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each foreground frame vt, where lts, l
t
e denotes the

distances from frame vt to the starting and end-
ing segment boundaries, respectively. To this end,
we first perform binary classification on the whole
frames to distinguish the foreground and back-
ground frames, and then treat the foreground ones
as positive samples and regress the segment bound-
aries on these frames as generated proposals.
Foreground-Background classification. In the
TSLV task, most videos are more than two minutes
long while the lengths of annotated target segments
only range from several seconds to one minute (e.g.
on ActivityNet Caption dataset). Therefore, there
exists much noises from the background frames
which may disturb the accurate segment localiza-
tion. To alleviate it, we first classify the back-
ground frames and filter out their responses in lat-
ter regression. By distinguishing the foreground
and background frames with annotations, we de-
sign a binary classification module with three full-
connected (FC) layers to predict the class yt on
each video frame. Considering the unbalanced fore-
ground/background distribution, we formulate the
balanced binary cross-entropy loss as:

Lclass = �
TbackX

t=1

Tback

T
log(yt)�

TforeX

t=1

Tfore

T
log(1� yt),

(4)
where Tfore, Tback are the numbers of foreground
and background frames. T is the number of to-
tal video frames. Therefore, we can differentiate
between frames from foreground and background
during both training and testing.
Boundary regression. With the query-guided
video representation eV and the predicted binary
sequence of 0-1, we then design a boundary re-
gression module to predict the distance from each
foreground frame to the start (or end) frame of
the video segment that corresponds to the query.
We implement this module by three 1D convolu-
tion layers with two output channels. Given the
predicted distance pair (lts, lte) and ground-truth dis-
tance (gts, g

t
e), we define the regression loss as:

Lreg =
1

Tfore

TforeX

t=1

(1� IoU((t, lts, l
t
e), (t, g

t
s, g

t
e))), (5)

where IoU(·) computes the Intersection over Union
(IoU) score between the predicted segment and
its ground-truth. After that, we can represent the
generated proposal as tuples {(t, lts, lte)}

Tfore

t=1 based
on the regression results of the foreground frames.

Query: The girl in the blue dress hops for a second time

Proposal 1 Proposal 2 Proposal 3
Ground Truth

Positional Distance Semantic Distance

Figure 3: To distinguish above three proposals, both po-
sitional and semantic relations among proposals needs
to be considered.

3.4 Proposal Consolidation
So far, we have generated a certain number of
proposals that are significantly less than the pre-
defined ones in existing top-down framework, mak-
ing the final scoring and ranking process much
efficient. To further refine the proposal features for
more accurate segment localization, we explicitly
model higher-order interactions between the gener-
ated proposals to learn their relations. As shown in
Figure 3, proposal 1 and proposal 2 contain same
semantics of “blue" and “hops", we need to model
their positional distance to distinguish them and
refine their features for better understanding the
phrase “second time". Also, for the proposals (pro-
posal 2 and 3) which are local neighbors, we have
to learn their semantic distance to refine their rep-
resentations. Therefore, in our APGN, we first
encode each proposal feature with both positional
embedding and frame-wise semantic features, and
then define a graph convolutional network (GCN)
over the proposals for proposal refinement.
Proposal encoder. For each proposal tuple
(t, lts, l

t
e), we represent its segment boundary as

(t� lts, t+ lte). Before aggregating the features of
its contained frames within this segment boundary,
we first concatenate a position embedding embpost

to each frame-wise feature evt, in order to inject
position information on frame t as follows:

ev0
t = [evt; embpost ] 2 R1⇥(D+d), (6)

where embpost denotes the position embedding of
the t-th position, and d is the dimension of embpost .
We follow (Vaswani et al., 2017) and use the sine
and cosine functions of different frequencies to
compose position embeddings:

embpost [2j] = sin(
t

100002j/d
), (7)

embpost [2j + 1] = cos(
t

100002j/d
), (8)

where 2j and 2j + 1 are the even and odd indices
of the position embedding. In this way, each di-
mension of the positional encoding corresponds to
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a sinusoid, allowing the model to easily learn to at-
tend to absolute positions. Given the frame features
{ev0

t}
Tfore

t=1 and a proposal segment (t � lts, t + lte),
we encode the vector feature pt of t-th proposal by
aggregating the features of the contained frames in
the segment as:

pt = MLP2(Pool(MLP1([ev0
dt�ltse, ..., ev

0
bt+ltec]))),

(9)
where each MLP has two FC layers, Pool(·) de-
notes the max-pooling. The frames from each pro-
posal are independently processed by MLP1 be-
fore being pooled (channel-wise) to a single fea-
ture vector and passed to MLP2 where information
from different frames are further combined. Thus,
we can represent the encoded proposal feature as
pt 2 R1⇥(D+d).
Proposal graph. We construct a graph over the
proposal features {pt}

Tfore

t=1 , where each node of
the graph is a proposal associated with both po-
sitions and semantic features. We full connect
all node pairs, and define relations between each
proposal-pair (pt,pt0) for edge convolution (Wang
et al., 2018) as:

et,t0 = Relu(pt✓1 + (pt0 � pt)✓2), (10)

where ✓1 and ✓2 are learnable parameters. We
update each proposal feature pt to bpt as follow:

bpt = MaxPool(et), et = {et,t0}
Tfore

t0=1 . (11)

This GCN module consists of k stacked graph con-
volutional layers. After the above proposal consoli-
dation with graph, we are able to learn the refined
proposal features.

3.5 Localization Head
After proposal consolidation, we feed the refined
features bP = {bpt}

Tfore

t=1 into two separate heads to
predict their confidence scores and boundary off-
sets for proposal ranking and refinement. Specifi-
cally, we employ two MLPs on each feature bpt as:

rt = Sigmoid(MLP3(bpt)), (12)

(�ts, �
t
e) = MLP4(bpt), (13)

where rt 2 (0, 1) is the confidence score, and
(�ts, �

t
e) is the offsets. Therefore, the final pre-

dicted segment of proposal t can be represented
as (t� lts+ �ts, t+ lte+ �te). To learn the confidence

scoring rule, we first compute the IoU score ot be-
tween each proposal segment with the ground-truth
(⌧s, ⌧e), then we adopt the alignment loss function
as below:

Lalign = � 1

Tfore

TforeX

t=1

otlog(rt)+(1�ot)log(1�rt).

(14)
Given the ground-truth boundary offsets (�̂ts, �̂

t
e)

of proposal t, we also fine-tune its offsets by a
boundary loss as:

Lb =
1

Tfore

TforeX

t=1

SL1(�̂
t
s � �ts) + SL1(�̂

t
e � �te),

(15)
where SL1(·) denotes the smooth L1 loss function.

At last, our APGN model is trained end-to-end
from scratch using the multi-task loss :

L = �1 · Lclass+�2 · Lreg +�3 · Lalign+�4 · Lb.
(16)

4 Experiments
4.1 Datasets and Evaluation
ActivityNet Captions. It is a large dataset (Kr-
ishna et al., 2017) which contains 20k videos with
100k language descriptions. This dataset pays at-
tention to more complicated human activities in
daily life. Following public split, we use 37,417,
17,505, and 17,031 sentence-video pairs for train-
ing, validation, and testing, respectively.
TACoS. This dataset (Regneri et al., 2013) collects
127 long videos, which are mainly about cooking
scenarios, thus lacking the diversity. We use the
same split as (Gao et al., 2017), which has 10146,
4589 and 4083 sentence-video pairs for training,
validation, and testing, respectively.
Charades-STA. (Gao et al., 2017) consists of
9,848 videos of daily life indoors activities. There
are 12,408 sentence-video pairs for training and
3,720 pairs for testing.
Evaluation Metric. Following (Zhang et al., 2019;
Zeng et al., 2020), we adopt “R@n, IoU=m” as
our evaluation metrics, which is defined as the per-
centage of at least one of top-n selected moments
having IoU larger than m.

4.2 Implementation Details
Following (Zhang et al., 2020b; Zeng et al., 2020),
for video input, we apply a pre-trained C3D net-
work for all three datasets to obtain embedded fea-
tures. We also extract the I3D (Carreira and Zisser-
man, 2017) and VGG (Simonyan and Zisserman,
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Method Feature R@1, R@1, R@5, R@5
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

TGN C3D 28.47 - 43.33 -
CTRL C3D 29.01 10.34 59.17 37.54
QSPN C3D 33.26 13.43 62.39 40.78
CBP C3D 35.76 17.80 65.89 46.20

SCDM C3D 36.75 19.86 64.99 41.53
GDP C3D 39.27 - - -
LGI C3D 41.51 23.07 - -

VSLNet C3D 43.22 26.16 - -
CMIN C3D 43.40 23.88 67.95 50.73
DRN C3D 45.45 24.36 77.97 50.30

2DTAN C3D 44.51 26.54 77.13 61.96

APGN C3D 48.92 28.64 78.87 63.19

Table 1: Performance compared with the state-of-the-
art TSLV models on ActivityNet Captions dataset.

2014) features on Charades-STA. After that, we
apply PCA to reduce their feature dimension to
500 for decreasing the model parameters. We set
the length of video to 200 for ActivityNet Caption
and TACoS, 64 for Charades-STA. For sentence
input, we utilize Glove model to embed each word
to 300 dimension features. The dimension D is set
to 512, d is set to 256. The number of graph layer
is k = 2. We set the batchsize as 64. We train
our model with an Adam optimizer for 100 epochs.
The initial learning rate is set to 0.0001 and it is
divided by 10 when the loss arrives on plateaus.
�1,�2,�3,�4 in the loss function are 0.1, 1, 1, 1
and decided by the weight magnitude.

4.3 Performance Comparison
Compared methods. We compare our proposed
APGN with state-of-the-art methods. We group
them into: (1) top-down methods: TGN (Chen
et al., 2018), CTRL (Gao et al., 2017), QSPN (Xu
et al., 2019), CBP (Wang et al., 2020), SCDM
(Yuan et al., 2019a), CMIN (Zhang et al., 2019),
and 2DTAN (Zhang et al., 2020b). (2) bottom-up
methods: GDP (Chen et al., 2020), LGI (Mun et al.,
2020), VSLNet (Zhang et al., 2020a), DRN (Zeng
et al., 2020).
Quantitative comparison. As shown in Table 1, 2
and 3, our APGN outperforms all the existing meth-
ods by a large margin. Specifically, on ActivityNet
Caption dataset, compared to the previous best top-
down method 2DTAN, we do not rely on large num-
bers of pre-defined and outperform it by 4.41%,
2.10%, 1.74%, 1.23% in all metrics, respectively.
Compared to the previous best bottom-up method
DRN, our APGN brings significant improvement
of 4.28% and 12.89% in the strict “R@1, IoU=0.7”
and “R@5, IoU=0.7” metrics, respectively. Al-

Method Feature R@1, R@1, R@5, R@5,
IoU=0.3 IoU=0.5 IoU=0.3 IoU=0.5

TGN C3D 21.77 18.90 39.06 31.02
CTRL C3D 18.32 13.30 36.69 25.42
QSPN C3D 20.15 15.23 36.72 25.30
CBP C3D 27.31 24.79 43.64 37.40

SCDM C3D 26.11 21.17 40.16 32.18
GDP C3D 24.14 - - -

VSLNet C3D 29.61 24.27 - -
CMIN C3D 24.64 18.05 38.46 27.02
DRN C3D - 23.17 - 33.36

2DTAN C3D 37.29 25.32 57.81 45.04

APGN C3D 40.47 27.86 59.98 47.12

Table 2: Performance compared with the state-of-the-
art TSLV models on TACoS datasets.

Method Feature R@1, R@1, R@5, R@5,
IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7

2DTAN VGG 39.81 23.25 79.33 51.15
APGN VGG 44.23 25.64 89.51 57.87

CTRL C3D 23.63 8.89 58.92 29.57
QSPN C3D 35.60 15.80 79.40 45.40
CBP C3D 36.80 18.87 70.94 50.19
GDP C3D 39.47 18.49 - -

APGN C3D 48.20 29.37 89.05 58.49

DRN I3D 53.09 31.75 89.06 60.05
SCDM I3D 54.44 33.43 74.43 58.08

LGI I3D 59.46 35.48 - -
APGN I3D 62.58 38.86 91.24 62.11

Table 3: Performance compared with the state-of-the-
art TSLV models on Charades-STA datasets.

though TACoS suffers from similar kitchen back-
ground and cooking objects among the videos, it
is worth noting that our APGN still achieves sig-
nificant improvements. On Charades-STA dataset,
for fair comparisons with other methods, we per-
form experiments with same features (i.e., VGG,
C3D, and I3D) reported in their papers. It shows
that our APGN reaches the highest results over all
evaluation metrics.
Comparison on efficiency. We compare the ef-
ficiency of our APGN with previous methods on
a single Nvidia TITAN XP GPU on the TACoS
dataset. As shown in Table 4, it can be observed
that we achieve much faster processing speeds and
relatively less learnable parameters. The reason
mainly owes to two folds: First, APGN gener-
ates proposals without processing overlapped slid-
ing windows as CTRL, and generates less propos-
als than pre-defined methods such as 2DTAN and
CMIN, thus is more efficient; Second, APGN does
not apply many convolution layers like 2DTAN
or multi-level feature fusion modules as DRN for
cross-modal interaction, thus has less parameters.
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ACRN CTRL TGN 2DTAN CMIN DRN APGN

VPS " 0.23 0.45 1.09 1.75 81.29 133.38 146.67

Para. # 128 22 166 363 78 214 91

Table 4: Efficiency comparison in terms of video
per second (VPS) and parameters (Para.), where our
method APGN is much efficient.

Model class. reg. p.e. graph R@1, R@1,
IoU=0.5 IoU=0.7

¨ ⇥ ⇥ ⇥ ⇥ 39.16 19.68

≠ X ⇥ ⇥ ⇥ 40.84 21.30
Æ X X ⇥ ⇥ 42.77 23.52
Ø X X X ⇥ 43.95 24.66
∞ X X ⇥ X 45.81 26.34
± X X X X 48.92 28.64

Table 5: Main ablation studies on ActivityNet Caption
dataset, where ‘class.’ and ‘reg.’ denotes the classifi-
cation and regression modules (Sec. 3.3), ‘p.e’ denotes
the proposal encoder (Sec. 3.4), ‘graph’ denotes the
proposal graph (Sec. 3.4).

4.4 Ablation Study

Main ablation. As shown in Table 5, we verify
the contribution of each part in our model. Start-
ing from the backbone model (Figure 2 (a)), we
first implement the baseline model ¨ by directly
adding the top-down localization head ((Figure 2
(d))). In this model, we adopt pre-defined propos-
als as (Zhang et al., 2019). After adding the binary
classification module in ≠, we can find that classifi-
cation module effectively filters out redundant pre-
defined proposals on large number of background
frames. When further applying adaptive proposal
generation as Æ, the generated proposals perform
better than the pre-defined one ≠. Note that, in
Æ, we directly encode proposal-wise features by
max-pooling, and the classification module also
makes the contribution for filtering out the negative
generated proposals. To capture more fine-grained
semantics for proposal refinement, we introduce
a proposal encoder (model Ø) for discriminative
feature aggregation and a proposal graph (model
∞) for proposal-wise feature interaction. Although
each of them can only bring about 1-3% improve-
ment, the performance increases significantly when
utilizing both of them (model ±).
Investigation on the video/query encoder. To in-
vestigate whether a Transformer (Vaswani et al.,
2017) can boost our APGN, we replace the GRU
in video/query encoder with a simple Transformer
and find some improvements. However, it brings

Components VPS " Para. # R@1, R@1,
IoU=0.5 IoU=0.7

w/. GRU 146.67 91 48.92 28.64
w/. Transformer 129.38 138 50.11 29.43

Table 6: Investigation on video and query encoders on
ActivityNet Caption dataset.

Components Module R@1, R@1,
IoU=0.5 IoU=0.7

binary
classification

w/o balanced loss 46.88 27.13
w/ balanced loss 48.92 28.64

Table 7: Investigation on binary classification on Activ-
ityNet Caption dataset.

Components Module R@1, R@1,
IoU=0.5 IoU=0.7

proposal
encoder

w/o position 46.46 26.69
w/ position 48.92 28.64

w/ mean pooling 47.41 27.86
w/ max pooling 48.92 28.64

Table 8: Investigation on proposal encoder on Activi-
tyNet Caption dataset.

larger model parameters and lower speed.
Effect of unbalanced loss. In the binary classifi-
cation module, we formulate the typical loss func-
tion into a balanced one. As shown in Table 7,
the model w/ balanced loss has great improvement
(2.04%, 1.51%) compared to the w/o variant, which
demonstrates that it is important to consider the un-
balanced distribution in the classification process.
Investigation on proposal encoder. In proposal
encoder, we discard the positional embedding as
w/o position, and also replace the max-pooling with
the mean-pooling as w/ mean pooling. From the
Table 8, we can observe that positional embedding
helps to learn the temporal distance (boost 2.46%,
1.95%), and the max-pooling can aggregate more
discriminative features (boost 1.49%, 0.78%) than
the mean-pooling.
Investigation on proposal graph. In the table 9,
we also give the analysis on the proposal graph.
Compared to w/ edge convolution model (Wang
et al., 2018), w/ edge attention directly utilizes co-
attention (Lu et al., 2016) to compute the similarity
of each node-pair and updates them by a weighted
summation strategy, which performs worse than
the former one.
Number of graph layer. As shown in Table 9, the
model achieves the best result with 2 graph layers,
and the performance will drop when the number of
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Components Module R@1, R@1,
IoU=0.5 IoU=0.7

proposal
graph

w/ edge attention 46.63 26.90
w/ edge convolution 48.92 28.64

graph
layer

1 layer 47.60 27.57
2 layers 48.92 28.64
3 layers 48.83 28.39

Table 9: Investigation on proposal graph on Activi-
tyNet Caption dataset.

Methods Localization R@1, R@1,
Type IoU=0.5 IoU=0.7

SCDM top-down 36.75 19.86
ours 43.86 26.42

CMIN top-down 43.40 23.88
ours 50.33 29.75

LGI bottom-up 41.51 23.07
ours 49.20 30.64

DRN bottom-up 45.45 24.36
ours 53.72 31.01

Table 10: Our proposed adaptive proposal generation
can serve as a “plug-and-play" module for existing
methods. The experiments are conducted on the Ac-
tivityNet Captions dataset.

layers grows up. We give the analysis is that more
graph layers will result in over-smoothing problem
(Li et al., 2018) since the propagation between the
nodes will be accumulated.
Plug-and-play. Our proposed adaptive proposal
generation can serve as a plug-and-play for exist-
ing methods. As shown in Table 10, for top-down
methods, we maintain their feature encoders and
video-query interaction, and add the proposal gen-
eration and proposal consolidation before the lo-
calization heads. For bottom-up methods, we first
replace their regression heads with our proposal
generation process and then add the proposal con-
solidation process. It shows that our proposal gen-
eration and proposal consolidation can bring large
improvement on both two types of methods.

4.5 Qualitative Results

To qualitatively validate the effectiveness of our
APGN, we display two typical examples in Figure
4. It is challenging to accurately localize the seman-
tic “for a second time" in the first video, because
there are two separate segments corresponding to
the same object “girl in the blue dress" performing
the same activity “hops". For comparison, previous
method DRN fails to understand the meaning of
phrase “second time", and ground both two seg-

(a) 

(b)

Ground Truth Foreground-Background Class (34 positive frames)

Predicted Foreground-Background Class  (48 positive frames)

Top 10 positive frames with proposal consolidation

Top 10 positive frames without proposal consolidation

Query: The girl in the blue dress hops for a second time.

Ground Truth
DRN
Ours

| |11.20s 14.42s
| |1.07s 14.88s

| |11.21s 14.39s

Query: The girls riding horses stop for a moment and begin to pose for the camera.

Ground Truth
DRN
Ours

| |42.36s 112.46s
| |57.73s 123.15s

| |43.29s 111.82s

Ground Truth Foreground-Background Class (78 positive frames)

Predicted Foreground-Background Class  (69 positive frames)

Top 10 positive frames with proposal consolidation

Top 10 positive frames without proposal consolidation

Figure 4: Typical examples of the localization results
on the ActivityNet Caption dataset.

ment parts. By contrast, our method has a strong
ability to distinguish these two segments in tempo-
ral dimension thanks to the positional embedding in
the developed proposal graph, thus achieves more
accurate localization results. Furthermore, we also
display the foreground/background class of each
frame in this video. With the help of the proposal
consolidation module, the segment proposals of
“first time" are filtered out, and all the final ranked
top 10 positive frames fall in the target segment.

5 Conclusion

In this paper, we introduce APGN, a new method
for temporal sentence localization in videos. Our
core idea is to adaptively generates discriminative
proposals and achieve both effective and efficient
localization. That is, we first introduce binary clas-
sification before the boundary regression to distin-
guish the background frames, which helps to filter
out the corresponding noisy responses. Then, the
regressed boundaries on the predicted foreground
frames are taken as segment proposals, which de-
creases a large number of poor quality propos-
als compared to the pre-defined ones in top-down
framework. We further learn higher-level feature
interactions between the generated proposals for
refinement via a graph convolutional network. Our
framework achieves state-of-the-art performance
on three challenging benchmarks, demonstrating
the effectiveness of our proposed APGN.
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