
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 1558–1570
November 7–11, 2021. c©2021 Association for Computational Linguistics

1558

Abstract

High-performance neural language models

have obtained state-of-the-art results on a

wide range of Natural Language

Processing (NLP) tasks. However, results

for common benchmark datasets often do

not reflect model reliability and robustness

when applied to noisy, real-world data. In

this study, we design and implement

various types of character-level and word-

level perturbation methods to simulate

realistic scenarios in which input texts may

be slightly noisy or different from the data

distribution on which NLP systems were

trained. Conducting comprehensive

experiments on different NLP tasks, we

investigate the ability of high-performance

language models such as BERT, XLNet,

RoBERTa, and ELMo in handling different

types of input perturbations. The results

suggest that language models are sensitive

to input perturbations and their

performance can decrease even when small

changes are introduced. We highlight that

models need to be further improved and

that current benchmarks are not reflecting

model robustness well. We argue that

evaluations on perturbed inputs should

routinely complement widely-used

benchmarks in order to yield a more

realistic understanding of NLP systems’

robustness.

1 Introduction

High-performance deep neural language models

such as BERT (Devlin et al., 2018), XLNet (Z.

1 https://rajpurkar.github.io/SQuAD-
explorer/

Yang et al., 2019), and GPT-2 (Radford et al.,

2019) have brought breakthroughs to a wide range

of Natural Language Processing (NLP) tasks

including text classification, sentiment analysis,

textual entailment, natural language inference,

machine translation, and question answering. Their

immense ability in capturing various linguistic

properties has led these state-of-the-art language

models to master different NLP tasks, even

surpassing human accuracy on some benchmarks

such as SQuAD1.

However, recent studies have revealed that there

is a gap between performing well on benchmarks

and actually working under real-world situations

(Belinkov and Bisk, 2018; Ribeiro et al., 2020).

Even a well-trained, high-performance deep

language model can be sensitive to negligible

changes in the input that cause the model to make

erroneous decisions (M. Sun et al., 2018). This

raises serious concerns regarding the

robustness/reliability of neural language models

utilized in real-world applications. The terms

‘robustness’ and ‘reliability’ refer to the ability of a

system to perform consistently well in situations

where changes to input should not cause a change

in the system’s output, or the system is expected to

properly reflect the change and produce a correct

outcome.

Applying automatic or human-controlled

perturbations to textual inputs has been shown to

be effective for evaluating the robustness of NLP

systems, investigating their vulnerabilities, and

finding their bugs. Recently, CheckList (Ribeiro et

al., 2020) provided a framework for behavioral

testing of NLP systems inspired by black-box

Evaluating the Robustness of Neural Language Models to Input

Perturbations

Milad Moradi, Matthias Samwald

Institute for Artificial Intelligence

Medical University of Vienna, Austria
{milad.moradivastegani, matthias.samwald}@meduniwien.ac.at

1559

testing in software engineering. CheckList enabled

generating new (perturbed) test samples through

abstracting different test types aimed at testing

linguistic capabilities. Other studies focused on

evaluating robustness to perturbed inputs for

machine translation (Belinkov and Bisk, 2018; Niu

et al., 2020), perturbation sensitivity analysis for

detecting unintended model biases (Prabhakaran et

al., 2019), or robustness to adversarial

perturbations (Alshemali and Kalita, 2020;

Ebrahimi et al., 2018; Liang et al., 2018). However,

a comprehensive methodology for evaluating the

performance of NLP models under real-world

conditions is still missing.

In a realistic scenario, the input text may contain

typos and misspellings that should not cause any

changes in the NLP system’s outcome. Minor

grammatical errors may appear in the text, but the

semantics is still preserved, therefore, the NLP

system is expected to treat the input as it was error-

free. Some deliberate or unintentional changes may

modify the semantics, and the NLP model is

expected to reflect the changes in the outcome.

These are only few examples of natural noise in

text data that NLP systems should have the ability

to properly deal with.

In this paper, we design and implement a wide

range of character-level and word-level systematic

perturbations to textual inputs in order to simulate

different types of noise that a NLP system may face

in real-world use cases. Conducting extensive

experiments on various NLP tasks, we investigated

the ability of four neural language models, i.e.

BERT, RoBERTa, XLNet, and ELMo, in handling

slightly perturbed inputs. The results reveal that the

neural models are unstable to small changes that

can be easily handled by humans, e.g. misspellings,

missing words, repeated words, synonyms, etc.

The systematic input perturbations can expose the

vulnerabilities of NLP systems and bring more

insights into how high-performance models

behave when they encounter noisy yet

understandable inputs. This study suggests that the

performance of NLP models should not be

overestimated by only relying on accuracy scores

obtained on benchmark datasets.

Similar to CheckList, our perturbation

framework treats NLP systems as black-boxes.

This facilitates comparison of different models,

without needing to know the model structure and

internals. CheckList focuses on testing linguistic

capabilities of NLP systems, e.g. handling

coreferences, identifying named entities, semantic

role labeling, and vocabulary. On the other hand,

our perturbation methods aim at evaluating the

robustness of NLP systems to noisy inputs. Our

input perturbation framework can act as a

complement to the CheckList testing methodology.

In CheckList, many test types rely on creating

synthetic samples from scratch by the user, which

is a time-consuming task, and needs much

creativity and effort. Moreover, synthetic samples

may suffer from low coverage (Ribeiro et al.,

2020). However, most of the perturbation methods

introduced in this paper do not need human

intervention; they can automatically generate

perturbed samples that still preserve the semantics

and are sufficiently meaningful to users.

Some types of perturbation utilized in this work

were already tested in previous work on adversarial

attacks on NLP systems (Zeng et al., 2020; Zhang

et al., 2020). However, adversarial perturbations

are considered worst-case scenarios that do not

occur frequently in real-world situations,

representing a very specific type of noise (Fawzi et

al., 2016). In order to generate effective adversarial

examples, most attack methods need to have access

to the NLP model structure, internal weights, and

hyperparameters, which may not be possible in

every testing scenario (Zhang et al., 2020).

Furthermore, adversarial perturbations should not

be perceived by humans (Liang et al., 2018). This

is a serious challenge, since even small changes to

a text may be easily recognized by the user.

To the best of our knowledge, this paper is the

first study that presents empirical results achieved

with a comprehensive set of non-adversarial

perturbation methods for testing robustness of NLP

systems on non-synthetic text. An important

contribution of this work is to evaluate the

robustness of several high-performance language

models on various NLP tasks using different types

of character-level and word-level input

perturbations. Moreover, to ascertain the

usefulness of the perturbations (i.e. how effectively

they can be used to automatically generate

meaningful and understandable perturbed

samples), we conducted an extensive user study.

2 NLP tasks

In our experiments, we used five datasets covering

five different NLP tasks. Table 1 summarizes some

statistics of the datasets. A short description of the

datasets is given in the following.

1560

TREC (Li and Roth, 2002) is a Text

Classification (TC) dataset containing more than

6,000 questions and 50 different class labels that

specify the type of questions.

Stanford Sentiment Treebank (SST) (Socher

et al., 2013) is a Sentiment Analysis (SA) dataset

containing more than 11,000 movie reviews from

‘Rotten Tomatoes’. Every review is classified into

one of the five classes: very positive, positive,

neutral, negative, and very negative.

CoNLL-20032 is a Named Entity Recognition

(NER) dataset containing news stories from the

Reuters corpus with more than 200K tokens

annotated as Person, Organization, Location,

Miscellaneous, or Other.

STS benchmark (Cer et al., 2017) is a Semantic

Similarity (SS) dataset comprising of more than 8K

text pairs extracted from image captions, news

headlines, and user forums. Each pair of sentences

is assigned a similarity score between 0 and 5.

WikiQA (WQA) (Y. Yang et al., 2015) is a

Question Answering (QA) dataset composed of

more than 3,000 questions and 29,000 sentences as

answers extracted from Wikipedia.

3 Language models

In our experiments, we utilized four neural

language models shown to be effective in learning

bidirectional contexts and obtained state-of-the-art

results during recent years:

BERT (Devlin et al., 2018) is composed of deep

encoder transformer layers and uses two

pretraining objectives, i.e. masked language

modelling and next sentence prediction. We used

the BERTLARGE architecture (along with the cased

model) containing 24 transformer layers, 1024

hidden units per layer, 16 attention heads per

hidden unit, and 340 million parameters.

RoBERTa (Liu et al., 2019) uses a model

architecture similar to BERT, but adopts an

optimized pretraining approach. It was pretrained

on more data, with bigger batch sizes and longer

sequences than BERT. Furthermore, the next

sentence prediction objective was removed and a

dynamic masking strategy replaced the basic

masking method. We used RoBERTaLARGE that

further optimizes the same model as BERTLARGE.

XLNet (Z. Yang et al., 2019) utilizes decoder

transformers and adopts a permutation language

2https://github.com/synalp/NER/tree/mast

er/corpus/CoNLL-2003

modelling approach along with generalized

autoregressive pretraining. We used the

XLNetLARGE model, with the same architecture

hyperparameters and model size as BERTLARGE.

ELMo (Peters et al., 2018) is a contextualized

word representation method that utilizes character

convolutions along with shallow concatenation of

backward and forward LSTMs to implement

bidirectional language modeling. We used the

original ELMo model composed of two highway

layers with an LSTM hidden size of 4096, output

size of 512, and a total parameters of 93.6 million.

The contextualized embeddings computed by

ELMo were fed into a dense layer containing 128

hidden units followed by an output layer with a

softmax activation in the TC and QA tasks, a linear

activation in the SA and SS tasks, and CRF layer

with a linear activation in the NER task.

We retrieved the pretrained models, fine-tuned

them separately on each downstream task using the

training and development sets, and tested them on

the test sets. We utilized the Huggingface

transformers (Wolf et al., 2020) and FARM 3

libraries to implement the transformer-based

models. A complete list of hyperparameter values

is presented in Appendix A.

4 Perturbation methods

We designed and implemented various character-

level and word-level perturbation methods that

simulate different types of noise an NLP system

may encounter in real-world situations. The

perturbations can be produced for every dataset

regardless of the underlying language model or

NLP system being tested. Table 2 presents an

example for every perturbation method. The

perturbation methods were implemented in Python

using the NLTK library. The source code is

available at https://github.com/mmoradi-

iut/NLP-perturbation.

3https://github.com/deepset-ai/FARM

Dataset Task Train Dev Test Eval. Measure

TREC TC 5,000 452 500 Micro F1-score

SST SA 8,544 1,101 2,210 Accuracy

CoNLL NER 14,041 3,250 3,453 F1-score

STS SS 5,749 1,500 1,379 Pearson

WQA QA 2,117 296 630 F1-score

Table 1: The main statistics of the datasets used to

conduct the perturbation experiments.

https://github.com/mmoradi-iut/NLP-perturbation
https://github.com/mmoradi-iut/NLP-perturbation

1561

Almost all the character-level perturbations

presented here were already tested in adversarial

attack scenarios (Heigold et al., 2018; Zeng et al.,

2020; Zhang et al., 2020), but were not yet

implemented in a non-adversarial testing

framework, except the misspelling perturbation

implemented by CheckList. Among the word-level

perturbations, Deletion, Repetition,

Singular/plural verbs, Word order, and Verb tense

were not already used to test the robustness.

However, Negation was included in CheckList,

and Replacement with Synonyms was used for

adversarial attack (Dong et al., 2020; Ren et al.,

2019).

4.1 Character-level perturbation

These perturbation methods randomly select a

word, denoted as Wordi, and apply perturbations to

its characters. They are described in the following.

Insertion. A character is randomly selected and

inserted in a random position (except the first and

last position) if Wordi contains at least three

characters.

Deletion. A character is randomly selected and

deleted if Wordi contains at least three characters.

The last and first characters of Wordi are never

deleted.

Replacement. A character is randomly selected

and is replaced by an adjacent character on the

keyboard.

4https://en.wikipedia.org/wiki/Wikipedia

:Lists_of_common_misspellings/For_machin

es/

Swapping. A character is randomly selected and

swapped with the adjacent right or left character in

Wordi.

Repetition. A character in a random position

(except the first and last position) is selected and a

copy of it is inserted right after the selected

character.

Common misspelled words. If a word in the

input text appears in the Wikipedia corpus of

common misspelled words4 , it is replaced by its

misspelling.

Letter case changing toggles the letter case, i.e.

converts a lower case character to its upper case

form and vice versa. The letter case changing is

done for either the first or all the characters of

Wordi. The type of letter case changing is specified

in a random manner.

4.2 Word-level perturbation

Deletion randomly selects a word from the input

sample and removes it.

Repetition selects a random word, makes a

copy of it, and inserts it right after the selected

word.

Replacement with synonyms replaces words

contained in the sample by their synonyms

extracted from the WordNet lexical database

(Miller, 1995).

Negation. It identifies verbs in the sample, then

injects negations by converting positive verbs to

negative, or removes negation by converting

negative verbs to positive. The goal is to

Perturbation Original text Perturbed text

Character-level

Insertion Who was the first governor of Alaska? Who was the firsdt governor of Alaska?

Deletion Mercury, what year was it discovered? Mercury, what year was it discovred?

Replacement Who is the Prime Minister of Canada? Who is the Prime Monister of Canada?

Swapping What is the primary language in Iceland? What is the primary lnaguage in Iceland?

Repetition How many hearts does an octopus have? How many heartts does an octopus have?

CMW What kind of gas is in a fluorescent bulb? What kind of gas is in a florescent bulb?

LCC How many hearts does an octopus have? How many hearts does an OCTOPUS have?

Word-level

Deletion How much was a ticket for the Titanic? How much a ticket for the Titanic?

Repetition What is another name for vitamin B1? What is another name name for vitamin B1?

RWS What precious stone is a form of pure carbon? What valued rock is a form of pure carbon?

Negation What planet is known as the “red” planet? What planet is not known as the “red” planet?

SPV What does a barometer measure? What do a barometer measure?

Verb tense Why in tennis are zero points called love? Why in tennis were zero points called love?

Word order What is the most common eye color? What is the common most color eye?

Table 2: Character-level and word-level perturbation examples from the TREC question classification dataset.

CMW: Common Misspelled Words, LCC: Letter Case Changing, RWS: Replacement With Synonyms, SPV:

Singular/Plural Verbs.

1562

investigate the ability of the NLP system in

adapting its outcome to reflect the injected or

removed negation.

This perturbation method operates based on a

set of rules that assess verbs, subjects, and verb

tenses based on POS tags, then applies an

appropriate rule to construct the test sample. For

example, if the POS tag of a verb is VBZ, the verb

appears in the third person simple present form.

Therefore, the verb is replace by [does not + VBP]

where VBP is the basic form of the verb, in order

to inject negation into the sample.

Singular/plural verbs. It simulates a common

error in real use cases, i.e. using plural form of a

verb instead of the singular form, and vice versa,

usually with a third-person subject. This

perturbation does not usually change the text’s

meaning in most NLP tasks if the task does not rely

on the subject-verb agreement. Therefore the NLP

system should treat the perturbed sample as an

unperturbed text.

Word order. It randomly selects M consecutive

words from the sample and changes the order in

which they appear in the text. The goal is to

investigate whether the NLP system is sensitive to

word ordering or it only decides based on the

presence of words in the input.

Verb tense. It converts present simple or

continuous verbs to their corresponding past

simple or continuous forms, or vice versa. The goal

is to assess the sensitivity of the NLP system to

changing the verb tense in tasks where the verb

tense is not important to the output. In this case, the

system’s output should not change after modifying

the verb tense. This method first extracts POS tags

to identify verbs and their subjects. It then converts

the verb tense using the mlconjug3 package and

reconstruct the sentence with the new verb tense.

5 Experimental results

All the experiments were performed on a computer

with an Intel Core i5-9600K CPU at 3.70GHz, 32

GB of RAM, and a GeForce RTX 2080 Ti graphic

card (GPU) with 11 GB dedicated memory.

Perturbation methods ran on CPU; fine-tuning on

training sets, and evaluating on test sets and

perturbed samples ran on GPU.

5.1 Performance on perturbed inputs

Since it has been proven that sentences that contain

few typos, misspellings, or minor character-level

errors can be still fully understandable to humans

(Belinkov and Bisk, 2018; Xu and Du, 2020),

character-level perturbations are not expected to

change the text’s meaning in most cases.

Therefore, they can be automatically produced and

used for testing the robustness of NLP systems.

On the other hand, some word-level

perturbations may change the text’s meaning.

Task LM Test set

Character-level perturbation methods

Insertion Deletion Replace Swap Repeat CMW LCC

TC

BERT 90.4 77.4 76.2 76.1 76.5 78.8 58.4 78.3

RoBERTa 93.1 79.2 78.9 76.3 76.7 80.8 60.5 78.9

XLNet 92.0 78.1 78.3 76.5 75.2 80.2 61.5 77.4

ELMo 84.8 80.4 78.5 74.7 75.6 79.6 61.9 80.8

SA

BERT 92.2 77.1 75.6 75.5 78.3 77.9 62.0 76.7

RoBERTa 94.0 79.3 76.8 75.1 76.2 79.3 64.0 78.3

XLNet 93.1 78.3 78.7 75.9 73.8 81.1 65.6 78.9

ELMo 87.6 79.7 79.0 76.2 78.1 78.4 64.1 79.1

NER

BERT 92.6 83.6 80.7 81.4 82.5 81.9 71.3 81.2

RoBERTa 93.3 84.3 80.9 81.7 83.1 82.4 71.8 81.5

XLNet 92.7 83.9 81.1 81.3 82.7 81.5 71.6 81.3

ELMo 90.2 83.0 80.2 80.9 82.2 81.3 70.8 81.0

SS

BERT 82.5 72.9 71.5 73.0 74.3 74.2 68.6 73.8

RoBERTa 83.9 73.5 72.8 73.6 75.1 74.7 69.5 74.9

XLNet 83.3 73.3 72.0 73.2 74.6 74.1 67.9 74.4

ELMo 80.7 71.1 70.9 72.3 73.8 72.5 67.0 72.6

QA

BERT 91.6 82.7 80.5 81.1 81.9 79.8 68.6 80.7

RoBERTa 94.9 84.1 81.7 82.9 83.2 81.6 72.5 84.0

XLNet 93.4 83.5 81.1 82.3 81.9 82.8 71.5 83.3

ELMo 85.5 80.6 79.5 76.0 78.3 80.1 67.9 81.1

Table 3: Performance of the language models on the test sets and character-level perturbed samples of the

downstream tasks. For every task and every perturbation method, the highest score is shown in bold face.

CMW: Common Misspelled Words, LCC: Letter Case Changing.

1563

Consequently, the perturbed samples should be

monitored to make sure they are still meaningful

with respect to the NLP task at hand, and are

consistent with the original label in the dataset.

Otherwise, they should not be used for testing the

robustness, or the label should be changed to

reflect the change and preserve the consistency.

We separately applied every character-level

perturbation method to all test samples in a dataset,

and all the resulting perturbed samples were used

to evaluate the robustness of the language models.

A hyperparameter named Perturbation Per Sample

(PPS) specified the maximum number of

perturbations in a sample.

We monitored and filtered perturbed samples

resulted from three word-level perturbations that

may change the text’s meaning. These

perturbations are Deletion, Negation, and

Replacement with synonym. For every sample

whose meaning was changed by these three

methods, and a change in the test set label was

necessary to preserve consistency, we altered the

label if it was applicable. If a proper label could not

be assigned to the perturbed sample or the resulting

text was no longer meaningful, we excluded the

sample from the evaluations. Since monitoring and

filtering every single perturbed sample was

extremely time-consuming (such that

approximately one minute was needed on average

to check the meaningfulness of a perturbed sample

and its consistency with the test set label), we

corrected labels and filtered perturbed samples for

the above three methods until 200 samples were

collected for every dataset; then we used these

samples to evaluate the models on perturbed

inputs. We performed this manual curation of

perturbed samples for all values of PPS that we

experimented, i.e. values in the range [1, 4].

Appendix B presents the number of perturbed

samples checked in the manual curation procedure

until reaching 200 test samples for every dataset

and different values of PPS. The manual curation

was performed by three annotators who had

sufficient English language knowledge to properly

judge about the meaningfulness and consistency of

perturbed samples.

Since the rest of word-level perturbations are not

expected to change the text’s meaning with respect

to the NLP tasks in our experiments, we did not

monitor and filter them; they were produced and

used automatically. Again, the PPS

hyperparameter controlled the maximum number

of perturbations in every sample.

Table 3 and Table 4 present the performance of

the language models on character-level and word-

level perturbed samples, respectively. These results

are reported for PPS=1. The performance of the

language models on original, unperturbed test sets

Task LM Test set

Word-level perturbation methods

Deletion Repeat RWS Negation SPV VT WO

TC

BERT 90.4 75.1 89.3 65.7 89.1 88.2 89.0 74.5

RoBERTa 93.1 76.2 88.7 73.2 90.3 89.5 89.4 78.5

XLNet 92.0 76.2 87.5 72.7 89.4 89.0 89.6 83.1

ELMo 84.8 72.9 82.8 75.1 83.5 83.6 81.2 62.9

SA

BERT 92.2 73.7 87.6 67.5 84.6 88.2 90.1 76.4

RoBERTa 94.0 74.5 90.1 74.2 83.9 88.7 88.6 77.5

XLNet 93.1 74.7 88.5 74.1 82.3 88.6 89.3 83.8

ELMo 87.6 72.0 80.6 73.1 75.4 84.6 82.9 65.9

NER

BERT 92.6 81.4 83.1 74.1 85.3 88.2 89.1 70.7

RoBERTa 93.3 82.3 83.9 74.5 85.8 88.6 89.4 71.1

XLNet 92.7 81.9 83.7 73.9 85.6 88.3 88.7 74.8

ELMo 90.2 79.7 82.1 69.3 82.4 85.1 84.9 68.5

SS

BERT 82.5 72.6 74.1 69.4 68.5 75.2 75.6 72.0

RoBERTa 83.9 74.1 74.8 70.0 69.2 75.7 76.7 73.9

XLNet 83.3 73.3 74.5 69.8 68.7 75.8 76.2 75.3

ELMo 80.7 69.8 71.7 67.4 66.0 73.2 72.8 72.6

QA

BERT 91.6 78.4 89.6 71.5 84.9 88.0 90.3 76.7

RoBERTa 94.9 79.9 89.3 78.1 86.5 89.7 91.2 79.0

XLNet 93.4 79.2 89.5 77.3 86.1 89.1 90.9 85.8

ELMo 85.5 73.5 81.4 75.0 82.7 84.1 81.9 67.3

Table 4: Performance of the language models on the test sets and word-level perturbed samples of the

downstream tasks. For every task and every perturbation method, the highest score is shown in bold face. For

three perturbation methods, i.e. Deletion, Negation, and RWS, 200 perturbed samples were used in the

experiments. RWS: Replacement With Synonyms, SPV: Singular/Plural Verbs, VT: Verb Tense, WO: Word

Order.

1564

is also reported in both tables for every NLP task.

We performed five separate fine-tuning runs to test

if the performance of the NLP models on the

original test set and perturbed samples vary

between individual runs. Since there was no

statistically significant difference between multiple

runs (with respect to a t-test with a significance

level of p=0.05), we only report the results of the

first fine-tuning and testing run. The language

models were neither pretrained nor fine-tuned on

perturbed samples. The perturbation methods were

only applied to the test sets. As the results show,

the language models are sensitive to the

perturbations and their performance decreases

when the input is slightly noisy. However,

RoBERTa still performs better than the other

models, and ELMo obtains the lowest scores in

general.

The results suggest that some language models

can handle specific types of perturbation more

effectively than other models. ELMo obtains

higher scores than BERT and even performs on par

with XLNet and RoBERTa on some character-

level perturbations. This can be due to its pure

character-based representation that enables the

model to use morphological clues, leading to a

more robust model against character-level noises.

XLNet is shown to handle perturbations to word

ordering more efficiently than the others. This can

be an effect of the permutation language modelling

that may allow the model to still capture the

context and perform more accurately when some

context words appear in a different order. The

results also suggest those models that were

pretrained on larger corpora such as RoBERTa and

XLNet are more robust when words are replaced

by their synonyms. Furthermore, when the

negation perturbation has more impact on the task

at hand, e.g. sentiment analysis, the models are less

stable and handle the noise less efficiently than on

other tasks. Observing the results, we can also

point out the LSTM-based model, i.e. ELMo, is

more sensitive to the order of words in a sample

than the transformer-based models.

Table 5 presents the absolute decrease in the

performance of the language models for different

PPS values in the range [1, 4]. For every language

model, the average of absolute decrease in

performance is separately reported on character-

level and worl-level perturbations for every NLP

task. As can be shown, the models are generally

more sensitive to character-level perturbations than

word-level ones. Perturbed inputs causes the

models to make erronous outcomes on the

sentiment analysis task more often than on the

other tasks. On the other hand, the question

answering task suffers less than the other tasks

from noisy inputs.

Figure 1 represents six examples for which

perturbations to the input led the RoBERTa model

Task LM

Character-level perturbations Word-level perturbations

PPS=1 PPS=2 PPS=3 PPS=4 PPS=1 PPS=2 PPS=3 PPS=4

TC

BERT −15.8 −17.2 −18.0 −18.3 −8.8 −10.2 −13.1 −13.8

RoBERTa −17.1 −17.9 −18.5 −18.9 −9.4 −11.0 −12.7 −13.3

XLNet −16.6 −17.4 −19.2 −19.7 −8.0 −10.3 −12.4 −12.9

ELMo −8.8 −10.0 −11.2 −11.8 −7.3 −9.1 −11.5 −13.2

SA

BERT −17.4 −18.9 −20.1 −21.3 −11.0 −13.5 −15.1 −16.7

RoBERTa −18.4 −19.7 −21.2 −21.9 −11.5 −12.9 −14.2 −14.8

XLNet −17.0 −19.4 −20.6 −21.7 −10.0 −12.4 −14.3 −15.6

ELMo −11.2 −14.4 −16.0 −17.5 −11.2 −13.8 −14.9 −16.1

NER

BERT −12.2 −14.6 −16.3 −16.9 −10.8 −12.7 −14.0 −14.9

RoBERTa −12.4 −14.0 −14.8 −16.7 −11.0 −12.5 −13.6 −14.3

XLNet −12.2 −13.8 −14.5 −15.0 −10.2 −11.9 −13.1 −14.0

ELMo −10.2 −12.5 −13.1 −13.8 −11.3 −13.0 −15.2 −16.1

SS

BERT −9.8 −11.3 −12.9 −13.6 −10.0 −12.2 −13.8 −14.5

RoBERTa −10.4 −11.8 −13.0 −14.3 −10.4 −12.1 −13.2 −14.1

XLNet −10.5 −12.0 −13.2 −14.1 −9.9 −11.4 −12.8 −13.3

ELMo −9.2 −10.6 −11.7 −13.2 −10.2 −12.3 −13.9 −15.4

QA

BERT −12.2 −14.2 −15.0 −16.4 −8.8 −10.2 −12.5 −13.0

RoBERTa −13.4 −15.1 −15.8 −16.5 −10.1 −11.0 −12.3 −13.5

XLNet −12.4 −13.5 −16.4 −18.9 −7.9 −9.5 −11.2 −13.1

ELMo −7.8 −9.7 −11.3 −12.0 −7.5 −10.1 −12.0 −13.9

Table 5: Absolute decrease in the performance of the language models, on different NLP tasks, for character-

level and word-level perturbations, and with different values of the hyperparameter Perturbation per Sample

(PPS). For every task and every value of the hyperparameter PPS, the lowest decrease in the performance is

shown in bold face.

1565

to make wrong decisions, but the model made

correct decisions on the respective original inputs.

As can be seen, examples 1-3 contain minor

character-level noise that causes the model make

wrong decisions, however, the perturbed text still

seems understandable. In example 4, ‘diameter’

was replaced by ‘diam’ and ‘golf’ was replaced by

‘golf_game’, but the model failed to handle these

changes. In example 5, two repetitive words led the

model to estimate a lower similarity score,

however, the semantic remained unchanged.

Finally, example 6 shows how removing a single

word led the model to choose a wrong answer.

5.2 User study

We conducted a user study with 20 participants to

investigate how understandable the perturbed texts

are to humans. We created a set of perturbations by

randomly selecting perturbed samples from the

datasets used in the experiments. The samples

covered all types of character-level and word-level

perturbations.

In the first part of the study, each participant was

given 30 perturbed samples from those

perturbation methods that are not expected to

change the text’s meaning with respect to the NLP

tasks at hand. These are all the character-level

perturbations and three word-level perturbations,

i.e. Repetition, Singular/plural verbs, and Verb

tense. The participants were also given the original

text along with every perturbed sample, and were

asked to judge if the perturbed text is

understandable and still conveys the same

meaning. Every sample contained one, two, or

three perturbations.

According to the user evaluations, on average,

94% of the perturbed samples from this set were

understandable and still conveyed the same

meaning as the original text. These results are well

in agreement with our discussion in Section 6.2, i.e.

the majority of our proposed perturbations can be

automatically produced and used without needing

human supervision to ensure understandability and

consistency.

In the second part of the study, each participant

was given 20 perturbed samples from those perturbation

methods that may change the text’s meaning or

result in meaningless text. They are the rest of

word-level perturbations, i.e. Deletion,

Replacement with synonyms, Negation, and Word

order. The participants were also given the original

text along with every perturbed sample, and were

asked to judge (with respect to the task at hand) if

the perturbed text is still meaningful and consistent

with the test set label.

According to the user evaluations, on average,

39% of the perturbed samples from this set were

still meaningful and consistent with the label, 12%

Figure 1: Six examples of input perturbations from the three NLP tasks for which the RoBERTa model made

wrong decisions, but it made correct decisions on the respective original inputs.

1566

of the perturbed samples were meaningful but the

label should be changed, and 49% of the perturbed

samples were no longer meaningful. These results

imply that some perturbations need to be

monitored, corrected, or filtered to make sure they

are understandable, meaningful, and consistent

with the test set label. This helps to fairly estimate

the robustness of NLP systems to input

perturbations.

6 Related work

Typical performance measures such as accuracy,

precision, recall, etc. may not properly reflect how

NLP systems behave in real-world use cases. This

has motivated many studies to devise novel

methods for investigating different capabilities and

vulnerabilities of text processing systems.

Behavioral testing introduces targeted changes to

textual inputs to test linguistic capabilities of

systems (Ribeiro et al., 2020). Explanations

provide simplified representations of what a

complex NLP model has learned (Moradi and

Samwald, 2021a, b; Ribeiro et al., 2016). This can

help to identify biases and errors in NLP models.

Adversarial perturbations have been widely

studied to assess the robustness of NLP systems

against adversarial samples crafted to fool a model

(Alshemali and Kalita, 2020; Ren et al., 2019;

Zhang et al., 2020). However, adversarial samples

resemble a very specific type of noise. Moreover,

most of previous work on adversarial perturbation

to NLP models focused on misspelling attacks

(Jones et al., 2020; Pruthi et al., 2019; L. Sun et al.,

2020). The perturbation methods implemented in

this paper represented a wide range of noises that

an NLP system may face in real-world situations.

Introducing noise and changing textual inputs

were already adopted to assess the ability of

models in capturing specific linguistic features

such as learning syntax-sensitive dependencies

(Linzen et al., 2016), for specific NLP tasks such

as machine translation (Belinkov and Bisk, 2018),

for detecting biases in language models

(Prabhakaran et al., 2019), or to identify

susceptible entities in text documents (M. Sun et

al., 2018). In this paper, we investigated the

robustness on a wide range of tasks, and for various

types of character-level and word-level noises in

text.

7 Conclusion

In this paper, we introduced and implemented a set

of non-adversarial perturbation methods that can

be used to evaluate the robustness of NLP systems.

We extensively investigated the robustness of

high-performance neural language models to noisy

input texts. The evaluations on various NLP tasks

imply that these models are sensitive to different

character-level and word-level perturbations to the

input, and the models’ performance can decrease

when the input contains slight noise. The results

suggest that it may be too simplistic to only rely on

accuracy scores obtained on benchmark datasets

when evaluating the robustness of NLP systems.

The proposed perturbations can be used, along

with other methodologies such as CheckList, to

test how robust and reliable NLP systems can

operate in real-world settings. The experimental

results demonstrated that the perturbation methods

are effective tools for evaluating NLP systems

against noisy data. The user study revealed that

only few perturbation methods need to be

monitored to make sure they produce meaningful

and consistent samples. Most of the perturbation

methods can be used automatically to produce

noisy test samples. They can be also used as a

baseline for evaluating adversarial attacks against

non-adversarial perturbations.

Future work may include helping users assess

meaning preservation and grammatical correctness

in a semi-automatic manner. Sentence encoders

such as InferSent (Conneau et al., 2017), Universal

Sentence Encoder (Cer et al., 2018), and BERT

trained for semantic similarity (Reimers and

Gurevych, 2019) can be used to give users clues

how semantically similar the original and

perturbed sentences are. Moreover, users can be

provided with information about grammatical

errors in the perturbed text using LanguageTool

(Naber, 2003) or other grammar checking tools.

References

Basemah Alshemali, and Jugal Kalita. 2020.

Improving the Reliability of Deep Neural Networks

in NLP: A Review. Knowledge-Based Systems, 191:

105210.

https://doi.org/10.1016/j.knosys.2019.105210.

Yonatan Belinkov, and Yonatan Bisk. 2018. Synthetic

and Natural Noise Both Break Neural Machine

Translation. In 6th International Conference on

Learning Representations, ICLR 2018.

https://doi.org/10.1016/j.knosys.2019.105210

1567

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-

Gazpio, and Lucia Specia. 2017. SemEval-2017

Task 1: Semantic Textual Similarity Multilingual

and Crosslingual Focused Evaluation. In

Proceedings of the 11th International Workshop on

Semantic Evaluation (SemEval-2017). Association

for Computational Linguistics, pages 1-14.

https://doi.org/10.18653/v1/S17-2001.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,

Nicole Limtiaco, Rhomni St John, Noah Constant,

Mario Guajardo-Céspedes, Steve Yuan, and Chris

Tar. 2018. Universal sentence encoder. arXiv

preprint arXiv:1803.11175.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc

Barrault, and Antoine Bordes. 2017. Supervised

Learning of Universal Sentence Representations

from Natural Language Inference Data. In

Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing.

Association for Computational Linguistics, pages

670-680. https://doi.org/10.18653/v1/D17-1070.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep

bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805.

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong

Liu. 2020. Towards robustness against natural

language word substitutions. In International

Conference on Learning Representations.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing

Dou. 2018. HotFlip: White-Box Adversarial

Examples for Text Classification. In Proceedings of

the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short

Papers). Association for Computational

Linguistics, pages 31-36.

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli,

and Pascal Frossard. 2016. Robustness of

classifiers: from adversarial to random noise. arXiv

preprint arXiv:1608.08967.

Georg Heigold, Günter Neumann, and Josef van

Genabith. 2018. How Robust Are Character-Based

Word Embeddings in Tagging and MT Against

Wrod Scramlbing or Randdm Nouse? In

Proceedings of the 13th Conference of the

Association for Machine Translation in the

Americas.

Erik Jones, Robin Jia, Aditi Raghunathan, and Percy

Liang. 2020. Robust Encodings: A Framework for

Combating Adversarial Typos. In Proceedings of

the 58th Annual Meeting of the Association for

Computational Linguistics. Association for

Computational Linguistics, pages 2752-2765.

https://doi.org/10.18653/v1/2020.acl-main.245.

Xin Li, and Dan Roth. 2002. Learning question

classifiers. In COLING 2002: The 19th

International Conference on Computational

Linguistics.

Bin Liang, Hongcheng Li, Miaoqiang Su, Pan Bian,

Xirong Li, and Wenchang Shi. 2018. Deep text

classification can be fooled. In Proceedings of the

Twenty-Seventh International Joint Conference on

Artificial Intelligence (IJCAI-18). pages 4208-4215.

https://doi.org/10.24963/ijcai.2018/585.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.

2016. Assessing the ability of LSTMs to learn

syntax-sensitive dependencies. Transactions of the

Association for Computational Linguistics, 4: 521-

535.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,

Mandar Joshi, Danqi Chen, Omer Levy, Mike

Lewis, Luke Zettlemoyer, and Veselin Stoyanov.

2019. Roberta: A robustly optimized bert

pretraining approach. arXiv preprint

arXiv:1907.11692.

George A. Miller. 1995. WordNet: a lexical database

for English. Commun. ACM, 38(11): 39–41.

https://doi.org/10.1145/219717.219748.

Milad Moradi, and Matthias Samwald. 2021a.

Explaining Black-Box Models for Biomedical Text

Classification. IEEE Journal of Biomedical and

Health Informatics, 25(8): 3112-3120.

https://doi.org/10.1109/JBHI.2021.3056748.

Milad Moradi, and Matthias Samwald. 2021b. Post-

hoc explanation of black-box classifiers using

confident itemsets. Expert Systems with

Applications, 165: 113941.

https://doi.org/10.1016/j.eswa.2020.113941.

Daniel Naber. 2003. A rule-based style and grammar

checker. Citeseer.

Xing Niu, Prashant Mathur, Georgiana Dinu, and Yaser

Al-Onaizan. 2020. Evaluating Robustness to Input

Perturbations for Neural Machine Translation. In

Proceedings of the 58th Annual Meeting of the

Association for Computational Linguistics.

Association for Computational Linguistics, pages

8538-8544.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt

Gardner, Christopher Clark, Kenton Lee, and Luke

Zettlemoyer. 2018. Deep Contextualized Word

Representations. In Proceedings of the 2018

Conference of the North American Chapter of the

Association for Computational Linguistics: Human

Language Technologies. Association for

Computational Linguistics, pages 2227-2237.

https://doi.org/10.18653/v1/N18-1202.

Vinodkumar Prabhakaran, Ben Hutchinson, and

Margaret Mitchell. 2019. Perturbation Sensitivity

https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.18653/v1/2020.acl-main.245
https://doi.org/10.24963/ijcai.2018/585
https://doi.org/10.1145/219717.219748
https://doi.org/10.1109/JBHI.2021.3056748
https://doi.org/10.1016/j.eswa.2020.113941
https://doi.org/10.18653/v1/N18-1202

1568

Analysis to Detect Unintended Model Biases. In

Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the

9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP).

Association for Computational Linguistics, pages

5740-5745.

Danish Pruthi, Bhuwan Dhingra, and Zachary C.

Lipton. 2019. Combating Adversarial Misspellings

with Robust Word Recognition. In Proceedings of

the 57th Annual Meeting of the Association for

Computational Linguistics. Association for

Computational Linguistics, pages 5582-5591.

https://doi.org/10.18653/v1/P19-1561.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,

Dario Amodei, and Ilya Sutskever. 2019. Language

models are unsupervised multitask learners. OpenAI

blog, 1(8): 9.

Nils Reimers, and Iryna Gurevych. 2019. Sentence-

BERT: Sentence Embeddings using Siamese BERT-

Networks. In Proceedings of the 2019 Conference

on Empirical Methods in Natural Language

Processing and the 9th International Joint

Conference on Natural Language Processing.

Association for Computational Linguistics, pages

3982-3992. https://doi.org/10.18653/v1/D19-1410.

Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che.

2019. Generating natural language adversarial

examples through probability weighted word

saliency. In Proceedings of the 57th annual meeting

of the association for computational linguistics.

pages 1085-1097.

Marco Tulio Ribeiro, Sameer Singh, and Carlos

Guestrin. 2016. "Why Should I Trust You?":

Explaining the Predictions of Any Classifier. In

Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery

and Data Mining. ACM, pages 1135-1144.

https://doi.org/10.1145/2939672.2939778.

Marco Tulio Ribeiro, Tongshuang Wu, Carlos

Guestrin, and Sameer Singh. 2020. Beyond

Accuracy: Behavioral Testing of NLP Models with

CheckList. In Proceedings of the 58th Annual

Meeting of the Association for Computational

Linguistics. Association for Computational

Linguistics, pages 4902-4912.

Richard Socher, Alex Perelygin, Jean Wu, Jason

Chuang, Christopher D Manning, Andrew Y Ng,

and Christopher Potts. 2013. Recursive deep models

for semantic compositionality over a sentiment

treebank. In Proceedings of the 2013 conference on

empirical methods in natural language processing.

pages 1631-1642.

Lichao Sun, Kazuma Hashimoto, Wenpeng Yin, Akari

Asai, Jia Li, Philip Yu, and Caiming Xiong. 2020.

Adv-BERT: BERT is not robust on misspellings!

Generating nature adversarial samples on BERT.

arXiv preprint arXiv:2003.04985.

Mengying Sun, Fengyi Tang, Jinfeng Yi, Fei Wang,

and Jiayu Zhou. 2018. Identify Susceptible

Locations in Medical Records via Adversarial

Attacks on Deep Predictive Models. In Proceedings

of the 24th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining.

Association for Computing Machinery, pages 793–

801. https://doi.org/10.1145/3219819.3219909.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien

Chaumond, Clement Delangue, Anthony Moi,

Pierric Cistac, Tim Rault, Remi Louf, Morgan

Funtowicz, Joe Davison, Sam Shleifer, Patrick von

Platen, Clara Ma, Yacine Jernite, Julien Plu,

Canwen Xu, Teven Le Scao, Sylvain Gugger,

Mariama Drame, Quentin Lhoest, and Alexander

Rush. 2020. Transformers: State-of-the-Art Natural

Language Processing. In Proceedings of the 2020

Conference on Empirical Methods in Natural

Language Processing: System Demonstrations.

Association for Computational Linguistics, pages

38-45. https://doi.org/10.18653/v1/2020.emnlp-

demos.6.

Jincheng Xu, and Qingfeng Du. 2020. TextTricker:

Loss-based and gradient-based adversarial attacks

on text classification models. Engineering

Applications of Artificial Intelligence, 92: 103641.

https://doi.org/10.1016/j.engappai.2020.103641.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.

Wikiqa: A challenge dataset for open-domain

question answering. In Proceedings of the 2015

conference on empirical methods in natural

language processing. pages 2013-2018.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime

Carbonell, Russ R Salakhutdinov, and Quoc V Le.

2019. Xlnet: Generalized autoregressive pretraining

for language understanding. In Advances in neural

information processing systems. pages 5753-5763.

Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji

Zhang, Bairu Hou, Yuan Zang, Zhiyuan Liu, and

Maosong Sun. 2020. OpenAttack: An Open-source

Textual Adversarial Attack Toolkit. arXiv preprint

arXiv:2009.09191.

Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi,

and Chenliang Li. 2020. Adversarial Attacks on

Deep-learning Models in Natural Language

Processing: A Survey. ACM Trans. Intell. Syst.

Technol., 11(3): Article 24.

https://doi.org/10.1145/3374217.

https://doi.org/10.18653/v1/P19-1561
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/3219819.3219909
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1016/j.engappai.2020.103641
https://doi.org/10.1145/3374217

1569

Appendix A. Fine-tuning hyperparameters

Table 6, 7, 8, and 9 present the hyperparameter

values of the BERT, RoBERTa, XLNet, and ELMo

models, respectively, in the fine-tuning

experiments on different NLP tasks. Those

hyperparameters not included in the tables were

used with their default values specified by the

original models.

Hyperparameter TC SA QA NER SS

Max sequence length 64 64 256 64 64

Batch size 12 12 2 12 12

Learning rate 2e-5 1e-5 3e-5 1e-5 2e-5

Num epochs 20 15 10 20 20

Table 6: Fine-tuning hyperparameters for the BERT language model on different tasks. TC: Text

Classification, SA: Sentiment Analysis, QA: Question Answering, NER: Named Entity

Recognition, SS: Semantic Similarity.

Hyperparameter TC SA QA NER SS

Max sequence length 64 64 256 64 64

Batch size 12 12 2 12 12

Learning rate 1e-5 1e-5 1.5e-5 2e-5 2e-5

Weight decay 0.1 0.1 0.01 0.1 0.01

Learning rate decay Linear Linear Linear Linear Linear

Warmup ratio 0.06 0.06 0.06 0.05 0.05

Num epochs 20 15 10 20 20

Table 7: Fine-tuning hyperparameters for the RoBERTa language model on different tasks. TC:

Text Classification, SA: Sentiment Analysis, QA: Question Answering, NER: Named Entity

Recognition, SS: Semantic Similarity.

 Hyperparameter TC SA QA NER SS

Max sequence length 128 128 256 128 128

Batch size 8 8 2 8 8

Learning rate 2e-5 2e-5 2.e-5 1e-5 1e-5

Num steps 6K 6K 4K 6K 6K

Learning rate decay Linear Linear Linear Linear Linear

Table 8: Fine-tuning hyperparameters for the XLNet language model on different tasks. TC: Text

Classification, SA: Sentiment Analysis, QA: Question Answering, NER: Named Entity

Recognition, SS: Semantic Similarity.

Hyperparameter TC SA QA NER SS

n_highway 2 2 2 2 2

Droupout 0.2 0.2 0.2 0.2 0.2

Batch size 128 128 256 128 128

Projection dim 512 512 512 512 512

Num epochs 20 20 10 20 20

Table 9: Fine-tuning hyperparameters for the ELMo language model on different tasks. TC: Text

Classification, SA: Sentiment Analysis, QA: Question Answering, NER: Named Entity

Recognition, SS: Semantic Similarity.

1570

Appendix B. Manual curation of perturbed

samples

Table 10 shows how many perturbed samples

(word-level deletion) were checked in the manual

curation procedure until reaching 200 test samples

for every dataset and different values of

Perturbation Per Sample (PPS). Table 11 and Table

12 show the same statistics for word-level negation

and word-level replacement with synonym,

respectively.

Dataset
Perturbation Per Samples

PPS=1 PPS=2 PPS=3 PPS=4

TREC 221 269 341 435

SST 238 301 345 452

CoNLL 261 327 394 468

STS 240 281 354 409

WQA 219 248 283 351

Table 10: The number of perturbed samples (word-level deletion)

checked in the manual curation procedure until reaching 200 test

samples for every dataset and different values of Perturbation Per

Sample (PPS).

 Dataset
Perturbation Per Samples

PPS=1 PPS=2 PPS=3 PPS=4

TREC 235 251 268 268

SST 291 317 325 325

CoNLL 209 218 226 226

STS 253 269 291 291

WQA 295 314 317 317

Table 11: The number of perturbed samples (word-level negation)

checked in the manual curation procedure until reaching 200 test

samples for every dataset and different values of Perturbation Per

Sample (PPS).

 Dataset
Perturbation Per Samples

PPS=1 PPS=2 PPS=3 PPS=4

TREC 239 266 295 308

SST 221 249 273 290

CoNLL 213 228 236 251

STS 230 251 284 303

WQA 215 233 256 287

Table 12: The number of perturbed samples (word-level replacement

with synonym) checked in the manual curation procedure until reaching

200 test samples for every dataset and different values of Perturbation

Per Sample (PPS).

