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Abstract

Using data from English cloze tests, in which

subjects also self-reported their gender, age,

education, and race, we examine performance

differences of pretrained language models

across demographic groups, defined by these

(protected) attributes. We demonstrate wide

performance gaps across demographic groups

and show that pretrained language models sys-

tematically disfavor young non-white male

speakers; i.e., not only do pretrained language

models learn social biases (stereotypical as-

sociations) – pretrained language models also

learn sociolectal biases, learning to speak more

like some than like others. We show, how-

ever, that, with the exception of BERT mod-

els, larger pretrained language models reduce

some the performance gaps between majority

and minority groups.

1 Introduction

While speakers of English generally understand

each other, our linguistic preferences may differ,

depending on the linguistic varieties we were ex-

posed to, and how susceptible we were to them at

the time (Tagliamonte and D’Arcy, 2009). Linguis-

tic varieties form a multi-dimensional continuum of

dialects and sociolects (McCormack et al., 2011).1

Such linguistic variation presents a real chal-

lenge: The linguistic preferences of English pre-

trained language models may align better with the

linguistic preferences of some groups in society

than with those of others. Group disparities consti-

tute a fairness problem (Sokol et al., 2020): If our

technologies provide end users with new opportuni-

ties, group disparities mean unequal opportunities

across groups. Moreover, if the groups are defined

in terms of protected attributes, our technologies

may discriminate between end users in ways that

violate regulations.

1Dialects are mainly defined in terms of geography; soci-
olects in terms of demographics (Trudgill, 2003).

After waiting three hours, Cal whined and started to ___.

Human

cry (0.50) complain (0.11) leave (0.08)

squirm (0.05) pout (0.05) fidget (0.04)

yell (0.04) pace (0.03) argue (0.02)

Machine

run (0.12) bark (0.08) pace (0.07)

cry (0.07) laugh (0.04) growl (0.04)

eat (0.03) move (0.03) rise (0.03)

Table 1: An example of a cloze (fill-in-the-gap) task

with human and model predictions.

We evaluate the sociolectal biases of a range of

pre-trained English language models. Unlike pre-

vious work on biases in pre-trained language mod-

els, we do not consider representational biases (Sun

et al., 2019), but performance disparities; moreover,

we do not consider downstream performance differ-

ences after fine-tuning for downstream tasks such

as coreference resolution (Rudinger et al., 2018) or

machine translation (Stanovsky et al., 2019), but

performance differences across demographics of

the language models themselves on cloze (fill-in-

the-gap) problems. Since the cloze task is how

these pre-trained language models are trained, we

can evaluate models directly without introducing

biases from probes or downstream tasks.

Note that some sociolinguistic variables are

salient (e.g., this→dis), others are not (Jaeger and

Weatherholtz, 2016). One strategy to evaluate the

robustness of pre-trained language models across

groups would be to identify salient variables and

evaluate language models in the context of those

(Demszky et al., 2021). While such evaluations are

easier to interpret than evaluations of performance

parity, they typically only cover a small set of vari-

ables or lectal features and therefore run the risk

of only scratching the surface of sociolectal varia-

tion. In contrast, we will not focus on salient lectal

features, but on error rates across demographics

(precision at k and mean reciprocal rank).
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Contributions We align the lexical preferences

of 17 commonly used pretrained language mod-

els for English with fill-in-the-gap experimental

data across 16 demographics (defined by four bi-

nary variables for gender, age, race, and education).

The language models systematically disfavor young

non-white male speakers. Other groups that are

poorly aligned with language models include older

white speakers. For ELECTRA and GPT-2, bigger

models aremore fair; while for BERT, DistilBERT,

and ALBERT, bigger models are less fair.

2 Experimental Setup

Dataset We use a publicly available cloze-style

word prediction dataset2 for our experiments. The

dataset consists of fill-in-the-gap (cloze-style) ex-

ample sentences with (always) the last word is re-

moved. Table 1 presents an example sentence. The

sentences are generally narrative and open-ended,

and do not have standard answers. The data collec-

tors asked the annotators to complete the sentence

with what was from their own experience, the most

likely one word continuation. At the same time,

the annotators were asked (on a voluntary basis) to

provide their demographic information (including

age, gender, race, educational background). The

data has been anonymized by replacing unique user

IDs with generated IDs. The dataset consists of

3,085 different sentences, and the average sentence

length is 10. Each sentence is annotated by 104 dif-

ferent annotators on average, providing 35 different

continuations on average. In 40% of the sentences,

the most common continuation is provided by more

than half of the annotators.

The statistics of the annotators is shown in Ta-

ble 2. In total, the dataset includes 307 annotators.

We focus on four protected attributes: age, gender,

education, and race. We binarize each attribute to

obtain roughly balanced groups, binning the anno-

tators in a total of 16 different demographic groups.

For brevity, we use emojis to represent the 16

groups. Note that for each attribute, the two group

sizes never sum to 307; this is because a few anno-

tators did not report this information. The number

of annotators in each of the 16 groups can be found

in Table 3.

Pre-processing Each annotator was provided

with about 1049 sentences on average. Some ex-

amples were left unanswered. The data collectors

2https://github.com/jpeelle/
sentence-prediction

Attribute Group1 Count emojis Group2 Count emojis

Age(yrs) <38 147 >=38 159

Gender Female 165 Male 138

Education(yrs) <16 151 >=16 153

Ethnicity White 256 Non-White 47

Total 16 Groups

Table 2: The four protected annotator attributes. The

split points (38 and 16) of numerical attributes were cho-

sen for approximately balanced binarization.

manually corrected for typos and agreement. We

ignore multi-word completions.

Pre-trained language models The probed mod-

els 3 are listed here:

1. BERT (Devlin et al., 2019) language models are trained
with a masked language modeling and next sentence
prediction objective. The models probed cover differ-
ent sizes, cased or uncased, English or multilingual:
bert-base-cased, bert-base-uncased, bert-large-cased,
bert-large-uncased, bert-large-uncased and bert-base-
multilingual-cased.

2. The DistilBERT (Sanh et al., 2019) (distilbert-base-
cased) model is distilled from original BERT model
by adopting knowledge distillation. The model is 40%
smaller but 60% faster than a BERT model.

3. ALBERT (Lan et al., 2020) also reduces the number
of parameters in the BERT architecture, by using em-
bedding matrix factorization and cross-layer parameter
sharing. We use albert-base-v2, albert-large-v2 and
albert-xxlarge-v2 below.

4. Liu et al. (2019) found that the BERT model is under-
trained. They improved the pre-training by removing
next sentence prediction task and obtained better re-
sults by adjusting the parameters. The model, called
RoBERTa, achieves better performance in downstream
tasks. We used two different sizes of RoBERTa model,
which are roberta-base and roberta-large.

5. ELECTRA (Clark et al., 2020) uses a jointly trained
discriminator network to distinguish the masked tokens
from candidates suggested by the generator, avoiding
costly inference over the full vocabulary. We use the
generator models, google/electra-small-generator and
google/electra-large-generator, which are suitable for
the cloze-style word prediction.

6. Finally, we also include instances of the unidirectional
architecture proposed in (Radford et al., 2019) (GPT).
Since GPT-3 (Brown et al., 2020) is not currently open
source, we probe gpt2, gpt2-medium, gpt2-large and
gpt2-xl models below.

Metrics We follow Shin et al. (2020) in using

precision (P@1) and mean reciprocal rank (MRR)

3Model names listed in this paper are consistent with the

name in Transformers packages (https://github.com/
huggingface/transformers). All models can be down-
loaded at https://huggingface.co/models

https://github.com/jpeelle/sentence-prediction
https://github.com/jpeelle/sentence-prediction
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://huggingface.co/models
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to evaluate the extent to which pretrained lan-

guage models are aligned with annotator prefer-

ences. Given a incomplete sentence v1 . . . vn__,
and W = [w1, w2, · · · , wr] the r-most frequent
continuations of v1 . . . vn (within a group of hu-

man annotators). Our probed language model

ranks candidate words by their model likelihood

C = [c1, c2, · · · , cp] . The P@1 of the language

model is then defined as:

P@1 = 1[c1 ∈ W ] (1)

where 1[·] is the indicator function, and MRR, as:

MRR = max
i∈[1,p]

1

RankWi
(2)

where RankWi is the rank of ci inW and equals∞
if ci is not inW . We report average P@1 and MRR

scores.

n avg max min range std

2 75.4 80.0 70.8 9.2 4.6

29 68.6 80.0 54.0 26.0 5.9

35 67.5 80.0 50.0 30.0 6.3

29 67.4 80.0 50.6 29.4 6.6

51 66.7 82.0 52.0 30.0 6.4

11 66.5 74.0 58.0 16.0 4.7

20 66.0 81.0 34.3 46.7 9.9

28 65.7 76.4 51.4 25.0 5.1

4 65.6 68.3 60.0 8.3 3.3

4 64.9 80.0 50.9 29.1 10.7

41 64.7 75.6 40.0 35.6 8.3

19 64.4 75.0 45.7 29.3 7.1

10 62.0 69.2 55.9 13.3 3.8

9 61.4 75.3 37.1 38.2 11.1

4 59.4 68.1 42.1 26.1 10.3

3 58.1 69.3 37.0 32.3 14.9

Table 3: Statistics of P@1 scores in different demo-

graphic groups. All floating point numbers are ex-

pressed as percentages.

3 Q1: Outlier demographics?

Before comparing pretrained language models with

human annotations, we first consider how continu-

ations differ across demographic groups. We com-

pare demographic groups by computing the average

P@1 scores for individuals in each group relative to

the overall majority vote (across all groups). Note

that we can also compute the variance within groups

by computing the P@1 scores for each annotator.

Table 3 shows group-level P@1 scores for each

demographic group (avg) of n annotators, as well

as the variance across annotators in each group:

max is the highest average annotator P@1 within

the group, and min the lowest. We also report the

range (max-min) and the standard deviation (std).

The gap in group P@1 values is about 17%, and

we observe several outlier groups: less-educated

young non-white male annotators ( ), educated

non-white annotators ( , , and ).

model max min avg range std

bert-base-cased 50.5/29.2 45.7/24.3 47.7/26.8 4.9/4.9 1.3/1.2

bert-base-uncased 52.1/32.2 47.2/25.9 49.3/27.6 4.9/6.3 1.2/1.7

bert-base-multilingual
-cased 20.7/9.0 14.5/6.0 15.9/7.2 6.2/3.0 1.4/0.8

bert-large-cased 58.2/34.2 52.5/30.0 54.4/32.0 5.7/4.2 1.3/1.1

bert-large-uncased 57.6/35.6 51.5/29.6 54.6/32.1 6.1/6.0 1.4/1.4

distilbert-base
-uncased 45.5/24.1 39.6/20.9 42.5/22.1 5.9/3.2 1.4/0.8

albert-base-v2 36.3/17.7 31.7/14.5 33.5/15.6 4.6/3.2 1.1/0.9

albert-large-v2 49.7/27.8 43.8/22.8 45.6/24.2 6.0/5.1 1.6/1.3

albert-xxlarge-v2 56.7/32.2 50.2/28.5 52.8/30.1 6.5/3.7 1.5/1.0

roberta-base 59.2/35.3 54.3/31.8 57.3/33.6 4.9/3.5 1.2/1.0

roberta-large 65.2/43.3 58.4/36.3 61.9/38.0 6.7/7.0 1.5/1.6

google/electra-
small-generator 41.7/23.2 31.6/15.8 33.9/17.1 10.0/7.5 2.3/1.8

google/electra-
large-generator 54.2/30.2 45.2/23.6 47.3/25.6 9.0/6.6 2.0/1.5

gpt2 42.4/23.0 37.6/19.3 39.9/21.0 4.9/3.7 1.2/1.0

gpt2-medium 51.3/28.6 46.4/24.8 48.4/26.6 4.9/3.8 1.2/1.0

gpt2-large 52.2/29.8 47.3/26.4 50.3/28.0 4.8/3.4 1.4/0.9

gpt2-xl 54.3/31.5 50.6/28.3 53.1/29.5 3.6/3.2 0.9/0.8

Table 4: Statistics of “P@1/MRR” scores of each pre-

trained language models. Similar types of models are

clustered together by horizontal lines, and optimums in

each cluster are shown in bold.

4 Q2: Unfair language models?

We evaluate the pretrained language models on

the cloze examples and obtain the logits vectors of

the last layers corresponding to the masked tokens

(gaps), perform softmax normalization to obtain

the top-10 most likely candidate words and com-

pute the fairness of the pretrained language models

based on these predictions. Our fairness metric is

an instance of multi-group ε-fairness (Donini et al.,
2018), sometimes referred to as min-max Rawl-

sian fairness (Zafar et al., 2017), and says a model

is ε-fair if the risk across any two groups is ap-

proximately the same. To this end, we compare

the pretrained language models’ range (range) of

P@1 and MRR scores across groups. For each pre-

trained language model, we compute the maximum

performance difference across any two groups (ε or
range). If a language modelm is ε-fair, for some
value of ε, and no other language models are ε-fair,
m is the most fair language model in our batch.4

Table 4 lists the performance of our pretrained

language models across the 16 groups. We see

4Alternatively, we can think of the language model with
the lowest divergence across groups as the most fair language
model; such a definition differs from standard Rawlsian fair-
ness, but has been advocated in Kamishima et al. (2012); Ghas-
sami et al. (2018).
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Models Demographics Alignment

bert-base-cased
bert-base-uncased
bert-base-multilingual-cased
bert-large-cased
bert-large-uncased
distilbert-base-uncased
albert-base-v2
albert-large-v2
albert-xxlarge-v2
roberta-base
roberta-large
google/electra-large-generator
google/electra-small-generator
gpt2
gpt2-medium
gpt2-large
gpt2-xl

Group

Mean Rank 3.1 3.4 4.0 6.1 6.1 8.1 8.1 9.2 9.8 9.9 10.3 10.3 10.8 11.1 12.0 13.8

Table 5: The alignment between different pre-trained models and demographic groups.

that roberta-large has the best overall performance
across groups (across both P@1 and MRR). Using

P@1 as our performance metric, gpt2-xl is most
fair; using MRR, bert-base-multilingual-cased is
most fair.5 We make the following general ob-

servations: Larger models perform better, but are

not necessarily more fair. For ELECTRA and

GPT-2, fairness increases with model size. For

BERT, AlBERT, and RoBERTa, the opposite is

true: Group disparity increases with model size.

Generally, though, the ELECTRA models are sig-

nificantly more sensitive to protected attributes.

google/electra-small-generator is, across both met-
rics, the least fair model in our batch.

5 Q3: Demographics of models?

Finally, we explore how specific pretrained lan-

guage models align with group-level preferences.

In other words, are different pretrained language

models aligned with different demographics, or are

they all biased in similar ways? Table 5 illustrates

the alignment between pre-trained language models

and demographic groups, and its lower part shows

the mean rank of each group across all models.

The correlations of different models’ rankings are

shown as a heat map in Figure 1 in the Appendix.

We make the following observation: The language

models systematically disfavor young non-white

male speakers. Other groups that are poorly aligned

with language models include older white speakers.

5Both models remain the most fair under the standard de-
viation definition of fairness.

google/electra-small-generator, which was, across
both metrics, the least fair model in our batch, fa-

vors . is generally the demographic that our

pretrained language models align best with. This is

also a demographic known to contribute the most to

crowdsourced resources such as Wikipedia and so-

cial media (Hargittai and Shaw, 2015; Barthel et al.,

2016), which pretrained language models are often

trained on. Interestingly, the second most aligned

demographic is . The twomost fair models favor

(GPT-2) and (mBERT).

6 Conclusion

We compared pretrained languagemodels to human

cloze tests, and showed that models align much bet-

ter with some groups of participants than others.

For ELECTRA and GPT-2, larger models are more

fair; for BERT, ALBERT, and RoBERTa, the oppo-

site is true. ELECTRA models are least fair. Gen-

erally, models disfavor young non-white men the

most. Previous work has explored social biases in

how pretrained language models represent concepts

(May et al., 2019; Kurita et al., 2019), but this is, to

the best of our knowledge, the first work on whose

language pretrained language models reflect, i.e.,

what sociolects models align best with. Work on

personalized language modeling (Garimella et al.,

2017; Welch et al., 2020) is loosely related, e.g.,

Stoop and van den Bosch (2014) present interesting

to work to make word prediction sociolect-aware,

showing significant keystroke savings by condition-

ing on sociolect.
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Ethics Statement

Our paper considers the sensitivity of pretrained lan-

guage models to protected attributes. The data used

in our experiments was collected using Amazon

Mechanical Turk by researchers in psycholinguis-

tics. The protected attributes are self-reported on a

voluntary basis, and annotators were payed equally

regardless of whether they reported this informa-

tion. We find that pretrained language models are

sensitive to protected attributes and hence biased

toward some groups. For practical reasons, we use

emojis as a short-hand to represent these groups.

We consulted with two experts on emojis and cul-

tural identity to make sure our use of emojis did not

reinforce stereotypes, and they both assessed they

would not.
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Appendix

A Comparison of Models

Table 6 shows the detailed information of 17 models used in this paper, including the name of the model,

the number of parameters, the size of vocabulary, the tokenizer used for segmentation, and the pretraining

task adopted. For more detail, we refer to the corresponding paper.

Name Model #param #vocab Tokenizer Pretraining Task

bert-base-cased

BERT

(Devlin et al., 2019)

108M 28,996

WordPiece

Masked Language

Modeling (MLM)

+

Next Sentence

Prediction (NSP)

bert-base-uncased 110M 30,522

bert-base-multilingual-cased 178M 119,547

bert-large-cased 334M 28,996

bert-large-uncased 335M 30,522

distilbert-base-uncased DistilBERT

(Sanh et al., 2019)
66M 30,522 WordPiece MLM+NSP+Distillation

albert-base-v2
ALBERT

(Lan et al., 2020)

11M 30,000
Sentence-

Piece
MLM+NSPalbert-large-v2 16M 30,000

albert-xxlarge-v2 206M 30,000

roberta-base RoBERTa

(Liu et al., 2019)

124M 50,265
BPE MLM

roberta-large 355M 50,265

google/electra-small-generator ELECTRA

(Clark et al., 2020)

14M 30,522
WordPiece

MLM +

Token Discriminationgoogle/electra-large-generator 51M 30,522

gpt2

GPT-2

(Radford et al., 2019)

124M 50,257
Byte-Pair

Encoding

(BPE)

Unidirectional

Language

Modeling

gpt2-medium 355M 50,257

gpt2-large 774M 50,257

gpt2-xl 1,558M 50,257

Table 6: The comparison of different models.

B Rank Correlations of Models

Figure 1 shows the correlation of the alignment rankings of different models. The correlation is obtained

by calculating Kendall’s Tau correlation coefficients of the ranking sequences in Table 5 pairwise, and

displayed in a heat map. The blue-lined squares box the correlation of the same type of models. Blocks in

red means that ranks of two models are highly related. On the contrary, blocks in blue means they are less

related or even negatively correlated. It can be seen that the same type of models in the blue box usually

have higher similarity. In addition, albert-large-v2 and gpt2 models have relatively high similarities with
other models, while the gpt2-large and roberta-base models are less correlated to other models.
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Figure 1: The heat-map of Kendall’s Tau correlation coefficients between different pre-trained language models.

The same type of models are in blue squares


