maintained as they are described in
this work.

B Out-of-knowledge Scalability Tests

In table 5 we test the performance of post spe-
cialization as more constraints are added into the
retrofitting process. We note that AuxGAN’s
performance saturates after 50% whereas Retro-
GAN keeps learning, albeit less accurately than
the retrofitting system. These tests were run for
100k batches on RetroGAN and for 10M iterations
(312500 RetroGAN batches) on AuxGAN.

C Additional embedding pre-processing

Input and output vectors are divided by the Eu-
clidean (2) norm. This helps slightly in the per-
formance of the semantic comparison benchmarks.
No other pre-processing is done on the vectors.

D Architecture Details

In figure 1, we can see the architecture that Retro-
GAN uses. On a training step, the losses are calcu-
lated as follows. For the cyclic losses, the system
samples embeddings from the distributional embed-
dings and their retrofitted counterparts and these
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samples are passed to the generators (1, 5 in the
figure). Then, the generators’ output is passed to
the counterpart generator (Distributional Generator
passes to Retrofitted Generator and vice versa, seen
as 3 in the figure). The output of this is then used
to calculate the max margin loss, and passed on to
the subsequent discriminator to calculate the cycle
discriminator loss (2, 4 in the figure). In addition
to this, after going through the cycle of generators
(1 or 5, 3 in the figure) we train the conditional
discriminators by conditioning on real inputs from
the retrofitted or distributional embeddings, or by
conditioning on fake inputs (6,7 in the figure).

The amount of parameters in each model and the
layers can be found in table 6.

Figure 1: Architecture diagram for RetroGAN

E Parameter Tuning

We performed a parameter tuning using the Ray
tuning library, to try and generate a configuration
that would be optimal for RetroGAN. We utilized
the ASHA Scheduler(Li et al., 2020) along with
the following search space configuration:

config = {
"g_lr" : tune.qloguniform(0.00005,
.1,0.00005),
"d_lr" : tune.qloguniform(0.00005,
.1,0.00005),
"one_way_mm":True,
"cycle_mm":True,
"cycle_dis":True,
"id_loss":True,
"cycle_loss":True,
"batch_size":tune.choice([16,32,64]),
"generator_size":tune.choice([512,
1024,2048]),
"discriminator_size":

tune.choice([512,1024,2048]),
"generator_hidden_layers":
tune.choice([1,2,3]),
"discriminator_hidden_layers":
tune.choice([1,2,3]),
"dis_train_amount":
tune.choice([1,2,3])
}

We used the SimVerb score to guide the parameter
optimization, because it was the score that involved
the largest sample of words. We also utilized a
machine with two Intel processors with 48 cores
in total, 128GB of RAM, an NVIDIA P6000 and
a NVIDIA 1080TI. We used 25 samples in the
optimization due to time constraints, although this
value can be expanded more. We also ran this
for 35 epochs, because the performance after that
would become relatively stable and not increase
greatly.

The best results from the optimization are the
following:

{
’g_lr’: 0.00495,
’d_lr’: 0.00885,
’one_way_mm’: True,
’cycle_mm’: True,
’cycle_dis’: True,
’id_loss’: True,
’cycle_loss’: True,
’batch_size’: 32,
’generator_size’: 2048,
’discriminator_size’: 2048,
’generator_hidden_layers’: 1,
’discriminator_hidden_layers’: 3,
’dis_train_amount’: 1
}



2094

5% 10% 25%
Models SL SV C660 SL SV C660 SL SV C660
Attract-Repel 0.347 0.355 0.113 0.550 0.589 0.187 0.701 0.700 0.217
AuxGAN 0.615 0.510 0.453 0.667 0.569 0.470 0.679 0.581 0.475
RetroGAN 0.624 0.538 0.489 0.701 0.652 0.493 0.738 0.690 0.502

50% 75% 100%
Models SL SV C660 SL SV C660 SL SV C660
Attract-Repel 0.759 0.747 0.252 0.766 0.757 0.244 0.771 0.761 0.257
AuxGAN 0.685 0.600 0.490 0.688 0.597 0.480 0.690 0.601 0.486
RetroGAN 0.755 0.716 0.511 0.763 0.721 0.507 0.762 0.715 0.509

Table 5: Performance of post specialization and retrofitting as more constraints are added to a system.

Model Amount of Parameters Layers

Generator 5,427,500(*2)
Linear (300x2048), ReLU, Dropout (0.3),
Linear (2048x2048),ReLU
Dropout (0.3), Linear (2048x300)

Discriminator 4,818,945(*2)
Linear (300x2048), ReLU, Dropout (0.3),
Linear (2048x2048),ReLU, Batch Norm,
Dropout (0.3), Linear (2048x1), Sigmoid

Cycle Conditional
Discriminator 5,433,345(*2)

Linear (600x2048), ReLU, Dropout (0.3),
Linear (2048x2048), ReLU, Batch Norm,
Dropout (0.3), Linear (2048x1), Sigmoid

Total 31,359,580 -

Table 6: Amount of trainable parameters and layers in RetroGAN
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(a) SimLex Ablation Test-Full Scenario(b) SimVerb Ablation Test-Full Sce-
nario

(c) CARD-660 Ablation Test-Full Sce-
nario

(d) SimLex Ablation Test-Disjoint Sce-
nario

(e) SimVerb Ablation Test-Disjoint Sce-
nario

(f) CARD-660 Ablation Test-Disjoint
Scenario

(g) SimLex Ablation Toggle Test-
Disjoint Scenario

(h) SimVerb Ablation Toggle Test-
Disjoint Scenario

(i) CARD-660 Ablation Toggle Test-
Disjoint Scenario

(j) SimLex Ablation Toggle Test-
Disjoint Scenario

(k) SimVerb Ablation Toggle Test-
Disjoint Scenario

(l) CARD-660 Ablation Toggle Test-
Disjoint Scenario

Figure 2: Ablation test results for SimLex, SimVerb, and CARD-660. A higher resolution version can be found in
the repository at: https://github.com/pedrocolon93/retrogan.git

https://github.com/pedrocolon93/retrogan.git

