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Abstract
Multimodal sentiment analysis is a trending
area of research, and the multimodal fusion
is one of its most active topic. Acknowledg-
ing humans communicate through a variety of
channels (i.e visual, acoustic, linguistic), mul-
timodal systems aim at integrating different
unimodal representations into a synthetic one.
So far, a consequent effort has been made on
developing complex architectures allowing the
fusion of these modalities. However, such sys-
tems are mainly trained by minimising sim-
ple losses such as L1 or cross-entropy. In
this work, we investigate unexplored penalties
and propose a set of new objectives that mea-
sure the dependency between modalities. We
demonstrate that our new penalties lead to a
consistent improvement (up to 4.3 on accu-
racy) across a large variety of state-of-the-art
models on two well-known sentiment analysis
datasets: CMU-MOSI and CMU-MOSEI. Our
method not only achieves a new SOTA on both
datasets but also produces representations that
are more robust to modality drops. Finally, a
by-product of our methods includes a statisti-
cal network which can be used to interpret the
high dimensional representations learnt by the
model.

1 Introduction

Humans employ three different modalities to com-
municate in a coordinated manner: the language
modality with the use of words and sentences, the
vision modality with gestures, poses and facial ex-
pressions and the acoustic modality through change
in vocal tones. Multimodal representation learning
has shown great progress in a large variety of tasks
including emotion recognition, sentiment analy-
sis (Soleymani et al., 2017), speaker trait analysis
(Park et al., 2014) and fine-grained opinion min-
ing (Garcia et al., 2019a). Learning from different
modalities is an efficient way to improve perfor-
mance on the target tasks (Xu et al., 2013). Never-
theless, heterogeneities across modalities increase

the difficulty of learning multimodal representa-
tions and raise specific challenges. Baltrušaitis
et al. (2018) identifies fusion as one of the five core
challenges in multimodal representation learning,
the four other being: representation, modality align-
ment, translation and co-learning. Fusion aims at
integrating the different unimodal representations
into one common synthetic representation. Effec-
tive fusion is still an open problem: the best multi-
modal models in sentiment analysis (Rahman et al.,
2020) improve over their unimodal counterparts,
relying on text modality only, by less than 1.5% on
accuracy. Additionally, the fusion should not only
improve accuracy but also make representations
more robust to missing modalities.
Multimodal fusion can be divided into early and
late fusion techniques: early fusion takes place
at the feature level (Ye et al., 2017), while late
fusion takes place at the decision or scoring level
(Khan et al., 2012). Current research in multimodal
sentiment analysis mainly focuses on developing
new fusion mechanisms relying on deep architec-
tures (e.g TFN (Zadeh et al., 2017), LFN (Liu et al.,
2018), MARN (Zadeh et al., 2018b), MISA (Haz-
arika et al., 2020), MCTN (Pham et al., 2019), HFNN
(Mai et al., 2019), ICCN (Sun et al., 2020)). The-
ses models are evaluated on several multimodal
sentiment analysis benchmark such as IEMOCAP
(Busso et al., 2008), MOSI (Wöllmer et al., 2013),
MOSEI (Zadeh et al., 2018c) and POM (Garcia
et al., 2019b; Park et al., 2014). Current state-of-
the-art on these datasets uses architectures based
on pre-trained transformers (Tsai et al., 2019; Siri-
wardhana et al., 2020) such as MultiModal Bert
(MAGBERT) or MultiModal XLNET (MAGXLNET)
(Rahman et al., 2020).

The aforementioned architectures are trained by
minimising either a L1 loss or a Cross-Entropy
loss between the predictions and the ground-truth
labels. To the best of our knowledge, few efforts
have been dedicated to exploring alternative losses.
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In this work, we propose a set of new objectives
to perform and improve over existing fusion mech-
anisms. These improvements are inspired by the
InfoMax principle (Linsker, 1988), i.e. choosing
the representation maximising the mutual informa-
tion (MI) between two possibly overlapping views
of the input. The MI quantifies the dependence
of two random variables; contrarily to correlation,
MI also captures non-linear dependencies between
the considered variables. Different from previous
work, which mainly focuses on comparing two
modalities, our learning problem involves multiple
modalities (e.g text, audio, video). Our proposed
method, which induces no architectural changes,
relies on jointly optimising the target loss with an
additional penalty term measuring the mutual de-
pendency between different modalities.

1.1 Our Contributions

We study new objectives to build more performant
and robust multimodal representations through an
enhanced fusion mechanism and evaluate them on
multimodal sentiment analysis. Our method also
allows us to explain the learnt high dimensional
multimodal embeddings. The paper contributions
can be summarised as follows:
A set of novel objectives using multivariate de-
pendency measures. We introduce three new
trainable surrogates to maximise the mutual de-
pendencies between the three modalities (i.e audio,
language and video). We provide a general algo-
rithm inspired by MINE (Belghazi et al., 2018),
which was developed in a bi-variate setting for esti-
mating the MI. Our new method enriches MINE by
extending the procedure to a multivariate setting
that allows us to maximise different Mutual Depen-
dency Measures: the Total Correlation (Watanabe,
1960), the f-Total Correlation and the Multivari-
ate Wasserstein Dependency Measure (Ozair et al.,
2019).
Applications and numerical results. We apply
our new set of objectives to five different archi-
tectures relying on LSTM cells (Huang et al.,
2015) (e.g EF-LSTM, LFN, MFN) or transformer
layers (e.g MAGBERT, MAG-XLNET). Our pro-
posed method (1) brings a substantial improvement
on two different multimodal sentiment analysis
datasets (i.e MOSI and MOSEI,sec. 5.1), (2) makes
the encoder more robust to missing modalities (i.e
when predicting without language, audio or video
the observed performance drop is smaller, sec. 5.3),

(3) provides an explanation of the decision taken
by the neural architecture (sec. 5.4).

2 Problem formulation & related work

In this section, we formulate the problem of learn-
ing multi-modal representation (sec. 2.1) and we re-
view both existing measures of mutual dependency
(see sec. 2.2) and estimation methods (sec. 2.3).
In the rest of the paper, we will focus on learn-
ing from three modalities (i.e language, audio and
video), however our approach can be generalised
to any arbitrary number of modalities.

2.1 Learning multimodal representations

Plethora of neural architectures have been pro-
posed to learn multimodal representations for sen-
timent classification. Models often rely on a fusion
mechanism (e.g multi-layer perceptron (Khan et al.,
2012), tensor factorisation (Liu et al., 2018; Zadeh
et al., 2019) or complex attention mechanisms
(Zadeh et al., 2018a)) that is fed with modality-
specific representations. The fusion problem boils
down to learning a modelMf : Xa ×Xv ×Xl →
Rd.Mf is fed with uni-modal representations of
the inputs Xa,v,l = (Xa, Xv, Xl) obtained through
three embedding networks fa, fv and fl.Mf has
to retain both modality-specific interactions (i.e
interactions that involve only one modality) and
cross-view interactions (i.e more complex, they
span across both views). Overall, the learning of
Mf involves both the minimisation of the down-
stream task loss and the maximisation of the mutual
dependency between the different modalities.

2.2 Mutual dependency maximisation

Mutual information as mutual dependency
measure: the core ideas we rely on to better learn
cross-view interactions are not new. They consist of
mutual information maximisation (Linsker, 1988),
and deep representation learning. Thus, one of the
most natural choices is to use the MI that measures
the dependence between two random variables, in-
cluding high-order statistical dependencies (Kinney
and Atwal, 2014). Given two random variables X
and Y , the MI is defined by

I(X;Y ) , EXY
[
log

pXY (x, y)

pX(x)pY (y)

]
, (1)

where pXY is the joint probability density function
(pdf) of the random variables (X,Y ), and pX , pY
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represent the marginal pdfs. MI can also be defined
with a the KL divergence:

I(X;Y ) , KL [pXY (x, y)||pX(x)pY (y)] . (2)

Extension of mutual dependency to different
metrics: the KL divergence seems to be limited
when used for estimating MI (McAllester and
Stratos, 2020). A natural step is to replace the
KL divergence in Eq. 2 with different divergences
such as the f-divergences or distances such as the
Wasserstein distance. Hence, we introduce new mu-
tual dependency measures (MDM): the f-Mutual
Information (Belghazi et al., 2018), denoted If and
the Wasserstein Measures (Ozair et al., 2019), de-
noted IW . As previously, pXY denotes the joint
pdf, and pX , pY denote the marginal pdfs. The new
measures are defined as follows:

If , Df (pXY (x, y); pX(x)pY (y)), (3)

where Df denotes any f -divergences and

IW ,W(pXY (x, y); pX(x)pY (y)), (4)

whereW denotes the Wasserstein distance (Peyré
et al., 2019).

2.3 Estimating mutual dependency measures
The computation of MI and other mutual depen-
dency measures can be difficult without knowing
the marginal and joint probability distributions,
thus it is popular to maximise lower bounds to
obtain better representations of different modal-
ities including image (Tian et al., 2019; Hjelm
et al., 2018), audio (Dilpazir et al., 2016) and text
(Kong et al., 2019) data. Several estimators have
been proposed: MINE (Belghazi et al., 2018) uses
the Donsker-Varadhan representation (Donsker and
Varadhan, 1985) to derive a parametric lower bound
holds, Nguyen et al. (2017, 2010) uses variational
characterisation of f-divergence and a multi-sample
version of the density ratio (also known as noise
contrastive estimation (Oord et al., 2018; Ozair
et al., 2019)). These methods have mostly been
developed and studied in a bi-variate setting.
Illustration of neural dependency measures on
a bivariate case. In Fig. 1 we can see the aforemen-
tioned dependency measures (i.e see Eq. 2, Eq. 4,
Eq. 3) when estimated with MINE (Belghazi et al.,
2018) for multivariate Gaussian random variables,
Xa and Xb. The component wise correlation for
the considered multivariate Gaussian is defined as
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Figure 1: Estimation of different dependency measures
for multivariate Gaussian random variables for differ-
ent degree of correlation.

follow: corr(Xi, Xk) = δi,kρ , where ρ ∈ (−1, 1)
and δi,k is Kronecker’s delta. We observe that the
dependency measure based on Wasserstein distance
is different from the one based on the divergences
and thus will lead to different gradients. Although
theoretical studies have been done on the use of
different metrics for dependency estimations, it re-
mains an open question to know which one is the
best suited. In this work, we will provide an exper-
imental response in a specific case.

3 Model and training objective

In this section, we introduce our new set of losses to
improve fusion. In sec. 3.1, we first extend widely
used bi-variate dependency measures to multivari-
ate dependencies (James and Crutchfield, 2017)
measures (MDM). We then introduce variational
bounds on the MDM, and in sec. 3.2, we describe
our method to minimise the proposed variational
bounds.
Notations We consider Xa, Xv, Xl as the multi-
modal data from the audio,video and language
modality respectively with joint probability dis-
tribution pXaXvXl . We denote as pXj the marginal
distribution of Xj with j ∈ {a, v, l} corresponding
to the jth modality.
General loss As previously mentioned, we rely on
the InfoMax principle (Linsker, 1988) and aim at
jointly maximising the MDM between the different
modalities and minimising the task loss; hence, we
are in a multi-task setting (Argyriou et al., 2007;
Ruder, 2017) and the objective of interest can be
defined as:

L , Ldown.︸ ︷︷ ︸
main task

− λ · LMDM︸ ︷︷ ︸
mutual dependency term

. (5)
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Ldown. represents a downstream specific (target
task) loss i.e a binary cross-entropy or a L1 loss, λ
is a meta-parameter and LMDM is the multivariate
dependencies measures (see sec. 3.2). Minimisa-
tion of our newly defined objectives requires to
derive lower bounds on the LMDM terms, and then
to obtain trainable surrogates.

3.1 From bivariate to multivariate
dependencies

In our setting, we aim at maximising cross-view
interactions involving three modalities, thus we
need to generalise bivariate dependency measures
to multivariate dependency measures.

Definition 3.1 (Multivariate Dependencies Mea-
sures). Let Xa, Xv, Xl be a set of random vari-
ables with joint pdf pXaXvXl and respective
marginal pdf pXj with j ∈ {a, v, l}. Then we
defined the multivariate mutual information Ikl
which is also refered as total correlation (Watan-
abe, 1960) or multi-information (Studenỳ and Vej-
narová, 1998):

Ikl , KL(pXaXvXl(xa, xv, xl)||
∏

j∈{a,v,l}

pXj (xj)).

Simarly for any f-divergence we define the multi-
variate f-mutual information If as:

If , Df (pXaXvXl(xa, xv, xl);
∏

j∈{a,v,l}

pXj (xj)).

Finally, we also extend Eq. 3 to obtain the multi-
variate Wasserstein dependency measure IW :

IW ,W(pXaXvXl(xa, xv, xl);
∏

j∈{a,v,l}

pXj (xj)).

whereW denotes the Wasserstein distance.

3.2 From theoretical bounds to trainable
surrogates

To train our neural architecture we need to esti-
mate the previously defined multivariate depen-
dency measures. We rely on neural estimators that
are given in Th. 1.

Theorem 1. Multivariate Neural Dependency
Measures Let the family of functions T (θ) : Xa ×
Xv ×Xl → R parametrized by a deep neural net-
work with learnable parameters θ ∈ Θ. The multi-
variate mutual information measure Ikl is defined
as:

Ikl , sup
θ
EpXaXvXl [Tθ]− log

[
E∏
j∈{a,v,l}

pXj
[eTθ ]

]
. (6)

The neural multivariate f-mutual information mea-
sure If is defined as follows:

If , sup
θ

EpXaXvXl [Tθ]− E∏
j∈{a,v,l}

pXj
[eTθ−1]. (7)

The neural multivariate Wasserstein dependency
measure IW is defined as follows:

IW , sup
θ:Tθ∈L

EpXaXvXl [Tθ]− log
[
E ∏
j∈{a,v,l}

pXj
[Tθ]

]
. (8)

Where L is the set of all 1-Lipschitz functions from
Rd → R

Sketch of proofs: Eq. 6 is a direct application of
the Donsker-Varadhan representation of the KL
divergence (we assume that the integrability con-
straints are satisfied). Eq. 7 comes from the work
of Nguyen et al. (2017). Eq. 8 comes from the
Kantorovich-Rubenstein: we refer the reader to
(Villani, 2008; Peyré et al., 2019) for a rigorous
and exhaustive treatment.
Practical estimate of the variational bounds.
The empirical estimator that we derive from Th. 1
can be used in practical way: the expectations in
Eq. 6, Eq. 7 and Eq. 8 are estimated using empirical
samples from the joint distribution pXaXvXl . The
empirical samples from

∏
j∈{a,v,l}

pXj are obtained

by shuffling the samples from the joint distribution
in a batch. We integrate this into minimising a
multi-task objective (5) by using minus the estima-
tor. We refer to the losses obtained with the penalty
based on the estimators described in Eq. 6, Eq. 7
and Eq. 8 as Lkl, Lf and LW respectively. Details
on the practical minimisation of our variational
bounds are provided in Algorithm 1.

Remark. In this work we choose to generalise
MINE to compute multivariate dependencies. Com-
paring our proposed algorithm to other alterna-
tives mentioned in sec. 2 is left for future work.
This choice is driven by two main reasons: (1)
our framework allows the use of various types
of contrast measures (e.g Wasserstein distance,f -
divergences); (2) the critic network Tθ can be used
for interpretability purposes as shown in sec. 5.4.

4 Experimental setting

In this section, we present our experimental settings
including the neural architectures we compare, the
datasets, the metrics and our methodology, which
includes the hyper-parameter selection.
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Algorithm 1 Two-stage procedure to minimise
multivariate dependency measures.

INPUT: Dn = {(xja, xjv, xjl ),∀j ∈ [1, n]} multi-
modal training dataset, m batch size, σa, σv, σl :
[1,m]→ [1,m] three permutations, θc weights
of the deep classifier, θ weights of the statistical
network Tθ.

Initialization: parameters θ and θc
Build Negative Dataset:

D̄n = {(xσa(j)a , xσv(j)v , x
σl(j)
l ), ∀j ∈ [1, n]}

Optimization:
while (θ, θc) not converged do

for i ∈ [1, Unroll] do
Sample from Dn, B ∼ pXaXvXl
Sample from D̄n, B̄ ∼

∏
j∈{a,v,l}

pXj

Update θ based on the empirical version
of Eq. 6 or Eq. 7 or Eq. 8.

end for
Sample a batch B from D
Update θc with B using Eq. 5.

end while
OUTPUT: Classifiers weights θc

4.1 Datasets

We empirically evaluate our methods on two
english datasets: CMU-MOSI and CMU-MOSEI.
Both datasets have been frequently used to assess
model performance in human multimodal senti-
ment and emotion recognition.
CMU-MOSI: Multimodal Opinion Sentiment In-
tensity (Wöllmer et al., 2013) is a sentiment an-
notated dataset gathering 2, 199 short monologue
video clips.
CMU-MOSEI: CMU-Multimodal Opinion Senti-
ment and Emotion Intensity (Zadeh et al., 2018c)
is an emotion and sentiment annotated corpus con-
sisting of 23, 454 movie review videos taken from
YouTube. Both CMU-MOSI and CMU-MOSEI
are labelled by humans with a sentiment score in
[−3, 3]. For each dataset, three modalities are avail-
able; we follow prior work (Zadeh et al., 2018b,
2017; Rahman et al., 2020) and the features that
have been obtained as follows1:
Language: Video transcripts are converted to word
embeddings using either Glove (Pennington et al.,

1Data from CMU-MOSI and CMU-MOSEI can be obtained
from https://github.com/WasifurRahman/
BERT_multimodal_transformer

2014), BERT or XLNET contextualised embed-
dings. For Glove, the embeddings are of dimension
300, where for BERT and XLNET this dimension
is 768.
Vision: Vision features are extracted using Facet
which results into facial action units corresponding
to facial muscle movement. For CMU-MOSEI, the
video vectors are composed of 47 units, and for
CMU-MOSI they are composed of 35.
Audio : Audio features are extracted using CO-
VAREP (Degottex et al., 2014). This results into
a vector of dimension 74 which includes 12 Mel-
frequency cepstral coefficients (MFCCs), as well
as pitch tracking and voiced/unvoiced segmenting
features, peak slope parameters, maxima disper-
sion quotients and glottal source parameters.
Video and audio are aligned on text-based follow-
ing the convention introduced in (Chen et al., 2017)
and the forced alignment described in (Yuan and
Liberman, 2008).

4.2 Evaluation metrics

Multimodal Opinion Sentiment Intensity prediction
is treated as a regression problem. Thus, we report
both the Mean Absolute Error (MAE) and the cor-
relation of model predictions with true labels. In
the literature, the regression task is also turned into
a binary classification task for polarity prediction.
We follow standard practices (Rahman et al., 2020)
and report the Accuracy2 (Acc7 denotes accuracy
on 7 classes and Acc2 the binary accuracy) of our
best performing models.

4.3 Neural architectures

In our experiments, we choose to modify the loss
function of the different models that have been
introduced for multi-modal sentiment analysis on
both CMU-MOSI and CMU-MOSEI: Memory Fu-
sion Network (MFN (Zadeh et al., 2018a)), Low-
rank Multimodal Fusion (LFN (Liu et al., 2018))
and two state-of-the-art transformers based models
(Rahman et al., 2020) for fusion rely on BERT (De-
vlin et al., 2018) (MAG-BERT) and XLNET (Yang
et al., 2019) (MAG-XLNT). To assess the validity
of the proposed losses, we also apply our method
to a simple early fusion LSTM (EF-LSTM) as a
baseline model.
Model overview: Aforementioned models can be

2The regression outputs are turned into categorical values
to obtain either 2 or 7 categories (see (Rahman et al., 2020;
Zadeh et al., 2018a; Liu et al., 2018))

https://github.com/WasifurRahman/BERT_multimodal_transformer
https://github.com/WasifurRahman/BERT_multimodal_transformer


236

seen as a multi-modal encoder fθe providing a rep-
resentation Zavl containing information and depen-
dencies between modalities Xl, Xa, Xv namely:

fθe(Xa, Xv, Xl) = Zavl.

As a final step, a linear transformation Aθp is ap-
plied to Zavl to perform the regression.
EF-LSTM: is the most basic architecture used in
the current multimodal analysis where each se-
quence view is encoded separately with LSTM
channels. Then, a fusion function is applied to
all representations.
TFN: computes a representation of each view, and
then applies a fusion operator. Acoustic and visual
views are first mean-pooled then encoded through
a 2-layers perceptron. Linguistic features are com-
puted with a LSTM channel. Here, the fusion func-
tion is a cross-modal product capturing unimodal,
bimodal and trimodal interactions across modali-
ties.
MFN enriches the previous EF-LSTM architecture
with an attention module that computes a cross-
view representation at each time step. They are
then gathered and a final representation is com-
puted by a gated multi-view memory (Zadeh et al.,
2018a).
MAG-BERT and MAG-XLNT are based on pre-
trained transformer architectures (Devlin et al.,
2018; Yang et al., 2019) allowing inputs on each
of the transformer units to be multimodal, thanks
to a special gate inspired by Wang et al. (2018).
The Zavl is the [CLS] representation provided by
the last transformer head. For each architecture,
we use the optimal architecture hyperparameters
provided by the associated papers (see sec. 8).

5 Numerical results

We present and discuss here the results obtained us-
ing the experimental setting described in sec. 4. To
better understand the impact of our new methods,
we propose to investigate the following points:
Efficiency of the LMDM : to gain understanding
of the usefulness of our new objectives, we study
the impact of adding the mutual dependency term
on the basic multimodal neural model EF-LSTM.
Improving model performance and comparing
multivariate dependency measures: the choice
of the most suitable dependency measure for a
given task is still an open problem (see sec. 3).
Thus, we compare the performance – on both mul-
timodal sentiment and emotion prediction tasks– of

the different dependency measures. The compared
measures are combined with different models using
various fusion mechanisms.
Improving the robustness to modality drop: a
desirable quality of multimodal representations is
the robustness to a missing modality. We study
how the maximisation of mutual dependency mea-
sures during training affects the robustness of the
representation when a modality becomes missing.
Towards explainable representations: the sta-
tistical network Tθ allows us to compute a de-
pendency measure between the three considered
modalities. We carry out a qualitative analysis in
order to investigate if a high dependency can be
explained by complementariness across modalities.

5.1 Efficiency of the MDM penalty

For a simple EF-LSTM, we study the improvement
induced by addition of our MDM penalty. The re-
sults are presented in Tab. 1, where a EF-LSTM
trained with no mutual dependency term is denoted
with L∅. On both studied datasets, we observe that
the addition of a MDM penalty leads to stronger
performances on all metrics. For both datasets, we
observe that the best performing models are ob-
tained by training with an additional mutual depen-
dency measure term. Keeping in mind the example
shown in Fig. 1, we can draw a first comparison
between the different dependency measures. Al-
though in a simple case Lf and Lkl estimate a simi-
lar quantity (see Fig. 1), in more complex practical
applications they do not achieve the same perfor-
mance. Even though, the Donsker-Varadhan bound
used for Lkl is stronger3 than the one used to es-
timate Lf ; for a simple model the stronger bound
does not lead to better results. It is possible that
most of the differences in performance observed
come from the optimisation process during train-
ing4.
Takeaways: On the simple case of EF-LSTM
adding MDM penalty improves the performance
on the downstream tasks.

5.2 Improving models and comparing
multivariate dependency measures

In this experiment, we apply the different penalties
to more advanced architectures, using various fu-
sion mechanisms.

3For a fixed Tθ the right term in Eq. 6 is greater than Eq. 7
4Similar conclusion have been drawn in the field of metric

learning problem when comparing different estimates of the
mutual information (Boudiaf et al., 2020).
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Acch7 Acch2 MAEl Corrh

CMU-MOSI
L∅ 31.1 76.1 1.00 0.65
Lkl 31.7 76.4 1.00 0.66
Lf 33.7 76.2 1.02 0.66
LW 33.5 76.4 0.98 0.66

CMU-MOSEI
L∅ 44.2 75.0 0.72 0.52
Lkl 44.5 75.6 0.70 0.53
Lf 45.5 75.2 0.70 0.52
LW 45.3 75.9 0.68 0.54

Table 1: Results on sentiment analysis on both
CMU-MOSI and CMU-MOSEI for a EF-LSTM. Acc7
denotes accuracy on 7 classes and Acc2 the binary ac-
curacy. MAE denotes the Mean Absolute Error and
Corr is the Pearson correlation. h means higher is
better and l means lower is better. The choice of the
evaluation metrics follows standard practices (Rahman
et al., 2020). Underline results demonstrate significant
improvement (p-value belows 0.05) against the base-
line when performing the Wilcoxon Mann Whitney test
(Wilcoxon, 1992) on 10 runs using different seeds.

General analysis. Tab. 2 shows the performance
of various neural architectures trained with and
without MDM penalty. Results are coherent with
the previous experiment: we observe that jointly
maximising a mutual dependency measure leads
to better results on the downstream task: for ex-
ample, a MFN on CMU-MOSI trained with LW
outperforms by 4.6 points on Acch7 the model
trained without the mutual dependency term. On
CMU-MOSEI we also obtain subsequent improve-
ments while training with MMD. On CMU-MOSI
the TFN also strongly benefits from the mutual de-
pendency term with an absolute improvement of
3.7% (on Acch7 ) with LW compared to L∅. Tab. 2
shows that our methods not only perform well
on recurrent architectures but also on pretrained
Transformer-based models, that achieve higher re-
sults due to a superior capacity to model contextual
dependencies (see (Rahman et al., 2020)).
Improving state-of-the-art models. MAGBERT
and MAGXLNET are state-of-the art models on both
CMU-MOSI and CMU-MOSEI. From Tab. 2, we
observe that our methods can improve the perfor-
mance of both models. It is worth noting that, in
both cases, LW combined with pre-trained trans-
formers achieves good results. This performance
gain suggests that our method is able to capture
dependencies that are not learnt during either pre-
training of the language model (i.e BERT or XL-

CMU-MOSI CMU-MOSEI
Acch7 Acch2 MAEl Corrh Acch7 Acch2 MAEl Corrh

MFN
L∅ 31.3 76.6 1.01 0.62 44.4 74.7 0.72 0.53
Lkl 32.5 76.7 0.96 0.65 44.2 74.7 0.72 0.57
Lf 35.7 77.4 0.96 0.65 46.1 75.4 0.69 0.56
LW 35.9 77.6 0.96 0.65 46.2 75.1 0.69 0.56

LFN
L∅ 31.9 76.9 1.00 0.63 45.2 74.2 0.70 0.54
Lkl 32.6 77.7 0.97 0.63 46.1 75.3 0.68 0.57
Lf 35.6 77.1 0.97 0.63 45.8 75.4 0.69 0.57
LW 35.6 77.7 0.96 0.67 46.2 75.4 0.67 0.57

MAGBERT
L∅ 40.2 84.7 0.79 0.80 46.8 84.9 0.59 0.77
Lkl 42.0 85.6 0.76 0.82 47.1 85.4 0.59 0.79
Lf 41.7 85.6 0.78 0.82 46.9 85.6 0.59 0.79
LW 41.8 85.3 0.76 0.82 47.8 85.5 0.59 0.79

MAGXLNET
L∅ 43.0 86.2 0.76 0.82 46.7 84.4 0.59 0.79
Lkl 44.5 86.1 0.74 0.82 47.5 85.4 0.59 0.81
Lf 43.9 86.6 0.74 0.82 47.4 85.0 0.59 0.81
LW 44.4 86.9 0.74 0.82 47.9 85.8 0.59 0.82

Table 2: Results on sentiment and emotion prediction
on both CMU-MOSI and CMU-MOSEI dataset for the
different neural architectures presented in sec. 4 relying
on various fusion mechanisms.

NET) or by the Multimodal Adaptation Gate used
to perform the fusion.
Comparing dependency measures. Tab. 2 shows
that there is no dependency measure that achieves
the best results in all cases. This result tends to con-
firm that the optimisation process during training
plays an important role (see hypothesis in sec. 5.1).
However, we can observe that optimising the multi-
variate Wasserstein dependency measure is usually
a good choice, since it achieves state of the art re-
sults in many configurations. It is worth noting
that several pieces of research point the limitations
of mutual information estimators (McAllester and
Stratos, 2020; Song and Ermon, 2019).
Takeaways: The addition of MMD not only ben-
efits simple models (e.g EF-LSTM) but also im-
proves performance when combined with both com-
plex fusion mechanisms and pretrained models. For
practical applications, the Wasserstein distance is a
good choice of contrast function.

5.3 Improved robustness to modality drop

Although fusion with visual and acoustic modali-
ties provided a performance improvement (Wang
et al., 2018), the performance of Multimodal sys-
tems on sentiment prediction tasks is mainly car-
ried by the linguistic modality (Zadeh et al., 2018a,
2017). Thus it is interesting to study how a mul-
timodal system behaves when the text modality is
missing because it gives insights on the robustness
of the representation.
Experiment description. In this experiment, we
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Spoken Transcripts Acoustic and visual behaviour Tθ
um the story was all right low energy monotonous voice + headshake L
i mean its a Nicholas Sparks book it must be good disappointed tone + neutral facial expression L
the action is fucking awesome head nod + excited voice H
it was cute you know the actors did a great job bringing the smurfs to
life such as joe george lopez neil patrick harris katy perry and a fourth

multiple smiles H

Table 3: Examples from the CMU-MOSI dataset using MAGBERT. The last column is computed using the statistical
network Tθ. L stands for low values and H stands for high values. Green, grey, red highlight positive, neutral and
negative expression/behaviours respectively
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Figure 2: Study of the robustness of the representations
against drop of the linguistic modality. Studied model
is MAGBERT on CMU-MOSI. The ratio between the ac-
curacy achieved with a corrupted linguistic modality
Acccorrupt2 and the accuracy Acc2 without any corrup-
tion is reported on y-axis. The preserved modalities
during inference are reported on x-axis. A, V respec-
tively stands for acoustic and visual modality.

focus on the MAGBERT and MAGXLNET since they
are the best performing models.5 As before, the
considered models are trained using the losses de-
scribed in sec. 3 and all modalities are kept during
training time. During inference, we either keep
only one modality (Audio or Video) or both. Text
modality is always dropped.
Results. Results of the experiments conducted on
CMU-MOSI are shown in Fig. 2, giving values for
the ratio Acccorrupt2 /Acc2 where Acccorrupt2 is the
binary accuracy in the corrupted configuration and
Acc2 the accuracy obtained when all modalities are
considered. We observe that models trained with
an MDM penalty (either Lkl, Lf or LW ) resist bet-
ter to missing modalities than those trained with
L∅. For example, when trained with Lkl or Lf , the
drop in performance is limited to ≈ 25% in any
setting. Interestingly, for MAGBERT LW and LKL
achieve comparable results; LKL is more resistant

5Because of space constraints results corresponding to
MAGXLNET are reported in sec. 8.

to dropping the language modality, and thus, could
be preferred in practical applications.
Takeaway: Maximising the MMD allows an infor-
mation transfer between modalities.

5.4 Towards explainable representations
In this section, we propose a qualitative experi-
ment allowing us to interpret the predictions made
by the deep neural classifier. During training, Tθ
estimates the mutual dependency measure, using
the surrogates introduced in Th. 1. However, the
inference process only involves the classifier, and
Tθ is unused. Eq. 6, Eq. 7, Eq. 8 show that Tθ is
trained to discriminate between valid representa-
tions (coming from the joint distribution) and cor-
rupted representations (coming from the product of
the marginals). Thus, Tθ can be used, at inference
time, to measure the mutual dependency of the rep-
resentations used by the neural model. In Tab. 3
we report examples of low and high discrepancy
measures for MAGBERT on CMU-MOSI. We can
observe that high values correspond to video clips
where audio, text and video are complementary
(e.g use of head node (McClave, 2000)) and low
values correspond to the case where there exists
contradictions across several modalities. Results
on MAGXLET can be found in sec. 8.3.
Takeaways: Tθ used to estimate the MDM pro-
vides a mean to interpret representations learnt by
the encoder.

6 Conclusions

In this paper, we introduced three new losses based
on MDM. Through extensive set of experiments on
CMU-MOSI and CMU-MOSEI, we have shown that
SOTA architectures can benefit from these innova-
tions with little modifications. A by-product of our
method involves a statistical network that is a useful
tool to explain the learnt high dimensional multi-
modal representations. This work paves the way
for using and developing new alternative methods
to improve the learning (e.g new estimator of mu-
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tual information (Colombo et al., 2021a), Wasser-
stein Barycenters (Colombo et al., 2021b), Data
Depths (Staerman et al., 2021), Extreme Value The-
ory (Jalalzai et al., 2020)). A future line of research
involves using this methods for emotion (Colombo
et al., 2019; Witon et al., 2018) and dialog act (Cha-
puis et al., 2021, 2020a,b) classification with pre-
trained model tailored for spoken language (Dinkar
et al., 2020).
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8 Supplementary

8.1 Training details

In this section, we both present a comprehensive il-
lustration of the Algorithm 1 and state the details of
experimental hyperparameters selection as well as
and the architectures used for the statistic network
Tθ.

8.1.1 Illustration of Algorithm 1

Fig. 3 describes the Algorithm 1. As can be seen
in the figure, to compute the mutual dependency
measure the statistic network Tθ takes the two em-
beddings of the different batch B and B̄.

Figure 3: Illustration of the method describes in Al-
gorithm 1 for the different estimators derived from
Th. 1. B and B̄ stands for the batch of data sample
from the joint probability distribution and the product
of the marginal distribution respectively. Zavl denotes
the fusion representation of linguistic, acoustic and vi-
sual (resp. l, a and v) modalities provided by a multi-
modal architecture fθe for the batch B . Zlav denotes
the same quantity as described before for the batch B̄.
Aθp denotes the linear projection before classification
or regression.

8.1.2 Hyperparameters selection

We use dropout (Srivastava et al., 2014) and opti-
mise the global loss Eq. 5 by gradient descent using
AdamW (Loshchilov and Hutter, 2017; Kingma
and Ba, 2014) optimiser. The best learning rate is
found in the grid {0.002, 0.001, 0.0005, 0.0001}.
The best model is selected using the lowest MAE
on the validation set. We Unroll to 10.

8.1.3 Architectures of Tθ
Across the different experiment we use a statis-
tic network with an architecture as describes in
Tab. 4. We follow (Belghazi et al., 2018) and use
LeakyRELU (Agarap, 2018; Xu et al., 2015) as
activation function.

Statistic Network
Layer Number of outputs Activation function
[Zlav, Z lav] din, din -
Dense layer din/2 LeakyReLU
Dropout 0.4 -
Dense layer din LeakyReLU
Dropout 0.4 -
Dense layer din LeakyReLU
Dropout 0.4 -
Dense layer din/4 LeakyReLU
Dropout 0.4 -
Dense layer din/4 LeakyReLU
Dropout 0.4 -
Dense layer 1 Sigmoïd

Table 4: Statistics network description. din denotes the
dimension of Zavl.

8.2 Additional experiments for robustness to
modality drop

Fig. 4 shows the results of the robustness text on
MAGXLNET. Similarly to Fig. 2 we observe more
robust representation to modality drop when jointly
maximising the LW and Lkl with the target loss.
Fig. 4 shows no improvement when training with
Lf . This can also be linked to Tab. 2 which simi-
larly shows no improvement in this very specific
configuration.
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Figure 4: Study of the robustness of the representations
against a drop of the linguistic modality. Studied model
is MAGXLNET on CMU-MOSI. The ratio between the
accuracy achieved with a corrupted linguistic modality
Acccorrupt2 and the accuracy Acc2 without any corrup-
tion is reported on y-axis. The preserved modalities
during inference are reported on x-axis. A, V respec-
tively stands for the acoustic and visual modality.

8.3 Additional qualitative examples
Tab. 5 illustrates the use of Tθ to explain the repre-
sentations learnt by the model. Similarly to Tab. 4
we observe that high values correspond to com-
plementarity across modalities and low values are
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related to contradictoriness across modalities.
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Spoken Transcripts Acoustic and visual behaviour Tθ
but the m the script is corny high energy voice + headshake + (many) smiles L
as for gi joe was it was just like laughing
its the the plot the the acting is terrible

high enery voice + laughts + smiles L

but i think this one did beat scream 2 now headshake + long sigh L
the xxx sequence is really well done static head + low energy monotonous voice L
you know of course i was waithing for the princess and the frog smiles + high energy voice + + high pitch H
dennis quaid i think had a lot of fun smiles + high energy voice H
it was very very very boring low energy voice + frown eyebrows H
i do not wanna see any more of this angry voice + angry facial expression H

Table 5: Examples from the CMU-MOSI dataset using MAGXLNET trained with LW . The last column is computed
using the statistic network Tθ. L stands for low values and H stands for high values. Green, grey, red highlight
positive, neutral and negative expression/behaviours respectively.


