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Methods Feat. IoU=0.3 IoU=0.5 IoU=0.7 mIoU
CTRL C3D – 23.63 8.89 –
ROLE C3D 25.26 12.12 – –
ACL-K C3D – 30.48 12.20 –

SAP C3D – 27.42 13.36 –
RWM C3D – 36.70 – –

SM-RL C3D – 24.36 11.17 –
QSPN C3D 54.70 35.60 15.80 –

DEBUG C3D 54.95 37.39 17.92 36.34
GDP C3D 54.54 39.47 18.49 –

VSLNet C3D 54.38 28.71 15.11 37.07
BPNet C3D 55.46 38.25 20.51 38.03
LPNet C3D 59.14 40.94 21.13 39.67
ExCL I3D – 44.10 22.40 –
MAN I3D – 46.53 22.72 –

VSLNet I3D 64.30 47.31 30.19 45.15
BPNet I3D 65.48 50.75 31.64 46.34
DRN I3D – 53.09 31.75 –

LPNet I3D 66.59 54.33 34.03 47.71

Table 1: Performance (%) of “R@1, IoU=� " and
“mIoU" compared with the state-of-the-art NLVL mod-
els on Charades-STA.

Figure 4: The distribution of learnable proposals during
training process, which is getting closer to the ground-
truth distribution of samples. Horizontal and vertical
axes represent the normalized center coordinate and
half length of proposals. We initialized the maximum
length of proposals on Charades-STA as 0.5 according
to its characteristics.

which demonstrates the effectiveness of our model.
To be noticed, DEBUG and VSLNet utilize the
backbone similar to ours adopted from QANet. DE-
BUG is a regression-based method and QANet is a
classification-based method, which both belong to
the proposal-free approach. The results show that
our model not only surpass a multitude of propose-

Methods IoU=0.3 IoU=0.5 IoU=0.7 mIoU
TGN 43.81 27.93 – –

QSPN 45.30 27.70 13.60 –
RWM – 36.90 – –

ABLR-af 53.65 34.91 – 35.72
ABLR-aw 55.67 36.79 – 36.99
DEBUG 55.91 39.72 – 39.51

GDP 56.17 39.27 – 18.49
VSLNet 55.17 38.34 23.52 40.53

DRN – 42.49 22.25 –
LGI 58.52 41.51 23.07 41.13

BPNet 58.98 42.07 24.69 42.11
2D-TAN 59.45 44.51 26.54 –
LPNet 64.29 45.92 25.39 44.72

Table 2: Performance (%) of “R@1, IoU=� " and
“mIoU" compared with the state-of-the-art NLVL mod-
els on ActivityNet Captions.

N IoU=0.3 IoU=0.5 IoU=0.7 mIoU
30 67.45 53.90 33.52 47.95

100 69.09 55.70 34.97 49.25
300 66.59 54.33 34.03 47.71

Table 3: Performance (%) of LPNet with the different
number on proposals on Charades-STA.

and-rank methods by a lot, but also exceed these
proposal-free methods.

Table 2 summarizes the results with C3D fea-
tures on ActivityNet Captions which has longer
videos in average. Our model outperforms almost
all other methods. Compared with 2D-TAN, our
LPNet achieves a significant 4.48 absolute im-
provement in IoU @0:3 but is slightly lower in
IoU @0:7. This may be because the 2D-TAN enu-
merates much more candidates. The qualitative
results of LPNet are illustrated in Figure 4. We can
observe that LPNet performs well to produce the
precise query-related moments.

5 Ablation Studies

In this section, we conduct ablative experiments
with different variants to better investigate our ap-
proach.
Number of Learnable Proposals. The number
of proposals is a key factor of propose-and-rank
models. We change the number of proposals of
our model on Charades-STA dataset and show its
impact on performance in Table 3. The results
show that using only a small amount of proposals,
LPNet is able to achieve impressive performance. It
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Language Query: A wooden contraption signals that a fish has been caught, The man pulls 
the fish out of the water.

GT
LPNet

20.4s 94.1s
24.1s 91.3s

Language Query: He picks up a sharpener and sharpens the blade of the knife on the sharp-
ener.

GT
LPNet

23.2s 113.7s
22.5s 101.6s

Language Query: People rides bumper cars in the carnival, a yellow car cross two girls in a 
grey car.

GT
LPNet

0s 59.0s
1.8s 95.1s

Figure 5: The qualitative results of LPNet on ActivityNet Caption dataset.

MHSA BAL IoU=0.3 IoU=0.5 IoU=0.7 mIoU
65.38 51.05 29.33 45.21

X 66.48 52.42 30.99 45.87
X 66.48 54.03 34.22 47.45

X X 66.59 54.33 34.03 47.71

Table 4: Performance (%) comparisons on Charades-
STA in ablative experiments of component of LPNet.
MHSA: multi-head self-attention over proposal fea-
tures, BAL: boundary-aware loss.

should be noted that we simply place 300 learnable
proposals on both datasets in Table 1 and Table 2 to
avoid artificial design. However, a smaller amount
(100) of proposals get better result on Charades-
STA.

With vs Without Boundary-aware Loss. From
Table 4, we find that there is huge improvement
when the boundary-aware loss is applied. The main
reason is that the KL-divergence loss utilizes frame-
level information to regularize the training of the
model and force the model to consider the video as
a whole.

With vs Without Multi-head Self-attention.
Comparing the first two rows in Table 4, we ob-
serve that applying multi-head self-attention mech-
anism to proposal features can improve the perfor-
mance. This operation successfully learns the latent
relations between the proposals which is helpful

to the localization task. However, when boundary-
aware loss has been already applied (last two rows
in Table 4), the results are very close. This may
indicate that the boundary-aware loss makes the
similar kind of contribution to the model.

6 Conclusions

In this paper, we present a novel propose-and-rank
model with learnable moment proposals for NLVL.
Compared to the existing propose-and-rank method
with predefined temporal boxes, our model im-
proves the performance significantly because 1) our
model disengages from the hand-designed rules
for bounding boxes so that it can produce more
accurate temporal boundaries; 2) sparse sampled
candidate release the pressure for subsequent rank-
ing process; 3) boundary-aware loss regularize the
model to avoid sub-optimum. In the future, we
are going to explore a more effective way to learn
better proposals and extend this idea to other tasks.
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