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Abstract

Public trust in science depends on honest
and factual communication of scientific pa-
pers. However, recent studies have demon-
strated a tendency of news media to misrep-
resent scientific papers by exaggerating their
findings. Given this, we present a formaliza-
tion of and study into the problem of exag-
geration detection in science communication.
While there are an abundance of scientific pa-
pers and popular media articles written about
them, very rarely do the articles include a di-
rect link to the original paper, making data col-
lection challenging. We address this by cu-
rating a set of labeled press release/abstract
pairs from existing expert annotated studies
on exaggeration in press releases of scientific
papers suitable for benchmarking the perfor-
mance of machine learning models on the task.
Using limited data from this and previous stud-
ies on exaggeration detection in science, we in-
troduce MT-PET, a multi-task version of Pat-
tern Exploiting Training (PET), which lever-
ages knowledge from complementary cloze-
style QA tasks to improve few-shot learning.
We demonstrate that MT-PET outperforms
PET and supervised learning both when data is
limited, as well as when there is an abundance
of data for the main task.1

1 Introduction

Factual and honest science communication is
important for maintaining public trust in sci-
ence (Nelkin, 1987; Moore, 2006), and the “domi-
nant link between academia and the media” are
press releases about scientific articles (Sumner
et al., 2014). However, multiple studies have
demonstrated that press releases have a signifi-
cant tendency to sensationalize their associated
scientific articles (Sumner et al., 2014; Bratton
et al., 2019; Woloshin et al., 2009; Woloshin and

1The code and data are available on-
line at https://github.com/copenlu/
scientific-exaggeration-detection

Figure 1: Scientific exaggeration detection is the prob-
lem of identifying when a news article reporting on a
scientific finding has exaggerated the claims made in
the original paper. In this work, we are concerned with
predicting exaggeration of the main finding of a scien-
tific abstract as reported by a press release.

Schwartz, 2002). In this paper, we explore how
natural language processing can help identify exag-
gerations of scientific papers in press releases.

While Sumner et al. (2014) and Bratton et al.
(2019) performed manual analyses to understand
the prevalence of exaggeration in press releases of
scientific papers from a variety of sources, recent
work has attempted to expand this using methods
from NLP (Yu et al., 2019, 2020; Li et al., 2017).
These works focus on the problem of automatically
detecting the difference in the strength of causal
claims made in scientific articles and press releases.
They accomplish this by first building datasets of
main claims taken from PubMed abstracts and (un-
related) press releases from EurekAlert2 labeled for
their strength. With this, they train machine learn-
ing models to predict claim strength, and analyze
unlabelled data using these models. This marks
an important first step toward the goal of automat-
ically identifying exaggerated scientific claims in
science reporting.

However, existing work has only partially at-
2https://www.eurekalert.org/

https://github.com/copenlu/scientific-exaggeration-detection
https://github.com/copenlu/scientific-exaggeration-detection
https://www.eurekalert.org/
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tempted to address this task using NLP. Particu-
larly, there exists no standard benchmark data for
the exaggeration detection task with paired press
releases and abstracts i.e. where the data consist of
tuples of the form (press release, abstract) and the
press release is written about the paired scientific
paper. Collecting paired data labeled for exagger-
ation is critical for understanding how well any
solution performs on the task, but is challenging
and expensive as it requires domain expertise (Sum-
ner et al., 2014). The focus of this work is then
to curate a standard set of benchmark data for the
task of scientific exaggeration detection, provide a
more realistic task formulation of the problem, and
develop methods effective for solving it using lim-
ited labeled data. To this end, we present MT-PET,
a multi-task implementation of Pattern Exploiting
Training (PET, Schick and Schütze (2020a,b)) for
detecting exaggeration in health science press re-
leases. We test our method by curating a bench-
mark test set of data from the expert annotated data
of Sumner et al. (2014) and Bratton et al. (2019),
which we release to help advance research on sci-
entific exaggeration detection.

Contributions In sum, we introduce:
• A new, more realistic task formulation for sci-

entific exaggeration detection.
• A curated set of benchmark data for testing

methods for scientific exaggeration detection
consisting of 563 press release/abstract pairs.

• MT-PET, a multi-task extension of PET
which beats strong baselines on scientific ex-
aggeration detection.

2 Problem Formulation

We first provide a formal definition of the problem
of scientific exaggeration detection, which guides
the approach described in §3. We start with a set of
document pairs {(t, s) ∈ D}, where s is a source
document (e.g. a scientific paper abstract) and t is
a document written about the source document s
(e.g. a press release for the paper). The goal is to
predict a label l ∈ {0, 1, 2} for a given document
pair (t, s), where 0 implies the target document
undersells source document, 1 implies the target
document accurately reflects the source document,
and 2 implies the target document exaggerates the
source document.

Two realizations of this formulation are investi-
gated in this work. The first (defined as T1) is an
inference task consisting of labeled document pairs

Figure 2: MT-PET design. We define pairs of com-
plementary pattern-verbalizer pairs for a main task and
auxiliary task. These PVPs are then used to train PET
on data from both tasks.

used to learn to predict l directly. In other words,
we are given training data of the form (t, s, l) and
can directly train a model to predict l from both t
and s. The second (defined as T2) is as a classifica-
tion task consisting of a training set of documents
d ∈ D′ from both the source and the target do-
main, and a classifier is trained to predict the claim
strength l′ of sentences from these documents. In
other words, we don’t require paired documents
(t, s) at train time. At test time, these classifiers
are then applied to document pairs (t, s) and the
predicted claim strengths (l′s, l

′
t) are compared to

get the final label l. Previous work has used this
formulation to estimate the prevalence of correla-
tion to causation exaggeration in press releases (Yu
et al., 2020), but have not evaluated this on paired
labeled instances.

Following previous work (Yu et al., 2020), we
simplify the problem by focusing on detecting
when the main finding of a paper is exaggerated.
The first step is then to identify the main finding
from s, and the sentence describing the main find-
ing in s from t. In our semi-supervised approach,
we do this as an intermediate step to acquire unla-
beled data, but for all labeled training and test data,
we assume the sentences are already identified and
evaluate on the sentence-level exaggeration detec-
tion task.

3 Approach

One of the primary challenges for scientific ex-
aggeration detection is a lack of labeled training
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data. Given this, we develop a semi-supervised ap-
proach for few-shot exaggeration detection based
on pattern exploiting training (PET, Schick and
Schütze (2020a,b)). Our method, multi-task PET
(MT-PET, see Figure 2), improves on PET by us-
ing multiple complementary cloze-style QA tasks
derived from different source tasks during training.
We first describe PET, followed by MT-PET.

3.1 Pattern Exploiting Training (PET)
PET (Schick and Schütze, 2020a) uses the masked
language modeling objective of pretrained lan-
guage models to transform a task into one or more
cloze-style question answering tasks. The two pri-
mary components of PET are patterns and verbaliz-
ers. Patterns are cloze-style sentences which mask
a single token e.g. in sentiment classification with
the sentence “We liked the dinner” a possible pat-
tern is: “We liked the dinner. It was [MASK].”
Verbalizers are single tokens which capture the
meaning of the task’s labels in natural language,
and which the model should predict to fill in the
masked slots in the provided patterns (e.g. in the
sentiment analysis example, the verbalizer could
be Good).

Given a set of pattern-verbalizer pairs (PVPs),
an ensemble of models is trained on a small la-
beled seed dataset to predict the appropriate verbal-
izations of the labels in the masked slots. These
models are then applied on unlabeled data, and the
raw logits are combined as a weighted average to
provide soft-labels for the unlabeled data. A final
classifier is then trained on the soft labeled data
using a distillation loss based on KL-divergence.

3.2 Notation
We adopt the notation in the original PET pa-
per (Schick and Schütze, 2020a) to describe MT-
PET. In this, we have a masked language model
M with a vocabulary V and mask token [MASK]
∈ V . A pattern is defined as a function P (x)
which transforms a sequence of input sentences
x = (s0, ..., sk−1), si ∈ V ∗ to a phrase or sentence
which contains exactly one mask token. Verbaliz-
ers v(x) map a label in the task’s label space L to
a set of tokens in the vocabulary V which M is
trained to predict.

For a given sample z ∈ V ∗ containing exactly
one mask token and w ∈ V corresponding to a
word in the language model’s vocabulary, M(w|z)
is defined as the unnormalized score that the lan-
guage model gives to word w at the masked posi-

tion in z. The score for a particular label as given
in Schick and Schütze (2020a) is then

sp(l|x) =M(v(l)|P (x)) (1)

For a given sample, PET then assigns a score s
for each label based on all of the verbalizations of
that label. When applied to unlabeled data, this
produces soft labels from which a final modelM′
can be trained via distillation using KL-divergence.

3.3 MT-PET
In the original PET implementation, PVPs are de-
fined for a single target task. MT-PET extends this
by allowing for auxiliary PVPs from related tasks,
adding complementary cloze-style QA tasks dur-
ing training. The motivation for the multi-task ap-
proach is two-fold: 1) complementary cloze-style
tasks can potentially help the model to learn differ-
ent aspects of the main task; in our case, the similar
tasks of exaggeration detection and claim strength
prediction; 2) data on related tasks can be utilized
during training, which is important in situations
where data for the main task is limited.

Concretely, we start with a main task Tm with
a small labeled dataset (xm, ym) ∈ Dm, where
ym ∈ Lm is a label for the instance, as well as
an auxiliary task Ta with labeled data (xa, ya) ∈
Da, ya ∈ La. Each pattern P im(x) for the main task
has a corresponding complementary pattern P ia(x)
for the auxiliary task. Additionally, the labels in
La have their own verbalizers va(x). Thus, with k
patterns, the full set of PVP tuples is given as

P = {((P im, vm), (P ia, va))|0 ≤ i < k}

Finally, a large set of unlabeled data U for the main
task only is available. MT-PET then trains the
ensemble of k masked language models using the
pairs defined for the main and auxiliary task. In
other words, for each individual model both the
main PVP (Pm, vm) and auxiliary PVP (Pa, va)
are used during training.

For a given modelMi in the ensemble, on each
batch we randomly select one task Tc, c ∈ {m, a}
on which to train. The PVP for that task is then se-
lected as (P ic , vc). Inputs (xc, yc) from that dataset
are passed through the model, producing raw scores
for each label in the task’s label space.

spi
c
(·|xc) = {Mi(vc(l)|P ic(xc))|∀ l ∈ Lc} (2)

The loss is calculated as the cross-entropy between
the task label yc and the softmax of the score s
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Name Pattern

P 0
T1
(x) Scientists claim a. || Reporters claim b.The reporters claims are [MASK]

P 1
T1
(x) Academic literature claims a. || Popular media claims b. The media claims are [MASK]

P 0
T2
(x) [Reporters|Scientists] say a. The claim strength is [MASK]

P 1
T2
(x) [Academic literature|Popular media] says a. The claim strength is [MASK]

Table 1: Patterns for both T1 (exaggeration detection) and T2 (claim strength prediction)

normalized over the scores for all label verbaliza-
tions (Schick and Schütze, 2020a), weighted by a
term αc.

qpi
c
=

e
s
pi
c
(·|xc)∑

l∈Lc e
s
pi
c
(l|xc)

(3)

Lc = αc ∗
1

N

∑
n

H(y(n)c , q
(n)

pi
c
) (4)

whereN is the batch size, n is a sample in the batch,
H is the cross-entropy, and αc is a hyperparameter
weight given to task c.

MT-PET then proceeds in the same fashion as
standard PET. Different models are trained for each
PVP tuple in P , and each model produces raw
scores spi

m
for all samples in the unlabeled data.

The final score for a sample is then a weighted
combination of the scores of individual models.

s(l|xju) =
∑
i

wi ∗ spi
m
(l|xju) (5)

where the weights wi are calculated as the accuracy
of modelMi on the train set Dm before training.
The final classification model is then trained us-
ing KL-divergence between the predictions of the
model and the scores s as target logits.

3.4 MT-PET for Scientific Exaggeration

We use MT-PET to learn from data labeled for both
of our formulations of the problem (T1, T2). In
this, the first step is to define PVPs for exaggeration
detection (T1) and claim strength prediction (T2).

To do this, we develop an initial set of PVPs
and use PETAL (Schick et al., 2020) to automati-
cally find verbalizers which adequately represent
the labels for each task. We then update the pat-
terns manually and re-run PETAL, iterating as such
until we find a satisfactory combination of verbal-
izers and patterns which adequately reflect the task.
Additionally, we ensure that the patterns between
T1 and T2 are roughly equivalent. This yields 2

patterns for each task, provided in Table 1, and
verbalizers given in Table 2. The verbalizers found
by PETAL capture multiple aspects of the task la-
bels, selecting words such as “mistaken,” “wrong,”
and “artificial” for exaggeration, “preliminary” and
“conditional” for downplaying, and multiple lev-
els of strength for strength detection such as “es-
timated” (correlational), “cautious” (conditional
causal), and “proven” (direct causal).

For unlabeled data, we start with unlabeled pairs
of full text press releases and abstracts. As we are
concerned with detecting exaggeration in the pri-
mary conclusions, we first train a classifier based
on single task PET for conclusion detection using
a set of seed data. The patterns and verbalizers we
use for conclusion detection are given in Table 3
and Table 4. After training the conclusion detec-
tion model, we apply it to the press releases and
abstracts, choosing the sentence from each with the
maximum score sp(1|x).

4 Data Collection

One of the main contributions of this work is a cu-
rated benchmark dataset for scientific exaggeration
detection. Labeled datasets exist for the related
task of claim strength detection in scientific ab-
stracts and press releases (Yu et al., 2020, 2019),
but these data are from press releases and abstracts
which are unrelated (i.e. the given press releases
are not written about the given abstracts), making
them unsuitable for benchmarking exaggeration de-
tection. Given this, we curate a dataset of paired
sentences from abstracts and associated press re-
leases, labeled by experts for exaggeration based
on their claim strength. We then collect a large set
of unlabeled press release/abstract pairs useful for
semi-supervised learning.

4.1 Gold Data
The gold test data used in this work are from Sum-
ner et al. (2014) and Bratton et al. (2019), who
annotate scientific papers, their abstracts, and asso-
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Pattern Label Verbalizers

Downplays preliminary, competing,
uncertainties

P 0
T1

Same following, explicit
Exaggerates mistaken, wrong, hollow,

naive, false, lies

Downplays hypothetical, theoretical,
conditional

P 1
T1

Same identical
Exaggerates mistaken, wrong, prema-

ture, fantasy, noisy, artif-
ical

P ∗
T2

NA sufficient, enough, au-
thentic, medium

Correlational inferred, estimated,
calculated, borderline,
approximately, variable,
roughly

Cond. Causal cautious, premature, un-
certain, conflicting, lim-
ited

Causal touted, proven, repli-
cated, promoted, dis-
torted

Table 2: Verbalizers for PVPs from both T1 and T2.
Verbalizers are obtained using PETAL (Schick et al.,
2020), starting with the top 10 verbalizers per label and
then manually filtering out words which do not make
sense with the given labels.

ciated press releases along several dimensions to
characterize how press releases exaggerate papers.
The original data consists of 823 pairs of abstracts
and press releases. The 462 pairs from Sumner
et al. (2014) have been used in previous work to
test claim strength prediction (Li et al., 2017), but
the data, which contain press release and abstract
conclusion sentences that are mostly paraphrases
of the originals, are used as is.

We focus on the annotations provided for claim
strength. The annotations consist of six labels
which we map to the four labels defined in Li et al.
(2017). The labels and their meaning are given in
Table 5. This gives a claim strength label lρ for
the press release and lγ for the abstract. The final
exaggeration label is then defined as follows:

le =


0 lρ < lγ

1 lρ = lγ

2 lρ > lγ

As the original abstracts in the study are not
provided, we automatically collect them using the
Semantic Scholar API.3 We perform a manual in-
spection of abstracts to ensure the correct ones

3https://api.semanticscholar.org/

Name Pattern

P0(x) [MASK]: a
P1(x) [MASK] - a
P2(x) “[MASK]” statement: a
P3(x) a ([MASK])
P4(x) ([MASK]) a
P5(x) [Type: [MASK]] a

Table 3: Patterns for conclusion detection.

Label Verbalizers

0 Text
1 Conclusion

Table 4: Verbalizers for PVPs for conclusion detection.

are collected, discarding missing and incorrect ab-
stracts. Gold conclusion sentences are obtained by
sentence tokenizing abstracts using SciSpaCy (Neu-
mann et al., 2019) and finding the best matching
sentence to the provided paraphrase in the data us-
ing ROUGE score (Lin, 2004). We then manually
fix sentences which do not correspond to a sin-
gle sentence from the abstract. Gold press release
sentences are gathered in the same way from the
provided press releases.

This results in a dataset of 663 press re-
lease/abstract pairs labeled for claim strength and
exaggeration. The label distribution is given in Ta-
ble 6. We randomly sample 100 of these instances
as training data for few shot learning (T1), leaving
553 instances for testing. Additionally, we create
a small training set of 1,138 sentences labeled for
whether or not they are the main conclusion sen-
tence of the press release or abstract. This data is
used in the first step of MT-PET to identify con-
clusion sentences in the unlabeled pairs.

For T2 we use the data from Yu et al. (2020,
2019). Yu et al. (2019) create a dataset of 3,061
conclusion sentences labeled for claim strength
from structured PubMed abstracts of health ob-
servational studies with conclusion sections of 3
sentences or less. Yu et al. (2020) then annotate
statements from press releases from EurekAlert.
The selected data are from the title and first two
sentences of the press releases, as Sumner et al.
(2014) note that most press releases contain their
main conclusion statements in these sentences, fol-
lowing an inverted pyramid structure common in
journalism (Pöttker, 2003). Both studies use the

https://api.semanticscholar.org/
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Sumner et al. (2014) Description Li et al. (2017) Description

0 No relationship mentioned - -
1 Statement of no relationship 0 Statement of no relationship
2 Statements of correlation 1 Statement of correlation
3 Ambiguous statement of re-

lationship
4 Conditional statement of

causation 2 Conditional statement of
causation

5 Statement of “can”
6 Statements of causation 3 Statement of causation

Table 5: Claim strength labels and their meaning from the original data in Sumner et al. (2014) and Bratton et al.
(2019) and the mappings to the labels from Li et al. (2017). We use the labels from Li et al. (2017) in this study,
including for deriving the exaggeration labels.

Label Count

Downplays 113
Same 406
Exaggerates 144

Table 6: Number of labels per class for benchmark ex-
aggeration detection data.

Method P R F1

Supervised 28.06 33.10 29.05
PET 41.90 39.87 39.12
MT-PET 47.80 47.99 47.35

Table 7: Results for exaggeration detection with paired
conclusion sentences from abstracts and press releases
(T1). MT-PET uses 200 sentences for strength classifi-
cation, 100 each from press releases and abstracts.

labeling scheme from Li et al. (2017) (see Table 5).
The final data contains 2,076 labeled conclusion
statements. From these two datasets, we select
a random stratified sample of 4,500 instances for
training in our full-data experiments, and subsam-
ple 200 for few-shot learning (100 from abstracts
and 100 from press releases).

4.2 Unlabeled Data

We collect unlabeled data from ScienceDaily,4 a
science reporting website which aggregates and re-
releases press releases from a variety of sources. To
do this, we crawl press releases from ScienceDaily
via the Internet Archive Wayback Machine5 be-
tween January 1st 2016 and January 1st 2020 using
Scrapy.6 We discard press releases without paper

4https://www.sciencedaily.com/
5https://archive.org/web/
6https://scrapy.org/

DOIs and then pair each press release with a pa-
per abstract by querying for each DOI using the
Semantic Scholar API. This results in an unlabeled
set of 7,741 press release/abstract pairs. Addition-
ally, we use only the title, lead sentence, and first
three sentences of each press release.

5 Experiments

Our experiments are focused on the following pri-
mary research questions:

• RQ1: Does MT-PET improve over PET for
scientific exaggeration detection?

• RQ2: Which formulation of the problem
leads to the best performance?

• RQ3: Does few-shot learning performance
approach the performance of models trained
with many instances?

• RQ4: What are the challenges of scientific
exaggeration prediction?

We experiment with the following model variants:

• Supervised: A fully supervised setting where
only labeled data is used.

• PET: Standard single-task PET.
• MT-PET: We run MT-PET with data from

one task formulation as the main task and the
other formulation as the auxiliary task.

We perform two evaluations in this setup: one
with T1 as the main task and one with T2. For
T1, we use the 100 expert annotated instances with
paired press release and abstract sentences labeled
for exaggeration (200 sentences total). For T2,
we use 100 sentences from the press data from
Yu et al. (2020) and 100 sentences from the ab-
stract data in Yu et al. (2019) labeled for claim

https://www.sciencedaily.com/
https://archive.org/web/
https://scrapy.org/
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Method |T2|,|T1| P R F1 Press F1 Abstract F1

Supervised 200,0 49.28 51.07 49.03 54.78 59.41
PET 200,0 55.76 58.58 56.57 63.56 62.76
MT-PET 200,100 56.68 60.13 57.44 64.72 63.27

Supervised 4500,0 58.20 59.99 58.66 63.26 67.26
PET 4500,0 59.53 61.84 60.45 64.20 64.92
MT-PET 4500,100 60.09 62.68 61.11 63.93 64.69

PET+in domain MLM 200,100 57.18 60.12 58.06 64.29 62.69
PET+in domain MLM 4500,100 59.87 62.33 60.85 64.10 64.73

Table 8: Results on exaggeration detection via strength classification (T2) with varying numbers of instances.
MT-PET uses 100 instances from paired press and abstract sentences (200 sentences total).

strength. We use RoBERTa base (Liu et al., 2019)
from the HuggingFace Transformers library (Wolf
et al., 2020) as the main model, and set αm to be 1,
and αa = min(2, |Dm|

|Da| ). All methods are evaluated
using macro-F1 score, and results are reported as
the average performance over 5 random seeds.

5.1 Performance Evaluation

We first examine the performance with T1 as the
base task (see Table 7). In a purely supervised
setting, the model struggles to learn and mostly
predicts the majority class. Basic PET yields a
substantial improvement of 10 F1 points, with MT-
PET further improving upon this by another 8 F1
points. Accordingly, we conclude that training with
auxiliary task data provides much benefit for scien-
tific exaggeration detection in the T1 formulation.

We next examine performance with T2 (strength
classification) as the main task in both few-shot and
full data settings (see Table 8). In terms of base
performance, the model can predict exaggeration
better than T1 in a purely supervised setting. For
PET and MT-PET, we see a similar trend; with
200 instances for T2, PET improves by 7 F1 points
over supervised learning, and MT-PET improves
on this by a further 0.9 F1 points. Additionally, MT-
PET improves performance on the individual tasks
of predicting the claim strength of conclusions in
press releases and scientific abstracts with 200 ex-
amples. While less dramatic, we still see gains in
performance using PET and MT-PET when 4,500
instances from T2 are used, despite the fact that
there are still only 100 instances from T1. We also
test if the improvement in performance is simply
due to training on more in-domain data (“PET+in
domain MLM” in Table 8). We observe gains
for exaggeration detection using masked language
modeling on data from T1, but MT-PET still per-

forms better at classifying the strength of claims
in press releases and abstracts when 200 training
instances from T2 are used.

RQ1 Our results indicate that MT-PET does in
fact improve over PET for both training setups.
With T1 as the main task and T2 as the auxiliary
task, we see that performance is substantially im-
proved, demonstrating that learning claim strength
prediction helps produce soft-labeled training data
for exaggeration detection. Additionally, we find
that the reverse holds with T2 as main task and T1
as auxiliary task. As performance can also be im-
proved via masked language modeling on data from
T1, this indicates that some of the performance im-
provement could be due to including data closer
to the test domain. However, our error analysis in
subsection 5.2 shows that these methods improve
model performance on different types of data.

RQ2 We find that T2 is better suited for scien-
tific exaggeration detection in this setting, however,
with a couple of caveats. First, the final exaggera-
tion label is based on expert annotations for claim
strength, so clearly claim strength prediction will
be useful in this setup. Additionally, the task may
be more forgiving here, as only the direction needs
to be correct and not necessarily the final strength
label (i.e. predicting ‘0’ for the abstract and any of
‘1,’ ‘2,’ or ‘3’ for the press release label will result
in an exaggeration label of ‘exaggerates’).

RQ3 We next examine the learning dynamics
of our few-shot models with different amounts of
training data (see Figure 3), comparing them to MT-
PET to understand how well it performs compared
to settings with more data. MT-PET with only 200
samples is highly competitive with purely super-
vised learning on 4,500 samples (57.44 vs. 58.66).
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Figure 3: Learning curve for supervised learning and
PET compared to performance of MT-PET using 200
instances from T2 and 100 from T1.

Additionally, MT-PET performs at or above super-
vised performance up to 1000 input samples, and
at or above PET up to 500 samples, again using
only 200 samples from T2 and 100 from T1.

5.2 Error Analysis

RQ4 Finally, we try to understand the difficulty
of scientific exaggeration detection by observing
where models succeed and fail (see Figure 4). The
most difficult category of examples to predict in-
volve direct causal claims, particularly exagger-
ation and downplaying when one document is a
direct causal claim and the other an indirect causal
claim (‘CON->CAU’, ‘CAU->CON’). Also, it is
challenging to predict when both the press release
and abstract conclusions are directly causal.

The models have the easiest time predict-
ing when both statements involve correlational
claims, and exaggerations involving correlational
claims from abstracts. We also observe that MT-
PET helps the most for the most difficult category:
causal claims (see Figure 5 in Appendix A). The
model is particularly better at differentiating when
a causal claim in an abstract is downplayed by a
press release. It is also better at identifying correla-
tional claims than PET, where many claims involve
association statements such as ‘linked to,’ ‘could
predict,’ ‘more likely,‘ and ‘suggestive of.’

The model trained with MLM on data from
T1 also benefits causal statement prediction, but
mostly for when both statements are causal,
whereas MT-PET sees more improvement for pairs
where one causal statement is exaggerated or down-
played by another (see Figure 6 in Appendix A).
This suggests that training with the patterns from

T1 helps the model to differentiate direct causal
claims from weaker claims, while MLM training
mostly helps the model to understand better how di-
rect causal claims are written. We hypothesize that
combining the two methods would lead to mutual
gains.

6 Related Work

6.1 Scientific Misinformation Detection

Misinformation detection focuses on a variety of
problems, including fact verification (Thorne et al.,
2018; Augenstein et al., 2019), check-worthiness
detection (Wright and Augenstein, 2020; Nakov
et al., 2021), stance (Augenstein et al., 2016; Baly
et al., 2018; Hardalov et al., 2021a) and clickbait
detection (Potthast et al., 2018). While most work
has focused on social media and general domain
text, recent work has begun to explore different
problems in detecting misinformation in scientific
text such as SciFact (Wadden et al., 2020) and Cite-
Worth (Wright and Augenstein, 2021), as well as re-
lated tasks such as summarization (DeYoung et al.,
2021; Dangovski et al., 2021).

Most work on scientific exaggeration detection
has focused on flagging when the primary finding
of a scientific paper has been exaggerated by a press
release or news article (Sumner et al., 2014; Brat-
ton et al., 2019; Yu et al., 2020, 2019; Li et al.,
2017). Sumner et al. (2014) and Bratton et al.
(2019) manually label pairs of press releases and
scientific papers on a wide variety of metrics, find-
ing that one third of press releases contain exagger-
ated claims, and 40% contain exaggerated advice.
Li et al. (2017) is the first study into automatically
predicting claim strength, using the data from Sum-
ner et al. (2014) as a small labeled dataset. Yu et al.
(2019) and Yu et al. (2020) extend this by build-
ing larger datasets for claim strength prediction,
performing an analysis of a large set of unlabeled
data to estimate the prevalence of claim exagger-
ation in press releases. Our work improves upon
this by providing a more realistic task formulation
of the problem, consisting of paired press releases
and abstracts, as well as curating both labeled and
unlabeled data to evaluate methods in this setting.

6.2 Learning from Task Descriptions

Using natural language to perform zero and few-
shot learning has been demonstrated on a num-
ber of tasks, including question answering (Rad-
ford et al.), text classification (Puri and Catanzaro,
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Figure 4: Proportion of examples by label which all models predict incorrectly.

2019), relation extraction (Bouraoui et al., 2020)
and stance detection (Hardalov et al., 2021b,c).
Methods of learning from task descriptions have
been gaining more popularity since the creation of
GPT-3 (Brown et al., 2020). Raffel et al. (2020)
attempt to perform this with smaller language mod-
els by converting tasks into natural language and
predicting tokens in the vocabulary. Schick and
Schütze (2020a) propose PET, a method for few
shot learning which converts tasks into cloze-style
QA problems which can be solved by a pretrained
language model in order to provide soft-labels
for unlabeled data. We build on PET, showing
that complementary cloze-style QA tasks can be
trained on simultaneously to improve few-shot per-
formance on scientific exaggeration detection.

7 Conclusion

In this work, we present a formalization of and
investigation into the problem of scientific exagger-
ation detection. As data for this task is limited, we
develop a gold test set for the problem and propose
MT-PET, a semi-supervised approach based on
PET, to solve it with limited training data. We find
that MT-PET helps in the more difficult cases of
identifying and differentiating direct causal claims
from weaker claims, and that the most performant
approach involves classifying and comparing the
individual claim strength of statements from the
source and target documents. The code and data
for our experiments can be found online7. Future
work should focus on building more resources e.g.
datasets for exploring scientific exaggeration detec-

7https://github.com/copenlu/
scientific-exaggeration-detection

tion, including data from multiple domains beyond
health science. Finally, it would be interesting to ex-
plore how MT-PET works on combinations of more
general NLP tasks, such as question answering and
natural language inference or part-of-speech tag-
ging and named entity recognition.
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Broader Impact Statement

Being able to automatically detect whether a press
release exaggerates the findings of a scientific ar-
ticle could help journalists write press releases,
which are more faithful to the scientific articles
they are describing. We further believe it could
benefit the research community working on fact
checking and related tasks, as developing methods
to detect subtle differences in a statement’s veracity
is currently understudied.

On the other hand, as our paper shows, this is
currently still a very challenging task, and thus, the
resulting models should only be applied in practice
with caution. Moreover, it should be noted that
the predictive performance results reported in this
paper are for press releases written by science jour-
nalists – one could expect worse results for press
releases which more strongly simplify scientific
articles.

https://github.com/copenlu/scientific-exaggeration-detection
https://github.com/copenlu/scientific-exaggeration-detection
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A Error Analysis Plots

Extra plots from our error analysis are given in
Figure 5 and Figure 6.

B Reproducibility

B.1 Computing Infrastructure

All experiments were run on a shared cluster. Re-
quested jobs consisted of 16GB of RAM and 4
Intel Xeon Silver 4110 CPUs. We used a single
NVIDIA Titan X GPU with 24GB of RAM.

B.2 Average Runtimes

The average runtime performance of each model
is given in Table 9. Note that different runs may
have been placed on different nodes within a shared
cluster.

Setting |T1|,|T2| Time

Supervised 100,0 00h01m28s
PET 100,0 00h11m14s
MT-PET 100,200 00h13m05s

Supervised 0,200 00h01m20s
PET 0,200 00h16m22s
MT-PET 100,200 00h18m43s
Supervised 0,4500 00h03m23s
PET 0,4500 00h40m23s
MT-PET 100,4500 00h31m48s

Table 9: Average runtimes for each model (runtimes
are taken for the entire run of an experiment).

B.3 Number of Parameters per Model

We use RoBERTa, specifically the base model, for
all experiments, which consists of 124,647,170 pa-
rameters.

B.4 Validation Performance

As we are testing a few shot setting, we do not use
a validation set and only report the final test results.

B.5 Evaluation Metrics

The primary evaluation metric used was macro
F1 score. We used the sklearn implementation
of precision_recall_fscore_support
for F1 score, which can be found here:
https://scikit-learn.org/stable/modules/

generated/sklearn.metrics.precision_

recall_fscore_support.html. Briefly:

p =
tp

tp+ fp

r =
tp

tp+ fn

F1 =
2 ∗ p ∗ r
p+ r

where tp are true positives, fp are false positives,
and fn are false negatives. Macro F1 is average F1
across all classes.

B.6 Hyperparameters

T1 Hyperparameters Supervised/PET training
We used the following hyperparameters for ex-
periments with T1 as the main task: Epochs:
10; Batch Size: 4; Learning Rate: 0.00005598;
Warmup Steps: 50; Weight decay: 0.001. We
also weigh the cross-entropy loss based on the
label distribution. These hyperparameters are
found by performing a hyperparameter search
using 4-fold cross validation on the 100 train-
ing examples. The bounds are as follows:
Learning rate: [0.000001, 0.0001; Warmup steps:
{0, 10, 20, 30, 40, 50, 100}; Batch size: {4, 8};
Weight decay: {0.0, 0.0001, 0.001, 0.01, 0.1};
Epochs: [2, 10].

T2 Hyperparameters Supervised/PET training
Epochs: 10; Batch Size: 4; Learning Rate:
0.00003; Warmup Steps: 50; Weight Decay: 0.001.
We also weigh the cross-entropy loss based on the
label distribution.

Hyperparameters for Distillation We used the
following hyperparameters for distillation (training
the final classifier after PET) for both T1 and T2 as
the main task: Epochs: 3; Batch Size: 4; Learning
Rate: 0.00001; Warmup Steps: 200; Weight decay:
0.01; Temperature: 2.0. We also weigh the cross-
entropy loss based on the label distribution.

B.7 Data

We build our benchmark test dataset from
the studies of Sumner et al. (2014) and
Bratton et al. (2019). The original data
can be found at https://figshare.com/

articles/dataset/InSciOut/903704 and
https://osf.io/v8qhn/files/. A link
to the test data will be provided upon ac-
ceptance of the paper (and included in the
supplemental material). Claim strength data
from Yu et al. (2019) for abstracts can be
found at https://github.com/junwang4/

correlation-to-causation-exaggeration/

blob/master/data/annotated_pubmed.csv.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_fscore_support.html
https://figshare.com/articles/dataset/InSciOut/903704
https://figshare.com/articles/dataset/InSciOut/903704
https://osf.io/v8qhn/files/
https://github.com/junwang4/correlation-to-causation-exaggeration/blob/master/data/annotated_pubmed.csv
https://github.com/junwang4/correlation-to-causation-exaggeration/blob/master/data/annotated_pubmed.csv
https://github.com/junwang4/correlation-to-causation-exaggeration/blob/master/data/annotated_pubmed.csv
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Figure 5: Number of instances that each model predicted correctly which the supervised model predicted incor-
rectly.

Figure 6: Number of instances that each model predicted correctly which PET predicted incorrectly.

Claim strength data for press releases
from Yu et al. (2020) can be found
at https://github.com/junwang4/

correlation-to-causation-exaggeration/

blob/master/data/annotated_eureka.csv

https://github.com/junwang4/correlation-to-causation-exaggeration/blob/master/data/annotated_eureka.csv
https://github.com/junwang4/correlation-to-causation-exaggeration/blob/master/data/annotated_eureka.csv
https://github.com/junwang4/correlation-to-causation-exaggeration/blob/master/data/annotated_eureka.csv

