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Abstract

Incorporating knowledge bases (KB) into end-
to-end task-oriented dialogue systems is chal-
lenging, since it requires to properly represent
the entity of KB, which is associated with its
KB context and dialogue context. The existing
works represent the entity with only perceiv-
ing a part of its KB context, which can lead
to the less effective representation due to the
information loss, and adversely favor KB rea-
soning and response generation. To tackle this
issue, we explore to fully contextualize the
entity representation by dynamically perceiv-
ing all the relevant entities and dialogue his-
tory. To achieve this, we propose a COntext-
aware Memory Enhanced Transformer frame-
work (COMET), which treats the KB as a se-
quence and leverages a novel Memory Mask
to enforce the entity to only focus on its rele-
vant entities and dialogue history, while avoid-
ing the distraction from the irrelevant entities.
Through extensive experiments, we show that
our COMET framework can achieve superior
performance over the state of the arts.

1 Introduction

Task-oriented dialogue systems aim to achieve spe-
cific goals such as hotel booking and restaurant
reservation. The traditional pipelines (Young et al.,
2013; Wen et al., 2017) consist of natural language
understanding, dialogue management, and natural
language generation modules. However, designing
these modules often requires additional annotations
such as dialogue states. To simplify this procedure,
the end-to-end dialogue systems (Eric and Man-
ning, 2017) are proposed to incorporate the KB
(normally relational databases) into the learning
framework, where the KB and dialogue history can
be directly modeled for response generation, with-
out the explicit dialogue state or dialogue action.

∗Corresponding author

Poi Poi type Traffic Address Distance

Stanford Express Care hospital moderate 214 El Camino Real 2 miles

Tom’s house friend’s house no 580 Van Ness Ave 6 miles

Philz coffee or tea place no 583 Alester Ave 4 miles

5672 Barringer Street certain address no 5672 Barringer Street 2 miles

User Where does my friend live ?

System Tom’s house is 6 miles away at 580 Van Ness Ave .

User Is that the fastest route ?

System I’ll send the route with no traffic on your screen , drive carefully !

Table 1: An example in SMD dataset (Eric et al., 2017).
The top is the entities in KB and the bottom is a two-
turn dialogue between the user and system.

An example of the end-to-end dialogue systems
is shown in Tab. 1. When generating the second
response about the “traffic info”: (1) the targeted
entity “no traffic” is associated with its same-row
entities (KB context) like “Tome’s house”, “friend’s
house” and “6 miles”. These entities can help with
enriching the information of its representation and
modeling the structure of KB. (2) Also, the entity
is related to the dialogue history (dialogue context),
which provides clues about the goal-related row
(like “Tom’s house” and “580 Van Ness Ave” in the
first response). These clues can be leveraged to
further enhance the corresponding representations
and activate the targeted row, which benefits the
retrieval of “no traffic”. Therefore, how to fully
contextualize the entity with its KB and dialogue
contexts, is the key point of end-to-end dialogue
systems (Madotto et al., 2018; Wu et al., 2019; Qin
et al., 2020), where the full-context enhanced entity
representation can make the reasoning over KB and
the response generation much easier.

However, the existing works can only contextual-
ize the entity with perceiving parts of its KB context
and ignoring the dialogue context: (1) (Madotto
et al., 2018; Wu et al., 2019; Qin et al., 2020) rep-
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Figure 1: Four ways to represent the KB, where ei,j
means the entity representation for the j-th entity of
the i-th row; Ri means the row representation of the i-
th row; e·,j means the entities shared between different
row, like “no traffic” in Tab. 1; D means the dialogue
context. Note that the existing three representations
(a-c) only consider parts of the KB context and ignore
the dialogue context, whereas our method (d) can fully
contextualize the entity with both of them.

resent an entity as a triplet (cf. Fig. 1(a)), i.e.,
(Subject, Relation, Object). However, breaking one
row into several triplets can only model the relation
between two entities, whereas the information from
other same-row entities and dialogue history are
ignored. (2) (Gangi Reddy et al., 2019; Qin et al.,
2019) represent KB in a hierarchical way, i.e., the
row and entity-level representation (cf. Fig. 1(b)).
This representation can only partially eliminate this
issue at the row level. However, at the entity level,
the entity can only perceive the information of it-
self, which is isolated with other KB and dialogue
contexts. (3) (Yang et al., 2020) converts KB to a
graph (cf. Fig. 1(c)). However, they fails to answer
what is the optimal graph structure for KB. That
indicates their graph structure may need manual
design1. Also, the dialogue context is not encoded
into the entity representation, which can also lead
to the suboptimal entity representation. To sum up,
these existing methods can not fully contextualize
the entity, which leads to vulnerable KB reasoning
and response generation.

In this work, we propose COntext-aware Mem-
ory Enhanced Transformer (COMET), which pro-
vides a unified solution to fully contextualize the
entity with the awareness of both the KB and di-
alogue contexts (shown in Fig. 1(d)). The key
idea of COMET is that: a Memory-Masked En-

1For instance, on the SMD dataset, they only activate the
edges between the primary key (“poi”) and other keys(e.g.,
“address”) in the Navigation domain, but assign a fully-
connected graph to the Schedule domain.

coder is used to encode the entity sequence of KB,
along with the information of dialogue history. The
designed Memory Mask is utilized to ensure the
entity can only interact with its same-row entities
and the information in dialogue history, whereas
the distractions from other rows are prohibited.

More specifically, (1) for the KB context, we rep-
resent the entities in the same row as a sequence.
Then, a Transformer Encoder (Vaswani et al., 2017)
is leveraged to encode them, where the same-row
entities can interact with each other. Furthermore,
to retain the structure of KB and avoid the distrac-
tions from the entities in different rows, we design
a Memory Mask (shown in Fig. 3) and incorporate
it into the encoder, which only allows the interac-
tions between the same-row entities. (2) For the
dialogue context, we create a Summary Representa-
tion (Sum. Rep) to summarize the dialogue history,
which is input into the encoder to interact with the
entity representations (gray block in Fig. 2). We
also utilize the Memory Mask to make the Sum.
Rep overlook all of the entities for better entity rep-
resentations, which will serve as the context-aware
memory for further response generation.

By doing so, we essentially extend the entity of
KB to (N + 1)-tuple representation, where N is
the number of entities in one row and “1” is for the
Sum. Rep of the dialogue history. By leveraging
the KB and dialogue contexts, our method can ef-
fectively model the information existing in KB and
activate the goal-related entities, which benefits
the entity retrieval and response generation. Please
note that the function of fully contextualizing entity
is unified by the designed Memory Mask scheme,
which is the key of our work.

We conduct extensive experiments on two public
benchmarks, i.e., SMD (Eric et al., 2017; Madotto
et al., 2018) and Multi-WOZ 2.1 (Budzianowski
et al., 2018; Yang et al., 2020). The experimental
results demonstrate significant performance gains
over the state of the arts. It validates that contextual-
izing KB with Transformer benefits entity retrieval
and response generation.

In summary, our contributions are as follows:

• To the best of our knowledge, we are the first
to fully contextualize the entity representation
with both the KB and dialogue contexts, for
end-to-end task-oriented dialogue systems.

• We propose Context-aware Memory En-
hanced Transformer, which incorporates a de-
signed Memory Mask to represent entity with
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Figure 2: Overview of COMET. The gray block in the top left means Sum. Rep of dialogue history, which is used
as the input for the Memory Generation. © means concatenation. The detailed construction of the Memory Mask
can be found in Fig. 3.

awareness of both the relevant entities and
dialogue history.

• Extensive experiments demonstrate that our
method gives a state-of-the-art performance.

2 Methodology

In this section, we first introduce the general work-
flow for this task. Then, we elaborate on each part
of COMET, i.e., the Dialogue History Encoder,
Context-aware Memory Generation, and Response
Generation Decoder (as depicted in Fig. 2). Finally,
the objective function will be introduced.

2.1 General Workflow

Given a dialogue history with k turns, which is
denoted as H = {u1, s1, u2, s2, ..., uk} (ui and si
denote the i-th turn utterances between the user
and the system), the goal of dialogue systems is
to generate the k-th system response sk with an
external KB B = {[b11, ..., b1c], ..., [br1, ..., brc]},
which has r rows and c columns. Formally, the
procedure mentioned above is defined as:

p(sk|H,B) =
n∏

i=1

p(sk,t|sk,1, ..., sk,t−1,H,B),

where we first derive the dialogue history represen-
tation (Section 2.2) and generate the Context-aware
Memory, a.k.a., contextualized entity representa-
tion (Section 2.3), where these two parts will be
used to generate the response sk (Section 2.4).

2.2 Dialogue History Encoder

We first transform H into the word-by-word
form with a special token [SUM]: Ĥ =
{x1, x2, ..., xn}, x1 = [SUM], which is used to
globally aggregate information fromH.

Then, the sequence Ĥ is encoded by a standard
Transformer Encoder and generate the dialogue his-
tory representation Henc

N , where Henc
N,1 is denoted as

the Summary Representation (Sum. Rep) of the di-
alogue history.2 It will be used to make the memory
aware of the dialogue context.

2.3 Context-aware Memory Generation

In this subsection, we describe how to “fully con-
textualize KB”. That is, the Memory Mask is lever-
aged to ensure the entities of KB with the aware-
ness of all of its related entities and dialogue history,
which is the key contribution of our method.

2.3.1 Memory Generation
Different from existing works which fail to contex-
tualize all the useful context information for the
entity representation, we treat KB as a sequence,
along with Sum. Rep. Then, a Transformer En-
coder with the Memory Mask is utilized to model
it, which can dynamically generate the entity rep-
resentation with the awareness of its all favorable
contexts, i.e., the same-row entities and dialogue
history, while blocking the distraction from the

2This module is as same as the standard Transformer En-
coder, please refer to (Vaswani et al., 2017) for more details.
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irrelevant entities. The procedure of memory gen-
eration is as follows.

Firstly, the entities in the KB B is flat-
ten as a memory sequence, i.e., M =
[b11, ..., b1c, ..., br1, ..., brc] = [m1,m2, ...,m|M|],
where the memory entity mi means an entity of KB
in the k-th row. By doing so, the Memory-Masked
Transformer Encoder can interact the same-row en-
tities with each other while retaining the structure
information of KB.3

Then, M will be transformed into the entity
embeddings, i.e., E = [em1 , ..., em|M|], where emi
corresponds to mi inM and it is the sum of the
word embedding ui and the type embedding ti, i.e.,
emi = ui + ti. Note that, the entity types are the
corresponding column names, e.g., “poi_type” in
Table 1. For the entities which have more than
one token, we simply treat them as one word, e.g.,
“Stanford Exp”→ “Stanford_Exp”.

Next, the entity embeddings are concatenated
with the Sum. Rep from the Dialogue History En-
coder, i.e. E0 = [Henc

N,1;E]. The purpose of intro-
ducing Henc

N,1 is that it passes the information from
the dialogue history and further enhances the entity
representation with the dialogue context.

Finally, E0 and the Memory Mask Mmem are
used as the input of the Transformer Encoder
(tf_enc(·)) to generate the context-aware memory
(a.k.a, contextualized entity representation):

El = tf_enc(El−1,M
mem), l ∈ [1,K],

where K is the total number of Transformer En-
coder layers. EK ∈ R(|M|+1)×dm is the generated
memory, which is queried when generating the re-
sponse for entity retrieval.

2.3.2 Memory Mask Construction

To highlight, we design a special Memory Mask
scheme to take ALL the contexts grounded by the
entity into account, where the Memory Mask en-
sures that the entity can only attend to its context
part, which is the key contribution of this work.
This is in contrast to the standard Transformer En-
coder, where each entity can attend to all of the
other entities. The rationale of our design is that by
doing so, we can avoid the noisy distraction of the
non-context part.

3When the memory sequence is long, some existing meth-
ods like the linear attention (Kitaev et al., 2020) can be used
to tackle the issue of O(N2) complexity of Self Attention.

Formally, Mmem ∈ R(|M|+1)×(|M|+1) is de-
fined as:

Mmem
i,j =


1, ifMi−1,Mj−1 ∈ bk,

1, if i or j = 1,

−∞, else.

A detailed illustration of the Memory Mask con-
struction is shown in Fig. 3. With this designed
Memory Mask, a masked attention mechanism is
leveraged to make the entity only attend the entities
within the same row and the Sum. Rep.

C1 C2 C3 C4 C5

e11 e12 e13 e14 e15

e21 e22 e23 e24 e25

Knowledge Base

Memory Mask Construction
(Subsection 2.3.2)

[SUM]

e11
e12
e13
e14
e15
e21
e22
e23
e24
e25

[SUM]e11 e12 e13 e14 e15 e21 e22 e23 e24 e25

Mask Construction

Figure 3: The Construction of Memory Mask. Ci

means the column name (e.g., “Poi”). eij means the
j-th entity of i-th row. [SUM] means the Sum. Rep.
Only two rows of KB are shown for simplicity.

2.4 Response Generation Decoder
Given the dialogue history representation Henc

N and
generated memory EK , the decoder will use them
to generate the response for a specific query. In
COMET, we use a modified Transformer Decoder,
which has two cross attention modules to model the
information in Henc

N and EK , respectively. Then,
a gate mechanism is leveraged to adaptively fuse
Henc

N and EK for the decoder, where the response
generation is tightly anchored by them.

Following (Wu et al., 2019; Qin et al., 2020;
Yang et al., 2020), we first generate a sketch re-
sponse that replaces the exact slot values with
sketch tags.4 Then, the decoder links the entities in

4For instance, “Tom’s house is 6 miles away at 580 Van
Ness Ave ." → “@poi is @distance away at @address.".
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the memory to their corresponding slots.

2.4.1 Sketch Response Generation

For the k-th turn generating sketch response Y =
[y1, ...yt−1], it is converted to the word representa-
tion Hdec

0 = [wd
1 , ..., w

d
t−1]. w

d
i = vi + pi, where

vi and pi means the word embedding and absolute
position embedding of i-th token in Y .

Afterward, N -stacked decoder layers are applied
to decode the next token with the inputs of Hdec

0 ,
EK and Henc

N . The process in one decoder layer
can be expressed as:

Hd−d
l = MHA(Hdec

l−1, H
dec
l−1, H

dec
l−1,M

dec),

Hd−e
l = MHA(Hd−d

l , Henc
N , Henc

N ),

Hd−m
l = MHA(Hd−d

l , EK , EK),

g = sigmoid(FC(Hd−m
l )),

Hagg
l = g �Hd−e

l + (1− g)�Hd−m
l ,

Hdec
l = FFN(Hagg

l ), l ∈ [1, N ],

where the input {Q,K, V,M} of the Multi-Head
Attention MHA(Q,K, V,M) means the query,
key, value, and optional attention mask. FFN(·)
means the Feed-Forward Networks. Mdec is the
decoder mask, so as to make the decoded word
can only attend to the previous words. FC(·) is a
fully-connected layer to generate the gating signals,
which maps a dm-dimension feature to a scalar. N
is the number of the total decoder layers.

After obtaining the final Hdec
N , the posterior dis-

tribution for the t-th token, pvt ∈ R|V | (|V | denotes
the vocabulary size), is calculated by:

pvt = softmax(Hdec
N,t−1Wv + bv).

2.4.2 Entity Linking

After the sketch response generation, we replace
the sketch tags with the entities in the context-
aware memory. We denote the representation from
the decoder at the t-th time step, i.e., the t-th token,
as Hdec

N,t, and represent the time steps that need to
replace sketch tags with entities as T . The proba-
bility distribution over all possible linked entities
can then be calculated by

pst = softmax(Hdec
N,tE

T
K), ∀t ∈ T

where EK means the final generated memory.

2.5 Objective Function

For the training process of COMET, we use the
the cross-entropy loss to supervise the response
generation and entity linking5.

Moreover, we propose an additional regulariza-
tion term to further regularize pst . The regulariza-
tion is based on the prior knowledge that for a given
response, only a small subset of entities should be
linked. Formally, we construct the following entity
linking probability matrix Ps = [pst1 , p

s
t2 , ..., p

s
t|T |

]
and minimize its L2,1-norm (Nie et al., 2010):

Lr =

|M|∑
i=1

√∑
t∈T

(pst,i)
2 ,

where pst,i denotes the i-th dimension of pst . This
regularization term can encourage the network to
select a small subset of entities to generate the
response. The same idea has been investigated in
(Nie et al., 2010) for multi-class feature selection.

Finally, COMET is trained by jointly minimizing
the combination of the above three losses.

3 Experiments

3.1 Datasets

Two public multi-turn task-oriented dialogue
datasets are used to evaluate our model, i.e.,
SMD6 (Eric et al., 2017) and Multi-WOZ 2.17

(Budzianowski et al., 2018). Note that, for Multi-
WOZ 2.1, to accommodate end-to-end settings, we
use the revised version released by (Yang et al.,
2020), which equips the corresponding KB to every
dialogue. We follow the same partition as (Madotto
et al., 2018) on SMD and (Yang et al., 2020) on
Multi-WOZ 2.1.

3.2 Experimental Settings

The dimension of embeddings and hidden vectors
are all set to 512. The number of layers (N ) in
Dialogue History Encoder and Response Genera-
tion Decoder is set to 6. The number of layers for
Context-aware Memory Generation (K) is set to 3.
The number of heads in each part of COMET is set
to 8. A greedy strategy is used without beam-search
during decoding. The Adam optimizer (Kingma

5The label construction procedure of the entity linking
module can be found in Appendix A.1.

6https://github.com/jasonwu0731/GLMP/
tree/master/data/KVR

7https://github.com/shiquanyang/
GraphDialog/tree/master/data/MULTIWOZ2.1

https://github.com/jasonwu0731/GLMP/tree/master/data/KVR
https://github.com/jasonwu0731/GLMP/tree/master/data/KVR
https://github.com/shiquanyang/GraphDialog/tree/master/data/MULTIWOZ2.1
https://github.com/shiquanyang/GraphDialog/tree/master/data/MULTIWOZ2.1
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SMD Multi-WOZ2.1
Model BLEU F1 F1-Sch. F1-Wea. F1-Nav. BLEU F1 F1-Res. F1-Att. F1-Hot. F1-Tra.

Mem2Seq 12.6 33.4 49.3 32.8 20.0 4.1 3.2 2.9 2.1 4.5 1.5
KB-Transformer 13.9 37.1 51.2 48.2 23.3 - - - - - -

KB-Retriever 13.9 53.7 55.6 52.2 54.5 - - - - - -
GLMP 13.9 60.7 72.9 56.5 54.6 4.3 6.7 11.4 9.4 3.9 3.5
DF-Net 14.4 62.7 73.1 57.6 57.9 - - - - - -

GraphDialog 13.7 60.7 72.8 55.2 54.2 6.2 11.3 16.0 14.1 10.8 4.4
COMET (Ours) 17.3 63.6 77.6 58.3 56.0 8.3 18.6 27.5 17.9 15.2 9.8

Table 2: BLEU and Entity F1 comparison of COMET with other counterparts. The best results are in bold font
and the second-best results are underlined. The results on the SMD and Multi-WOZ 2.1 datasets are adopted from
(Qin et al., 2020) and (Yang et al., 2020), respectively.

and Ba, 2014) is used to train our model from
scratch with a learning rate of 1e−4. More details
about the hyper-parameter settings can be found in
Appendix A.2.

3.3 Baselines

We compare COMET with the following methods:

• Mem2Seq (Triplet) (Madotto et al., 2018):
Mem2Seq incorporates the multi-hop atten-
tion mechanism in memory networks into the
pointer networks.

• KB-Transformer (Triplet) (E. et al., 2019):
KB-Transformer combines a Multi-Head Key-
Value memory network with Transformer.

• KB-Retriever (Row-entity) (Qin et al., 2019):
KB-retriever improves the entity-consistency
by first selecting the target row and then pick-
ing the relevant column in this row.

• GLMP (Triplet) (Wu et al., 2019): GLMP
uses a global memory encoder and a local
memory decoder to incorporate the external
knowledge into the learning framework.

• DF-Net (Triplet) (Qin et al., 2020): DF-Net
applies a dynamic fusion mechanism to trans-
fer knowledge in different domains.

• GraphDialog (Graph) (Yang et al., 2020):
GraphDialog exploits the graph structural in-
formation in KB and in the dependency pars-
ing tree of the dialogue.

3.4 Results

Following the existing works (Qin et al., 2020;
Yang et al., 2020), we use the BLEU and Entity
F1 metrics to evaluate model performance. The
results are shown in Tab. 2.

It is observed that: COMET achieves the best
performance over both datasets, which indicates
that our COMET framework can better leverage

the information in the dialogue history and external
KB, to generate more fluent responses with more
accurate linked entities. Specifically, for the BLEU
score, it outperforms the previous methods by 2.9%
on the SMD dataset and 2.1% on the Multi-WOZ
2.1 dataset, at least. Also, COMET achieves the
highest Entity F1 score on both datasets. That is,
the improvements of 0.9% and 7.3% are attained on
the SMD and Multi-WOZ 2.1 datasets, respectively.
In each domain of the two datasets, improvement or
competitive performance can be clearly observed.
The results indicate the superior of our COMET
framework.

To highlight, KB-Transformer (E. et al., 2019)
also leverages Transformer, but our COMET out-
performs it by a large margin. On the SMD dataset,
the BLEU score of COMET is higher than that
of KB-Transformer by 3.4%. The improvement
introduced by COMET on Entity F1 score is as
significant as 26.5%. This shows naively introduc-
ing Transformer to the end-to-end dialogue system
will not necessarily lead to higher performance. A
careful design of the whole dialogue system, such
as our proposed one, plays a vital role.

3.5 Ablation Study

In this subsection, we first investigate the effects of
the different components, i.e., the Memory Mask,
Sum. Rep, gate mechanism, and L2,1-norm reg-
ularization (Tab. 3). Then, we design careful ex-
periments to further demonstrate the effect of the
Memory Mask, which is the key contribution of this
work: (1) we replace the context-aware memory
of COMET with the existing three representations
of KB, (i.e., triplet, row-entity, and graph) to show
the superior of the fully contextualized entity (Tab.
4). (2) We also replace our Memory Mask with the
full attention layer by layer, which further shows
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the importance of our Memory Mask (Tab. 5). Our
ablation studies are based on the SMD dataset.

Model BLEU Entity F1 ∆

COMET 17.3 63.6 -
w/o Memory Mask 15.4 49.6 14.0
w/o Sum. Rep 17.0 61.4 2.2
only use Henc

N (gate) 17.2 61.1 2.5
only use EK (gate) 17.1 61.4 2.2
w/o L2,1-norm 17.4 62.3 1.3

Table 3: The effects of different components.

The effects of the key components in the
COMET framework are reported in Tab. 3. As
observed, removing any key component of the
COMET, both the BLEU and Entity F1 metrics
degrade to some extend. More specifically: (1) If
the Memory Mask is removed, the Entity F1 score
drops to 49.6. This significant discrepancy demon-
strates the importance of restricting self-attention
as our designed Memory Mask did. (2) For the
variant without the Sum. Rep, the Entity F1 score
drops to 61.4. That indicates the effectiveness of
contextualizing the KB with the dialogue history,
which can further boost the performance. (3) We
also remove the gate and only use the information
from the dialogue history (Henc

N ) or memory (EK).
We can see that the former case can only achieve
61.1 while the latter case achieves 61.4 of the Entity
F1 score. It is obvious that using the gate mech-
anism to fuse both information sources is helpful
for the entity linking. (4) When removing the L2,1-
norm, the performance also drops to 62.3, which
means regularizing the entity-linking distribution
can further benefit the performance.

Model BLEU F1 F1-Sch. F1-Wea. F1-Nav.
Context-aware memory 17.3 63.6 77.6 58.3 56.0
Only KB context 17.0 61.4 75.5 55.2 54.4
Triplet 14.9 59.8 73.1 54.0 53.0
Row&Ent 13.0 41.4 51.2 54.6 19.3
Graph 14.4 56.7 71.6 48.7 50.4

Table 4: The performance of replacing the context-
aware memory with Triplet, Row-Ent and Graph repre-
sentations in COMET. Note that in the second row, we
also report the result of a variant which only considers
the KB context and ignores the dialogue context.

We also replace our context-aware memory with
other ways of representing KB, while other parts
of our framework keep unchanged8. The result is
reported in Tab. 4. It is observed that, After replac-

8The implementation details are in Appendix A.3.

ing our context-aware memory with the existing
three representations of KB, the performance drops
a lot in all the metrics, where the BLEU score drops
2.4% and the Entity F1 score drops 3.8% at least.
Besides, the result of the variant which only con-
siders the KB context part (i.e., w/o Sum. Rep), is
also reported, so as to further fairly compare with
the aforementioned KB representations. The result
shows that only considering the KB context, our
method can still outperform other KB representa-
tions by 1.6% of Entity F1 at least. That further
indicates the fully contextualizing entity with its
relevant entity and the dialogue history, can better
represent the KB for dialogue systems.

Scheme BLEU Entity F1 ∆

MMM 17.3 63.6 -
MMF 16.5 61.2 2.4
MFF 16.5 59.1 4.5
FFF 15.4 49.6 14.0

Table 5: The performance of replacing the Memory
Mask with the full attention. The meanings of the
scheme names are that the Memory Mask (M) is re-
placed with the Full attention (F).

We also conduct the experiment which replaces
the Memory Mask with the full attention, layer by
layer. That is, the first (n-k) layers use the proposed
Memory Mask (M) and the last k layers use the full
attention (F). As shown in Tab. 5, the more full at-
tention is added, the more performance of COMET
drops in all of the metrics since the full attention
introduces too much distraction from other rows.
The result further indicates that the Memory Mask
is indeed a better choice which takes the inductive
bias of KB into account.

Note that we also explore other Memory Mask
schemes, but these schemes can not further boost
the performance, where the results are omitted due
to the page limitation. For further improvement,
more advanced techniques like Pre-trained Model
(Devlin et al., 2018; Radford et al., 2019) may be
needed to deeply understand the dialogue and KB
context, which we leave for future work.

3.6 Case Study

To demonstrate the superiority of our method, sev-
eral examples on the SMD test set, which are gen-
erated by our COMET and the existing state of the
arts GLMP (Wu et al., 2019) and DF-Net (Qin et al.,
2020), are given in Tab. 6. As reported, compared
with GLMP and DF-Net, COMET can generate
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Query&Response Example
Goal: [yoga_activity, 11am, thursday, alex]
Query: what time do i go to yoga and who is going with me ?
Response: yoga is with [alex] at [11am].
GLMP: your yoga is on [thursday]X with [alex]X.
DF-Net: your yoga is on [thursday]X at [5pm]×.
COMET: your yoga is on [thursday]X at [11am]X with [alex]X. (More informative response.)
Goal: [stanford_express_care, 6_miles, heavy_traffic, hospital, 214_el_camino_real]
Query: car i need a hospital , please send me a quick route to the one near me in the direction we are driving.
Response: stanford_express_care is on the way.
GLMP: stanford_express_care is [2_miles]× away. (Wrong distance info.)
DF-Net: stanford_express_care is [4_miles]× away. (Wrong distance info.)
COMET: stanford_express_care is [6_miles]X away.
Goal: [mountain_view, friday, clear_skies, 30f, 50f]
Query: what will be the highest_temperature on friday in mountain_view ?
Response: on friday , the highest_temperature in mountain_view is predicted to be [50f].
GLMP: it will be friday on mountain_view in highest_temperature. × (Fail to retrieve the temperature info.)
DF-Net: it will be highest_temperature on friday in mountain_view. × (Fail to retrieve the temperature info.)
COMET: on friday the temperature in mountain_view will be low of [30f]X , and high of [50f]X.
Goal: [teavana, 5_miles, moderate_traffic, coffee_or_tea_place, 145_amherst_st]
Query: get me directions to the nearest starbucks.
Response: there is NO starbucks locally.
GLMP: there is a starbucks [1_miles]× away. (Unfaithful response.)
DF-Net: the nearest starbucks is teavana , it s [1_miles]× away. (Not fluent and wrong entities retrieved.)
COMET: there is NO starbucks nearby , but [teavana]X is [5_miles]X away would you like directions there?

Table 6: Responses generated by our COMET, GLMP (Wu et al., 2019) and DF-Net (Qin et al., 2020) from the
SMD dataset. Goal means the row that the user is queried. X and × mean the right or wrong entity linked.

more fluent, informative, and accurate responses.
Specifically, in the first example, GLMP and DF-

NET are lack of the necessary information “11am”
or provide the wrong entity “5pm”. But COMET
can obtain all the correct entities, which is more
informative. In the second example, our method
can generated the response with the right “distance”
information but GLMP and DF-Net can not. In the
third example, GLMP and DF-Net can not even
generate a fluent response, let alone the correct
temperature information. But COMET can still per-
form well. The fourth example is more interesting:
the user queries the information about “starbucks”
which does not exist in the current KB. GLMP
and DF-Net both fail to faithfully respond, whereas
COMET can better reason KB to generate the right
response and even provide an alternative option.

4 Related Work

Task-oriented dialogue systems can be mainly cat-
egorized into two parts: modularized (Williams
and Young, 2007; Wen et al., 2017) and end-to-
end (Eric and Manning, 2017). For the end-to-end
task-oriented dialogue systems, (Eric and Manning,

2017) first explores the end-to-end method for the
task-oriented dialogue systems. However, it can
only link to the entities in the dialogue context and
no KB is incorporated. To effectively incorporate
the external KB, (Eric et al., 2017) proposes a key-
value retrieval mechanism to sustain the grounded
multi-domain discourse. (Madotto et al., 2018) aug-
ments the dialogue systems with end-to-end mem-
ory networks (Sukhbaatar et al., 2015). (Wen et al.,
2018) models a dialogue state as a fixed-size dis-
tributed representation and uses this representation
to query KB. (Lei et al., 2018) designs belief spans
to track dialogue believes, allowing task-oriented
dialogue systems to be modeled in a sequence-to-
sequence way. (Gangi Reddy et al., 2019) proposes
a multi-level memory to better leverage the external
KB. (Wu et al., 2019) proposes a global-to-local
memory pointer network to reduce the noise caused
by KB. (Lin et al., 2019) proposes Heterogeneous
Memory Networks to handle the heterogeneous in-
formation from different sources. (Qin et al., 2020)
proposes a dynamic fusion mechanism to transfer
the knowledge among different domains. (Yang
et al., 2020) exploits the graph structural informa-
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tion in KB and the dialogue. Other works also
explore how to combine the Pre-trained Model (De-
vlin et al., 2018; Radford et al., 2019) with the end-
to-end task-oriented dialogue systems. (Madotto
et al., 2020a) directly embeds the KB into the pa-
rameters of GPT-2 (Radford et al., 2019) via fine-
tuning. (Madotto et al., 2020b) proposes a dialogue
model that is built with a fixed pre-trained conver-
sational model and multiple trainable light-weight
adapters.

We also notice that some existing works also
combine Transformer with the memory component,
e.g., (Ma et al., 2021). However, our method is dis-
tinguishable from them, since the existing works
like (Ma et al., 2021) simply inject the memory
component into Transformer. In contrast, inspired
by the dynamic generation mechanism (Gou et al.,
2020), the memory in COMET (i.e., the entity rep-
resentation) is dynamically generated by fully con-
textualizing the KB and dialogue context via the
Memory-masked Transformer.

5 Conclusion

In this work, we propose a novel COntext-aware
Memory Enhanced Transformer (COMET) for the
end-to-end task-oriented dialogue systems. By the
designed Memory Mask scheme, COMET can fully
contextualize the entity with all its KB and dia-
logue contexts, and generate the (N + 1)-tuple
representations of the entities. The generated entity
representations can further augment the framework
and lead to better capabilities of response genera-
tion and entity linking. The extensive experiments
demonstrate the effectiveness of our method.
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A Appendices

A.1 Label Construction of Entity Linking

In practice, the datasets do not provide the golden
linked entity. However, We could obtain a pseudo
annotation by following (Qin et al., 2019) to use a
distant supervision method. Specifically, we match
the entities in the golden response against the enti-
ties in the memoryM and use the matching result
as the golden entity. For entities like “no_traffic”,
one may find matches in multiple rows. We resolve
this ambiguity by choosing the entity from the row
which has the most matches for all entities in the
utterances.

A.2 Hyper-parameter Settings

Hyper-parameter SMD Multi-WOZ 2.1
Batch Size 32 16
Hidden Size 512 512
Embedding Size 512 512
#Layer of Dialogue Enc. 6 6
#Layer of Response Dec. 6 6
#Layer for Memory 3 3
#Head 8 8
Learning Rate 0.0001 0.0001
KB Mask Prob. 0.2 0.05
Dropout Prob. 0.1 0.1

Table 7: Hyper-parameters used in the two datasets.

We follow (Wu et al., 2019) to randomly mask a
small number of entities into an unknown token to
improve the generalization of our model. Besides,
in the sketch generation and entity linking stages,
we also use the label smoothing to regularize the
model. The hyper-parameters such as dropout rate
are tuned over the development set by grid search
(Entity F1 for both datasets). The model is imple-
mented in PyTorch. The hyper-parameters used in
two datasets are shown in Tab. 7.

A.3 Implementation Details of Other KB
Representations with Transformer

To further compare the different methods of rep-
resenting KB with our method, we also adopt
the triplet, row-entity, and graph representation to
replace our contextualized entity representation,
where we keep the other parts of COMET un-
changed.

Specifically, for the triplet representation, we
follow (Madotto et al., 2018; Wu et al., 2019; Qin
et al., 2020) to implement Transformer+Triplet,

where the entity representation is the sum of the
subject, relation, and object. Besides, the multi-
hop reasoning (Sukhbaatar et al., 2015) is lever-
aged to further boost the performance. For the
row-ent representation, we refer to (Gangi Reddy
et al., 2019; Qin et al., 2019) to implement Trans-
former+Row&Ent, where Bag-of-word embed-
ding and entity-type embedding are used for the
row-level representation and entity-level repre-
sentation. Besides, the row-level representation
and entity-level representation are hierarchically
queried, where the distribution of the entity-level
embedding is used for the response generation. For
the graph representation, we adopt the memory part
of GraphDialog (Yang et al., 2020) to implement
Transformer+Graph, where the entity embedding
is further augmented by Graph Neural Networks
(Veličković et al., 2018). Besides, the last hop of
the triplet and graph representation, and the entity-
level representation of Row&Entity representation
will be also used to adaptively fuse the information
of KB in the Decoder of COMET. More details can
be found in the aforementioned papers.


