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Abstract

It is crucial to provide an inter-sentence con-
text in Neural Machine Translation (NMT)
models for higher-quality translation. With the
aim of using a simple approach to incorporate
inter-sentence information, we propose mini-
batch embedding (MBE) as a way to represent
the features of sentences in a mini-batch. We
construct a mini-batch by choosing sentences
from the same document, and thus the MBE is
expected to have contextual information across
sentences. Here, we incorporate MBE in an
NMT model, and our experiments show that
the proposed method consistently outperforms
the translation capabilities of strong baselines
and improves writing style or terminology to
fit the document’s context.1

1 Introduction

Current standard neural machine translation (NMT)
models (Sutskever et al., 2014; Bahdanau et al.,
2015; Luong et al., 2015; Vaswani et al., 2017)
translate sentences in a sentence-by-sentence man-
ner. However, some have argued that it is critical
to consider the inter-sentence context in handling
discourse phenomena (Hardmeier, 2012), which
include coherence, cohesion, coreference (Baw-
den et al., 2018; Nagata and Morishita, 2020),
and writing style (Yamagishi et al., 2016). To
correctly translate these linguistic features, some
works provide additional context information to
an NMT model by concatenating the previous sen-
tence (Tiedemann and Scherrer, 2017), applying a
context encoder (Bawden et al., 2018; Miculicich
et al., 2018; Voita et al., 2018), or using a cache-
based network (Tu et al., 2018; Kuang et al., 2018).

Most of the previous studies have considered
only a few previous context sentences. Several

1Our implementation is publicly available: https://
github.com/nttcslab-nlp/mbe-nmt

methods, such as the cache-based network, con-
sider long-range context but heavily modify the
standard NMT models and require additional train-
ing/decoding steps. Our goal is to make a simple
but effective context-aware NMT model, which
does not require heavy modification to standard
NMT models and can handle a wider inter-sentence
context. To this end, we propose a method to create
an embedding that represents the contextual infor-
mation of a document. To create this embedding,
we focused on the mini-batch, which is commonly
used in NMT training and decoding for efficient
GPU computation. We modified the mini-batch cre-
ation algorithm to choose sentences from a single
document and created an embedding that repre-
sents the features of the mini-batch. We call this
embedding mini-batch embedding (MBE) and in-
corporate it in the NMT model to exploit contextual
information across the sentences in the mini-batch.

Our main contributions can be summarized as
follows: (i) We introduce mini-batch embedding
to represent the features of sentences in a mini-
batch. (ii) We incorporate mini-batch embedding in
NMT to achieve simple context-aware translation
and find that our approach improves translation
performance by up to 1.9 BLEU points.

2 Neural Machine Translation

The current NMT model f(·) generates a se-
quence of target sentence tokens y = (y1, . . . , yt)
given a sequence of source sentence tokens x =
(x1, . . . , xs): y = f(x; ✓), where ✓ is a set of
model parameters and s and t are the numbers of
source and target sentence tokens. The model pa-
rameters are trained by minimizing the loss func-
tion:

LNMT(✓) = �
X

(x,y)2D
logP (y|x; ✓), (1)
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where D is a set of bilingual sentence pairs. Since
the model only uses a single sentence as its input,
it does not consider the inter-sentence context.

3 Context-aware NMT with Mini-batch
Embedding

To exploit the inter-sentence context in NMT with
a simple modification, we propose mini-batch
embedding (MBE) to represent the features of
sentences in the mini-batch. Figure 1 shows an
overview of how we create mini-batch embedding
and incorporate it in the NMT model.

3.1 Mini-batch Embedding
Let B = {(x1,y1), . . . , (xn,yn)} be a mini-
batch, where (xi,yi) is a pair of source/target sen-
tences. Normally, we randomly select them from
all of the training data to create a mini-batch B.
However, for our method, we choose sentence pairs
from the same document to create a mini-batch.

Let genc(·) be a single Transformer encoder
layer. We first compute sentence-wise contex-
tualized embeddings Ei = (ei,1, . . . , ei,si) as
Ei = genc(xi;�), where si is the number of to-
kens in xi and � are the model parameters. MBE
z 2 Re is computed:

z =
1

n

nX

i=1

vi, vi =
1

si

siX

j=1

ei,j , (2)

where e is a hidden dimension of the NMT model.
We use mean pooling2 to make both sentence em-
beddings vi and MBE z. By adopting this pro-
cedure, we expect MBE z to have inter-sentence
context features, which is desirable for a context-
aware NMT.

Note that we ignore the order of sentences in a
document. This is a beneficial trait because this
method is also applicable to corpora with document
boundaries but without in-document sentence order,
such as ParaCrawl (Esplà et al., 2019).

3.2 Learning NMT with Mini-batch
Embedding

To use inter-sentence information, we modify the
NMT model by adding MBE to the input:

y = f(x, z; ✓). (3)

2This approach was inspired by Reimers and Gurevych
(2019), who successfully created sentence embeddings from
BERT embeddings (Devlin et al., 2019) by mean pooling.

We concatenated MBE to the input word embed-
dings, and the model uses MBE as the first input
token (Fig. 1). Now the encoder/decoder takes s+1
and t+ 1 embeddings.

The Transformer encoder layer for MBE was
jointly trained with the NMT model by modifying
the loss function in Eq. (1):

LNMT(✓,�) = �
X

B2D0

X

(x,y)2B

logP (y|x,B; ✓,�),

(4)
where D0 is a set of mini-batches created from D.

3.3 Mini-batch Embedding Gate
The MBE may degrade the translation performance
when the NMT model does not need any context
information to translate the mini-batch or the MBE
fails to contain important information for transla-
tion. To deal with such cases, we aim to make the
model estimate how important MBE is for each
mini-batch. Thus we added a mini-batch embed-
ding gate to determine MBE’s importance.

In this setting, we prepared two types of mini-
batches for training: (i) sentences from the same
document and (ii) sentences from different doc-
uments. Then we trained a binary classifier that
predicts whether the sentences in the mini-batch
are selected from the same document:

P (d|z) = softmax(Wz), (5)

where W 2 R2⇥e is a parameter matrix and d is
a binary value that takes 1 if the sentences in the
mini-batch are selected from the same document.

To train the classifier, we minimize the loss func-
tion:

LMB( ) = �
X

(d,B)2D0

logP (d|B; ), (6)

where  is a set of parameters for the classifier. For
training, we mix the two types of mini-batches at
the same ratio.

Concretely, we jointly minimize the NMT and
the classifier loss functions:

L(✓,�, ) = LNMT(✓,�) + �LMB( ), (7)

where � is a hyperparameter used to control the
weight of the classifier loss. We use the value pre-
dicted by the classifier as a gate. Our new weighted
MBE is

z̃ = ↵z, (8)

where ↵ = P (d = 1|z), and we change z in
Eqs. (3) to z̃.
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Figure 1: Overview of context-aware NMT with mini-batch embedding. xi is a sequence of source tokens, B
is a mini-batch that has n sentences, Ei is sentence-wise contextualized embeddings computed by a Transformer
encoder, vi is a sentence vector, and z is mini-batch embedding. We pad short sentences with a special <pad>
token to adjust their length to the longest sentence in the mini-batch.

4 Experiments

4.1 Compared Models
We used four settings as baselines:

Baseline 6 Enc-Layers is the original Trans-
former NMT model with six encoder-decoder
layers.

Baseline 7 Enc-Layers resembles Baseline 6 Enc-
Layers, but the number of encoder layers was
changed to seven. Since our MBE model re-
quires an additional Transformer encoder layer,
this model has a comparable number of param-
eters as the following MBE models.

2-to-1 is the context-aware translation model pro-
posed by Tiedemann and Scherrer (2017) that
translates a pair of previous and current source
sentences into a target sentence. Two source
sentences are concatenated with a special sen-
tence boundary token. This method is known as
a strong baseline for context-aware NMT (Baw-
den et al., 2018; Voita et al., 2018). Other set-
tings are identical to those of Baseline 6 Enc-
Layers3.

DocRepair is another recent context-aware trans-
lation model, which uses two-step decod-
ing (Voita et al., 2019). The first step generates
1-best translation with a sentence-level NMT
model given a single sentence. The second step
generates document-level translation given 1-
best translations of four consecutive sentences
concatenated with a special token.

We compared our proposed methods with the
following settings:

MBE Enc resembles Baseline 6 Enc-Layers but
uses MBE in the encoder.

3Since our training data have document boundaries but
the in-document sentence orders were shuffled, we randomly
selected one in-document sentence and used it as previous
context. For dev/test sets, we used the original sentence order.

MBE Enc w/o Gate resembles MBE Enc, but it
does not use the MBE gate described in Sec-
tion 3.3.

MBE Dec uses MBE in the decoder.
MBE Enc/Dec uses MBE in both the encoder and

the decoder.

4.2 Experimental Settings
Datasets/Evaluation We trained Japanese-
English NMT models. As training data, we used
the JParaCrawl corpus (Morishita et al., 2020).
JParaCrawl was created by crawling the web and
aligning parallel sentences, and each sentence-pair
has a URL from which the sentences were taken.
In this experiment, we regarded the sentences from
the same URL as a document.

We used several test sets with document
boundaries: (i) scientific paper excerpts (AS-
PEC (Nakazawa et al., 2016)), (ii) news (news-
dev2020 from WMT20 news translation shared
task4), and (iii) TED talks (tst2012 from IWSLT
translation shared task (Cettolo et al., 2012)). As
a dev set to tune the NMT model, we used the AS-
PEC dev split. See Section A.1 in the Appendix for
corpus statistics and detailed preprocessing steps.

To evaluate the translation performance, we used
sacreBLEU5 (Post, 2018) and report the BLEU
scores (Papineni et al., 2002).

Model Configurations We used the Transformer
model as an NMT model (Vaswani et al., 2017).
Our hyperparameters were based on the “big” set-
tings defined by Vaswani et al. (2017). For the
MBE experiments, we set � in Eq. (7) to 1.0. We
set the mini-batch size to 3,000 tokens. If the to-
kens in a document were larger than this size, we

4We used newsdev2020 as a test set because no official test
set for English-Japanese was available at the time of writing.
Since we did not use newsdev2020 for tuning the model, there
is no problem with using it as a test set.

5The signature is BLEU+case.mixed+lang.en-ja
+numrefs.1+smooth.exp+tok.ja-mecab-0.996-
IPA+version.1.4.9
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Model ASPEC WMT IWSLT

Baseline 6 Enc-Layers (Vaswani et al., 2017) 26.2 18.4 12.0
Baseline 7 Enc-Layers (Vaswani et al., 2017) 26.9 (+0.7) 18.7 (+0.3) 11.9 (�0.1)
2-to-1 (Tiedemann and Scherrer, 2017) 27.0 (+0.8) 19.2 (+0.8) 12.9 (+0.9)
DocRepair (Voita et al., 2019) 27.9 (+1.7) 19.3 (+0.9) 12.3 (+0.3)

MBE Enc 28.0 (+1.8) 19.9 (+1.5) 12.2 (+0.2)
MBE Enc w/o Gate 28.0 (+1.8) 19.4 (+1.0) 13.0 (+1.0)
MBE Dec 28.1 (+1.9) 19.9 (+1.5) 13.8 (+1.8)
MBE Enc/Dec 28.1 (+1.9) 20.0 (+1.6) 13.4 (+1.4)

Table 1: BLEU scores for test sets: Values in brackets show score differences to “Baseline 6 Enc-Layers” model.
The highest score in each test set is highlighted in bold.

split the document into several mini-batches6. If
the tokens in a document are smaller, we put all
tokens into a single mini-batch7. See Section A.2
in the Appendix for detailed hyperparameters and
training settings.

4.3 Experimental Results and Analysis
Translation Performance Table 1 summarizes
the model performance on several test sets. See Ta-
ble 3 in the Appendix for the dev set performance.
The results show that the scores of the proposed
methods surpass the baseline as well as the stronger
baselines that used seven encoder layers or the ex-
isting context-aware models.

Translation Examples Figure 2 shows an exam-
ple translation of a sentence from the scientific
paper excerpts (ASPEC test set). In this example,
the word “mentions” is translated in two ways. The
baseline system translated the word as “� W
fD~Y”, which is a colloquial expression. In
contrast, the proposed method translated it as “
yã”, which suits usage in scientific papers. This
shows that MBE could change the writing style to
one that is more appropriate for scientific papers
compared to the baseline.

Figure 3 shows another example, which is from
TED talks (tst2012). This example shows how our
model could change the translation of the word
“you”. Our method translated this word as “�”,
which is friendlier than the baseline output “Bj
_”. In this document, “he” is a friendly old man,
and thus the MBE output is more appropriate for
this context.

6We sorted the sentences in a document by their length
when splitting the document into several mini-batches to main-
tain the training efficiency. Since the method focuses more on
writing style and wording, we do not keep the original order
of the sentences.

7In this case, the mini-batch size could be smaller than
3,000 tokens, since we did not want to mix up the sentences
from different documents.

These examples show that our method improved
the writing style to fit the context and chose the
appropriate word for the context. This indicates
that MBE helped the NMT model by providing
context information across the mini-batch.

Effect of Decoding Batch-size In the previous
section, we discussed the translation performance
given a document, which means that the sentences
in the entire document are in a mini-batch. How-
ever, in practice, we sometimes have to translate
a part of the document. To check the robustness
of the model in such situations, we decoded the
test set by limiting the number of sentences in a
mini-batch.

Figure 4 shows the experimental results. The
baseline model scores are identical to those in Ta-
ble 1, since the model is immune to mini-batch
size. Our MBE models achieve better performance
when given a larger context. It reach comparable or
better scores than the baseline model when given
a single sentence or a smaller context. However,
the model without using MBE gate (MBE Enc w/o
Gate) showed a drastic drop in performance when
translating a single sentence. This shows that the
gate properly works to weigh the importance of
MBE and improve performance.

5 Related Work

Context-aware NMT Tiedemann and Scherrer
(2017) proposed a 2-to-1 (or 2-to-2) method that
concatenates two source sentences and generates
one (or two) target sentences. This is a simple
model, but it only considers a previous sentence,
while our method can make use of larger con-
texts. Junczys-Dowmunt (2019) extended the 2-
to-2 method to document-to-document by concate-
nating all sentences in a document. Although they
showed that the method is effective, it requires
heavy computational cost since the NMT model
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Source The paper
:::::::
mentions the reliability assurance test and application technologies.

Reference ·<'›<f◆hi(ÄSí
::::::
y_

Baseline 6 Enc-Layers Sn÷ágo�·<'›<∆π»h¢◊Í±¸∑ÁÛÄSkdDf
::::::::::::
� WfD~Y⇥

MBE Enc/Dec ,÷ágo,·<'›<f◆h‹(ÄSkdDf
:::::
yã.

Figure 2: Example translation of a sentence from scientific paper excerpts (ASPEC test set).

Source He said, “I’m so proud of
::
you.”

Reference �
:
�íYTOáäk�Fà�

Baseline 6 Enc-Layers |o� “¡o
:::::
Bj_íhfÇáäk�D~Y”h�D~W_⇥

MBE Enc/Dec |o�
::
�íhfÇáäk�F�h�D~W_⇥

Figure 3: Example translation of a sentence from TED talks (tst2012).

Figure 4: Relationship between the number of sen-
tences in a mini-batch and BLEU scores on ASPEC
test set.

has to process very long context. Miculicich et al.
(2018) proposed a model that uses a hierarchical
attention network to use previous context embed-
dings. However, their work can only use a few
previous sentences as context, in contrast to our
work that can use a larger context. Tu et al. (2018)
and Kuang et al. (2018) proposed a cache-based ap-
proach to store longer context, while our work uses
a much simpler architecture. Voita et al. (2019) pro-
posed a method called DocRepair, one of the most
recent context-aware NMT methods, that employs
two decoding steps. It first translates a sentence
by sentence-level NMT, and then the concatenated
output is fed to a document-level model that out-
puts document-level translation. Although this is
a promising method, it requires training of three
sequence-to-sequence models to translate a single
direction and needs two decoding steps, which
slows down the translation. Our method has an
advantage in that it only trains a single model and
uses single-step decoding, which requires only a
small computational cost.

NMT with Tags We used an MBE as the first
input of the encoder/decoder. Our approach is sim-

ilar to the work that uses special tags to control or
provide additional information to NMT (Johnson
et al., 2016; Takeno et al., 2017; Caswell et al.,
2019). Johnson et al. (2016) added tags to a source
sentence for indicating the target language in mul-
tilingual NMT models. Takeno et al. (2017) pro-
posed a method that controls the target length or
the domain by adding a tag to the decoder inputs.
Caswell et al. (2019) used a tag to indicate the syn-
thetic corpus (Sennrich et al., 2016). Our work,
which automatically generates a tag (MBE) with
the sentence in a mini-batch and uses a gate to con-
trol the importance of MBE, is different from the
previous studies.

6 Conclusion

We proposed mini-batch embedding (MBE), which
is a simple but effective method to represent con-
textual information across documents. We incorpo-
rated MBE in the NMT model, which enabled it to
outperform competitive baselines. We found that
our NMT model could choose the appropriate word
and writing style to match the document context.
An analysis showed that our model’s performance
improves with a large context, but it still achieves
comparable or even better performance than that
of the baseline when translating a single sentence.
Our future work includes applying MBE to other
applications and improving the method to generate
embeddings from a mini-batch.
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Data Usage Sentences Documents

JParaCrawl v2.0 train 10,120,013 24,156
ASPEC (dev) dev 1,790 400
ASPEC (test) test 1,812 400
WMT (newsdev2020) test 1,998 140
IWSLT (tst2012) test 1,670 15

Table 2: Number of sentences and documents in
train/dev/test sets

A Detailed Experimental Settings

In this section, we describe more detailed experi-
mental settings.

A.1 Data/Evaluation
The number of sentences and documents con-
tained in the train/dev/test sets are shown in Ta-
ble 2. We tokenized the sentences into subwords
with sentencepiece (Kudo, 2018; Kudo and
Richardson, 2018) and set the vocabulary size to
32k for each language. For the training set, we
removed sentences whose length exceeded 250 sub-
word tokens. For the DocRepair method, we used
the JParaCrawl corpus as data for both monolingual
and bilingual document-level application.

A.2 Model Configurations
We used the Transformer model as an NMT
model (Vaswani et al., 2017). Our hyperparame-
ters are based on “big” settings defined by Vaswani
et al. (2017) and have six encoder/decoder layers,
16 attention heads, and 1,024 dimensions for all
of the hidden states except the feed-forward net-
work hidden states that have 4,096 dimensions. We
used a dropout with a probability of 0.3 (Srivastava
et al., 2014). As an optimizer, we used Adam with
↵ = 0.001, �1 = 0.9, and �2 = 0.98 (Kingma and
Ba, 2015). A root-square decay learning rate sched-
ule was used with a linear warm-up of 4,000 steps
(Vaswani et al., 2017). We clipped the gradients to
avoid exceeding their norm of 1.0. For the MBE
experiments, we set � in Eq. (7) to 1.0 and set the
per-GPU-batch-size to 3,000 tokens. Since large-
batch training can reduce training time (Ott et al.,
2018), we accumulated about 280k tokens for an
update. Based on dev set perplexity, we trained the
model for 24,000 iterations. We saved the model ev-
ery 200 iterations and averaged the last eight model
parameters for decoding. We normalized the candi-
date translation scores by dividing their length and
carried out a beam search with a size of six. Our
implementation is based on fairseq (Ott et al.,

2019). We used mixed-precision training (Micike-
vicius et al., 2018) to reduce memory consumption
and training time. All experiments were run on
eight NVIDIA Tesla V100 GPUs with 32-GB mem-
ory. Since we did not conduct a hyperparameter
search, almost all of the settings were borrowed
from (Morishita et al., 2020).

DocRepair requires the training of three
sequence-to-sequence models: (1) an NMT model
that translates language X to Y; (2) an NMT
model that translates in reverse direction to make
round-trip translation; and (3) a sequence-to-
sequence model that converts 1-best translations
to document-level translation. We used “Baseline
7 Enc-Layers” models for both (1) and (2), and
newly trained the Transformer model for (3).

B Additional Experimental Results

Table 3 shows the number of parameters for each
model, training speed, and BLEU scores on the dev
set. The scores show the same tendency as the test
set (Table 1).

The DocRepair method requires two transla-
tion models (English-to-Japanese and Single-to-
Document), and thus the number of model param-
eters is larger than that for the other models. Al-
though it also requires a Japanese-to-English trans-
lation model for creating round-trip translation data
for training, these model parameters are not in-
cluded in the table.

Since our MBE implementation was still in the
experimental phase, the training speed was slower
than that of the baselines, which were fully opti-
mized by fairseq developers. We can further
improve our implementation for faster computation,
but we leave this for future work.

C Links to Data and Software

C.1 Data
JParaCrawl https://www.kecl.ntt.co.jp/

icl/lirg/jparacrawl/

ASPEC http://orchid.kuee.kyoto-u.ac.jp/

ASPEC/

newsdev2020 http://www.statmt.org/wmt20/

translation-task.html

tst2012 https://wit3.fbk.eu/

C.2 Software
fairseq https://github.com/pytorch/

fairseq
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Model Parameters wps hours for training BLEU (ASPEC dev)

Baseline 6 Enc-Layers (Vaswani et al., 2017) 274M 187k 9.7 26.7
Baseline 7 Enc-Layers (Vaswani et al., 2017) 287M 167k 10.2 27.2 (+0.5)
2-to-1 (Tiedemann and Scherrer, 2017) 274M 125k 15.2 28.1 (+1.4)
DocRepair (Voita et al., 2019) 555M 236k 26.8 27.3 (+0.6)

MBE Enc 287M 93k 21.1 27.9 (+1.2)
MBE Enc w/o Gate 287M 82k 24.2 27.4 (+0.7)
MBE Dec 287M 93k 21.0 28.0 (+1.3)
MBE Enc/Dec 287M 92k 21.3 28.3 (+1.6)

Table 3: Number of parameters, training speed (words per sec, wps), required hours for training, and BLEU scores
for the dev set.

sacreBLEU https://github.com/mjpost/

sacreBLEU

sentencepiece https://github.com/google/

sentencepiece


