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Abstract

Even though large pre-trained multilingual
models (e.g. mBERT, XLM-R) have led to sig-
nificant performance gains on a wide range
of cross-lingual NLP tasks, success on many
downstream tasks still relies on the availabil-
ity of sufficient annotated data. Traditional
fine-tuning of pre-trained models using only
a few target samples can cause over-fitting.
This can be quite limiting as most languages
in the world are under-resourced. In this work,
we investigate cross-lingual adaptation using
a simple nearest neighbor few-shot (< 15
samples) inference technique for classification
tasks. We experiment using a total of 16 dis-
tinct languages across two NLP tasks- XNLI
and PAWS-X. Our approach consistently im-
proves traditional fine-tuning using only a
handful of labeled samples in target locales.
We also demonstrate its generalization capabil-
ity across tasks.

1 Introduction

The rise of massively pre-trained multilingual lan-
guage models (LM)1 (Lample and Conneau, 2019;
Conneau et al., 2020; Chi et al., 2020; Luo et al.,
2020; Xue et al., 2020) has significantly improved
cross-lingual generalization across many languages
(Wu and Dredze, 2019; Pires et al., 2019; K et al.,
2020; Keung et al., 2019). Recent work on zero-
shot cross-lingual adaptation (Bari et al., 2020;
Fang et al., 2020; Pfeiffer et al., 2020), in the ab-
sence of labelled target data, has also demonstrated
impressive performance gains. Despite these suc-
cesses, however, there still remains a sizeable gap
between supervised and zero-shot performances.
On the other hand, when limited target language
data are available (i.e few-shot setting), traditional
fine-tuning of large pre-trained models can cause
over-fitting (Perez and Wang, 2017).

∗Work done while Saiful was interning at Amazon AI
1We loosely use the term LM to describe unsupervised

pretrained models including Masked-LMs and Causal-LMs

One way to deal with the scarcity of annotated data
is to augment synthetic data using techniques like
paraphrasing (Gao et al., 2020; Du et al., 2020),
word translation (Xie et al., 2018; Mohiuddin and
Joty, 2020; Mohiuddin et al., 2020), machine trans-
lation (Sennrich et al., 2015), data-augmentation
(Ding et al., 2020; Liu et al., 2021; Laskar et al.,
2020; Ding et al., 2020) and/or data-diversification
(Nguyen et al., 2019; Mohiuddin et al., 2021; Bari
et al., 2021). Few-shot learning, on the other hand,
deals with handling out-of-distribution (OOD) gen-
eralization problems using only a small amount of
data (Koch, 2015; Vinyals et al., 2016; Jake Snell,
2017; Santoro et al., 2017; Chelsea Finn, 2017).
In this setup, the model is evaluated over few-shot
tasks, such that the model learns to generalize to
new data (query set) using only a hand full of la-
beled samples (support set).
In a cross-lingual few-shot setup, the model learns
cross-lingual features to generalize to new lan-
guages. Recently, Nooralahzadeh et al. (2020) used
Meta-Learning (Finn et al., 2017) for few-shot
adaptation on several cross-lingual tasks. Their few-
shot setup used full development datasets of vari-
ous target languages (XNLI development set, for
instance, has over 2K samples). In general, they
showed the effectiveness of cross-lingual meta-
training in the presence of a large quantity of OOD
data. However, they did not provide any fine-tuning
baseline. On the contrary, (Lauscher et al., 2020)
explored few-shot learning but did not explore be-
yond fine-tuning. To the best of our knowledge,
there has been no prior work in cross-lingual NLP
that uses only a handful of target samples (< 15)
and yet surpasses or matches traditional fine-tuning
(on the same number of samples).
Traditional finetuning (parametric) approaches re-
quire proper hyperparameter tuning techniques for
the learning rate, scheduling, optimizer, batch size,
up-sampling few-shot support samples and failing
to do so would often led to model over-fitting. It
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can be expensive to update parameters of large
model frequently for few shot adaption, each time
there is a fresh batch of support samples. As the
model grows bigger, it becomes almost unscalable
to update weights frequently for few shot adapta-
tion. It takes significant amount of time to update
gradients for a few number of samples and then
perform inference. There have been previous suc-
cessful attempts to inject external knowledge via
non-parametric methods (Wang et al., 2017; Khan-
delwal et al., 2020, 2019).
In this work, we explore a simple Nearest Neigh-
bor Few-shot Inference (NNFS) approach for cross-
lingual classification tasks. Our main objective is
to utilize very few samples to perform adaptation
on a given target language. To achieve this, we
first fine-tune a multilingual LM on a high resource
source language (i.e., English), and then apply few-
shot inference using few support examples from
the target language. Unlike other popular meta-
learning approaches that focus on improving the
fine-tuning/training setup to achieve better general-
ization (Chelsea Finn, 2017; Ravi and Larochelle,
2017b), our approach applies to the inference phase.
Hence, we do not update the weights of the LM
using target language samples. This makes our ap-
proach complimentary to other regularized fine-
tuning based few-shot meta-learning approaches.
Our key contributions are as follows:

• We propose a simple method for cross-lingual
few-shot adaptation on classification tasks dur-
ing inference. Since our approach applies to infer-
ence, it does not require updating the LM weights
using target language data.

• Using only a few labeled target support samples,
we test our approach across 16 distinct languages
belonging to two NLP tasks and achieve consis-
tent improvements over traditional fine-tuning.

• We demonstrate that our proposed method gen-
eralizes well not only across languages but also
across tasks.

• As the support sets are minimal in size, subse-
quent results obtained using them can suffer from
high variability. We borrow the idea of episodic
testing widely used in computer vision few-shot
tasks, to evaluate few-shot performance for NLP
tasks (more details in section 3.3).

We also opensource our implementation2.
2https://github.com/amazon-research/nearest-neighbor-

crosslingual-classification

2 Method

The objective of few-shot learning is to adapt
from a source distribution to a new target distri-
bution using only few samples. The traditional few-
shot setup (Chelsea Finn, 2017; Snell et al., 2017;
Vinyals et al., 2016) involves adapting a model to
the distribution of new classes. Similarly, in a cross-
lingual setup, we adapt a pre-trained LM, that has
been fine-tuned using a high resource language, to
a new target language distribution (Lauscher et al.,
2020; Nooralahzadeh et al., 2020).

2.1 Setup
We begin by fine-tuning a pre-trained model θlm
(Conneau et al., 2020) to a specific task Ts using
a high resource (source) language data set Dsrc =
(Xsrc,Ysrc), to get an adapted model θsrcTs . We use
θsrcTs to perform few-shot adaptation.
In our few-shot setup, we assume to possess very
few labeled support samples Ds = (Xs,Ys) from
the target language distribution. A support set cov-
ers C classes, where each class carries N num-
ber of samples. This is a standard C-way-N -shot
few-shot learning setup. The objective of our pro-
posed method is to classify the unlabeled query
samples Dq = (Xq). We denote the latent repre-
sentation of the support and query samples as Xs

and Xq, respectively, where Xs = θsrcTs (Xs) and
Xq = θsrcTs (Xq) .

2.2 Nearest Neighbor Class
Let |Ds| and |Dq| be the total number of support
and query samples. For query samples Xq, feature
representations Xq is obtained by forward propaga-
tion on θsrcTs model. For each query representation
xq, we define a latent binary assignment vector
yq = [yq,1, yq,2..., yq,C ]. Here, yq,i is a binary vari-
able such that,

yqi = 1i(yq) :=

{
1 if yq ∈ i,
0 if yq /∈ i.

(1)

and
∑

i yqi = 1. Let Yq denote the RNq×C ma-
trix where each row represents the yq term of each
query.
We compute the centroid, mc, of each class by
taking the mean of its support representations Xs.
Next, we compute the distances between each xq
and mc (Equation 2). Our loss function becomes,

Nq∑
i=1

C∑
c=1

yq,cd(xq,mc) (2)



1747

Finally, we assign each xq the label of the class it
has the minimum distance to. This is done using
the following function,

yqc∗ =

1 if c = argmin
c∗∈{1,2,...,C}

d(xq,mc)

0 otherwise
(3)

Algorithm 1 Nearest Neighbor Few-shot Inference
Input: Model θsrcTs trained using source language, support set
Ds = (Xs,Ys), query Set Dq = (Xq), mean representation
of train/dev samples ms

Output: Distribution of the query label, Yq

1: /* feature representation
normalization */

2: X̂s, X̂q = θsrcTs (Xs), θsrcTs (Xq)

3: X̃s, X̃q = X̂s −ms, X̂q −ms

4: Xs, Xq = X̃s

||X̃s||2
,

X̃q

||X̃q||2
5: /* Calculate mc */
6: η = 1

|Ds|
∑|Ds|

i=1 Xs − 1
|Dq|

∑|Dq|
i=1 Xq

7: Xq = Xq + η
8: /* Calculate mean representation of

each of the classes */
9: m̂c = 1∑|Ds|

i 1{c}(Yi)

∑|Ds|
i 1{c}(Yi)Xi

10: ŷqc∗ =

1 if c∗ = arg min
c∈{1,2,...,C}

(1− cos(Xq, m̂c))

0 otherwise

11: /*Dc
i accumulates all the samples for

the class c from i dataset */
12: mc = 1

|Dc
s|+|Dc

q|
∑

X′∈{Xc
s ,X

c
q}

exp(cos(X′,m̂c))∑c
c=1 exp(cos(X′,m̂c)

X′

13: aq = [aq,1, aq,2, ..., aq,C ]; aq,c = d(xq,mc)

14: yiq =
exp(−aq)

exp(−aq)[1,1,...]t

15: Return Yq =
{
yq
}|Xq|

q=1

Traditional inductive inference handles each
query sample (one at a time), independent of other
query samples. On the contrary, our proposed
approach includes additional Normalization and
Transduction steps. Algorithm 1 illustrates our
approach. Here we discuss these additional steps
in more detail.

Norm. We measure the cross-lingual shift as the
difference between the mean representations of
the support set (target language) and the training
set (en), ms. We then perform cross-lingual shift
correction on the query set. To achieve this, at first,
we extract the latent representation of both support
and query samples from θsrcTs (Xs). We then center
the representation (Alg 1 #3) by subtracting the
mean representation of the train/dev data of the
source language, followed by L2 normalization
of both representations (train/dev). Algorithm 1

(#2-7) further details our approach.

Transduction. We apply prototypical rectification
(proto-rect) (Liu et al., 2019) on the extracted fea-
tures of LM. In the rectification step, to compute
mc (in Alg.1), initially, we obtain the mean repre-
sentation for each of the support classes by taking
the weighted combination of Xs and Xq. Finally,
we calculate predictions on the query set using
equation 3. We also present our proposed NNFS
inference in Figure 2 in the Appendix.

3 Experimental Settings

3.1 Data

We use two standard multilingal datasets - XNLI
(Williams et al., 2018) (15 languages) and PAWS-X
(Zhang et al., 2019) (7 languages) to evaluate our
proposed method. Additional details on languages
and complexity of the task can be found in the Ap-
pendix. For few-Shot inference, we use samples
from the target language development data to con-
struct the support sets and the test data to construct
the query sets.

3.2 Fine-tuning

We use XLMR-large (Conneau et al., 2020) as our
pre-trained language model θlm and perform stan-
dard fine-tuning using labeled English data to adapt
it to task model θsrcTs . We tune the hyper-parameters
using English development data and report results
using the best performing model (optimal hyper-
parameters have been enlisted in the appendix). We
train our model using 5 different seeds and report
average results across them. We use the same op-
timal hyper-parameters to fine-tune on the target
languages. As baseline we add two additional fine-
tuning named head and full. Fine-tuning full means
all the parameters of the model are updated. This
is very unlikely in Few-shot scenarios. Fine-tuning
head means only the parameters of the last linear
layer are updated.

3.3 Evaluation Setup

Nooralahzadeh et al. (2020) and Lauscher et al.
(2020) used 10 and 5 different seeds to measure
the few-shot performance. As few-shot learning
involves randomly selecting small support sets,
results may vary greatly from one experiment to
the next, and hence may not be reliable (Le et al.,
2020). In computer vision, episodic testing (Ravi
and Larochelle, 2017a; Li et al., 2019; Ziko et al.,
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Exp. Type Resource fr es de el bg ru tr ar vi th zh hi sw ur avg

θsrcTs = Finetuned-XLM-R-large with XNLI dataset

Zero-Shot en 83.1 84.8 83.0 82.2 83.4 80.1 78.8 78.8 80.1 78.1 79.4 76.7 72.7 72.9 79.6
NN en+fs-3.5 83.0 84.6 82.7 82.0 83.3 80.3 78.9 79.2 80.2 78.3 79.5 76.6 71.9 73.0 79.5

+proto-rect en+fs-3.5 83.7 85.2 83.5 82.7 84.1 81.2 79.8 80.3 81.2 79.4 80.4 77.7 73.5 74.4 80.5
+norm en+fs-3.5 83.1 84.6 82.8 82.1 83.5 80.4 79.0 79.3 80.4 78.5 79.6 76.6 71.8 73.0 79.6

+proto-rect en+fs-3.5 83.8 85.2 83.4 82.8 84.2 81.3 79.8 80.2 81.3 79.4 80.3 77.7 73.2 74.2 80.5
Fine-tuning (full) en+fs-3.5 83.2 84.6 82.9 82.2 83.5 80.8 79.2 79.5 80.5 78.6 80.2 77.0 72.6 74.0 79.9
Fine-tuning (head) en+fs-3.5 83.2 84.9 83.2 82.3 83.5 80.4 79.0 79.1 80.3 78.4 79.6 76.9 72.9 73.2 79.8

Table 1: Few-shot XNLI accuracy results across 14 languages with average improvements for each of the methods.
All the confidence interval is less than .07 in the experiments. ”fs-3.5” means 3-way-5-shot learning.

Exp. Type Resource de es fr ja ko zh avg

θsrcTs = Finetuned-XLM-R-large with PAWS-X dataset

Zero-Shot en 89.8 89.6 90.5 78.8 78.6 81.9 84.9
NN en+fs-2.5 89.8 89.8 90.6 79.8 80.4 82.5 85.5

+proto-rect en+fs-2.5 90.3 90.2 91.0 80.5 81.2 83.3 86.1
+norm en+fs-2.5 90.0 90.2 90.8 79.9 80.7 82.7 85.7

+proto-rect en+fs-2.5 90.4 90.6 91.2 80.5 81.3 83.5 86.3
Fine-tuning (full) en+fs-2.5 88.9 89.1 89.6 79.2 79.7 82.0 84.7
Fine-tuning (head) en+fs-2.5 90.0 89.8 90.7 79.3 79.5 82.1 85.3

Table 2: Few-shot PAWS-X acc. results across 6
languages. Here in Resource column, ”en” indicates
model is trained with full English training data. fs-2.5
means 2-way-5-shot learning.

Exp. Type Resource en de es fr ja ko zh avg

θsrcTs = Finetuned-XLM-R-large with XNLI dataset

Zero-Shot en 41.4 43.5 44.1 43.8 46.0 46.7 44.4 44.3
NN en+fs-2.5 71.5 66.8 65.2 66.6 60.1 58.8 61.8 64.4

+proto-rect en+fs-2.5 70.5 66.1 65.1 66.2 60.0 58.6 61.6 64.0
+norm en+fs-2.5 72.2 67.8 66.1 67.2 60.8 59.7 62.5 65.2

+proto-rect en+fs-2.5 72.0 67.5 65.9 66.7 61.0 59.5 62.8 65.0
Fine-tuning (full) en+fs-2.5 64.4 59.4 58.3 59.6 54.0 53.7 54.8 57.7
Fine-tuning (head) en+fs-2.5 48.2 47.9 48.3 48.2 47.7 48.2 46.8 47.9

Table 3: PAWS-X accuracy results for cross-task ex-
periments across 6 languages. For this experiment, we
fine-tuned XLM-R LM using the XNLI task and then
applied few-shot inference on the PAWS-X task.

2020) is often used for evaluating few-shot exper-
iments. Each episode is composed of small ran-
domly selected support and query sets. Model’s
performance on each episode is noted, and the av-
erage performance score, alongside the confidence
interval (95%) across all episodes are reported. To
the best of our knowledge, episodic testing has not
been leveraged for cross-lingual few-shot learning
in NLP.
We evaluate our approach using 300 episodes per
seed model θsrcTs totalling 1500 episodic testing and
report their average scores. For each episode, we
perform C-way-N-shot inference. For 2-way-5-shot
setting, for instance, we randomly select 15 query
samples per class, and 2 × 5 number of support
samples. For XNLI and PAWS-X, we use 3 and 2
as the value of C, respectively. Our episodic testing

approach has been detailed further in the Episodic
Algorithm of the Appendix.

3.4 Results and Analysis

After training the model with the source language
samples (i.e. labeled English data), we perform ad-
ditional fine-tuning using C-way-5-shot target lan-
guage samples. Finally, we perform our proposed
NNFS inference.
The fine-tuning baseline using limited target lan-
guage samples result in small but non-significant
improvements over the zero-shot baseline. The
NNFS inference approach, however, resulted in
performance gains using only 15 (3-way-5-shot)
and 10 (2-way-5-shot) support examples for both
XNLI and PAWS-X tasks. When compared to the
few-shot baseline, we got an average improvement
of 0.6 on XNLI (table 4) and 1.0 on PAWS-X (table
5). At first we experimented with 3-shot support
samples but did not observe any few-shot capa-
bility in the model. We also experimented with
10-shot setup and found similar improvements of
NNFS on top of the Fine-tuning baseline (results
have been added to the Appendix). Interestingly,
for both cases, we observed higher performance
gains on low resource languages.
To further evaluate the effectiveness of our model,
we tested it in a cross-task setting. We first trained
the model on XNLI (EN data) and then used NNFS
inference on PAWS-X. Table 3 demonstrates an im-
pressive average performance gain of +7.3 across
all PAWS-X languages, over the fine-tuning base-
line.
In addition to that, NNFS inference approach is
fast. When compared to the zero-shot inference
(1X), our approach takes only ≈ 1.36− 1.7X time
of computation cost compared to the finetuning
time which takes ≈ 38− 40X. Table 6 in appendix
shows the inference time details on both tasks.
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4 Conclusion
The paper proposes a nearest neighbour based few-
shot adaptation algorithm accompanied by a nec-
essary evaluation protocol. Our approach does not
require updating the LM weights and thus avoids
over-fitting to limited samples. We experiment us-
ing two classification tasks and results demonstrate
consistent improvements over finetuning not only
across languages, but also across tasks.
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A Appendices

A.1 Decision choice for Episodic Testing

In the traditional testing framework, we sample a
batch from the dataset and calculate the batch’s pre-
diction. Finally, accumulate all the predictions to
calculate the score of the evaluation metric. How-
ever, Few-shot experiments are quite unpredictable
because of the following two reasons,

• Support set: Per class sampling strategy of
the support set is random. In a few shot ex-
periments, we perform inference on the test
dataset utilizing support-samples. For a dif-
ferent support set, the prediction may vary
drastically. However, taking few samples (ie.,
10 out of 2500 or 15 out of 2000) and doing
experiments 5-10 times doesn’t reflect the true
potential of a few-shot algorithm.

Figure 1: For a same query set result varies because of
different support set.

• Transductive inference: On the contrary, for
a few shot experiments, algorithms often per-
form transductive inference. In transductive
inference, predictions may vary based on the
combination of the query samples. Hence it is
challenging to benchmark the few shot algo-
rithms with the traditional testing framework.

In Episodic testing, we randomly sample a query
set and support set from the dataset and perform
few-shot experiments. We perform the experiments
until we get a low confidence-interval (95%). In
this way, we may iterate over the test dataset 5-
10 times more. However, it is not affected by the
above problems mentioned and can benchmark any
few-shot algorithm properly.

A.2 Extended Dataset

XNLI We use XNLI dataset (Conneau et al.,
2018) which extends the MultiNLI dataset
(Williams et al., 2018) to 15 languages. MultiNLI
dataset contains sentences from 10 different genres.
The objective is to identify if a premise entails with
the hypothesis. It is a crowd sourced 3-class clas-
sification dataset covering 14 languages that have
been translated from English. These locales include
French (fr), Spanish (es), German (de), Greek (el),
Bulgarian (bg), Russian (ru), Turkish (tr), Arabic
(a), Vietnamese (vi), Thai (th), Chinese (zh), Hindi
(hi), Swahili (sw), and Urdu (ur). It comes with
human translated dev and test splits. The dataset
is balanced and contains 392702, 2490 and 5010
numbers of train, dev and test instance for each of
the language, respectively.

PAWSX Given a pair of sentences, the objec-
tive of PAWS (Paraphrase Adversaries from Word
Scrambling) (Zhang et al., 2019) is to classify if
the pair is a paraphrase or not. PAWS-X dataset
contains six topologically different languages that
have been machine translated from English. These
include French (fr), Spanish (es), German (de), Ko-
rean (ko), Japanese (ja), and Chinese (zh). Similar
to XNLI, it also comes with human translated dev
and test split.

Challenges Both datasets posses different chal-
lenges. NLI task requires rich and a high level of
factual understanding of the text. The PAWS task,
on the other hand, contains pairs of sentences that
usually have a high lexical overlap and may/may
not be paraphrases. We use accuracy as the evalua-
tion metric for both datasets.

10 Shot results For reference we have added 10
shot experiment for XNLI and PAWSX dataset with
same setup as Table 1 and Table 2 of main paper.

A.3 Hyperparameters and Resource
Description

We used 8 V100 GPUs (amazon p3.16xlarge) to
run all experiments. The hyper-parameters of the
best performing model are enlisted in Table 6. In
the pretrained language model finetuning, We use
(1e-5, 3e-5, 5e-5, 7.5e-6 ,5e-6) boundary values to
search for proper learning rate.

http://arxiv.org/abs/2006.15486
http://arxiv.org/abs/2006.15486
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Figure 2: Training flow diagram of nearest neighbour few-shot learning for cross-lingual NLP. In the Pre-training
Step we train a language model θlm on the source language (en) data (Xsrc,Ysrc) to get θsrcTs

. In Few-Shot
Inference Step, we apply forward propagation on the θsrcTs

model using support input samples Xs and Xq and get
the latent representations Xs and Ys. Using Xs, we apply normalization and calculate mc. We then use both Xs

and Xq , and compute the unary term aq , which in turn gives the label distribution of the query samples (see in Alg.
Few Shot Inference. line #14-15 ).

Algorithm 2 Episodic Testing
Input: Model θsrcTs trained using the source language, transductive parameter λ, mean representation of train/dev samples ms, a
threshold value eps, a multiplier τ , input data (C-way-N -shot)
Output: Average s̄ score and the confidence interval ∂

1: se = φ . score list for all the episodes.
2: for e ∈ [1 : totEpisode] do
3: /* Random sampling */

4: /* Randomly select C number of classes */

5: MetaClass = SelectRandomClasses(C)
6: /*bs = Batch Size*/

7: Xs,Ys = SupportIterator.next(bs=(C-way-N shot)) . Iterator ∈MetaClass.
8: Xq = QueryIterator.next(bs=(C-way-N × τ shot)) . Iterator ∈MetaClass.
9: /* Perform Inference using Respective few-shot algorithm. */

10: Yq = FewShotInference(θsrcTs , (Xs,Ys), (Xq), λ,ms, eps) . Using Alg. Few Shot Inference.
11: s = CalcScore(Yq)
12: se = se ∪ {s}
13: s̄, ∂ = Average(se), ConfidenceInterval(se)
14: Return s̄, ∂

Exp. Type Resource fr es de el bg ru tr ar vi th zh hi sw ur avg

θsrcTs = Finetuned-XLM-R-large with XNLI dataset

Zero-Shot en 83.1 84.8 83.0 82.1 83.3 80.2 78.9 78.7 80.1 78.1 79.5 76.7 72.5 73.0 79.6
NN en+fs-3.10 83.4 85.0 83.1 82.5 83.8 80.9 79.5 79.8 80.8 79.2 80.3 77.4 72.9 74.0 80.2

+proto-rect en+fs-3.10 83.8 85.3 83.6 82.8 84.1 81.2 79.9 80.4 81.3 79.6 80.7 78.1 73.6 74.7 80.6
+norm en+fs-3.10 83.5 85.0 83.2 82.6 83.8 81.1 79.6 79.8 81.0 79.3 80.3 77.5 73.0 74.0 80.3
+norm+proto-rect en+fs-3.10 83.8 85.2 83.6 82.8 84.2 81.4 80.0 80.4 81.4 79.7 80.7 78.1 73.5 74.6 80.7

Fine-tuning (full) en+fs-3.10 83.2 84.5 82.9 82.5 83.7 81.2 79.5 79.8 80.8 78.9 80.5 77.3 72.6 74.2 80.1
Fine-tuning (head) en+fs-3.10 83.3 85.0 83.2 82.4 83.5 80.6 79.2 79.4 80.5 78.6 79.9 77.2 72.8 73.6 79.9

Table 4: 10-shot XNLI accuracy results across 14 languages with average improvements for each of the methods.
All the confidence interval is less than .07 in the experiments.

B Reproducibility Settings and Notes

• python3.6.13. Pytorch1.7.1, CUDA10.2,
cuDNN7605

• transformers4.6.0
• Average runtime: See table 7.
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Exp. Type Resource de es fr ja ko zh avg

θsrcTs = Finetuned-XLM-R-large with PAWS-X dataset

Zero-Shot en 89.8 89.6 90.6 78.8 78.4 81.8 84.8
NN en+fs-2.10 90.0 90.1 90.8 80.2 80.7 83.2 85.8

+proto-rect en+fs-2.10 90.3 90.3 91.2 80.5 81.2 83.5 86.2
+norm en+fs-2.10 90.1 90.4 91.1 80.3 81.0 83.3 86.0
+norm+proto-rect en+fs-2.10 90.4 90.7 91.4 80.7 81.5 83.7 86.4

Fine-tuning (full) en+fs-2.10 89.4 89.6 90.1 79.9 80.6 82.6 85.4
Fine-tuning (head) een+fs-2.10 90.1 90.1 91.0 79.9 79.8 82.5 85.6

Table 5: 10-shot PAWS-X acc. results across 6 languages. Here in Resource column, ”en” indicates model is trained
with full english training data.

Hyperparameter Value
LM XLMR-large
# of params 550M
learning rate 7.5e-6
Max Sequence Length 128
Per GPU batch size 8
Gradient accumulation step 2
Multi-GPU training 8
Effective batch size 128
Number of epoch 10
Warmup step in pre-training 6% of total number of steps
Total number of episodic test 1000
finetuning batch-size 16
finetuning learning rate 7.5e-6
finetuning schedueler constant scheduler

Table 6: Optimal hyper-parameter settings.

Exp. Type PAWSX XNLI
fs-2.5 fs-2.10 fs-3.5 fs-3.10

Zero-Shot 1x 1x 1.35x 1x
NN 1.36x 1.71x 1.35x 1.66x

+proto-rect 1.37x 1.71x 1.35x 1.67x
+norm 1.36x 1.71x 1.35x 1.66x

+proto-rect 1.37x 1.71x 1.35x 1.67x
Fine-tuning (full) 22.44x 41.86x 21.01x 38.69
Fine-tuning (head) 20.48x 38.02x 19.24x 35.17

Table 7: Inference time for each of the task.


